
University of Central Florida University of Central Florida 

STARS STARS 

Electronic Theses and Dissertations, 2004-2019 

2016 

Improving Efficiency in Deep Learning for Large Scale Visual Improving Efficiency in Deep Learning for Large Scale Visual 

Recognition Recognition 

Baoyuan Liu 
University of Central Florida 

 Part of the Computer Engineering Commons 

Find similar works at: https://stars.library.ucf.edu/etd 

University of Central Florida Libraries http://library.ucf.edu 

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted 

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more 

information, please contact STARS@ucf.edu. 

STARS Citation STARS Citation 
Liu, Baoyuan, "Improving Efficiency in Deep Learning for Large Scale Visual Recognition" (2016). 
Electronic Theses and Dissertations, 2004-2019. 5317. 
https://stars.library.ucf.edu/etd/5317 

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/258?utm_source=stars.library.ucf.edu%2Fetd%2F5317&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/5317?utm_source=stars.library.ucf.edu%2Fetd%2F5317&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/


IMPROVING EFFICIENCY IN DEEP LEARNING FOR LARGE SCALE VISUAL
RECOGNITION

by

BAOYUAN LIU
B.S. Shanghai Jiao Tong University, 2010
M.S. University of Central Florida, 2013

A dissertation submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy

in the Department of Electrical Engineering and Computer Science
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Fall Term
2016

Major Professor: Hassan Foroosh



c© 2016 Baoyuan Liu

ii



ABSTRACT

The emerging recent large scale visual recognition methods, and in particular the deep Convolu-

tional Neural Networks (CNN), are promising to revolutionize many computer vision based artifi-

cial intelligent applications, such as autonomous driving and online image retrieval systems. One

of the main challenges in large scale visual recognition is the complexity of the corresponding

algorithms. This is further exacerbated by the fact that in most real-world scenarios they need

to run in real time and on platforms that have limited computational resources. This dissertation

focuses on improving the efficiency of such large scale visual recognition algorithms from several

perspectives.

First, to reduce the complexity of large scale classification to sub-linear with the number of classes,

a probabilistic label tree framework is proposed. A test sample is classified by traversing the label

tree from the root node. Each node in the tree is associated with a probabilistic estimation of all the

labels. The tree is learned recursively with iterative maximum likelihood optimization. Comparing

to the hard label partition proposed previously, the probabilistic framework performs classification

more accurately with similar efficiency.

Second, we explore the redundancy of parameters in Convolutional Neural Networks (CNN) and

employ sparse decomposition to significantly reduce both the amount of parameters and compu-

tational complexity. Both inter-channel and inner-channel redundancy is exploit to achieve more

than 90% sparsity with approximately 1% drop of classification accuracy. We also propose a CPU

based efficient sparse matrix multiplication algorithm to reduce the actual running time of CNN

models with sparse convolutional kernels.

Third, we propose a multi-stage framework based on CNN to achieve better efficiency than a single

traditional CNN model. With a combination of cascade model and the label tree framework, the
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proposed method divides the input images in both the image space and the label space, and pro-

cesses each image with CNN models that are most suitable and efficient. The average complexity

of the framework is significantly reduced, while the overall accuracy remains the same as in the

single complex model.
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CHAPTER 1: INTRODUCTION

Visual recognition analyzes the information from an image and recognizes the type of objects in

it. Visual recognition with sufficient accuracy and reliability is essential for a successful artificial

intelligence system. For smart AI systems, such as autonomous driving, home assistant robot,

and online image retrieval systems, the ability to recognize the visual objects is preliminary of

performing more advanced intelligent behaviors.

Researchers have been working on the problem of visual recognition for decades. Due to limited

resource of images and computing power, the visual recognition systems in the early days were

trained and evaluated on small scale datasets, which typically include a few hundreds of categories

and each category contains less than one hundred images. In recent years, with the dramatically

increase of internet images and computing resources, training large scale systems that attempt to

match human’s intelligence becomes practical and attracts more and more attention.

The problem of large scale visual recognition is challenging for computers. First, the visual world

is an extremely complicated space that is determined by many underlying physical factors. For

objects within the same category, viewpoint, distance, illumination condition, occlusion, and back-

ground clutters can all effectively modify each pixel of its image. Second, the number of categories

are naturally large for human vision system. Humans are able to recognize approximately 30 thou-

sand different categories. An AI system that is designed to function as well as human, such as

an autonomous driving agent, is required to possess comparable recognition ability. Third, many

categories are easy to confuse with each other, which poses another level of challenge.

The difficulty of large scale visual recognition leads to the complexity of corresponding algorithms.

Due to the complicated image space and the heavy confusion between similar categories, large

amount of complex operations are necessary to transfer the images to a more separable space
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in which machine learning algorithm can be utilized to train an effective classifier; In addition,

the large number of categories also increases the complexity of the classifier, since each category

requires certain amount of parameters to represent its distribution in the transformed feature space.

On the other hand, in most real world scenarios, the visual recognition systems are required to run

with near real-time processing speed, but at platforms that possess limited amount of computing

resource. For instance, in a home assistant robot or an auto-piloting drone, the AI systems need

to response in typically less than 100ms to make sure it can work smoothly and handle emergency

quickly. In contrast, due to limited space and battery life, the systems are most likely running on

embedded System on Chip platforms, which have very limited computing power comparing to the

servers and GPUs that are currently used to train large scale image classification models.

Therefore, the efficiency of current large scale recognition algorithms becomes a prohibiting bot-

tleneck that limits their wider adoptions in many potential applications. In this dissertation, I focus

on improving the efficiency of large scale visual recognition algorithms.

A standard pipeline of traditional image classification algorithm involves two fundamental stages.

In the first stage, information is extracted from the raw pixels of each image, and is represented

by a 1D feature vector. This stage is traditionally called feature extraction. A desirable feature

extraction algorithm describes the categorical characteristics from the images, while is invariant

to in-class diversity. In the second stage, a multi-class statistical classifier is trained and evaluated

based on the generated feature vectors.

The computational complexity of an image classification system is the sum of these two stages.

The feature extraction is performed once for each image regardless of the number of categories,

while the complexity of the classifier is highly dependent on the scale of the problem. Therefore,

when the size of the dataset scales up, the complexity of the classifier becomes the bottleneck of

the whole framework.
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For large scale problems, since both the number of images and the number of categories increase

dramatically, the classifier should be chosen so that the complexity of both training and inference is

limited to acceptable level. Linear 1-vs-all SVM or multi-class logistic regression model achieves

similar inference complexity, which is linear to the length of feature vector and number of classes.

The parameters for the popular linear SVM and multinomial logistic regression models contain one

vector per possible class. Thus, if there are K possible classes, assigning a label to a new feature

vector x will require the computation of K dot products between x and the vectors defining the

classifier. For a relatively small number of categories, this computational cost is not significant

enough to require attention.

However, as both the number of categories and need for fast recognition increases, this linear

relationship between the complexity of recognition and the number of classes can become prob-

lematic. This issue is compounded if the classification process involves computations that are more

complex than a dot product.

In [6], Bengio et al. introduce the label tree model for reducing the complexity of recognition in

a problem with a larger number of classes. In the label tree model, a feature vector is assigned a

label by traversing a tree. At each node visited, the classifier computes the dot product between

the feature vector and a small number of vectors. This tree structure causes the classification

complexity to grow logarithmically, rather than linearly, with the number of classes.

In Chapter 3, we present a novel, probabilistic approach to learning the parameters of a label tree.

We show how a recursive process learns the tree parameters. The probabilistic approach provides a

natural way of soft label partitioning, and is able to pass the label distribution as a prior information

down to the leaf nodes. As the results in Section 3.6 will show, this approach produces significantly

improved accuracies over previous results in [16]. The probabilistic model also makes it possible

to tune accuracy versus efficiency without having to retrain the tree.
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From a broader perspective, formulating the label tree in a probabilistic framework provides a

straight-forward avenue for integrating more complex, accurate classification models into the label

tree framework. With this probabilistic formulation, any classifier that can be expressed proba-

bilistically can be integrated into the label tree.

In 2012, Krizhevsky et. al. [50] first propose to use Convolutional Neural Networks (CNN) to

solve the large scale image classification problem, and significantly improves the state-of-the-

art on ImageNet LSVRC [14] dataset, which includes one thousand categories and 1.2 million

training images. Since then, the research of visual recognition has come to the deep learning era.

Numerous improvement have been made on CNN, with the depth of the network increasing from

7 to hundreds, and the top-5 error on ImageNet LSVRC dataset reduced from 16% to as low as

3.5%.

CNN is a type of feed-forward artificial neural network that is specifically designed to recognize

image signal. In CNN, the connections between neurons are organized in a convolutional fashion,

so that each neuron receives information from a small local receptive field rather than all the bottom

neurons. As in standard neural network, a non-linear neuron function is performed on the output

of each neuron, making the network able to learn highly complex distributions in feature space.

Spatial pooling layers are also occasionally used to reduce the spatial dimension of feature and

gather information. At the end of CNN, a multi-class classifier, most commonly logistic regression,

maps the transformed feature space to the space of semantic categories. Figure. 1.1 shows an

example CNN model. In general, the spatial dimension of the feature map is gradually reduced by

pooling or convolution with stride, while the number of channels increases with the depth of the

network.

Due to the complexity of image space, large amount of convolutional layers are required to transfer

the images into separable space. However, convolutional layers are computationally expensive.
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Figure 1.1: An example Convolutional Neural Network (CNN). The input of CNN is a color image and the
its output is the probability of each label. The essential building block of CNN is the convolutional layer.

Each convolutional kernels involves convolving with all the input channels. and the number of

input and output channels need to be large to retain the information in the image. Results of

ImageNet LSVRC competitions in recent years have demonstrated a strong correlation between

the network size and the classification accuracy. The ILSVRC 2014 submission from VGG [77]

builds a network with up to 16 convolutional layers that reduces the top-5 classification error to

7.4%, at the expense of approximately one month of network training with 4 high-end GPUs.

The structure of CNNs makes it reasonable to conjecture that there exists heavy redundancy in

these networks. Due to the highly non-convex property of neural networks, over-parameterization

with random initialization is necessary to overcome the negative impact of local minimum in net-

work training. Additionally, the fact that no independence constraint is imposed among the convo-

lutional kernels for each layer in the training phase also indicates high potential for redundancy.

In Chapter 4, we show that this redundancy makes it possible to notably reduce the amount of

computation required to process images, by sparse decomposition of the convolutional kernels. As
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Figure 4.1 illustrate, two-stage decomposition’s are applied to explore the inter-channel and intra-

channel redundancy of convolution kernels. We first perform an initial decomposition based on

the reconstruction error of kernel weights, then fine-tune the network while imposing the sparsity

constraint. In the fine-tuning phase, we optimize the network training error, the sparsity of con-

volutional kernels, as well as the number of convolutional bases simultaneously, by minimizing a

sparse group-lasso object function. Surprisingly high sparsity can be achieved in our model. We

are able to zero out more than 90% of the convolutional kernel parameters of the network in [51]

with relatively small number of bases while keeping the drop of accuracy to less than 1%.

In our Sparse Convolutional Neural Networks (SCNN) model, each sparse convolutional layer can

be performed with a few convolution kernels followed by a sparse matrix multiplication. It could be

assumed that the sparse matrix formulation naturally leads to highly efficient computation. How-

ever, computing sparse matrix multiplication can involve severe overhead that makes it difficult to

actually achieve attractive acceleration. Thus, we also propose an efficient sparse matrix multipli-

cation algorithm. Based on the fact that the sparse convolutional kernels are fixed after training,

we avoid the necessity of indirect and discontinuous memory access by encoding the structure of

the input sparse matrix into our program as the index of registers. Our CPU-based implementation

demonstrates much higher efficiency than off-the-shelf sparse matrix libraries and a significant

speedup over the original dense networks is realized. While convolutional network systems are

dominated by GPU-based approaches, advances in CPU-based systems are useful because they

can be deployed in commodity clusters that do not have specialized GPU nodes.

While the idea of label tree is able to significantly reduce the complexity of large scale multi-class

classifier, it will make very little improvement of efficiency on the CNN framework. Different

from the Bag of Visual Words (BoVW) model, most of the computation is consumed by the con-

volutional layers in CNN, which can be considered as a form of feature extractor, and need to be

performed for images from all categories. The complexity of the convolutional layers is highly
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dependent on the difficulty of the problems, namely, the number of categories and the level of

confusion between them. When the number of categories is small and they are easy to distinguish,

only a few number of convolutional layers are adequate separate them in feature space; While for

more complicated dataset, a deeper stack of convolutional layers are necessary to achieve accuracy

classification. Therefore, reducing the the original large scale problem to smaller scale, less com-

plex problem will lead to a decrease of the complexity of convolutional layers, thus increasing the

efficiency of the overall CNN framework.

In Chapter 5, we propose to decompose a single CNN model of high complexity into a multi-stage,

tree structured framework of multiple efficient models. Instead of processing each image with a

single computationally expensive network, coarse probabilistic estimates of the level of “difficulty”

of the images are first estimated, and then assigned to models that are trained to recognize specific

categories, with different levels of complexity. In this way, we trade the amount of memory space

for less run time. The proposed framework is built on the idea of combining the cascade model

[88] and the label tree algorithm [7].
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CHAPTER 2: LITERATURE REVIEW

2.1 Image Classification

Bag of Visual Words (BoVW) framework has been the standard pipeline for image classification

before CNN. For each input image, large amount of distinctive local patches are detected, and then

represented with descriptors with certain types of invariance, such as SIFT [62] and LBP [93]. The

descriptors for the whole training dataset are clustered into a “codebook”, and each cluster center

is called one “codeword”. Each local patch is assigned to the nearest codeword. For each image,

a histogram that describes the frequency of occurrence of each codeword is generated. Then a

multi-class classifier is trained based on the histograms.

