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Abstract

Dimensionality reduction and noise removal are fundamental machine learning tasks that are

vital to artificial intelligence applications. Principal component analysis has long been utilised in

computer vision to achieve the above mentioned goals. Recently, it has been enhanced in terms

of robustness to outliers in robust principal component analysis. Both convex and non-convex

programs have been developed to solve this new formulation, some with exact convergence guar-

antees. Its effectiveness can be witnessed in image and video applications ranging from image

denoising and alignment to background separation and face recognition. However, robust prin-

cipal component analysis is by no means perfect. This dissertation identifies its limitations, ex-

plores various promising options for improvement and validates the proposed algorithms on both

synthetic and real-world datasets.

Common algorithms approximate the NP-hard formulation of robust principal component ana-

lysis with convex envelopes. Though under certain assumptions exact recovery can be guaranteed,

the relaxation margin is too big to be squandered. In this work, we propose to apply gradient

descent on the Burer-Monteiro bilinear matrix factorisation to squeeze this margin given avail-

able subspaces. This non-convex approach improves upon conventional convex approaches both

in terms of accuracy and speed. On the other hand, oftentimes there is accompanying side in-

formation when an observation is made. The ability to assimilate such auxiliary sources of data

can ameliorate the recovery process. In this work, we investigate in-depth such possibilities for

incorporating side information in restoring the true underlining low-rank component from gross

sparse noise. Lastly, tensors, also known as multi-dimensional arrays, represent real-world data

more naturally than matrices. It is thus advantageous to adapt robust principal component analysis

to tensors. Since there is no exact equivalence between tensor rank and matrix rank, we employ

the notions of Tucker rank and CP rank as our optimisation objectives. Overall, this dissertation

carefully defines the problems when facing real-world computer vision challenges, extensively and

impartially evaluates the state-of-the-art approaches, proposes novel solutions and provides suffi-

cient validations on both simulated data and popular real-world datasets for various mainstream

computer vision tasks.



Dedicated to my loving parents



Acknowledgements

First and foremost, I would like to express my greatest gratitude to my supervisor Dr Stefanos

Zafeiriou for his excellent guidance, valuable suggestions and endless support through my entire

PhD life. He gave me light when I was in my darkest time at the beginning of my PhD at Imperial.

To this day, I still feel extremely lucky to be able to work under his guidance. He is such a genuine

person for whom my words will not be enough to express.

I would also like to thank Dr Ioannis Panagakis, who introduced me to the fields of linear

algebra, optimisation, etc. which are fundamental and pivotal to my research in machine learn-

ing. I am very much in debt to him for investing his precious time going through my code and

manuscripts.

I also enjoy working in the lovely environment of iBUG. My colleagues are always patient and

helpful. Without their encouragement and help, I will still be troubled by IT headaches. Especially,

I want to thank my collaborators, Dr Shiyang Cheng and Mr Jiankang Deng for their thoughtful

discussions and work on several recent projects.

I want give my special thanks to Dr El-Kholy Amani, whom I have been troubling since the

beginning of my PhD. She is always nice and helpful and provides me with emotional support even

when it is not working hours. I am also grateful to Ms Teresa Ng her countless support.

My mum and dad have been great and I would like to thank them for always being on my side

and support whatever decision I make. Their endless love and kindness almost spoil me. I will

always love them and wish them happiness every day.



Contents

Contents

List of Tables 9

List of Figures 11

1 Introduction 15

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3 Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4 Constrained Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.5 The Alternating Direction Method of Multipliers . . . . . . . . . . . . . . . . . . . 23

1.6 Robust Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.7 Robust Principal Component Analysis with Missing Values . . . . . . . . . . . . . . 28

1.8 Robust Principal Component Analysis with Features . . . . . . . . . . . . . . . . . 29

1.9 Robust Principal Component Analysis with Side Information . . . . . . . . . . . . . 30

1.10 Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.11 Rank Sparsity Tensor Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.12 Applications of Robust Principal Component Analysis . . . . . . . . . . . . . . . . 40

2 Informed Non-Convex Robust Principal Component Analysis with Features 43

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3 Problem Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7



Contents

3 Side Information in Robust Principal Component Analysis: Algorithms and Applica-

tions 79

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.4 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4 Side Information for Face Completion: a Robust PCA Approach 113

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.3 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5 Robust Low-rank Tensor Modelling Using Tucker and CP Decomposition 155

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.3 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6 Conclusion 165

6.1 Thesis summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.2 Limitations and Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Bibliography 167

8



List of Tables

List of Tables

1.1 Maximum attainable ranks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.2 Typical ranks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.3 Ranks with symmetrical constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.1 Classification results obtained by a linear SVM. . . . . . . . . . . . . . . . . . . . . . . 52

2.2 Classification results obtained by an SVM with RBF kernel. . . . . . . . . . . . . . . . 52

3.1 Classification accuracy (%) on the Multi-PIE dataset for PCP, PSSV, PCPS and RPCAG

by means of non-linear SVM and SRC learning. . . . . . . . . . . . . . . . . . . . . . . 91

3.2 Recognition rates (%) for joint identity & expression recognition averaged over 10 trials

on CK+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.3 Running times of various algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.4 Running times of various algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.1 Quantitative measures of UV completion by various algorithms on the 4DFAB dataset. . 129

4.2 Verification TAR on the CFP dataset, the higher TAR the better. . . . . . . . . . . . . . 134

4.3 1:1 verification TAR on the IJB-B dataset (Higher is better). . . . . . . . . . . . . . . . 136

4.4 1:1 verification TAR on the IJB-C dataset (Higher is better). . . . . . . . . . . . . . . . 138

