Side information in robust principal component analysis: algorithms and applications

Abstract

Dimensionality reduction and noise removal are fundamental machine learning tasks that are vital to artificial intelligence applications. Principal component analysis has long been utilised in computer vision to achieve the above mentioned goals. Recently, it has been enhanced in terms of robustness to outliers in robust principal component analysis. Both convex and non-convex programs have been developed to solve this new formulation, some with exact convergence guarantees. Its effectiveness can be witnessed in image and video applications ranging from image denoising and alignment to background separation and face recognition. However, robust principal component analysis is by no means perfect. This dissertation identifies its limitations, explores various promising options for improvement and validates the proposed algorithms on both synthetic and real-world datasets. Common algorithms approximate the NP-hard formulation of robust principal component analysis with convex envelopes. Though under certain assumptions exact recovery can be guaranteed, the relaxation margin is too big to be squandered. In this work, we propose to apply gradient descent on the Burer-Monteiro bilinear matrix factorisation to squeeze this margin given available subspaces. This non-convex approach improves upon conventional convex approaches both in terms of accuracy and speed. On the other hand, oftentimes there is accompanying side information when an observation is made. The ability to assimilate such auxiliary sources of data can ameliorate the recovery process. In this work, we investigate in-depth such possibilities for incorporating side information in restoring the true underlining low-rank component from gross sparse noise. Lastly, tensors, also known as multi-dimensional arrays, represent real-world data more naturally than matrices. It is thus advantageous to adapt robust principal component analysis to tensors. Since there is no exact equivalence between tensor rank and matrix rank, we employ the notions of Tucker rank and CP rank as our optimisation objectives. Overall, this dissertation carefully defines the problems when facing real-world computer vision challenges, extensively and impartially evaluates the state-of-the-art approaches, proposes novel solutions and provides sufficient validations on both simulated data and popular real-world datasets for various mainstream computer vision tasks.Open Acces

    Similar works