A few variants have been proposed to improve the performance of BoVW model. Spatial Pyramid

Matching (SPM) model [55] provides a framework that takes advantage of the spatial information

without sacrificing the robustness and invariance of BoVW.The input image is partitioned into

increasing fine sub-regions, and a histogram of visual words are generated in each sub-region. The

histograms are weighted and concatenated into one feature vector, which are used for training and

predicting with multi-class classifier.

The histograms generated by standard BoVW framework lie in a non-linear high dimension space,

and requires non-linear Mercer kernel SVM to achieve optimal performance. However, for non-

linear SVMs, the training complexity is quadratic with number of training samples and the test

complexity is linear with number of support vectors. This makes them impractical to be adopted

for large scale image categorization problems, in which the number of training images can be as

large as millions.

A few methods have been proposed to use linear SVM to achieve competitive or better result than
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non-linear kernel SVMs. In [66] and [87], the histograms generated by BoVW are projected to

linear space with specifically designed function, so that the kernel distances between the original

histogram is approximately equal to the Euclidean distances between the projected feature vectors.

Substituted the vector quantization process with sparse coding have been shown in [97] to achieve

much better accuracy with linear SVM than the standard vector quantization with non-linear kernel

SVM. In [92], Wang et al. propose Locality-constrained Linear Coding (LLC) scheme to further

improve the accuracy of feature encoding. In LLC, locality constraint was imposed while encoding

each feature, and they were combined in a max pooling fashion to form the feature vector of each

image.

In [75], Perronnin et al. propose Fisher Vector representation, which is an alternative way of

aggregating the local features to global representation based on the theory of Fisher Kernel [46].

The local features are first modeled with Gaussian Mixture Model (GMM). And each local feature

is described by the gradient of its log-likelihood over the means and variances of GMM models.

The representation of one image is obtained by aggregating the descriptor of all its local features.

In BoVW, the k-means clustering and hard assignment can be considered as a vector quantization

procedure, which only describes local distance information. In contrast, the Fisher Vector uses the

gradients over parameters to provide much richer and more accurate information. Fisher Vector is

shown to significantly outperforms BoVW in several standard datasets.

In [48], Jegou et al. propose Vector of Locally Aggregated Descriptors (VLAD), a simplified, non-

probabilistic version of Fisher Vector. In VLAD, the local features are clustered with k-means and

hard assigned to their nearest center as in BoVW. Then the difference between each feature and its

nearest center is aggregated as the representation of the whole image. This representation can be

considered as only describe the gradient over the mean of Fisher Vector model.

Comparing to BoVW, the only disadvantage of Fisher Vector is its dimensionality is much higher
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than BoVW. To address this problem, in [76] the Fisher Vector representation is compressed with

Product Quantization (PQ) technique. They show that the Fisher Vector can be significantly com-

pressed with very little drop of accuracy.

2.2 Label Tree

For a multi-class classification problem with N classes, the inference complexity of traditional

multi-class classifier is at least O(N). Although the non-linear kernel SVM achieves best accuracy

in general, its complexity is proportional to the number of support vectors for each class, there-

fore is not scalable for large scale problems. For linear multi-class SVM, since SVM is a binary

classifier, multi-class problems need to be reduced to a series of binary classification problems to

which SVM can be directly applied [43][19]. The complexity of multi-class SVM is dependent

on the method of reduction. For one-vs-all method, in which a binary classifier is trained for each

class against all the other classes, the complexity is O(N); while for one-vs-one method, in which

a binary classifier is trained for each pair of classes, the complexity is O(N2). For multi-class

logistic regression model, which is naturally a multi-class classifier, the complexity is also O(N).

To further reduce the inference complexity to sub-linear with N , researchers have been focusing

on building a hierarchical tree structure of classifiers. In the tree structure, each node is associated

with a set of classes. The root node includes all the classes. Each class of one node is assigned to

one of its children, and a classifier is trained to distinguish the classes of its children nodes. In the

traditional “flat” structure such as one-vs-all SVM and multi-class logistic regression model, each

binary classifier is only able to distinguish one class, while in hierarchical tree structure, multiple

classes can be separated (discarded) with one binary classifier. In this way, the overall complexity

can be reduced to O(log(N)).
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The essential challenge of building a hierarchical label tree model is how to learn the structure

of the tree recursively, namely, for each node, how many children it should have and how to

assign its classes to its children. This problem is equivalent to performing a hierarchical partition-

ing/clustering over the classes. In ideal scenario, the classes of one node should be partitioned

in a way that the classes inside each child is relatively more confusing and the classes between

children are more separable, so that least error is made at this node. However, there is no standard

measurement for level of confusion between classes, and the different clustering algorithms can

lead to different performance.

One class of methods use the distribution of feature vectors to cluster the categories. In [90]

and [60], each class is represented by the mean of the feature vectors of its samples, and the

classes are clustered with simple k-means algorithm. In [12], the distance between two classes

are measured as the Kullback-Leibler distance [52] between their density functions. A max-cut

algorithm is employed to obtain the partition of classes. In [101], a separability measurement

based on support vector data description is adopted to represent the distances between classes, and

the classes are clustered in a agglomerative fashion. Another class of methods measure the distance

between categories by the confusion matrix of classification. In [35] and [7], a confusion matrix

is obtained by cross-validation on the training set with traditional one-vs-all SVM, and the classes

are partitioned with spectral clustering algorithm [70]. Comparing to feature distribution based

clustering, the confusion matrix provides a better description of separability in a discriminative

fashion, while at the cost of requiring expensive training with traditional SVM.

The most accurate way of performing the classes partition is to learn the partition and the classifier

for each node simultaneously. Since the ultimate goal of partitioning is to reduce the probability

of assigning the samples to the wrong child node, minimizing a loss function based on the clas-

sification error of node classifier achieves this goal directly. This strategy is adopted in both [16]

and [28]. In both work, a max-margin based classifier is learned while the classes in each node are
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optimized as latent variable.

In the hierarchical label tree framework, the number of classes in each node decreases as the tree

grows deeper. For the root node, each of its children may contain hundreds of classes, while for

the parents of leaf nodes, each of its children only contains one class. This lead to the problem

that the nodes close to the root needs to solve more difficult classification problems since the

feature distribution is more complex. With a hard partition of classes, the non-separable classes

will inevitable suffer mis-classification. To alleviate this problem, a relaxed partition scheme with

overlapping is proposed in [68] and also adopted in [28] and [16]. In the relaxation scheme, the

classes that are not separable in current node are assigned to all of its children. In this way, the

most separation of most confusing classes can be postponed to the deeper nodes, which have much

less number of classes in its children. The level of relaxation, namely, the amount of overlapping,

controls the balance between accuracy and speed. More overlapping makes the system less easy to

make false classification, at the same time increases the number of classes in the children nodes.

The label embedding technique [7][26][2][32] can also be used to reduce the inference complexity

from an orthogonal perspective. The original label space is mapped with a linear function to an

embedded space, in which the distances between labels are better defined. The label embedding

is commonly used to solve the multi-label classification problems. The inference complexity is

only proportional to the dimension of the embedded space. Therefore, one can achieve lower

complexity when the dimension of the embedded space is lower than the number of labels.

2.3 Convolutional Neural Networks

The famous paper by Krizhevsky et al. in 2012 [50] is a milestone for large scale visual recogni-

tion. They are the first one who successfully use deep neural networks to significantly outperform
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the BoVW framework in visual recognition problems. They combined several clever techniques

to train a powerful CNN model efficiently. First, they substitute Rectified Linear Unit (ReLU)

function for traditional sigmoid function as the non-linear neuron, and significantly improve the

network’s converging speed. Second, to avoid overfitting, they adopt two effective strategies: (1)

the input images are augmented by random cropping and color jittering; (2) In fully connected

layers, the output of the neurons are randomly set to zeros. Third, they implement a GPU-based

training framework that is several times more efficient than CPU counterpart.

Following their work, enormous effort has been made to improve the performance and efficiency

of CNN [99] [81][78][38] [80] [45][39]. Table 2.1 lists the accuracies of recent deep CNN models

and their depth. While the top-5 error rate has been reduced from 15.4% to as low as 3.1% in only

a few years, the depth and complexity of the networks are consistently shown to be essential for

better performance.

Table 2.1: Performance of Recent Deep CNN models.

Year Method Top-5 Error Depth
2012 Alexnet [50] 15.4% 8
2013 Clarifai [99] 11.7% 8
2014 VGG [78] 7.3% 19
2014 GoogLeNet [81] 6.7% 22
2015 PReLU [39] 4.9% 22
2015 Batch Normalization [45] 4.8% 33
2015 Inception-v3 [82] 3.6% 46
2015 Residual Learning [38] 3.6% 152
2016 Inception-v4 [80] 3.1% 76

The structure of CNN models are highly flexible. The convolutional kernel sizes, the feature

map sizes, the number of channels and the number of layers can all be configured. While the

structure of Alexnet is just one possible configuration that is limited by the computing resources,

researchers have adjusted the configuration of CNN models to achieve better balance of accuracy
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and efficiency. Zeiler et al. [99] propose a visualization technique that shows the function of each

intermediate layer, and adjust the kernel size and stride of lower convolutional layers so that they

can retain much more useful information. In [58], the fully connected layers are substituted with

global average pooling, which significantly reduce the memory required to store the model with

almost no loss of accuracy. In [78], 3× 3 convolutional kernels are exclusively adopted to build a

19 layers network. The network achieves state-of-the-art accuracy in ILSVRC 2014 competition,

although the amount of computation is also extremely high. Within the same competition, Szegedy

et al. introduce an architecture codenamed “Inception”. In each “Inception” layer, convolutional

layers with various kernel size and a max pooling layer are performed on the same input feature

map, and the outputs are concatenated. To reduce the amount of computation, the number of input

channels is first reduced by a 1×1 convolutional layer before fed to convolutional layer with larger

kernel size. With carefully crafted design, their model called GooLeNet achieves better accuracy

than [78] with several times less computation. In [38], a bottleneck structure, in which both the

input and output channel dimensions of 3 × 3 convolutional layers are reduced, is proposed to

further reduce the computation. In [82], Szegedy et al. use stacked 1× n and n× 1 convolutional

layers to replace n× n convolutional layers. This adjustment makes it practical to include kernels

as large as 1× 7 and 7× 1 with acceptable complexity.

When the depth of CNN models increases, the networks get harder to converge. Initialization plays

an important role at the training of deep CNN models. The parameters of each layer are randomly

initialized with Gaussian distribution. Too large parameters lead an explosion in the last layer and

make the network diverge, while too small parameters will lead to gradient vanishing and make

the network converges extremely slow.

To solve this problem, Glorot et al. [31] analyze the behavior of the activation of each layer, and

propose a normalized initialization method, so that in the forward pass, the variance of output

remains the same as input, while in the backward pass, the variance of the input gradient remains
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the same as the output gradient. He et al. [39] further improve the idea by considering the non-

linear neuron function (ReLU)’s influence over the variance of the output.

In contrast, Szegady et al. [45] address this problem from a different perspective. Instead of

making smart initialization, they explicitly normalize the input of each layer so that their statistical

distribution remains the same. The statistics for each layer is calculated based on every mini-batch,

and the normalization process can be considered as a part of the network so that it can be trained

smoothly with back propagation. The mini-batch based normalization also adds random noise to

the system and effectively prevents overfitting, so that dropout is not required anymore. With such

a normalization mechanism, the learning rate of the SGD can be tuned much higher and lead to

significantly faster converging speed.

For traditional CNN models, even though the problems of overfitting and vanishing/exploding of

gradients are addressed by the techniques mentioned above, the increasing of depth cannot always

convert to higher accuracy. This degradation is observed in [37][79] and thoroughly analyzed in

[38]. To address this problem, He et al. propose a residual learning framework in [38]. For each

convolutional layer with same input and output dimensions, the input is added to the output so that

the convolutional layer only needs to learn the residual information. With residual learning, they

successfully train a 152 layer CNN model that achieves state-of-the-art accuracy in ILSVRC 2015

competition.

2.4 Speeding-up CNNs

Most of the methods of accelerating CNNs are based on low rank decomposition. The convolu-

tional kernel for each layer can be considered as a 4D tensor. The kernel can be approximated by

multiplication and summation of tensors with lower-rank. Due to the various possible ways of per-
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forming tensor decomposition, a few different methods have been proposed to decompose the con-

volutional layers. Denil et al. [17] treat the convolutional kernel as a matrix and decompose it into

two lower-rank matrices. A few strategies are proposed to efficiently build one of the decomposed

matrix to match the structure of the weight space, and the other matrix is learned by minimizing

the loss of the whole network. In [47], two schemes of decomposing each convolutional kernel

is proposed. In the first scheme, each kernel is decomposed into a pair of separable filter along

spatial dimensions and one vector along the channel dimension; In the second scheme, each kernel

is decomposed to one separable filter along one spatial dimension and one matrix along the other

spatial dimension and the channel dimension. The reconstruction of the output data rather than

the kernels are minimized. Experiments show that the second scheme achieves better speedups

with similar reconstruction error. In [18], Denton et al. introduced two types of approximation

methods: monochromatic approximation and bi-clustering approximation. In monochromatic ap-

proximation, the color input channels are projected to a group of grayscale channels, and the each

output channel is only dependent on one grayscale channel. In bi-clustering approximation, both

the input and the output channels are grouped into equal size clusters, and the kernels between

each input group and each output group is approximated with low rank decomposition. In [56],

Lebedev et al. used a classical low-rank CP-decomposition to decompose the 4D convolutional

kernels to a sequence of 4 1D convolutional kernels, among which the first three are along the

input channel dimension and two spatial dimensions, and the last one sums the output of rank-1

kernels. Such a straightforward decomposition makes the algorithm easy to implement and fine-

tune. The network is fine-tuned after the original kernel is substituted with the decomposed 1D

kernels. In [100], Zhang et al. consider the effect of non-linear neurons over decomposition and

propose an optimization methods that minimize the reconstruction error of the nonlinear responses

when performing low-rank decomposition.