4.5 Verification accuracy (%) of different methods on the YTF dataset. . . . . . . . . . . . . 139

4.6 Verification TAR on the YTF dataset (Higher is better). . . . . . . . . . . . . . . . . . . 140

4.7 Verification TAR on the PaSC dataset (Higher is better). . . . . . . . . . . . . . . . . . . 140

4.8 Verification TAR on the CFP dataset (Higher is better). . . . . . . . . . . . . . . . . . . 145

4.9 P-values of PSNR and SSIM for any pair of algorithms on Sequence 1 of the 4DFAB

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

4.10 P-values of PSNR and SSIM for any pair of algorithms on Sequence 2 of the 4DFAB

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

4.11 P-values of PSNR and SSIM for any pair of algorithms on Sequence 3 of the 4DFAB

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

9



List of Tables

4.12 P-values of PSNR and SSIM for any pair of algorithms on Sequence 4 of the 4DFAB

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

4.13 P-values of PSNR and SSIM for any pair of algorithms on Sequence 5 of the 4DFAB

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

4.14 Verification TAR on the VGG2 single-view test set (Higher is better). . . . . . . . . . . 152

4.15 Verification TAR on the VGG2 mixed-view test set (Higher is better). . . . . . . . . . . 152

4.16 Average running times of each processing step in our pipeline. . . . . . . . . . . . . . . 152

4.17 Average running times of various algorithms. WKSVD stands for non-homogenous

KSVD [76]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.1 Optimal parameter choices for all algorithms used in different experiments. . . . . . . . 163

10



List of Figures

List of Figures

1.1 Schematic of tensor of rank three . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.2 Tucker tensor decomposition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.1 Domains of recovery by various algorithms: (a) for random signs and (b) for coherent signs. 50

2.2 (i) Running times for observation matrices of increasing dimensions for (i) PCP, PCPF,

fast RPCA, AltProj, our algorithm and (ii) IRPCA-IHT and our algorithm when
‖L−L∗‖F
‖L∗‖F ≤

1%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.3 Relative error (
‖L−L∗‖F
‖L∗‖F ) for sparsity values: 10%, 15%, 20%, 25%, 30%, 35%. . . . . . 53

2.4 Log-scale singular values of the denoised matrices. . . . . . . . . . . . . . . . . . . . . 55

2.5 (i) original; (ii) PCPF; (iii) our algorithm; (iv) IRPCA-IHT; (v) PCP; (vi) fast RPCA; (vii)

AltProj. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.6 Effectiveness of convex projection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.1 Domains of recovery by various algorithms: (I,III) for random signs and (II,IV) for

coherent signs. (a) for entry-wise corruptions, (b) for deficient ranks and (c) for distorted

singular values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.2 Comparison of face denoising ability: In row I, (a, e) sample frames from subjects 2

and 33; (b, f) single-person PCP; (c, g) single-person PCPF; (h, i) multi-person PCP and

PCPF; (d) average of other subjects. In row II, (a, e) average of a single subject; (b, f)

single-person PCPS; (c, g) single-person PCPSF; (h, i) multi-person PCPS and PCPSF;

(d) PCPS using the side information above. . . . . . . . . . . . . . . . . . . . . . . . . 86

3.3 Log-scale singular values of the denoised matrices: (a) subject 2; (b) subject 33; (c) all

subjects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.4 Background subtraction results for two sample frames, PETS in row I and Airport in row

II: (a) original images; (b) ground truth; (c,d) PCP; (e,f) PCPS; (g,h) PSSV; (i,j) RPCAG;

(k,l ) FRPCAG; (m,n) PCP (60 frames); (o,p) PCPS (60 frames). . . . . . . . . . . . . . 90

3.5 Weighted F-measure scores: (a) PETS; (b) Airport. . . . . . . . . . . . . . . . . . . . . 90

11



List of Figures

3.6 Expression extraction for a single subject: Expressive faces reside in row I. Identity

classes produced by PCP, PSSV, PCPS, RPCAG are in rows II, IV, VI, VIII. The comple-

mentary expression components are depicted in rows III, V, VII, IX. . . . . . . . . . . . 93

3.7 Relative error (
‖L−L0‖F
‖L0‖F ) of RPCAG for γ ∈ [0.01, 1]. . . . . . . . . . . . . . . . . . . 95

3.8 Relative error (
‖L−L0‖F
‖L0‖F ) of FRPCAG for γ ∈ [0.01, 10]. . . . . . . . . . . . . . . . . . 96

3.9 Relative error (
‖L−L0‖F
‖L0‖F ) of PCPS: (a) when side information is perfect; (b) when side

information is the observation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.10 Domains of recovery by various algorithms: random signs in row I and coherent signs in

row II. (a) for entry-wise corruptions, (b) for deficient ranks and (c) for distorted singular

values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.11 Domains of recovery by PSSV: random signs in row I and coherent signs in row II. (a)

for entry-wise corruptions, (b) for deficient ranks and (c) for distorted singular values. . . 99

3.12 Comparison of face denoising ability: (a,d) single-person PSSV; (b,e) single-person RP-

CAG; (c,f) single-person FRPCAG; (g) multi-person PSSV; (h) multi-person RPCAG;

and (i) multi-person FRPCAG;. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.13 Background subtraction results for Airport : row I (a) original image; row III (a) ground

truth; row I,III (b) PCP; row I,III (c) PCP (60 frames); I,III (d) PCPS (60 frames); row

II,IV (a) PCPS; row II,IV (b) PSSV; row II,IV (c) RPCAG; row II,IV (d) FRPCAG. . . 102

3.14 Background subtraction results for PETS : row I (a) original image; row III (a) ground

truth; row I,III (b) PCP; row I,III (c) PCP (60 frames); I,III (d) PCPS (60 frames); row

II,IV (a) PCPS; row II,IV (b) PSSV; row II,IV (c) RPCAG; row II,IV (d) FRPCAG. . . 103

3.15 Background subtraction by suggestion: background in row I and segmentaion in row II . 109

3.16 Background subtraction by PCPS: background in row I and segmentaion in row II . . . 110

3.17 Background subtraction by PCP: background in row I and segmentaion in row II . . . . 111

4.1 The procedure of getting the UV map from an arbitrary 2D image. . . . . . . . . . . . . 114

4.2 Given an input sequence of incomplete UV maps, we extract the shape using 3DMM and

perform preliminary completion using GAN. With the left subspace and side informa-

tion provided by GAN, we then carry out PCPSFM to produce more refined completion

results. After that, we attach the completed UV texture to the shape creating images at

various poses for face recognition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.3 Log-scale relative error (log ‖L−L0‖F
‖L0‖F ) of PCPSM (a) when side information is perfect

(S = L0) and (b) when side information is the observation (S = M ). . . . . . . . . . . 121

4.4 Domains of recovery by various algorithms in the fully observed case: (I,III) for random

signs and (II,IV) for coherent signs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

12



List of Figures

4.5 Domains of recovery by various algorithms in the partially observed case: (I,III) for

random signs and (II,IV) for coherent signs. . . . . . . . . . . . . . . . . . . . . . . . . 124

4.6 Comparison of face denoising ability: (I) Observation; (II) side information; (III) PCP;

(IV) PCPSM; (V) LRR; (VI) PCPF; (VII) PCPFSM; (VIII) PSSV; (IX) RPCAG; and

(X) FRPCAG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.7 (row I) original sequences; (row II) random masks; (row III) sample inputs; (row IV) side

information; (row V) PCP; (row VI) PCPSM; (row VII) LRR; (row VIII) PCPSFM. . . . 128

4.8 300VW: (column I) sample frame; (column II) mask; (column III) side information;

(column IV) GAN; (column V) PCP; (column VI) PCPSM; (column VII) LRR; (column

VIII) PCPSFM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.9 2D face synthesis of three views (−45◦, 0◦, 45◦) from the completed UV maps by various

methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.10 The proposed pipeline for video-based face recognition. The 3DMM [14] is fitted on

the frames of the video and the incompleted UV maps are estimated. The trained GAN

[36] is then used to provide an initial estimate of the side information and the proposed

methodology is applied to generate the completed UV maps. The 3D model is reused

to render the images in the frontal view. Deep neural network is used to extract features

from all frames and the average of the features is used to represent the video. . . . . . . 134

4.11 ROC curves on the CFP dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.12 ROC curves of 1:1 verification protocol on the IJB-B and IJB-C dataset. . . . . . . . . . 137

4.13 ROC curves of the proposed methods on the YouTube Faces database under the “restric-

ted” protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.14 ROC curves of the proposed methods on the PaSC dataset. . . . . . . . . . . . . . . . . 141

4.15 Our GAN framework consists of one generator and one discriminator. The generator

takes the incomplete UV map as input and outputs the full UV map. The discriminator

is learnt to validate the genuineness of the synthesised UV texture. Note that only the

generator is used at the testing stage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.16 The encoder unit consists of convolution, batch normalisation and ReLU, and the decoder

unit consists of de-convolution, batch normalisation and ReLU. The input to the generator

is the occluded UV map x that is filled with random noise z and concatenated with its

flipped image. The input to the discriminator is the original input x and either the ground-

truth UV map y or the generated UV map G(x, z). . . . . . . . . . . . . . . . . . . . . 144

4.17 ROC curves on the CFP dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.18 Distributions of PSNR and SSIM for all algorithms on Sequence 1 of the 4DFAB dataset. 146

4.19 Distributions of PSNR and SSIM for all algorithms on Sequence 2 of the 4DFAB dataset. 147

13



4.20 Distributions of PSNR and SSIM for all algorithms on Sequence 3 of the 4DFAB dataset. 147

4.21 Distributions of PSNR and SSIM for all algorithms on Sequence 4 of the 4DFAB dataset. 148

4.22 Distributions of PSNR and SSIM for all algorithms on Sequence 5 of the 4DFAB dataset. 148

4.23 ROC curves on the VGG2 test set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.1 Relative error from all algorithms for a range of λ. . . . . . . . . . . . . . . . . . . . . 161

5.2 Running time of all algorithms as λ varies. . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.3 Image Denoising Experiments: (a) & (h) are original images from the sequence. Salt

& pepper is introduced as shown in (b) and occlusion is demonstrated in (i). (c) & (j)

present recovery results for RSTD. (d) & (k) for TORPCA. (e) & (l) for TRCPD. (f) &

(m) for PCP. And (g) & (n) for ORCPA. . . . . . . . . . . . . . . . . . . . . . . . . . . 163

14



CHAPTER 1

Introduction

1.1 Background

Principal component analysis (PCA) is a very popular machine learning method for dimensionality

reduction. It is also known as the discrete Karhunen–Loève transform (KLT), proper orthogonal de-

composition (POD), singular value decomposition (SVD) and eigenvalue decomposition (EVD). The

ability of PCA to transform orthogonally a large set of observations from correlated variables into a

small set of principal components from uncorrelated variables has seen applications in subgroup dis-

covery from single-cell RNA-Seq data [1], structural characterization of the full-length HCV IRES in

solution [90], dementia prediction using miRNA expression data [113], identification of novel loci for

body shape [99] and so forth. Developed in 1901 by Karl Pearson, formally PCA linearly transforms

data into a new orthogonal coordinate system such that it will have the largest variance on the first

coordinate, second largest variance on the second coordinate, etc. However, the discriminative power

of PCA decreases as the signal/noise (S/N) ratio of the data decreases. Specifically, the underlining

structure can only be exactly reconstructed by minimizing squared error if there is small Gaussian

noise. In today’s world, data comes from diverse sources so the associated noise is not necessarily

normally distributed. As a result, generalisations of PCA are demanded to clean contaminated data.