Comparing to convolutional layers, the fully connected layers consume much more amount of
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memory in early CNN models, but only require very low percentage of computations. A few meth-

ods have been proposed to reduce the memory consumption and computation of fully connected

layers. Due to large amount of parameters, the fully connected layers possess more redundancy

and can achieve much higher compression level than convolutional layers. In [98], Yang et al.

propose to use adaptive fast food transformation to re-parameterize the fully connected layers.

Their decomposition scheme does not require to pre-train the model and is end-to-end trainable.

Cheng et al. [72] convert the dense matrix in fully connected layer to the Tensor Train format [74].

In [13], the dense matrix is substituted with a circulant matrix, whose number of parameters is

significantly reduced. With circulant matrix, the fully connected layer can be implemented more

efficiently with a FFT style algorithm. In [11], a method inspired by feature hashing is proposed to

encode the fully connected layer. The weights in the dense matrix share a few fixed values and the

assignment of values are determined by a hash function over the location of the weights. In [33],

Gong et al. compare the compressing performance of matrix factorization, binarization, k-means,

product quantization and residual quantization, and conclude that product quantization achieves

the best overall compression.

In [36], Han et al. propose a framework that consists of small weights pruning, weight quantization

and sharing, and Huffman coding. Such a framework achieve extremely high level of network

compression and significant speedup for both convolutional layers and fully connected layers. Note

that the weight pruning method in [36] is very similar to the sparse regularization in Chapter 4,

although they do not perform any decomposition over the kernel, and their work was published

later than our paper on which Chapter 4 is based on.

There are also several works that try to optimize the speed of CNN from other perspectives. Van-

houcke et al. [85] studies CPU based general neural network speed optimization. They discuss the

usage of SIMD instructions, alignment of memory, as well as fixed point quantization of the net-

work. Mathieu et al. [69] proposes to utilize FFT to perform convolution in Fourier domain. They
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achieve 2x speedup on Alex net. Their method prefers a relatively large kernel size due to the over-

head of FFT. Farabet et al. [24] implement a large scale CNN based on FPGA infrastructure that

can perform embedded real-time recognition tasks. In [53], the authors improved the efficiency

of convolutional layers by exploiting the algebraic structure of the convolution. Their method in-

volved no approximation and can be used in any convolutional layers. They used minimal filtering

algorithm to reduce the amount of multiplications for each convolutional kernels and improved the

overall efficiency by a factor of 1.48.

2.4.1 Sparse Coding

Sparse coding approximates the input vector y by a sparse linear combination of items from an

over-complete dictionary D. Due to the sparse natural of many computer vision problem, sparsity

induced optimization has been consistently shown to perform exceptionally well in various com-

puter vision problems, such as image denoising [21], image restoration [65], face recognition [95]

and image classification with BoVW framework [97].

The sparsity penalty can be mathematically modeled as l0 norm of the coefficient. However, mini-

mizing the l0 norm directly is an NP-hard problem and can only be solved approximately. There-

fore, l1 norm is proposed as a relaxation [83][10], which have been shown to also induce sparsity.

With l1 norm penalty, the corresponding optimization problem is convex and have a global optimal

solution.

Large amount of methods have been proposed to solve the sparse decomposition problem with

accuracy and efficiency. Greedy l0 penalty based methods include matching pursuit [67], orthog-

onal matching pursuit [29], iterative hard-thresholding [8] et al.; l1 penalty based methods include

coordinate descent [27], iterative shrinkage thresholding [5], LARS [20] et al. In [3], Bach et al.

give a good overview of the methods used for sparse decomposition.
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The performance of sparse coding is highly dependent of the quality of the chosen dictionary.

The optimal way of choosing dictionary is through learning from input data. Various methods

have been proposed to learn the dictionary by updating the sparse coefficients and the dictionary

iteratively [1][57][64].

Previous work on sparse matrix computation focus on the sparse matrix dense vector multiplication

(SpMV) problem. The sparse matrix is stored with various formats, such as CSR [4] and ESB [61],

for efficiency. Blocking is adopted in register [44] and cache [71] level to improve the spatial

locality of sparse matrix. To further reduce bandwidth requirement, various techniques including

matrix reordering [73], value and index compression [94] are proposed. We refer readers to [34]

for a more comprehensive review.
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CHAPTER 3: PROBABILISTIC LABEL TREE

3.1 Overview of a Label Tree

In this section, we briefly review how a label tree model operates and previous work on learning

the tree’s parameters. Following previous work in [6, 16], we will focus on a label tree with linear

classifiers at each node of the tree.

Following the notation in [16], a label tree is a tree that has nodes V and edges E, such that the

tree T = (V,E). The children of one node r are contained in the set σ(r). Every child node, c, is

associated with a vector of weightswc that are used to select which child node will be visited during

the inference process. Each leaf node s is also assigned with a single label, l(s), that specifies the

label that is assigned to the example if s is reached as a leaf node.

Algorithm 1 Classifying a test example with the traditional label tree algorithm.
Require: Test example x, label tree parameters T, σ, l

1: Initialize s to the root node
2: while σ(s) 6= ∅ do
3: s← argmax

c∈σ(s)
w>c x

4: end while
5: Assign the label l(s) to the test example

As shown in Algorithm 1, a new test example is classified by traversing the tree from the root node.

Except for the leaf nodes, all the nodes are treated identically. At a non-leaf node s, classification

scores are computed for every child node of s by multiplying the feature vector x of the input

sample and the weights wc for the child node c. The child node with the highest classification

score is visited next. As described above, if a leaf node is arrived while traversing the tree, then

the test example is assigned the label l(s), which is associated with visited leaf node s.
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3.2 Learning a Probabilistic Label Tree

We propose a probabilistic approach to learn the parameters of label tree. As will be shown in the

experimental results in Section 3.6, this probabilistic model produces higher recognition accuracy

than traditional label tree models.

In the probabilistic label tree, each node, s, is associated with a categorical distribution p[y|S],

where y denotes a valid label and S denotes the event that the classification process arrives at node

s.

This categorical distribution is then combined with a probabilistic classifier that is defined by the

classification weights at each node to compute the probability of assigning the test image to a

particular label, given the feature vector x.

3.2.1 Defining the Learning Criterion

Defining the label tree framework as a probabilistic model makes it natural to learn the parameters

with a maximum likelihood approach. The first step is to define the probability of assigning label

y to the example, beginning at the root node, r. This can be expressed as

p(y|x) =
∑
c∈σ(r)

p[y|Sc]P [Sc|x] (3.1)

where σ(r) is the set of all children nodes of r, as in Algorithm 4, Sc denotes the event of choosing

to visit the child node c next; P [Sc|x] denotes the probability visiting c given sample x, and p[y|Sc]

denotes the probability of assigning label y given the system chooses node c.

To be consistent with our focus on linear classifiers, the conditional probability P [Sc|x] is defined
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as a multinomial logistic regression model:

P [Sc|x] =
ew

>
c x∑

i∈σ(r)

ew
>
i x
. (3.2)

It should be noted, though, that any conditional probability model could be applied here.

This model can be considered as breaking the classification into two steps. At the root node, the

classification vectors are first applied to the feature vector x to choose which child node to visit.

The example’s final label is then determined by the categorical distribution of the labels in the child

node.

3.2.2 Recursively Expanding the Label Tree Model

If there are K categories and each node has n children, then the tree needs at least lognK levels

of child nodes to guarantee that every possible category is associated with at least one leaf node.

Having fewer leaf nodes than categories will lead to ambiguous results since some leaf nodes are

forced to represent more than one classes.

One can add new levels to the distribution in Equation (3.1) by expanding each p[y|Sc] term recur-

sively. If c1 represents the chosen child node at the first level and c2 represents a child node of c1,

then a two levels model would have the form

p(y|x) =
∑

c1∈σ(r)

∑
c2∈σ(c1)

p[y|Sc2 ]P [Sc2|Sc1 ,x]P [Sc1|x]. (3.3)

P [Sc2|Sc1 ,x] has the same multinomial logistic regression form as Equation (3.2). Additional

levels can be further added in a similar fashion.
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3.2.3 Building the Tree Stagewise

If given unlimited computing resources, the label tree parameters could be learned by recursively

expanding Equation (3.3) to the desired number of levels and maximizing the log of Equation (3.3)

with a continuous optimization method. However, as the number of levels increases, the number of

parameters as well as complexity of training grow exponentially. Therefore, for practical reasons,

it is necessary to be able to independently train the linear classifier at each node.

Returning to the probability of the test sample at the root node in Equation (3.1), once the classifier

weights and the parameters of the categorical distributions p[y|Sc] have been found, one can apply

Jensen’s Inequality to the log of Equation (3.1) to calculate a lower bound on p(y|x).

log p(y|x) = log
[∑

c∈σ(r) p(y|Sc)P [Sc|x]
]

≥
∑
c∈σ(r)

P [Sc|x] log [p(y|Sc)]
(3.4)

Defining this lower bound as L,

L =
∑
c∈σ(r)

P [Sc|x] log [p(y|Sc)] , (3.5)

the categorical distribution at each of the child nodes can be recursively expanded to a new linear

classifier and corresponding new set of child nodes. Using this bound, the log probability of the

two level expansion shown in Equation (3.3) becomes

L =
∑

c1∈σ(r)

P [Sc1|x] log

 ∑
c2∈σ(c1)

p(y|Sc2)P [Sc2|Sc1 ,x]

 (3.6)

for each training example.
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In this equation, each term inside the log function corresponds to one child node. Since each of

the terms in the summation in the right hand side of Equation (3.6) has its own set of parameters,

L will be maximized by maximizing each of the terms individually. This decouples loss function

of the child nodes during training and makes it possible to learn the parameters for each child node

independently.

This also shows that learning the parameters of the probabilistic label tree model can be considered

as a stage-wise lower-bound maximization of the log likelihood function for the linear classifiers.

3.3 Final Algorithm for Learning a Probabilistic Label Tree

The process of learning the probabilistic label tree can be viewed as a recursive expansion of nodes.

Starting at the root node, each non-leaf node is expanded into a set of children nodes by iteratively

performing: (1)Learning the weights of the multinomial logistic regression model with maximum

likelihood based on the categorical distribution of each child node (2) Updating the categorical

distribution of each child node with the logistic regression model fixed.

3.3.1 Learning Parameters for an Expanded Node

For a training set with N training samples, (yi,xi), this is equivalent to optimizing the log of

Equation (3.1) over all examples, for an arbitrary node.

The overall training process is more easily specified by defining a general loss for expanding a

node s, given N training samples of the form (yi,xi), expressed as:

L =
N∑
i=1

αi log

 ∑
c∈σ(s)

p(yi|Sc)P [Sc|xi]

 (3.7)
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This log likelihood can be maximized with two alternating convex optimizations. In the first step,

p(yi|Sc) is held constant and the loss function is similar to training a multinomial logistic regression

model, or softmax classifier. Then, P [Sc|xi] is held constant, and the optimization is essentially

equivalent to maximum-likelihood estimation of the categorical distribution parameters. We have

found that running this optimization for a fixed number of iterations, typically under 10, works

well. In our implementation, we use a weighted k-means algorithm to generate an initial set of

clusters that can be used to initialize the categorical distributions.

Algorithm 2 Algorithm for Learning Node Parameters

Require: N training pairs (yi,xi), maximum number of levels, L, branching factor B, weight α
Test example x, label tree parameters T, σ, l

1: for l = 0 . . . L− 1 do
2: for all nodes s in λ(l) do
3: Create B child nodes, except at final level (see Sec. 3.5.2)
4: αi ← 1 ·

∏
t∈ψ(l)

P [St|xi],∀i ∈ {1, . . . , N}

5: for all nodes c in σ(s) do
6: for M iterations do
7: Fix the parameters for P [y|Sc], maximize Equation (3.7) over classifier param-

eters.
8: Fix the parameters for classifier parameters w, maximize Equation (3.7) over

the parameters of P [y|Sc].
9: end for

10: end for
11: end for
12: end for

3.3.2 Formal Specification of the Algorithm

Our formal specification of the algorithm for constructing the label tree will involve two sets of

functions. First, we will define ψ(s) to be the set of nodes that must be traversed before arriving

at node s, or the path to s. Second, we will define λ() to be the set of nodes at a given level of the

tree. This will start at 0, with λ(0) only containing the root node, λ(1) containing the next level of
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branch nodes, and so on. Algorithm 2 shows the recursive process for expanding the branch nodes.

3.4 Understanding the Expansion Process

Figure 3.1 shows examples of how the expansion process operates on the ILSVRC2010 database

discussed in Section 3.6. Figure 3.1(a) shows the categorical distribution at a branch node in the

second level of a T6,4 tree that has four levels, not counting the root node. Figure 3.1(b) - 3.1(d)

show several of the six child nodes of this branch node. In this next level, the classes with the

highest probability at the branch node are distributed among the children. The final row in these

tables also shows that probability has become more concentrated in the most likely classes.

3.4.1 Balanced Trees and Efficiency

Increasing classification efficiency is the primary motivation behind the label tree model. For the

models based on linear classifiers, this efficiency is best measured by the average number of dot

products needed to produce a final label. The number of dot products depends on the number of

leaf nodes, which is dependent on how balanced the tree is. A perfect balancing of the probabilities

for each class across the nodes of the tree would minimize the number of leaf nodes needed.

This raises the question of whether the maximum-likelihood approach proposed here will find a

balanced tree. A maximum-likelihood approach attempts to learn a model which induces a label

distribution similar to the one in the data. Depending on the underlying distribution, this will not

always produce a balanced label tree, and one can certainly construct artificial counter-examples.

However, in most natural applications, it is reasonable to assume that the label distribution can be

well approximated by a reasonably-balanced label tree, where the leaf nodes distribution concen-

trate on individual classes.
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(a) Distribution at Parent Node
before Expansion

Class Prob.
chickpea 0.019
hazelnut 0.019
lentil 0.017
kidney bean 0.016
brussels sprouts 0.016
coffee bean 0.015
clam 0.015
peanut 0.015
plum 0.015
mashed potato 0.014
soy 0.014
orange 0.014
cashew 0.014
lemon 0.014
walnut 0.014
Rem. 985 classes 0.771

(b) Distribution at a Child Node
after Expansion]

Class Prob.
hazelnut 0.075
lentil 0.067
kidney bean 0.064
peanut 0.062
cashew 0.057
soy 0.056
coffee bean 0.055
peanut 0.055
green pea 0.055
pumpkin seed 0.054
pistachio 0.051
walnut 0.040
pea 0.038
corn 0.032
bean 0.028
Rem. 985 classes 0.210

(c) Distribution at a Child Node
after Expansion]

Class Prob.
chickpea 0.107
mashed potato 0.084
clam 0.081
brussels sprouts 0.074
shrimp 0.071
okra 0.038
french fries 0.035
acorn squash 0.035
broccoli 0.034
cucumber 0.031
spaghetti squash 0.028
celery 0.025
shiitake 0.025
black olive 0.020
bok choy 0.019
Rem. 985 classes 0.292

(d) Distribution at a Child Node
after Expansion]

Class Prob.
lemon 0.061
orange 0.060
plum 0.056
persimmon 0.056
guava 0.055
mango 0.055
shallot 0.052
kumquat 0.052
Granny Smith 0.049
turnip 0.047
quince 0.046
bell pepper 0.045
butternut squash 0.032
fig 0.025
spaghetti squash 0.023
Rem. 985 classes 0.285

Figure 3.1: This figure visualizes the expansion process for one part of the tree. The table in (a) shows a
portion of the categorical distribution at a branch node in the second level of a T6,4 tree that has four levels,
excluding the root node. The tables in (b), (c), and (d) show the categorical distributions learned for three of
the child nodes. The probability in these child nodes is more concentrated on a subset of the classes than in
the parent node. In this result, the tree has not been trained with the pruning techniques in Section.3.5.1, so
the distributions accurately represent the behavior of the maximum-likelihood criterion.
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A simple way to demonstrate this is to show that if the data distribution indeed corresponds to a

balanced label tree, then the maximum-likelihood approach would learn a similar balanced tree.

Note that this is not altogether trivial: There might be a very unbalanced label tree, which induces

the exact same conditional distribution p(y|x) as the balanced label tree, so a maximum-likelihood

approach might learn the unbalanced tree instead. To show that this isn’t the case, we prove below

that our model is identifiable - namely, that under mild conditions, given enough data from a

distribution induced by a given label tree, then our algorithm would learn the exact same tree.

Theorem 1. Suppose the training data is sampled i.i.d. from a distribution, such that p(y|x) is

generated by some label tree, for which wc 6= wc′ for any two sibling nodes c, c′. Also, suppose that

the support of p(x) is continuous in some part of the domain. Then as the dataset size increases,

the structure and weights of the label tree learned by our algorithm converges to those of the true

label tree

Proof. It is enough to show that we can perfectly reconstruct the root node of the tree - the recon-

struction of its child nodes and other nodes in the tree would follow in a similar way by induction.

In the limit of infinite data, this boils down to showing that the label distribution p(y|x), which can

be written as ∑
c∈σ(r)

p(y|Sc)P [Sc|x] =
∑
c∈σ(r)

p(y|Sc)
ew

>
c x∑

i∈σ(r) e
w>

i x

can be induced only by a single choice of the parameters {wc, p(y|Sc)}c∈σ(r). Let us assume on

the contrary that there exist some other set of parameters {w′c′ , p′(y|Sc′)}c′∈σ′(r) (possibly corre-

sponding to a different number of child nodes), which induce the same distribution, namely

∑
c∈σ(r)

p(y|Sc)
ew

>
c x∑

i∈σ(r) e
w>

i x

=
∑

c′∈σ′(r)

p′(y|Sc′)
ew

′>
c′ x∑

i′∈σ′(r) e
w

′>
i′ x
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for any x in the support of p(x). Taking a common denominator, and switching sides, this is

equivalent to requiring

∑
c∈σ(r),c′∈σ′(r)(p(y|Sc)− p′(y|Sc′))e(wc+w′

c′ )
>x∑

c∈σ(r),c′∈σ′(r) e
(wc+w′

c′ )
>x

= 0.

on the support. Since the denominator is always positive, this is equivalent to

∑
c∈σ(r),c′∈σ′(r)

(p(y|Sc)− p′(y|Sc′))e(wc+w′
c′ )

>x = 0.

The left hand side is identically zero if |σ(r)| = |σ′(r)| (namely, there are the same number of

child nodes), wc = w′c′ , and p(y|Sc) = p′(y|Sc′) for all c, c′ (up to permutation of the c, c′ labels).

If this is not the case, then the equation above can be rewritten as

N∑
i=1

aie
b>i x = 0,

for some finite N , distinct {bi}, and {ai} such that ai 6= 0. However, if the support of p(x) is

dense in some neighborhood, and the equation holds in that domain, then the left hand side can be

shown to equal 0 for all x in Euclidean space, which is easily seen to be impossible. Therefore,

the parameters that we will learn indeed correspond to the actual label tree.

3.5 Implementation

As described in Section 3.3.1, learning the label tree parameters at each node consists of two al-

ternating steps: learning the weights of logistic regression model, and learning the parameters

of categorical distribution. The classification weights were optimized using the limited memory

BFGS (L-BFGS) algorithm. We also experimented with the stochastic meta-descent (SMD) algo-
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rithm [9], which has been shown to perform better than traditional stochastic gradient descent [89].

We found that using L-BFGS converged faster and to better values for the training criteria.

3.5.1 Eliminating Samples During Training

In [16], each child node is assigned only a specific subset of categories during the training process.

An advantage of this approach is that only the training examples that belongs to those categories

need to be processed when learning the parameters of that node and all its offspring nodes.

In contrast, in the probabilistic model proposed here, the learning criterion depends on the prob-

ability that each example arrives at the node where the parameters are being learned. In practice,

this probability for many examples is often quite small, but still non-zero, so the learning could

require processing all of the training examples at every node in the label tree. To increase the speed

of training, the training examples used at a node are pruned to eliminate examples that have a very

low probability of reaching the node. This pruning is done independently for each node.

3.5.2 Fixing the Number of Leaf Nodes

Following [16], the label tree is constructed with a fixed number of levels. Ideally, the learning

system would be able to find a perfectly balanced tree and each leaf node would correspond to one

class. In practice, it is difficult to find a perfectly balanced tree due to the complex distribution of

the categories, so the number of leaf nodes must be determined individually for each branch in the

next to last level of the tree. A number of training examples could be assigned to a leaf node with

very low probability, so a natural criterion is to assign one leaf per class for the set of classes that

account for some percentage, such as 90%, of the probability in the categorical distribution.

For comparison or performance evaluation, it is also useful to have more direct control over the
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number of leaf nodes. While this threshold could be adjusted to achieve a desired number of leaf-

nodes, we found it easier to directly control this number by imposing a hard cap on the number of

leaf nodes per branch node. In our experiments, this greatly simplified controlling how many dot

products were necessary and performed well.

3.6 Results

We evaluated our algorithms on both the ILSVRC2010 and ImageNet10k datasets used in [16].

In ILSVRC2010, there are 1.2M images from 1K classes for training, 50K images for validation,

and 150K images for test. Due to limitation of system memory, we randomly picked 300 images

of each category for training. In ImageNet10k, there are 9M images from 10184 classes. We

randomly picked 100 images from each category for training and 50 for testing. This is fewer than

used in [16], but demonstrates that our method can scale to large problems.

We generated the feature vector for each image in the same fashion as [16] using the LLC coding

strategy introduced in [91]. For each image in ILSVRC2010, we used the VLFeat toolbox [86],

which was also used in [16] to extract dense SIFT features from the image. The features were

encoded with a codebook with 10k entries generated with k-means and the image was encoded

using a two-level spatial pyramid[54] with 1 × 1 and 2 × 2 grids. This resulted in a feature vec-

tor with approximately 50,000 dimensions. In the experiments with the ImageNet10K database,

images were represented with vectors encoded using LLC, but without a spatial pyramid. The

number of classes in ImageNet10K makes reducing the number of dot-products beneficial, even

considering the time needed to generate features. In our experiments computing the classification

scores dominated the computation time. The average time for generating features from one im-

age was approximately 0.59 seconds, while computing the one-versus all linear classifier required

approximately 2.09 seconds.
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In our experiments, we did not make an effort to strictly control the computational complexity in

the training phase. Training a label tree with our method on ILSVRC2010 took less than a day on

a multi-core machine with 48GB of memory.

3.6.1 Comparison with Previous Work

Table 3.1 summarizes the accuracy of our system, compared with the trees trained using the method

in [16]. The various columns of Table 3.1 represent different tree structures. The tree denoted by

Tm, n has m children per node when branching and n levels, not including the root node.

Table 3.1: Comparison of our method and [16] with different tree configuration on ILSVRC 2010
dataset.Tm, n denotes the tree that has m children per node when branching and n levels. We show the
classification accuracy(Acc) and the test time speedup Ste. The first row shows the result using our ML
based method. The second row is the result using hard label partition and our probabilistic framework as
explained in Section 3.6.2. Our method significantly outperforms [16]. The accuracy of maximum likeli-
hood (ML) is consistently better than the hard label partition with similar speedup. For reference, the last
row shows the accuracy produced by a multi-class SVM trained with LIBLINEAR.

Method Flat T32,2 T10,3 T6,4 T4,5
Acc% Ste Acc% Ste Acc% Ste Acc% Ste Acc% Ste

Trained with ML - - 21.38 10.42 20.54 17.85 17.02 31.25 14.98 41.67
Trained with Hard Partition - - 20.70 10.37 19.15 17.90 15.76 31.27 14.85 33.84
Results in [16] - - 11.9 10.3 8.92 18.2 5.62 31.3 -
LIBLINEAR 24.84 1 -

To make a fair comparison, we tuned the number of leaf nodes, using the approach described in

Section 3.5.2, so that the trees trained using our approach used a similar average number of dot-

products to classify each example. As Table 3.1 shows, the accuracy rate is significantly higher

for the trees that are trained using our approach. Depending on the depth of the tree, our approach

classifies images with an accuracy rate that is nearly double or triple the accuracy rates produced

using the method from [16]. Our approach is also superior at learning deeper trees. Comparing the

accuracies for the T32, 2 and T6, 4 trees, the reduction in accuracy is less significant in the trees
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trained using the probabilistic approach.

For reference, the last row of Table 3.1 also reports the classification accuracy of a multi-class

one-against-all SVM classifier trained using LIBLINEAR [23]. The trees trained using maximum

likelihood produce competitive results while requiring 18 to 30 times less dot products at test time.

We show the results of our method on the ImageNet10K dataset in Table 3.2. While the accuracies

cannot be compared directly because of differences in the test set, these results show that this

approach to learning trees can scale to larger problems and that our method produces reasonable

performance.

Table 3.2: Result on Imagenet 10K. While the accuracy numbers cannot be compared directly because of
differences in the test set(see text), these results show that our method can scale to large numbers of classes
and performs reasonably.

Method T101,2 T10,4
Acc% Ste Acc% Ste

Trained with ML 4.77 33.22 3.08 204.54
Results reported in [16] 3.4 32.40 -

3.6.2 Evaluating Hard Label Partitioning

One of the most significant differences between the proposed method and the method in [16] lies

in how the labels are assigned to the child nodes. In our approach, the probability of each sample

reaching a particular node is maintained while optimizing that node’s parameters. In contrast, the

learning approach in [16] adopts a binary partition matrix so that all examples from a class either

reach the node or do not. We refer to this as hard label partitioning because the examples of every

class are assigned a hard binary label describing whether they can reach a node. This partition

matrix is found by optimizing a measure of accuracy with hard constraints on the average number

of categories in the children nodes.
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To explore whether this style of hard label partitioning can produce improved results, we evaluated

the combination of our probabilistic framework with the partitioning strategy used in [16] to mea-

sure whether hard label partitioning is superior for learning the label tree. This was implemented

by replacing the categorical distributions in our model with distributions derived from the parti-

tion matrix computed using OP3’ in [16]. This binary partition matrix can be used to calculate

a new distribution p(y|Sc) in which every class assigned to a specific node is equally likely. For

numerical stability reasons, classes not assigned to a node are given a very small probability. This

results in a two-stage alternating algorithm that consists of learning a linear classifier in the form

of a multinomial logistic regression classifier, and using the classifications from that classifier to

learn the partition matrix.

The ambiguity constraints during learning were manually tuned so that the trees used a comparable

average number of dot products to classify examples. Below, Section 3.6.3 will discuss perfor-

mance across various parameter settings. As the second row of Table 3.1 shows, training the tree

just using the maximum likelihood criterion consistently outperforms this approach. In addition,

as the trees become deeper, the advantage of the maximum likelihood approach increases.

This result also provides insight into the significant performance differences in Table 3.1. Given

that using OP3’ from [16] reduced accuracy, but not dramatically, the combination of the multino-

mial logistic regression models with an L-BFGS optimization system probably accounts for most

of the increase in performance over the results in [16]. The system in [16] uses several iterations

of parallel Stochastic Gradient Descent [102] to learn the classifiers. In our experiments, we also

found that using a stochastic gradient descent algorithm led to far worse classification performance

than using the quasi-Newton style L-BFGS algorithm. It should be noted, though, that the max-

margin criterion in OP2 in [16] is non-differentiable at points, due to the use of a max operator. So

the framework in [16] cannot be trivially modified to use L-BFGS instead of stochastic gradient

optimization.
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3.6.3 Exploring the Accuracy-Efficiency Trade-off

In a traditional label tree model, one weakness of the classification procedure is that the classifier

must make a hard choice to decide which branch to follow. In cases where there is ambiguity in the

correct branch, this hard choice will degrade recognition accuracy if the wrong branch is chosen.

An advantage of the probabilistic formulation is that it facilitates performing a limited search over

multiple branches of the label tree.

In this limited search, the classifier does not just follow the best-scoring branch. Instead, it makes

a decision at each branch whether to follow just the highest-scoring branch or both the highest-

scoring and the second highest-scoring branches. This decision is made by comparing the differ-

ence in scores between the two branches. If this difference is below a threshold, both branches are

followed. The final classification is found by adding together the categorical distributions at each

of the leaf nodes that the classification algorithms reaches.