Robust principal component analysis (RPCA) is one modification of PCA aimed at recovering

grossly corrupted observations from outliers in a unified approach, such that no pre-processing steps

are needed to reduce the scale of noise first. For a highly corrupted measurement, RPCA finds a low-

rank component as well as the sparse noise simultaneously. The most common algorithm, principal

component pursuit (PCP), adopts a convex relaxation approach, which replaces the rank constraint with

a nuclear norm and the sparsity constraint with a l1 norm. The resulting program solves RPCA using

the alternating direction method of multipliers. Under certain incoherence conditions, PCP exactly

15



1. Introduction

recovers the desired components of RPCA with convergence guarantees.

Nevertheless, RPCA is still sometimes limited in its effect in addressing real-world applications,

e.g. background subtraction, face recognition, etc. Moreover, RPCA takes no account of extra inform-

ation that might be helpful towards the end goal. In light of these challenges, this research carefully

defines the problems, fully explores the potential solutions and deeply analyses the results. The main

contributions of this dissertation are:

• Features have been incorporated in robust principal component analysis in a convex way. We

revisit this problem by proposing a non-convex algorithm to decompose the observation matrix

into a low-rank component and the corresponding sparse noise in a novel and elegant manner.

The proposed approach carries low computational complexity and has exact recovery guaran-

tee from rigorous theoretical analysis. Simulation data proves the validity of the proposed al-

gorithm and shows its superiority over traditional convex methods with regard to recoverability

and speed. In other words, our non-convex method is more accurate and faster than the best-

known solver for this problem. We apply the proposed algorithm to image classification and face

denoising as examples of real-world applications to showcase its effectiveness.

N. Xue, J. Deng, Y. Panagakis, S. Zafeiriou. Informed Non-Convex Robust Prin-

cipal Component Analysis with Features. The Thirty-Second AAAI Conference on

Artificial Intelligence (AAAI), 2018.

• It is known that robust principal component analysis is a good tool to separate a low-rank sub-

space from gross noise. As such, it has become a cornerstone in many machine learning and

computer vision applications for dealing with high-dimensional data. Despite the success of

RPCA in solving many rank minimisation problems, sometimes it unavoidably produces degen-

erate and sub-optimal solutions. It is argued that domain-dependent prior side information could

be the cure to some extent. In this research, we explore two candidate models to address the

problem of RPCA with side information knowledge for better low-rank recovery. For greater

assurance, four computer vision tasks of background subtraction, facial image denoising, face

and facial expression recognition have been used to test the proposed algorithms. A total of

five real-world datasets together with simulation experiments demonstrate that these algorithms

outperform previous state-of-the-art approaches in terms of both robustness and effectiveness.

N. Xue, Y. Panagakis, S. Zafeiriou. Side Information in Robust Principal Compon-

ent Analysis: Algorithms and Applications. The IEEE International Conference on

Computer Vision (ICCV), 2017.
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1.1. Background

• Domain-specific side information or prior knowledge has been capitalised upon to obtain a better

low-rank feature representation from robust principal component analysis, which might be oth-

erwise unable to generate satisfactory outcomes for visual data with error corruption of certain

types. In this research, we extend the two models for RPCA with side information to the case

of missing values. In particular, we focus on the UV completion task which is crucial in pose-

invariant face recognition. We are the first to use a generative adversarial network to construct

side information and extract subspaces. We show that our framework have both recovery and

speed advantage over existing solutions. The assessment is conducted through both simulation

and large-scale real-world datasets.

N. Xue, J. Deng, S. Cheng, Y. Panagakis, S. Zafeiriou. Side Information for Face

Completion: a Robust PCA Approach. IEEE Transactionson Pattern Analysis and

Machine Intelligence (T-PAMI), 2019.

• Tensors naturally arise in modern signal processing applications. Therefore it is key to have

a framework that can separate a low-rank subspace reliably from multi-dimensional signals.

Existing methods are under-performing either because the simplification is too radical or data has

been drastically transformed. With such motivation, we propose two new robust low-rank tensor

models: Tensor Orthonormal Robust PCA (TORPCA) and Tensor Robust CP Decomposition

(TRCPD). They rely on Tucker and CP decomposition of a tensor respectively and a lp norm

is utilised to regularise for noise. The proposed methods are benchmarked against other recent

top-performing low-rank models on both simulated and real-world data. Our methods achieve

the state-of-the-art performance in terms of speed and accuracy compared to others in these

experiments.

N. Xue, G. Papamakarios, M. Bahri, Y. Panagakis, S. Zafeiriou. Robust Low-rank

Tensor Modelling Using Tucker and CP Decomposition. The 25th European Signal

Processing Conference (EUSIPCO), 2017.

This thesis is organised as follows. Basic concepts are reviewed first in Chapter 1. Then in Chapter

2, a non-convex optimisation approach to RPCA with features is introduced such that both the compu-

tational complexity and recovery are greatly improved. In Chapter 3, an extension to RPCA is made

to assimilate useful side information that can help with the data recovery process, which is followed

by a chapter to discuss the generative adversarial network as a source of side information for the task

of face completion. Afterwards, two models of tensor-based robust principal component analysis are

examined in depth in Chapter 5. Finally, Chapter 6 concludes the dissertation with a discussion of the

contributions, open questions and future research directions.
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1. Introduction

1.2 Notations

We introduce notations used throughout the thesis unless otherwise stated. Lowercase Latin and Greek

letters denote scalars, e.g. r, γ. Bold lowercase Latin letters denote vectors, e.g. a. Bold uppercase

Latin letters denote matrices, e.g. A. Bold uppercase calligraphic Latin letters denote tensors, e.g.

L. Bold uppercase Greek letters denote operators on tensors and matrices, e.g. Θ(S), Φ(U). Ai·

and A·j represent the ith row and the jth column of A. Projection onto support set Ω is given by

ΠΩ. 〈A,B〉 represents tr(A⊺B). |A| is the element-wise absolute value of matrix A; ‖A‖F is the

Frobenius norm; ‖A‖∗ is the nuclear norm; ‖A‖1 is the sum of absolute values of all matrix entries;

‖A‖∞ is the maximum absolute value among all matrix entries; ‖A‖2 is the largest singular value;

otherwise, ‖A‖p is the lp-norm of vectorized A; and ‖A‖2,∞ is the maximum of matrix row l2-norms.

σi is the ith largest singular value of a matrix and σj% is the singular value at the jth percentile. A◦B
symbolises element-wise multiplication of two matrices of the same dimension. Additionally, A⊙B

denotes the Khatri-Rao product between matrices A and B and X ×i U is the i-mode product [60].

1.3 Norms

A vector norm ‖ · ‖ is a function from R
n to R such that:

• ‖x‖ ≥ 0 for all x ∈ R
n, and ‖x‖ = 0 if and only if x = 0;

• ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ R
n;

• ‖αx‖ = |α|‖x‖ for all α ∈ R, x ∈ R
n.

We can deduce the reverse triangle inequality |‖x‖ − ‖y‖| ≤ ‖x− y‖.

For x = (x1 . . . xn) ∈ R
n, the vector norm

‖x‖p = (

n
∑

j=1

|xj |p)
1

p , p ≥ 1,

is called the lp norm. Special cases include:

• l1 norm: ‖x‖1 =
∑n

j=1 |xj |;

• l2 (or Euclidean) norm: ‖x‖2 =
√

∑n
j=1 |xj |2 =

√
x⊺x;

• Infinity (or maximum) norm: ‖x‖∞ = max1≤j≤n |xj |.
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1.3. Norms

For x, y ∈ R
n, the following relationships hold:

• Holder inequality: |x⊺y| ≤ ‖x‖1‖y‖∞;

• Cauchy-Schwarz inequality: |x⊺y| ≤ ‖x‖2‖y‖2, with equality if and only if x and y are mul-

tiples of each other.

Together, for x ∈ R
n, they imply

|
n
∑

i=1

xi| ≤ n max
1≤i≤n

|xi|, |
n
∑

i=1

xi| ≤
√
n‖x‖2.

Furthermore, for x ∈ R
n, we have the following inequalities and equalities:

• ‖x‖2 ≤
√

‖x‖1‖x‖∞;

• ‖Px‖p = ‖x‖p, where P is a permutation matrix;

• ‖Rx‖2 = ‖x‖2, where R⊺R = I;

• ‖x‖2 ≤ ‖x‖1 ≤
√
n‖x‖2;

• ‖x‖∞ ≤ ‖x‖2 ≤
√
n‖x‖∞;

• ‖x‖∞ ≤ ‖x‖1 ≤ n‖x‖∞.

A matrix norm || · || is a function from R
m×n to R such that:

• ||A|| ≥ 0 for all A ∈ R
m×n, and ||A|| = 0 if and only if A = 0;

• ||A+B|| ≤ ||A||+ ||B|| for all A, B ∈ R
m×n;

• ||αA|| = |α|||A|| for all α ∈ R, A ∈ R
m×n.

We can deduce that |‖A+B‖ − ‖A‖| ≤ ‖B‖.

For A ∈ R
n×m, the matrix norm

||A||p = max
x 6=0

||Ax||p
||x||p

= max
||x||p=1

||Ax||p
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1. Introduction

is called the matrix lp norm. For y ∈ R
n, we have ||Ay||p ≤ ||A||p||y||p by definition. For A ∈ R

m×n

and B ∈ R
n×p, we have the submultiplicative inequality:

‖AB‖p ≤ ‖A‖p‖B‖p.

For B, a submatrix of A, ‖B‖p ≤ ‖A‖p.

For nonsingular matrix A ∈ R
n×n, ‖A‖p‖A−1‖p ≥ 1. If P is a permutation matrix, then ‖P ‖p = 1.

For permutation matrices P ∈ R
m×m and Q ∈ R

n×n, ‖PAQ‖p = ‖A‖p. If D ∈ R
n×n is a diagonal

matrix with diagonal elements djj , then ‖D‖p = max1≤j≤n |djj |.

The matrix l1 norm is equal to the maximal absolute column sum:

‖A‖1 = max
1≤j≤n

‖Aej‖1 = max
1≤j≤n

m
∑

i=1

|aij |.

The matrix infinity norm is equal to the maximal absolute row sum:

‖A‖∞ = max
1≤j≤m

‖A⊺ei‖1 = max
1≤i≤m

n
∑

j=1

|aij |.

It can be shown that ‖A⊺‖2 = ‖A‖2 and ‖A⊺A‖2 = ‖A‖22. And for orthogonal matrices U ∈ R
m×m

and V ∈ R
n×n, ‖U‖2 = ‖V ‖2 = 1 and ‖UAV ‖2 = ‖A‖2. If A 6= 0 is idempotent, then ‖A‖p ≥ 1

and ‖A‖2 = 1.

A ∈ R
m×n admits the following inequalities:

• ‖A‖2 ≤
√

‖A‖1‖A‖∞;

• 1√
n
‖A‖∞ ≤ ‖A‖2 ≤

√
m‖A‖∞;

• 1√
m
‖A‖1 ≤ ‖A‖2 ≤

√
n‖A‖1.

For vectors x ∈ R
m and y ∈ R

n, the norms of outer products satisfy:

‖xy⊺‖2 = ‖x‖2‖y‖2, ‖xy⊺‖∞ = ‖x‖∞‖y‖1.