As this threshold varies, the average number of dot-products needed to produce a classification

also varies. The green curves in Figures 3.2 and 3.3 show the relationship in different tree models

between the average number of dot-products needed to classify a sample and the resulting accuracy.

Notice that as the classification process explores more branches, the accuracy rises.

For comparison, the blue curves in these figures are computed by varying the ambiguity limits

of the hybrid systems explained in Section 3.6.2. These curves are shorter because that as the

ambiguity limits grows, the number of classes at deeper levels of the tree increases dramatically

and the time required to train the system becomes untenable. In both tree configurations, the tree

learned with our probabilistic approach provides higher accuracy with similar average number of

dot products.
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Figure 3.2: Accuracy vs dot product curve for our T10,3 tree. The green curve shows our method us-
ing maximum likelihood with multinomial estimation. The blue curve shows the result using hard label
partition[16] with our framework. The maximum likelihood method achieves consistent higher classifica-
tion accuracy with similar average dot products needed at test time
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Figure 3.3: Accuracy vs dot product curve for our T6,4 tree. Again, the tree trained with the maximum
likelihood approach has consistently higher accuracy.
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It is important to note that with our model, creating this curve does not require retraining of the tree

parameters. This approach can be used to adjust the accuracy/efficiency trade-off at inference time

on an existing tree. In contrast, using the optimization with ambiguity constraints in [16] requires

the tree to be re-trained for different parameters.

3.7 Summary

In this chapter, we propose a probabilistic label tree model to improve the efficiency of large scale

classification problems. Since our method is purely probabilistic and optimized with maximum

likelihood, it can be easily adapted to different types of probabilistic classifiers. Our experimental

results demonstrate that the proposed probabilistic label tree is able to achieve higher recognition

accuracy with comparable complexity to previous work.
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CHAPTER 4: SPARSE CONVOLUTIONAL NEURAL NETWORKS

4.1 Method

4.1.1 Sparse Convolutional Neural Networks

Given the input feature maps I in Rh×w×m, where h, w and m are the height, width and number of

channels of the input, and the convolutional kernel K in Rs×s×m×n, where s is size of the convolu-

tional kernel and n is the number of output channels. We assume the convolution is performed with

no zero padding and stride equal to 1. Then, the output feature maps of a traditional convolutional

layer O ∈ R(h−s+1)×(w−s+1)×n = K ∗ I are computed by

O(y,x,j)=
m∑
i=1

s∑
u,v=1

K(u, v, i, j)I(y+u−1,x+v−1,i) (4.1)

Our objective is to substitute the computationally expensive convolutional operation O = K ∗ I in

formula (4.1) with a more efficient sparsified version that can be implemented with multiplication

of sparse matrices.

For this purpose, we first transform the input tensor I to J ∈ Rh×w×m and the convolutional kernel

K to R ∈ Rs×s×m×n using a matrix P ∈ Rm×m, so that O ≈ R ∗ J, and

K(u, v, i, j) ≈
m∑
k=1

R(u, v, k, j)P(k, i)

J(y, x, i) =
m∑
k=1

P(i, k)I(y, x, k)

(4.2)

Next, for every input channel i = 1, · · · ,m, we decompose the convolutional kernels that cor-
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respond to this channel R(·, ·, i, ·) ∈ Rs×s×n into the product of matrix Si ∈ Rqi×n and tensor

Qi ∈ Rs×s×qi , where qi is the number of bases:

R(u, v, i, j) ≈
qi∑
k=1

Si(k, j)Qi(u, v, k)

Ti(y, x, k) =
s∑

u,v=1

Qi(u, v, k)J(y+u−1, x+v−1, i).

(4.3)

so that

O(y, x, j) ≈
m∑
i=1

qi∑
k=1

Si(k, j)Ti(y, x, k) (4.4)

Note that if we represent the tensor O and Ti as matrices by combining the first two dimensions,

and concatenate both Si and Ti along the dimension qi, formula (4.4) can be implemented by a

single matrix multiplication.

Here, we shall search for matrices P, Qi and Si, i = 1, · · · ,m, such that qi are much smaller

than s2, matrices Si have a large number of zero elements and columns, while our new sparse

convolutional kernel R provides output that is close to the one obtained with the original kernel

K.

4.1.2 Computational Complexity

The theoretical complexity of our method is measured by the number of multiplications. For

traditional convolutional layers, the required number of multiplication is:

mns2(h− s+ 1)(w − s+ 1) (4.5)
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Figure 4.1: Overview of our sparse convolutional neural network. Left: the operation of convolution
layer for classical CNN, which convolves large amount of convolutional kernels with the input feature
maps. Right: our proposed SCNN model. We apply two-stage decompositions over the channels and
the convolutional kernels, obtaining a remarkably(more than 90%) sparse kernel matrix and converting the
operation of convolutional layer to spare matrix multiplication.
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Our method significantly reduces the complexity by sparsifying the the convolutional kernel, while

introducing only very small overhead of two matrix decompositions:

(
γmn+

m∑
i=1

qi

)
s2(h− s+ 1)(w − s+ 1) +m2hw (4.6)

where γ is the ratio between the number of non-zero elements in the sparse matrix and the total

number of elements in the original dense kernel. The decomposition overhead is small when (1)

average of qi is much smaller than γn and (2) m is much smaller than γns2.

4.1.3 Learning Parameters

We adopt a two-phase strategy to learn the sparse kernels of Sparse Convolutional Neural Net-

works: initial decomposition and fine-tuning. The factorization in both Equation (4.2) and Equa-

tion (4.3) can be considered as classical matrix factorization problem if we reshape the convo-

lutional kernels from a 4-D tensor to a 2-D matrix by collapsing the decomposition dimension.

Therefore, it is a natural choice to use sparse matrix decomposition algorithm as initialization.

However, there are a couple of concerns with regard to current sparse dictionary learning algo-

rithms: First, the learning algorithms are not convex and therefore cannot guarantee to converge

to a global optimal solution. Second, the learning process balances the sparsity of coefficients and

the reconstruction error with a hyper-parameter, hence cannot provide exact reconstruction. Due

to these concerns, we experiment with the following initial decomposition methods and compare

their performance in Section 4.4.4:

• Decompose K and R using the sparse dictionary learning algorithm in [63], setting P, Qi
as the learned dictionaries
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• Decompose K and R using Principal Component Analysis (PCA), setting P, Qi as the

principal components

• Initialize P, Qi as identity matrices, while keeping K and R unchanged. In this way, there

is practically no initial decomposition and the sparsity is achieved solely by fine-tuning.

The initial decompositions with the above methods can only obtain moderate sparsity, but provide

meaningful starting points with very low or no reconstruction error. Further fine-tuning is critical

for learning highly sparse kernels. In the fine-tuning phase, we train the whole network with

back-propagation while imposing sparsity constraints over the sparse kernels. The underlying

reason of why fine-tuning can increase sparsity is that the original network is trained without any

sparsity constraint. Since the network is known to be over-parameterized to avoid the sensitivity to

initialization, it should have some freedom of modification without compromising the classification

accuracy. The initialization phase can only obtain sparsity based on the reconstruction error, while

the fine-tuning process can fully exploit the sparsity potential of our model by adopting the network

loss as the direct error measurement. Our experiments justify this point by showing a significant

increase in sparsity due to fine-tuning.

Formally, we minimize the following objective function in the fine-tuning phase

minimize
P,Qi,Si

Lnet+λ1

m∑
i=1

‖Si‖1+λ2

m∑
i=1

qi∑
j=1

‖Si(j, ·)‖2

s.t. ‖P(·, j)‖2 ≤ 1, j = 1, . . . ,m

‖Qi(·, ·, k)‖2 ≤ 1, i = 1, . . . ,m, k = 1, . . . , qi

(4.7)

where Lnet stands for the logistic loss function of the output layer of the network[51], and ‖ · ‖1
and ‖ · ‖2 denote the element-wise l1 and l2 norms of a matrix. The second term in (4.7) imposes

lasso constraint over each of the elements of Si, and the third term treats each row of Si as a group

variable in a spirit of group-lasso formulation. The effective columns of each Qi that needs to be
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calculated is equal to the number of non-zero rows of corresponding Si. In this way, we can further

reduce the overhead of convolving Qi over the feature maps.

4.1.4 Comparison between our method and low-rank decomposition

Like [47] [18], our model uses a low-rank decomposition, but goes beyond previous work by en-

couraging sparsity in the weights used to express the filter to further reduce the redundancy in

convolutional layers. We impose both sparse constraints and low-rank constraints with a combina-

tion of an l1 norm and group lasso penalty.

Consider the decomposing matrix M ∈ Rm×n as the multiplication of S ∈ Rm×n and P ∈ Rn×n.

Using a sparse decomposition, the speedup is proportional to the percentage of non-zero elements

in S, while the reduction in complexity using a decomposition is proportional to the percentage of

non-zero columns. The sparsity constraint is able to target specific entries in S, while a low-rank

constraint must eliminate entire columns. This makes it possible for our approach to target redun-

dancy more precisely. As the results in Section 6.2 will show, this leads to remarkable performance

improvement using the multiplication algorithm.

4.2 Sparse Matrix Multiplication Algorithm

While the sparsity penalties can target redundancy more precisely, the performance benefits can

only be realized with a sparse matrix multiplication algorithm that does not incur overhead that

overwhelms the benefit of the sparse matrix. In this section, we show how the multiplication can

be implemented efficiently.
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4.2.1 Motivation

When storing and manipulating matrices with high sparsity, to minimize the memory consumption,

the sparse matrices are traditionally stored as the value of the non-zero elements and their indexes.

This will inevitably lead to indirect and jumping memory access when multiplying two sparse

matrices. Due to the pipeline and memory cache design of current CPU and GPU architecture,

such jumping memory access is much slower than the direct and continuous access used in the

dense case in practice. In addition, the irregular pattern of input matrices also makes it almost

impossible to fully utilize the capacity of Single Instruction Multiple Data (SIMD) technology,

which is essential to achieve high performance in compute-intensive algorithms like dense matrix

multiplication.

To alleviate this problem, we introduce an efficient, sparse-dense matrix multiplication algorithm

to improve the speed of our sparse convolutional kernels. The proposed method is based on the

following two observations:

• Once the CNN model has been trained, the sparse convolutional kernels stay constant while

the input feature maps vary with the input images. Therefore, the location of non-zero el-

ements are fixed and pre-known, and they can be encoded directly into the code of matrix

multiplication.

• Only the convolutional kernels are considered as sparse matrices. Although the input feature

maps may possess moderate level of sparsity for some layers due to the effect of ReLU

function, they will be treated as a dense matrix.

Our method is implemented on x86 64 CPU micro-architecture with the Advanced Vector Exten-

sion (AVX), which is an extension of SIMD and available on both Intel and AMD’s CPUs after

2011. We expect that this approach could also be easily extended to GPU architectures. Our
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method is implemented based on OpenBLAS [96], an open source linear algebra library mainly

written in C and assembly. In the following sections, we will first briefly describe the traditional

dense matrix multiplication algorithm in OpenBLAS, then introduce our method on multiplying

sparse matrices.

4.2.2 Dense Matrix Multiplication in OpenBLAS

There are two main considerations on designing an efficient matrix multiplication algorithm: (a)

Taking advantage of SIMD instructions for higher computing throughput; (b) Maximally utilizing

the caches to reduce memory access latency. In the OpenBLAS library, matrix multiplication is

implemented with the AVX instruction sets, in which 8 single precision floating point numbers can

be stored in one 256bit AVX register and manipulated simultaneously. Namely, in one cycle of

each CPU core, 8 pairs of single precision numbers can be multiplied and added simultaneously.

Figure 4.2: Matrix Multiplication Algorithm in OpenBLAS. The input matrices are first divided into blocks
which can fit in L2 cache. Each block is then divided into 8 element wide strips. The multiplication outputs
of two strips are held in 8 AVX registers during calculation.
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To reduce the memory access latency, the input matrices are divided into small blocks that are

able to fit in the Level-2 cache of each CPU core. Then the blocks in the two input matrices are

multiplied in the following way: The first block is divided into row strips that are 8-elements wide

and the second block is divided to column strips that are also 8-elements wide. Then every two

strips are multiplied into an 8 × 8 tiny square matrix that can be cached within 8 AVX registers.

Figure 4.2 provides a graphical visualization of the matrix multiplication algorithm adopted in

OpenBLAS.

4.2.3 Sparse Matrix Multiplication

Consider the sparse-dense matrix multiplication problem C = A × B. A ∈ Rm×k is a dense

matrix and B ∈ Rk×n is a fixed and known sparse matrix. A and B are divided into blocks and

strips in the same way as in OpenBLAS described above. Now, we consider the multiplication of

one row strip and one column strip C̄ = Ā× B̄, Ā ∈ R8×k, B̄ ∈ Rk×8, C̄ ∈ R8×8. For any matrix

M, let mi,∗ be the ith row of M and m∗,j be the jth column of M. The matrix multiplication can

be represented as

c̄∗,j =
k∑
i=1

ā∗,ib̄i,j, 1 ≤ j ≤ 8 (4.8)

In which every c̄∗,j and ā∗,i are held in one AVX vector. Since B̄ is sparse in our case, we need

to have the knowledge of the locations of non-zero elements and skip the zeros. To avoid indirect

memory access, we propose to encode the structure of B̄ into the program. For each non-zero

value b̄i,j , i indicates which ā∗,i to multiply with and j indicates which c̄∗,j to save to. Since they

both correspond to single AVX registers, we can simply encode i and j into our program as the

index of registers. Figure 4.3 shows a toy example of how our method generates code from given

sparse matrix.
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(a) An example sparse matrix B. The
shadowed squares represent non-zero
elements and the blank squares repre-
sent zero elements.

our modification for sparse matrix.

4.1 Matrix Multiplication in OpenBLAS

There are two main considerations on designing an efficient matrix multiplication algorithm: (a) Maxi-
mumly utilizing the caches for computation; (b) Taking advantage of SIMD (Single Instruction Multiple
Data) instructions for higher computing capacity. Figure. 2 shows the matrix multiplication algorithm de-
signed in OpenBLAS. In OpenBLAS, the authors split the input matrices into blocks that can be stored
completely into the L2 cache of CPUs, and iteratively multiply 8-elements wide strips. Since there are 16
256 bits wide registers in the AVX instruction sets, each SIMD instruction can multiply 8 float element at
a time. The result of multiplying two strips can be stored in 8 256 bit registers, thus saving the time for
writing the result to memory after each multiplication.

4.2 Efficient Sparse Matrix Multiplication

We assume that one of the input matrices is sparse and the other one is dense. And we assume that the sparse
matrix is known before calculation (even before the compilation of the code), and the dense matrix changes
for each call of the multiplication function.

For dense matrix multiplication, the computation time is dominant over the data loading time. There are
two types of data loading. The first one is loading the blocks to the L2 cache of CPU, and the second one is
loading each strips from the L2 cache to the registers of CPU. In OpenBLAS, the first one is only less than
1
10 of the total running time, while the second one can be up to 1

3 of the running time. However, due to the
pipeline design of modern CPU, the second loading can run in parallel with the data computation, therefore
the overhead of loading is very small for the whole pipeline.

However, if one of the input matrix is sparse, the amount of computation is greatly reduced, therefore
the second loading time becomes the dominant time consuming operations. Our focus is to deal
Input:

A: 8× 12 dense matrix
B: 12× 8 sparse matrix

Output:
C = A×B

Operations:
c7+ = a1 × b1,7
c3+ = a2 × b2,3
c6+ = a3 × b3,6
c2+ = a5 × b5,2
c5+ = a5 × b5,5
c4+ = a7 × b7,4
c5+ = a7 × b7,5
c3+ = a10 × b10,3
c5+ = a10 × b10,5
c4+ = a11 × b11,4

4

(b) Generated Pseudo code for calcu-
lating C = A × B. ci is the ith col-
umn of C and aj is the jth column of
A. bi,j is the element of B at ith col-
umn and jth row

Figure 4.3: An example that illustrates how our algorithm generates code for multiplying a dense matrix
and a sparse matrix

4.3 Application to Object Detection

We now apply SCNN to the object detection problem. Girshick et al. [30] first proposed to use

CNN to solve the object detection problem. They warp each candidate window generated by the

Selective Search[84] method to a fixed size and use CNN to generate high level discriminative

features, with which linear SVM with hard negative mining is adopted to train object detection

model. He et al. [40] significantly improves the speed of [30] by utilizing a Spatial Pyramid

Pooling (SPP) scheme, in which the convolutional layers only need to be performed once (single

scale) or several times (multiple scales) on the whole image and only the fully connected layers are
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performed on each candidate window. Due to large amount of candidate windows in each image

(∼2000), the total running time of fully connected layers in [40] is comparable to or dominant over

the one of convolutional layers.

We apply SCNN to accelerate the convolutional layers of SPP model. Although our method can ac-

celerate the convolutional layers by a high factor, the total running time would not reduce much due

to the relatively time consuming fully connected layers. In this section, we propose two schemes

to reduce the complexity of fully connected layers to achieve an overall high efficiency.

First, we propose to apply a cascade scheme over the network in a similar fashion to [25]. Since

the output of the last convolutional layer is already highly discriminative, directly applying a linear

SVM classifier over it achieves good performance [30][40]. Therefore, we can use the last convo-

lutional layer as the first stage of our cascade model to prune large portion of candidate windows,

and then use the output of the final fully connected layer as a second stage classifier to generate

the final detection results. The decision of detection threshold of first stage is a trade-off between

efficiency and accuracy. A lower threshold retains high recall so that the overall accuracy is not af-

fected while a higher threshold removes more candidates to achieve higher efficiency. In our case,

we found that a threshold with a corresponding precision equals 0.05 is a balanced trade-off. Previ-

ous work on cascade models were applied only to single class detection. Multiple class detection,

in general, achieve less gain, since the number of candidates rapidly increases with the number of

classes. However in our model we can still remove considerably large portion of candidates with

multiple classes.

Second, we decompose the fully connected layer in a similar fashion as we did with the convolu-

tional layers. The operation of fully connected layer can be represented by matrix-vector multipli-

cation followed by the neuron function. We decompose the weight matrix into the product of one

sparse matrix and one dense matrix as M ≈ PS, where M ∈ Rm×n, P ∈ Rm×k and S ∈ Rk×n.
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We choose to enforce sparsity on P if m > n and on S otherwise, so that the dense matrix has a

smaller dimension. We impose both l1 norm and group lasso cost function so that k is also reduced.

4.4 Experimental Results

4.4.1 Setup

We trained our model on the ImageNet LSVRC 2012 [14] dataset. We start from a pre-trained

Caffe[49] reference CNN model, which is almost identical to the model described in [51]. The

model consists of 5 convolutional layers and two fully connected layers, interlaced with subsam-

pling layers, local normalizing layers, max pooling layers, rectified linear unit layers and dropout

layers. The first convolutional layer has relatively large 11× 11 kernels and only 3 input channels;

the second convolutional layer has 5 × 5 kernels; The third, fourth and fifth convolutional layers

have very small 3×3 kernels. The difference of kernel sizes as well as the number of input kernels

affects the possible sparsity that can be achieved.

All 5 convolutional layers are optimized simultaneously according to Equation 4.7 using stochastic

gradient decent with momentum. The base learning rate is initially set to 0.001, while sparsifying

the network parameters. To stabilize the training process, we adopt a thresholding function that

sets parameters smaller than 1e−4 to zero during training. Once the training process converges, we

remove the sparsity constraint, but keep the thresholding function. Finally, we gradually decrease

the base learning rate to fine-tune the network for best accuracy.
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4.4.2 Results on ILSVRC12

Table 4.1 shows the results on ILSVRC12. For all 5 convolutional layers, we obtain more than

90% sparsity. The average number of bases in each layer is significantly smaller than s2(square

of kernel size), which corresponds to the full rank decomposition. The theoretical speedup are the

ratio between the running time of our SCNN layer, and the original convolutional layer. The final

column of Table 4.1 shows the actual acceleration factor achieved. Because of the overhead in

sparse matrix multiplication, it is expected that actual performance improvements will not match

theoretical results.

Table 4.1: Sparsity, Average number of bases ,theoretical and actual speedup corresponding to each convo-
lutional layer for our SCNN model. qi is the average number of bases in each channel. Results demonstrates
that our highly sparse model could lead to remarkably acceleration for computation in both theory and
practice.

layer conv1 conv2 conv3 conv4 conv5
kernel size 11 5 3 3 3
input channels 3 96 256 384 384
output channels 96 256 384 384 256
complexity% 15.8 33.6 22.5 16.8 11.2
sparsity% 0.927 0.950 0.951 0.942 0.938
average qi 29 7.91 5.23 4.32 3.95
theoretical speedup 2.61 7.14 16.12 12.42 10.77
Actual speedup 2.47 4.52 6.88 5.18 3.92

The speedup factor in conv1 is not as significant as other layers due to limited redundancy that

is caused by large kernel size and the small number of input and output channels. The number

of bases in conv1, although substantially reduced, still accounts for a large portion of running

time because of small number of output channels. This issue is also present in previous low-

rank approaches [47]. We experimented with decomposing the basis filters with combination of

separable filters, but the bases showed too much variation to be expressed with separable filters.
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4.4.3 Comparison with Only Using Low-Rank Approximations

To more directly compare with previous work, we also trained a modified version of the model

used in [40], which is similar to that used in [18]. The primary difference lies in a spatial pyramid

layer that will not affect the sparsity properties of the convolutional layers. Table 4.2 shows the

comparison of theoretical speedup factors between [18] and our method trained based on [40]. We

have a similar speedup as [18] in conv1 due to the above mentioned reason, while obtaining much

higher speedup for conv2. It should be noted that [18] did not attempt to accelerate the later layers,

likely due to the tiny size of filters (3×3), while our method is able to achieve significant speedup.

Table 4.2: Comparison between a model, similar to [40], trained with sparsity and the speedup factors
reported in [18].

layer conv1 conv2 conv3 conv4 conv5
kernel size 7 5 3 3 3
sparsity% 0.840 0.956 0.893 0.904 0.890
average qi 21 9.06 6.76 6.86 6.98
theoretical speedup 2.62 7.06 8.03 8.78 7.29
low-rank [18] 2.4 2.5 - - -

4.4.4 Comparison of Initialization Methods

Figure 4.4 shows a comparison of the performance of different initialization methods that we

adopted. Both PCA and sparse coding obtain more than 90% sparsity, while random initialization

shows inferior sparsity by a large margin. Notably, all the methods obtain very limited sparsity with

only initialization. These results demonstrate the importance of both initialization and fine-tuning.

All of the methods show very small amount of accuracy drop during the fine-tuning process. The

accuracy numbers shown in Figure 4.4 are generally lower than final accuracy since the learning

rate we set during sparsifying the network is higher than final learning rate for faster convergence.

51



0 2 4 6 8 10 12
x 104

0.4

0.5

0.6

0.7

0.8

0.9

1

iterations

sp
ar

si
ty

(%
 o

f z
er

os
)

 

 

pca
sparse
identity

0.53

0.54

0.55

0.56

0.57
ac
cu
ra
cy

pca
sparse
identity

Figure 4.4: Comparison of initial decomposition methods. We show the variation of both the accuracy and
the average sparsity of our sparse CNN during the training process.

Among all the three methods, the accuracy of PCA is slightly better than the others. The sparse

coding method, although seems to make more sense theoretically, is inferior practically. We argue

that the main reason is its non-convexness and non-accurate reconstruction. Although PCA is also

a non-convex problem, global unique optimum can be obtained with SVD.

4.4.5 Bases Visualization

Figure 4.5 shows the average number of non-zero elements in our sparse convolution kernels cor-

responding to each basis of our decomposition over both input channels and kernels inside each

channel. The bases are sorted according their eigenvalues of PCA initialization. High correlation
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can be found between the sparseness and the eigenvalues of PCA, which justifies the importance

of PCA initialization. For a significant portion of the bases, the sparse kernels are almost all zero.

The all zero bases are equivalent to the ones that can be eliminated by low-rank decomposition.

For relatively large-size kernels, like conv1 and conv2, the percentage of all zero bases is signif-

icant enough to achieve moderate level of speedup. However, for small-size kernels like conv3,

conv4 and conv5, the percentage of all zero bases is very limited. Even a speedup factor of 2 will

significantly sacrifice the accuracy with low-rank decomposition. The advantages of our method

are clearly shown by the sparsity obtained for the non-zero bases, shown in Figure 4.5.

1 2 3
0

0.09

0.18

1 25 49
0

0.13

0.26

(a)conv1	   (b)conv2	  

1 61 121
0

0.28

0.56

1 13 25
0

0.17

0.34

1 5 9
0

0.13

0.26

1 5 9
0

0.15

0.3

1 5 9
0

0.2

0.4

(c)conv1	   (d)conv2	   (e)conv3	   (f)conv4	   (g)conv5	  

Figure 4.5: Average ratio of non-zero elements in our sparse convolution kernels corresponding to the
bases of decompositions over channels and filters. (a) (b) show the bases over channels and (c) to (g) show
the bases over filters.The bases in each figure are sorted in descending order of their eigenvalues in PCA
initialization.

To justify the necessity of fine-tuning, we compare the convolution kernels in the original model

and the ones that are reconstructed from our fine-tuned sparse model in Figure 4.6. We only show

the kernels of conv1, conv2 and conv3 layers due to limited space. We ignore the kernels that are

all zeros, which is very common from conv3 to conv5. We also measure the average similarity be-

tween the original and reconstructed kernels by first deduct the mean values from both kernels, and

then calculate the cosine similarity measurement, which is defined as Simcos(x,y) = x·y
‖x‖‖y‖ . From
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Figure 4.6, we can see that the average similarity decreases rapidly from conv1 to conv3. The ker-

nels in conv3 look very different from the original ones. Considering how little the accuracy drops

in our model, this justifies our argument that the original network is extremely over-parameterized

and significant regularization can be imposed without affecting the performance. Thus, one can

hardly exploit the full sparsity potential of the network by only attempting to approximate the

original kernel instead of network loss based fine-tuning adopted in our method.

org	  

rec	  

rec	  

org	  

rec	  

org	  

Conv1(sim	  =	  0.85)	  

Conv2(sim	  =	  0.60)	  

Conv3(sim	  =	  0.34)	  
Figure 4.6: Comparison between the original convolution kernels and the convolution kernels reconstructed
from our sparse kernels. Here we show randomly sampled kernels conv1, conv2 and conv3 layers. conv4
and conv5 are very similar to conv3. For each layer, the first row shows the original kernels and the second
row shows the reconstructed ones. The average cosine similarity between them are displayed under.
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4.4.6 Evaluation of Sparse Matrix Multiplication Algorithm

We first analyze the performance of our sparse dense matrix multiplication algorithm with a ran-

domly generated matrix. We randomly generate one 1024 × 1024 dense matrix and one sparse

1024 × 1024 matrix, and measure the running time of multiplying them with our algorithm. Our

experiments are performed on an Intel i7-3930k CPU. We measure the single-thread performance

in this case for simplicity. The multi-thread performance should be consistent. Figure 4.7 shows

the result of our evaluation.
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Figure 4.7: Running time analysis of our sparse-dense matrix multiplication algorithm. The horizontal axis
stands for the percentage of non-zero elements in the input sparse matrix, and the vertical axis is the relative
running time comparing to the dense matrix multiplication code in OpenBLAS. The arithmetic time is the
running time of multiplication and addition, and the I/O time includes loading the input matrix from memory
to cache, loading from cache to CPU and writing result to memory. The theoretical time is the best possible
speedup one can achieve, which is identical to the density of the input matrix.