If A ∈ R
m×n has singular values σ1 ≥ · · · ≥ σp, where p = min{m,n}, then

‖A‖2 = max
x 6=0

‖Ax‖2
‖x‖2

= σ1, min
x 6=0

‖Ax‖2
‖x‖2

= σp.
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1.3. Norms

And if A ∈ R
n×n is nonsingular with singular values σ1 ≥ · · ·σn > 0, then ‖A−1‖2 = 1

σn
.

Let A ,A + E ∈ R
m×n, p = min{m,n}, and let σ1 ≥ · · · ≥ σp be the singular values of A

and σ̃1 ≥ · · · ≥ σ̃p the singular values of A+E. Then

|σ̃1 − σ1| ≤ ‖E‖2, |σ̃p − σp| ≤ ‖E‖2.

Let A ∈ R
m×n have singular values σj , left singular vectors uj and right singular vectors vj . If k <

rank(A), then the absolute distance of A to the set of rank k matrices is

σk+1 = min
B∈Rm×n,rank(B)=k

‖A−B‖2 = ‖A−Ak‖2,

where Ak =
∑k

j=1 σjujv
⊺

j .

For u ∈ R
n and v ∈ R

n with v 6= 0, ‖uv⊺‖2 = ‖u‖2/‖v‖2.

If A ∈ R
m×n has rank(A) = r, then ‖A⊺‖2 = 1/σr.

Assuming that A and E ∈ R
m×n with rank(A) = n, if ‖E‖2‖A⊺‖2 < 1, then rank(A+E) = n.

For A ∈ R
m×n with r nonzero singular values, the Frobenius norm is the l2 norm of its vectorisation:

‖A‖F = ‖vec(A)‖2 =
√

trace(A⊺A) =

√

√

√

√

r
∑

i=1

σ2
i ,

which is submultiplicative and invariant under rotation, i.e. ‖A‖2F = ‖AR‖2F = ‖RA‖2F for R⊺R =

I; and the Schatten p-norm is given by

‖A‖S(p) = (

r
∑

i=1

σp
i )

1/p.

These are submultiplicative and rotationally invariant as well. The special case of p = 1 is referred to

as the nuclear norm

‖A‖∗ =
r

∑

i=1

σi.

For A ∈ R
m×n, the l2,1 norm is the sum of column two norms:

‖A‖2,1 =
n
∑

j=1

(
m
∑

i=1

|aij |2)1/2;
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1. Introduction

the max norm is the infinity norm of its vectorisation:

‖A‖max = ‖vec(A)‖∞;

and the l1 norm is the one norm of its vectorisation:

‖A‖l1 = ‖vec(A)‖1.

Overall, for matrix A ∈ R
m×n of rank r, we have the following relationships:

• ‖A‖2 ≤ ‖A‖F ≤ √
r‖A‖2;

• ‖A‖F ≤ ‖A‖∗ ≤
√
r‖A‖F ;

• ‖A‖max ≤ ‖A‖2 ≤
√
mn‖A‖max.

Every norm and norms of affine functions are convex functions. The squared Frobenius norm is

strongly convex.

1.4 Constrained Optimisation

A general formulation of constrained optimisation is

min
x∈Rn

f(x),

s.t. ci(x) = 0, i ∈ E ,
ci(x) ≥ 0, i ∈ I,

where f and the functions ci are all smooth, real-valued functions on a subset of Rn, and I and E are

two finite sets of indices.

The active set A(x) at any feasible x consists of the equality constraint indices from E together with

the indices of the inequality constraints i for which ci(x) = 0; that is,

A(x) = E ∪ {i ∈ I|ci(x) = 0}.

Constraint qualifications ensure that the linearised feasible set is similar to the tangent cone. The linear

independence constraint qualification (LICQ) is used most often.
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1.5. The Alternating Direction Method of Multipliers

Given the point x and the active set A(x), LICQ holds if the set of active constraint gradients {∇ci(x), i ∈
A(x)} is linearly independent.

The condition that all active constraints be linear is another possible constraint qualification. It is

neither weaker nor stronger than the LICQ condition. Other exceedingly weaker conditions include the

Mangasarian-Fromovitz constraint qualification, the Abadie constraint qualification and the Guignard

constraint qualification.

The Lagrangian function for the problem is defined as

L(x, λ) = f(x)−
∑

i∈E∪I
λici(x).

The first-order necessary conditions are known as the Karush-Kuhn-Tucker (KKT) conditions and are

provided below. Suppose that x∗ is a local solution, that the functions f and ci are continuously

differentiable, and that the LICQ holds at x∗. Then there is a Lagrange multiplier vector λ∗, with

components λ∗
i , i ∈ E ∪ I, such that the following conditions are satisfied at (x∗, λ∗)

∇xL(x∗, λ∗) = 0,

ci(x
∗) = 0, for all i ∈ E ,

ci(x
∗) ≥ 0, for all i ∈ I,
λ∗
i ≥ 0, for all i ∈ I,

λ∗
i ci(x

∗) = 0,for all i ∈ E ∪ I.
For a given problem and solution point x∗, there may be many vectors λ∗ for which the conditions

are satisfied. When the LICQ holds, however, the optimal λ∗ is unique. As such, in problems such as

Lasso, where a bound in an inequality needs to be tuned,

min f(x)

s.t. g(x) ≤ t,

we can tune the Lagrange multiplier in the unconstrained Lagrangian form instead,

min f(x) + λg(x).

Though there is in general no analytic relationship between λ and t.

1.5 The Alternating Direction Method of Multipliers

A common approach to constrained optimisation is to replace the original problem by a sequence of

subproblems. One subproblem consists of the original objective and one additional term for each con-
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1. Introduction

straint. The additional non-negative penalty terms are multiplied by a positive coefficient. The larger

the coefficient, the closer to the allowed region for the minimiser.