The following conclusions can be drawn from this figure: (a)The arithmetic time is strictly pro-

portional to the density of the input matrix, and very close to the theoretical limit; (b) The I/O

time decreases with the increase in sparsity, but in a sub-linear speed. The time of loading from

memory to cache and storing results are constant regardless of the variation of sparsity, and the

time of loading the dense matrix from cache to CPU depends on the percentage of consecutive 8
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zeros in the sparse matrix; (c) The I/O time is increasingly dominant when the sparsity increases,

when the density is less than 10%, the I/O operations takes more than 80% of the total running

time. (d) Note that the sum of arithmetic time and I/O time is significantly higher than the total

time. This is due to the parallelism introduced by the pipeline strategy of CPU. For this reason,

the arithmetic operations and I/Os can be executed simultaneously, thus providing a significantly

better efficiency.

4.4.7 Running Time Analysis

Table 4.3 shows the actual speed of our code as well as the proportion of each component. Signif-

icant speedups are achieved for all 5 layers. The sparse matrix multiplication time is dominant for

the last three layers while the basis convolution time takes a large portion for the first two layers,

which is consistent with theoretical analysis. The gap between actual speedup and theoretical one

comes mainly from two factors: (1) Overhead of sparse matrix multiplication; (2) Low efficiency

of basis convolution. Caffe implements convolution as matrix multiplication, which is relatively

inefficient for small number of filters as in our case. We implement a faster version but is still

not fully optimized. In addition, joint cache optimization with both convolution and sparse matrix

multiplication will further improve the efficiency.

Table 4.3: Running time analysis and comparison with original dense networks. All the numbers for each
layer are normalized with the layer’s total running time with our method. The last row is the speed-up factor
of our method.

layer conv1 conv2 conv3 conv4 conv5
Channel Decomp 0.06 0.14 - - -
Basis Convolution 0.78 0.41 0.21 0.30 0.44
Matrix Mult 0.16 0.45 0.79 0.70 0.56
Original 2.47 4.52 6.88 5.18 3.92
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4.4.8 Results on Object Detection

We used the fine-tuned model in Table 4.2 to perform object detection on PASCAL VOC2007 [22]

dataset. The accuracy of our method compared with the original one in [40] is shown in Table

4.4. We are not able to reproduce the accuracy using the code published by [40], so we put the

number we get instead. Our method is approximately 2% worse than the original SPP model, while

obtaining several times faster speed. We speculate that the higher accuracy drop than classification

problem is probably due to the fact that the convolutional layer is trained on ILSVRC dataset,

while only the fully connected layer are fine-tuned to adapt to the PASCAL data as in [40]. Thus,

although we are sparsifying the convolutional layers with fine-tuning, the loss of the network is not

equivalent to the loss of the detection problem. A whole network based fine-tuning should further

reduce the accuracy drop of our method.

Table 4.4: Mean average precision of object detection with our method compared with [40]. “bb” stands
for bounding box regression, “1s” means 1 scale and “5s” means 5 scales. Our sparse model is inferior to
[40] by approximately 2%.

fc7(1s) fc7bb(1s) fc7(5s) fc7bb(5s)
spp[40] 52.47 54.19 54.75 57.19
ours 50.16 52.64 52.58 55.13

In our cascade model, we set the thresholds of first stage so that the precision for each class equals

0.05. Approximately 80% of candidate windows are pruned for each image, thus bringing approx-

imately 5× speedup of fully connected layers with almost no drop in accuracy. In addition, 85%

and 68% sparsity are achieved for the first and second fully connected layer, further providing over

2× speedup. The running time of fully connected layer is thus reduced to be much smaller than

the convolutional layers.
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4.5 Summary

In this chapter, we propose to apply sparse decomposition to the convolutional layers to improve

their efficiency. We apply both inter-channel and inner channel decomposition to fully exploit the

redundancy underlying the convolutional kernels. We learn the sparsity with an initial decomposi-

tion and further fine-tuning. To convert the obtained sparsity to actual lower runtime, we proposed

a CPU based sparse matrix multiplication algorithm that takes advantage of the fact that the sparse

kernels are known before the actually computation. In addition, we also apply our method to the

object detection framework and achieve similar speedups.
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CHAPTER 5: A MULTI-STAGE CONVOLUTIONAL NEURAL

NETWORK FRAMEWORK

5.1 Review of Cascade and Label Tree Models

5.1.1 Cascade Models

Cascade models are commonly used to improve the efficiency of object detection algorithms.

Based on the fact that the negative samples are statistically dominant and most of them are rel-

atively easy to distinguish from the positive examples, a cascade of classifiers with increasing

complexity and accuracy are sequentially performed on the test samples. At each stage of cas-

cade, a fraction of the negative samples are pruned. Algorithm. 3 shows how the cascade model

works for a test image. The underlying idea of the cascade model is to divide the feature space and

process samples in different areas with different models.

Algorithm 3 Cascade Model

Require: Test example x, cascade of binary classifiers and corresponding thresholds (Ci, ti), i =
1, 2, ..., n

1: label x as positive;
2: for i = 1 to n do
3: if Ci(x) < ti then
4: label x as negative;
5: break;
6: end if
7: end for
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5.1.2 Label Tree Model

The label tree model was proposed by [7] for efficient large scale classification. A label tree is a

tree T = (V,E), which has a set of nodes V and edges E. Each node is associated with a cluster

of labels. The root node contains all the labels, and each node’s labels are a subset of its parent’s

labels. The leaf nodes have only one label. Each non-leaf node has a decision function that assigns

the input sample to one of its children. The test image is categorized by traversing the tree from

the root, as is described in Algorithm. 4.

Algorithm 4 Label Tree Algorithm
Require: Test example x, label tree parameters:

σ(s): children nodes of s
l(s): labels of s
ws: classifier weights associated with s

1: Initialize pointer s to the root node
2: while σ(s) 6= ∅ do
3: s← argmax

c∈σ(s)
w>c x

4: end while
5: Assign the label l(s) to the test example

To optimize the accuracy of the label tree model, the labels in the same node are more confusing

than the ones in different nodes. The label tree model reduces the complexity by recursively divid-

ing the label space into small label clusters within which recognition can be performed efficiently.

5.2 Proposed Method

5.2.1 Challenges

In this chapter, we build a multi-stage framework by applying the ideas of cascade and the label

tree model to the Convolutional Neural Networks. Each test image is processed differently based
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on its feature property. One important assumption for the cascade model to achieve significant

speedup is that there is a large portion of “easy” negative samples that can be efficiently eliminated

with a simple model. Cascade model for image classification is naturally more difficult than object

detection since we need to provide an accurate categorization for each test image. Despite this,

we argue that there exists high diversity in the level of “difficulty” of images, and therefore using

recognition models with different level of complexity can lead to higher efficiency.

In previous work [7][15][59], the label tree method has been exclusively applied to linear classi-

fiers, of which the complexity is proportional to the number of categories. While this assumption

is necessary to achieve logarithmic complexity with the label tree model, it cannot be made when

we use the CNN models as classifier. In CNN, the convolutional layers behave as feature extractors

and the final logistic regression layer behaves as a linear classifier. Since most of the computation

is consumed by the convolutional layers, the complexity of the whole CNN model is sub-linear

with the number of categories. In other words, a network that classifies 100 classes will not be

10 times faster than a network that classifies 1000 classes with similar level of accuracy. Due to

this reason, we need to carefully design our framework to achieve optimal efficiency. For a typical

CNN model, most of the running time is spent on the convolutional layers rather than the classifier

layer. Our hypothesis is that, classifying smaller number of classes would require less number of

convolutional filters than classifying large number of classes with similar level of accuracy. On

the other hand, the dominance of the convolutional layers in complexity leaves us more freedom

to design a more complicated tree branching model based on the extracted feature from the CNN

models, without worrying about weakening the overall efficiency.
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5.2.2 Intuition: Cascading label clusters

In this section, we briefly introduce the intuition behind our idea. Consider a two-level label tree

framework, in which each node is associated with a CNN model. The model in the root node

assigns the input to one of its child nodes, each of which contains a subset of labels. Since the

root node model cannot perfectly distinguish all categories, the categories that are more confusing

with each other tend to be assigned to the same child node. There exists a trade-off between the

accuracy of the root node model assigning samples to its children node, and the overlapping of

labels between the children nodes, as is described in [15]. To maintain a high accuracy, the level

of label overlapping needs to remain at a high level, which leads to large number of labels for each

child node, hence increasing the complexity of CNN models in the children nodes.
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Figure 5.1: The probability of one class confusing with other classes. The shown class is relatively heavily
confused with a few classes, while slightly confused with a large number of classes. This “long tail” property
of confusion leads us to the idea of cascading label tree model.

To alleviate this problem, we consider cascading two levels of children nodes that have different

level of label overlapping. Figure. 5.1 shows the probability of one typical class confusing with
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other classes sorted in a descending order. This curve shows a “long tail” property. There is

a relatively high probability for this class to confuse with a small number of classes, while low

probability to confuse with a large number of classes. We attempt to build a two-stage cascade

of label clusters. In the first stage, the child node that includes the chosen class also includes all

the classes in the figure until the green arrow, while in the second stage it contains the classes

until the red arrow. The first stage, despite its lower overall accuracy, can correctly process a large

portion of input images due to the long tail property of the curve. Due to less number of clusters

in each node, the first stage also achieves higher efficiency than the second stage. If we design a

“stage predictor” that assign the “easy” images to the first stage, and “hard” images to the second

stage, then we obtain a model that can be as accurate as the second stage but with higher average

efficiency.

5.2.3 Multi-stage framework

We propose a three-stage framework, as is illustrated in Figure. 5.2. Both accuracy and complexity

of the stages increase monotonically. While the first stage is an efficient CNN model, the second

and third stages are composed of a two-level label tree model, and each node of the tree is associ-

ated with a CNN model. A stage predictor, which is based on the output of the first stage, selects

which stage should be chosen to predict the label of the input image. In the following sections, we

will explain each stage in detail.

5.2.3.1 First Stage

The first stage of our framework consists of an efficient CNN model with relatively low accuracy.

This stage processes every test image and generates the following two outputs:

63



• P (yi|x, s1): Probability of each output label using this model

• fs1(x): Feature vector that will be used by the following stages

5.2.3.2 Stage Predictor

Given fs1(x) for each image, the stage predictor determines whether directly using the label prob-

ability estimation of the 1st stage P (yi|x, s1) as output, or assigning the image to the 2nd stage or

the 3rd stage for more accurate categorization.

The stage predictor first predicts whether to directly use the 1st stage as the output, then predict

whether to use the 2nd stage or the 3rd stage, as is modeled probabilistically in the following

equation:

p(y|x) = p(y|s1,x)p(s1|x) +

p(y|s2,x)p(s2|x)(1− p(s1|x)) +

p(y|s3,x)p(s3|x)(1− p(s1|x)) (5.1)

Both p(s1|x) and p(s2|x) are modeled as a binary logistic regression model, whose input feature

vector is transformed from fs1(x), as will be discussed in Sec. 5.3.3.

5.2.3.3 Second Stage

The 2nd stage is composed of a two-level label tree model. A linear model that takes fs1(x) as

feature assigns the test image to one of the children nodes. Each child node is associated with one
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Predictor

label

1st stage

3rd stage 2nd stage

Figure 5.2: Flow chart of our multi-stage framework. All the input images are processed by the first stage.
The stage predictor determines whether to directly output label predicted by first stage, or assign the image
to the label tree model in 2nd or 3rd stage for more accurate prediction. The 3rd stage label tree model has
heavier label overlapping, and is more accurate and complex than 2nd stage.
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CNN model that assigns a label to the image in the node. If one test image is assigned to this stage,

then its probability of each label is calculated with the following equation:

p(yi|x, s2) = p(yi|x, cj), j = arg max
ck∈s2

p(ck|fs1(x)) (5.2)

where cj is the jth cluster of the label tree model.

The overall accuracy of the 2nd stage is better than the first stage, with relatively higher complexity.

5.2.3.4 Third Stage

The 3rd stage is also a label tree model similar to the second stage, except that it has different

number of clusters and each cluster has different number of classes. There are higher level of label

overlapping between children nodes, so that the children nodes have more labels on average, and

the probability of assigning a test image to a wrong child node is lower. The images that are not

assigned to the first two stages are assigned to this stage. The probability of each label is calculated

as follows:

p(yi|x, s3) = p(yi|x, cj), j = arg max
ck∈s3

p(ck|fs1(x)) (5.3)

Due to large number of classes for each cluster, the complexity of the CNN models in this stage is

higher than previous 2 stages.

5.2.4 Learning Label Tree Clusters

The label tree clusters are learned with the probabilistic formulation proposed in Chapter. 3. Within

the multi-stage framework, we need to accurately control the balance between accuracy and the
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Algorithm 5 Proposed Framework
Require: Test example x, first stage model S1, second stage model S2, third stage model S3

1: Calculate probability of x belonging to each label with S1, P (yi|x, S1)
2: Calculate P (ci|x, s2), P (ci|x, s3)
3: Calculate P (s1|x), P (s2|x), P (s3|x)
4: while σ(s) 6= ∅ do
5: s← arg maxc∈σ(s) w

>
c x

6: end while
7: Assign the label l(s) to the test example

number of classes for each cluster in the 2nd and 3rd stage. Instead of using the trivial methods

of determining the number of leaf node based on the categorical distribution described in Section.

3.5.2, we apply the linear programming algorithm proposed in [15] to obtain a hard label partition

according to an desired accuracy. We’ll formally describe this method in this section.

Given the input feature vectors and their corresponding labels {xi, yi}, i = 1, 2, ...n, the number

of classes K, and the number of clusters Q, the probability of assigning label y to x is defined as

p(y|x) =
K∑
k=1

p(y|Ck,x)p(Ck|x) (5.4)

Where p(Ck|x) denotes the probability of assigning sample x to cluster k, and p(y|Ck,x) de-

notes the probability of cluster k assigning label y to x. p(y|Ck,x) is defined as a multinomial

distribution, and p(Ck|x) is defined as a multi-class logistic regression model:

p(Ck|x) =
exp(wT

k x)∑K
i=1 exp(w

T
i x)

(5.5)

We optimize p(y|Ck,x) and p(Ck|x) in an iterative fashion. When p(y|Ck,x) is fixed, optimizing

p(Ck|x) is equivalent to learning a weighted logistic regression model. When p(Ck|x) is fixed, we

update p(y|Ck,x) with the following method.