As an example, in the context of the equality-constrained problem

min
x∈Rn

f(x) subject to ci(x) = 0, i ∈ ξ,

where ξ is a finite set of indices, the quadratic penalty function for the subproblem is

Q(x, µ) ≡ f(x) +
µ

2

∑

i∈ξ
c2i (x),

where µ is the penalty parameter. To search for the optimal x, we can consider a sequence of values

{µk} such that µk → ∞ as k → ∞. Then, the minimisers xk−1,xk−2 can provide an initial guess for

xk.

Algorithms like quasi-Newton, conjugate gradient and Newton’s method can be used to solve such

smooth objectives. But when µk becomes large, some eigenvalues of the Hessian matrix are of order

µk. This ill conditioning of the Hessian upsets quasi-Newton and conjugate gradient methods directly.

On the other hand, Newton’s method is disturbed by large µk for other reasons.

Another drawback of the quadratic penalty function is that although the sequence {xk} converges

as µk → ∞, the intermediate approximate minimisers, {xk}, suffer systematic error:

ci(xk) ≈ −λ∗
i

µk
, for all i ∈ ξ,

from relaxed constraints at moderate µk.

The method of multipliers enforces the feasibility conditions ci(x) = 0, i ∈ ξ, by explicitly including

the Lagrange multiplier term to arrive at the objective of the augmented Lagrangian function:

LA(x,λ;µ) ≡ f(x)−
∑

i∈ξ
λici(x) +

µ

2

∑

i∈ξ
c2i (x).

From the optimality condition, we can deduce that

λ∗
i ≈ λk

i − µkci(xk), for all i ∈ ξ.

Upon rearranging, we see that

ci(xk) ≈ − 1

µk
(λ∗

i − λk
i ).
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1.5. The Alternating Direction Method of Multipliers

So if λk is chosen to be close to the optimal multiplier vector λ∗, the infeasibility in xk will be

improved to be much smaller than 1/µk. Hence, we update the Langrange multiplier vector according

to the following

λk+1
i = λk

i − µkci(xk), for all i ∈ ξ.

This leads to the following algorithm

Algorithm 1 Augmented Lagrangian Method

Input: Penalty Parameter µ0 (µ0 > 0), Tolerances {τk} (τk > 0), Update Ratios {ρk} (ρk > 1)

Initial Guesses xs
0 & λ0

1: while not converged or || ▽x LA(xk,λk;µk) > τk|| do

2: xk = argmin
x

LA(x,λk;µk)

3: λk+1
i = λk

i − µkci(xk)

4: µk+1 = ρkµk

5: xs
k+1 = xk

6: end while

7: return xk

This algorithm can be shown to converge with a finite increase in µ. So ill conditioning is less of a

problem. Moreover, choice of the starting point xs is less critical. As a result, simply starting at the

previous approximate minimiser xk will suffice.

The variable x can be split into two parts in the example problem, y and z:

min
y,z

f(x,y) subject to ci(y, z) = 0, i ∈ ξ.

If f(·, ·) is bi-convex, separable and g(·, ·) is bi-affine, it can be transformed to the following:

min
y,z

g(y) + h(z) subject to ci(y, z) = 0, i ∈ ξ,

where g(·) and h(·) are convex respectively. As in the method of multipliers, we consider the augmen-

ted Lagrangian

LA(y, z,λ;µ) = g(y) + h(z)−
∑

i∈ξ
λici(y, z) +

µ

2

∑

i∈ξ
c2i (y, z).

Instead of minimising the proximity function LA(y, z,λ;µ) w.r.t. y and z jointly in the dual update,

the alternating direction method of multipliers (ADMM) minimises primal variables in an alternating
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1. Introduction

manner, that is, first solving for y with z fixed and then solving for z with y fixed. Rather than iterate

until convergence, the algorithm proceeds directly to updating the dual variable and moves on to the

next subproblem. The algorithm is presented next

Algorithm 2 Alternating Direction Method of Multipliers

Input: Penalty Parameter µ0 (µ0 > 0), Update Ratios {ρk} (ρk > 1) Initial Guesses ys
0, zs

0 & λ0

while not converged do

yk = argmin
y

LA(y, z
s
k,λk;µk)

zk = argmin
z

LA(yk, z,λk;µk)

λk+1
i = λk

i − µkci(yk, zk)

µk+1 = ρkµk

zs
k+1 = zk

end while

return yk, zk

It can be shown that ADMM achieves residual convergence, objective convergence and dual variable

convergence. It is also known as the inexact ALM. Among other connections, ADMM is a special case

of the Douglas-Rachford splitting method for monotone operators [17], which in turn belongs to the

proximal point algorithm [17].

1.6 Robust Principal Component Analysis

We are given a large observation matrix M that is known to decompose into two components such that

M = L0+S0. We want to exactly identity both L0 and S0 without the knowledge of their magnitude,

the subspace or even the rank of L0, the locations or even the number of corrupted entries of S0. In

other words, ponent analysis (RPCA) aims to recover a low-rank matrix L0 and a gross but sparse S0.

Even though the rank of the matrix L0 and the number of non-zero entries in S0 are both NP-hard

to calculate, their convex relaxations still allow us to exactly recover L0 and S0. More specifically, the

principal component pursuit (PCP) solves the following convex optimisation problem

min ‖L‖∗ + λ‖S‖1 (1.1)

s.t. L+ S = M .

Roughly, even if the rank of L0 grows linearly with the dimension of the matrix and there is a constant

fraction of errors, PCP can still achieve exact recovery. More formally, let us denote the singular value
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1.6. Robust Principal Component Analysis

decomposition of L0 ∈ R
n1×n2 by

L0 = UΣV ∗. (1.2)

Theorem 1. Suppose that we are given L0 ∈ R
n×n such that

max
i

‖U∗ei‖2 ≤
µr

n
, max

i
‖V ∗ei‖2 ≤

µr

n
, (1.3)

and

‖UV ∗‖∞ ≤
√

µr

n2
, (1.4)

where µ is a parameter and r is the rank of L0. And it is assumed that the support set of S0 is

uniformly distributed among all sets of cardinality m. Then there is a numerical constant c such that

with probability at least 1 − cn−10 (over the choice of support of S0), PCP with λ = 1/
√
n is exact,

i.e. L̂ = L0 and Ŝ = S0 for solutions L̂ and Ŝ to (1.1), provided that

r ≤ ρrnµ
−1(log n)−2, m ≤ ρsn

2, (1.5)

where ρr and ρs are positive numerical constants.