We define a binary partition matrix P ∈ {0, 1}Q×K . Pqk = 1 if class k belongs to cluster q. Note
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that the clusters can be overlapping, namely, there can be multiple 1s on each column of P . The

overlapping reduces the system’s chance of assigning to wrong clusters. For each sample (xi, yi),

qi is the cluster assigned by the classifier by maximum likelihood, and the following optimization

problem is solved:

minimize
w,P

1

m

m∑
i=1

A(qi, P ) (5.6)

subject to
1

m

m∑
i=1

L(qi, yi, P ) ≤ ε

P ∈ {0, 1}Q×K

where

A(qi, P ) =
1

K

K∑
k=1

P (qi, k) (5.7)

L(qi, yi, P ) = 1− P (qi, yi)

qi = argmax
j

wT
j xi

A(qi, P ) is defined as the ambiguity term, which represents the average number of classes in each

cluster, and L(qi, yi, P ) stands for the error of the assigning the images to clusters. When qi is

fixed, optimal P can be approximately found with linear programming according to [15].
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Given P , p(y|Ck,x) is updated with the following equation:

p(y|Ck,x) =

∑N
i=1 I(qi = k)I(yi = y)I(P (k, yi) = 1)∑N

i=1 I(qi = k)I(P (k, yi) = 1)
(5.8)

Where I(·) is a binary indicator function.

5.2.5 Learning Stage Predictor

The objective of stage predictor is to assign each image to the right stage, so that the overall accu-

racy is maintained, with minimal amount of average computation. While the complexity of each

stage is fixed, the average computation is determined by the ratio of selecting stages with lower

complexity. Avoiding the more complex stages will lead to less overall computation. Therefore,

we learn the stage predictor by maximize the log likelihood of ground truth label of input image,

while also maximizing the average chance of selecting the first 2 stages, as defined in the following

equation:

L = −
N∑
i=1

(log p(y|x) + αp(s1|x) + βp(s2|x)) (5.9)

Where α and β are positive hyper-parameters that control the ratio of selecting 1st and 2nd stage.

Both p(s1|x) and p(s2|x) are represented as binary logistic regression models.

5.3 Experiments

We evaluate our multi-stage framework on the ImageNet LSVRC 2012 dataset [14]. The dataset

includes 1000 categories, with 1.2M training images, 50K validation images, and 100K test im-
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ages. We use Caffe[49] to train the CNN models in our framework. In this work, we focus on

optimizing the top-1 test accuracy for a single center crop, since efficiency is our main objective.

Table 5.1: Configuration of the CNN models used in our framework. They vary in input size, number of
convolutional layers, resulting in diverse complexity and accuracy.

Stage Input Size # Conv Layers # Multiplications Accuracy
1st 150× 150 7 148M 53.2%
2nd 221× 221 13 450M 59.5%
3rd 221× 221 13 769M 62.2%

The structure of our CNN models is designed by modifying from [37]. We split the convolutional

filters into two groups as in [50], and change the input image size as well as the number of filters

and layers to make a balance between accuracy and complexity for each stage of our framework.

For similarity and universality of model training, we follow the standard training process of Caffe,

omitting some techniques adopted by [37], such as SPP [40] and different image cropping method

[42]. Table. 5.1 briefly summarizes the complexity of our CNN models and their accuracy on

ILSVRC 2012 dataset. Table. 5.2 and Table. 5.3 list their detailed configurations.

5.3.1 Evaluation of Learning Label Tree

We first evaluate the performance of label tree learning algorithm based on the feature fs1(x)

generated by the first stage CNN model. We experiment with different form of fs1(x), and come

to the conclusion that setting fs1(x) = P (yi|x, s1), namely using the category probabilities as the

feature, achieves the best performance due to its outstanding generalization ability. The category

probabilities provide direct information about the confusing potential between categories, which is

the essential information needed for generating label tree.

We compare the relationship between ambiguity and accuracy, as defined in equation. 5.7, in the
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Table 5.2: Configuration of 1st stage model

type kernel stride pad group output
input 3× 1502

conv 7 2 0 1 64× 722

max pooling 3 3 0 0 64× 242

conv 2 1
0

2
128× 232

1 128× 242

max pooling 2 2 0 0 128× 122

conv 2 1
0

2
256× 112

1 256× 122

max pooling 2 2 0 0 256× 62

conv
2 1

0
2

512× 52

1 512× 62

1 1 0 1 1024× 62

average pooling 6 6 0 0 1024
linear - - - - 1000

setting of different number of clusters, as shown in Figure. 5.3. The ambiguity increases rapidly

with the accuracy. When the accuracy is set to 70%, the ambiguity is approximately # classes
# clusters

,

which means there is almost no overlapping between clusters. Whereas when we increase the

accuracy threshold, the increase in ambiguity is not quite dependent on the number of clusters, but

more related to the level of confusion like in Figure. 5.1.

Based on Figure. 5.3, we select the 64 clusters model with accuracy equals 75% as our second

stage model, and the 32 clusters model with accuracy equals 90% as our third stage model.

5.3.2 Performance of CNN Models in 2nd and 3rd Stages

In the 2nd stage and 3rd stage, the structure of the CNN model for each cluster is the same. We

first train the CNN model using the whole 1K categories ILSVRC 2012 dataset, then fine-tune the

model for each cluster using the images whose labels are in the cluster. To further improve the
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Table 5.3: Configuration of 2nd and 3rd stage models.

type kernel stride pad group
output

2nd(3rd) stage
input 3× 2212

conv 7 2 0 1 64× 1082

max pooling 3 3 0 0 64× 362

conv 2 1

0

2

128(180)× 352

1 128(180)× 362

0 128(180)× 352

1 128(180)× 362

max pooling 2 2 0 0 128× 182

conv 2 1

0

2

256(360)× 172

1 256(360)× 182

0 256(360)× 172

1 256(360)× 182

max pooling 2 2 0 0 256× 62

conv

1

1

0 1 512(720)× 62

2 0 2 512(720)× 52

2 1 2 512(720)× 62

1 0 1 1024(1440)× 62

average pooling 6 6 0 0 1024(1440)
linear - - - - 1000

accuracy, we adopt the distilling method proposed recently in [41]. We generate the probability

output of all the training images from the latest CNN model in [38] with temperature equal to 2.

Then for each cluster, we extract the probabilities of labels that are inside this cluster, and fine-

tune the CNN model by minimizing the cross entropy between the probability of source model and

target model.

In this section, we verify our assumption that with the same network structure, training one model

for each cluster can achieve more accurate recognition than training one single model for all the

classes. For each image in the validation set, we first manually assign it to the cluster that contains

its ground truth label and has minimum number of classes, namely, we assume our first stage makes
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Figure 5.3: Relationship between the ambiguity and accuracy for label clustering algorithm with different
number of clusters

no mistake. Then we predict its label using either the models that are fine-tuned for each cluster,

or the single model that is trained using the whole dataset, and compare their performance. In this

way, we guarantee that they are compared in a fair condition and the result is not affected by the

performance of our first stage model. Figure. 5.4 shows the improvement over the single model of

the 2nd stage and the 3rd stage. For both 2nd stage and 3rd stage, all of the clusters demonstrate

significant improvement by fine-tuning on each cluster. For some clusters, the improvement is

more than 10%. The average improvement of 2nd stage is higher than the 3rd stage, owing to

smaller number of classes for each cluster.

5.3.3 Evaluation of Stage Predictor

We train p(s1|x) and p(s2|s̄1,x) in equation 5.1 in a sequential fashion. First, we set p(s2|s̄1,x) =

0, assuming no image is assigned to the 2nd stage, and train p(s1|x); Then we fix p(s1|x), and

train p(s2|s̄1,x). The reason why we utilize a two-step training strategy rather than training both
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Figure 5.4: Comparison of accuracies between fine-tuning separate CNN models for each cluster and using
one single CNN model for all the categories, assuming that the 1st stage is optimal. For both 2nd and 3rd
stage, all the clusters show significant improvement.
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predictors jointly, is that the two stage predictors require different type of features to achieve op-

timal performance. We experimented with various types of features, and found that the following

feature generalizes best: For learning p(s1|x), we sort the category probability estimation of the

1st stage model in a descending order, and take the top 4 probability values as the feature vector;

For learning p(s2|s̄1,x) we sort the probability of assigning the input image to each cluster in the

2nd stage in descending order, and take the top 8 probability values as feature vector.

By tuning the parameters α and β in Equation. 5.9, we obtain various ratios of using the 1st and the

2nd stage model, and their corresponding overall accuracies, which are shown in Figure. 5.5. The

accuracies decrease very slowly when the ratios of 1st stage and 2nd stage are approximately less

than 35%, and then decrease faster afterwards. This verifies that a significant portion of images

can be processes with only the first two stages almost without hurting the accuracy.
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Figure 5.5: Overall accuracy as a function of the ratio of selecting 1st stage model and 2nd stage model
by the stage predictor. When the ratios of 1st stage and 2nd stage are approximately less than 35%, the
accuracy decreases very slowly.

75



5.3.4 Comparison with Other CNN Models

Finally, we compare the overall performance of our multi-stage framework with other CNN models

as well as the models we used in our framework. We analyze the tradeoff between accuracy and

complexity for each model, as is shown in Figure. 5.6. For our framework, we obtain a series of

models by analyzing Figure. 5.5 and taking the models with best accuracy complexity ratio, as

is shown by the blue curve. The orange triangle and the yellow squares represent our 2nd stage

and 3rd stage CNN models that are trained and tested as a single model using the whole ILSVRC

dataset. Due to our careful design, they achieve better accuracy and efficiency than the Caffe

reference model and Zeiler & Fergus model. Comparing to the 3rd stage model, our multi-stage

framework is 2% better with less complexity, or 60% more efficient with similar accuracy.
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Figure 5.6: Comparison of our framework with other classical CNN models and our 2nd and 3rd stage
model. Our framework achieves significant improvement on accuracy/complexity ratio over single CNN
models.
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5.4 Summary

In this chapter, we proposed a multi-stage CNN framework that consumes less average compu-

tation than single CNN model with comparable accuracy. With a combination of label tree and

cascade model, we divide both the sample space and the label space, so that each image is pro-

cessed with least amount of computation. Experiments on ImageNet dataset demonstrate that our

methods achieve better accuracy/complexity ratio than popular CNN models.
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CHAPTER 6: CONCLUSION AND FUTURE WORK

6.1 Summary of Contributions

This dissertation presents several methods of improving the efficiency of large scale visual recogni-

tion from different perspectives. By exploring the hierarchical structure of label space, the diverse

distribution of the image samples, and the redundancy in the convolutional kernels, we attempt to

reduce the necessary amount of computation while maintaining accuracies as good as traditional

recognition systems.

In chapter. 3, a probabilistic label tree model is presented to preform large scale multi-class clas-

sification with sub-linear complexity. The label tree framework arranges the label space in a tree

structure so that the prediction of one sample can be implemented by traversing the tree from root.

Different from the hard label partition in traditional label tree model, the proposed probabilistic

framework maintains a categorical distribution of all the labels at each non-leaf node. This brings

several advantages including preservation of prior information, and more natural relaxation. The

tree is learned stage-wise in a recursive fashion, and the classifier in each node is trained with

an iterative maximum likelihood optimization scheme. We show that the proposed probabilistic

framework achieves significantly higher accuracy with similar speedup to previous work.

In chapter. 4, we propose a sparse decomposition based method to reduce the complexity of Con-

volutional Neural Networks (CNN). By decomposing the convolutional kernels along both the

input channel dimension and the spatial dimensions, we are able to fully exploit the redundancy

underlying the traditional kernels. We learn the sparsity with initial decomposition while mini-

mizing reconstruction error, and further whole network level fine-tuning. Both of these two steps

are shown by our experiments to be essential to achieve high sparsity. While maintaining similar

78



accuracy, the proposed method is able to learn a model with more than 90% sparsity. To improve

the practical running speed of our sparse CNN model, we also propose a CPU based efficient

sparse matrix multiplication algorithm. The proposed method encodes the location of the non-

zeros elements in the sparse kernel into the program, such that the jumping memory access can be

effectively avoided.

In chapter. 5, we build a multi-stage CNN framework by combining the idea of label tree and

cascade model. While the label tree framework divides the label space, the cascade model divides

the sample space. Instead of using one accurate but complex CNN model to process all images,

we use a much more efficient model to classify the images that are relatively easy to distinguish,

and assign the images that are more difficult to classify to one of the label tree clusters. Such a

multi-stage CNN framework is able to achieve similar accuracy to a single complex model, while

the average amount of computation is significantly reduced since each CNN model only need to

handle a much simpler problem than the original model.

6.2 Future Work

6.2.1 Sparse Convolutional Neural Networks

An efficient sparse matrix multiplication algorithm that is specifically designed for current GPU

architecture will enable the proposed sparse model to be applied more widely. The discontinuous

memory access problem for sparse matrix will be greatly alleviated if the sparse matrix possesses

certain type of structure that is friendly to system cache and pipeline. A structured sparsity loss

function can be designed to learn such type of structure. The proposed algorithm is also limited

to fine-tuning from a pre-trained model and cannot accelerate the training process. Learning low-

rank and sparsity from the scratch would be able to improve both the training and inference process,
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although will be also more challenging due to lack of decomposition.

6.2.2 Multi-stage CNN framework

The proposed framework uses each CNN model as a basic building block. While such a framework

is able to provide decent speedup, the CNN models have no interaction with each other, and are

probably learning large amount of shared information. A more natural solution would be to train

one single model that has the mechanism of automatic branching and early termination. Such a

model requires the integration of a widespread high-level gating function that is only turned on

when necessary. This would require significant modification to the traditional CNN model, and

careful design of regularization to prevent overfitting problem.
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