Proof. See [21].

In the case of missing values, suppose that we know the orthogonal projection operator ΠΩ onto the

linear space of matrices supported on Ω ⊂ [n1]× [n2]:

ΠΩX =







Xij (i, j) ∈ Ω

0 (i, j) /∈ Ω.
(1.6)

(1.1) can be modified to solve the following problem with perfect recovery [21]:

min ‖L‖∗ + λ‖S‖1 (1.7)

s.t. ΠΩ(L+ S) = M .

To efficiently solve (1.1), the augmented Lagrange multiplier algorithm, a.k.a. ADMM, can be adop-

ted. The associated augmented Lagrangian is given by

L(L,S,Y ) = ‖L‖∗ + λ‖S‖1 + 〈Y ,M −L− S〉+ µ

2
‖M −L− S‖2F , (1.8)

Instead of iterative updates of (Lk,Sk) = argminL,S L(L,S,Yk) and the Lagrange multiplier matrix

Yk+1 = Yk+µ(M−Lk−Sk), ADMM first minimises l with respect to L fixing S (minL L(L,Sk,Yk)),

then minimises l with respect to S fixing L (minS L(Lk+1,S,Yk)) and finally updates the Lagrange

multiplier matrix Y .
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Let us define the shrinkage operator that is helpful in solving the subproblems:

Sτ (x) = sgn(x)max(|x| − τ, 0). (1.9)

For a matrix, the shrinkage operator Sτ applies to each element separately. For minL L(L,S,Y ), we

have

argmin
L

L(L,S,Y ) = Sλµ−1(M −L+ µ−1Y ). (1.10)

Denoting the singular value thresholding operator by Dτ (X) = USτ (Σ)V ∗ for any singluar value

decomposition X = UΣV ∗, the problem minS L(L,S,Y ) has a solution

argmin
S

L(L,S,Y ) = Dµ−1(M − S + µ−1Y ). (1.11)

The overall algorithm is summarised below

Algorithm 3 PCP by ADMM

Input: µ

S0 = Y0 = 0

while not converged do

Lk+1 = Dµ−1(M − Sk + µ−1Yk)

Sk+1 = Sλµ−1(M −Lk+1 + µ−1Yk)

Yk+1 = Yk + µ(M −Lk+1 − Sk+1)

end while

return L, S

The above algorithm is known to be convergent [17]. The most computationally heavy step is the

singular value thresholding operation Dµ−1 which requires the singular value decomposition. Empir-

ically, µ can be set to n1n2

4‖M‖1 and the algorithm is terminated when ‖M −L− S‖F ≤ 10−7‖M‖F .

1.7 Robust Principal Component Analysis with Missing Values

In the case of missing data, robust matrix recovery methods [29,109] enhance PCP to deal with occlu-

sions:

min
L,S

‖L‖∗ + λ‖S ◦W ‖1 s. t. X = L+ S, (1.12)

where W is the matrix of binary occlusion masks. Its Jacobi-type update schemes can be implemented

in parallel and hence are attractive for solving large-scale problems. Disgruntled at the unrealistic

uniform sampling assumption for missing entries, Liu et al. [69] set out to use the isomeric condition

hypothesis to tackle irregular and deterministic missing data.
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1.8 Robust Principal Component Analysis with Features

Several machine learning and signal processing tasks involve the separation of a data matrix into a

low-rank matrix and a matrix with sparse support (i.e., a sparse matrix) containing entries of arbitrary

magnitude. Robust principal component analysis (RPCA) [21, 24] offers a provably correct and con-

venient way to solve this matrix separation problem, when certain incoherence conditions on the data

hold. In fact, RPCA solves a convex relaxation of the natural rank minimization problem which is reg-

ularized by the sparsity promoting ℓ0-(quasi) norm. Nevertheless, prior side information, oftentimes

in the form of features, may also be present in practice. For instance, features are available for the

following tasks:

– Collaborative filtering: apart from ratings of an item by other users, the profile of the user and

the description of the item can also be exploited in making recommendations [31];

– Relationship prediction: user behaviours and message exchanges can assist in finding missing

links on social media networks [134];

– Person-specific facial deformable models: an orthonormal subspace learnt from manually annot-

ated data captured in-the-wild, when fed into an image congealing procedure, can help produce

more correct fittings [100].

It is thus reasonable to investigate whether it is propitious for RPCA to exploit the available side

information by incorporating features. Indeed, recent results [69], indicate that in case of union of

multiple subspaces where RPCA degrades due to the increasing row-coherence (when the number

of subspaces grows), the use of features as side information allow accurate low-rank recovery by

removing its dependency on the row-coherence. Despite the theoretical and practical merits of convex

variants of RPCA with features, such as LRR [68] and PCPF [32], convex relaxations of the rank

function and l0-norm result into algorithm weakening [25].

If feasible feature dictionaries, X and Y , regarding row and column spaces are available, PCPF [32]

makes use of these to generalize (1.1) to the below objective:

min
H,S

‖H‖∗ + γ‖S‖1 subject to XHY ⊺ + S = M , (1.13)

for the same γ as in (1.1). Convergence to the RPCA solution has only been established for the random

sparsity model.

IRPCA-IHT [83] includes features X , Y in an iterative non-convex projection algorithm. Similar

to AltProj, at each step, a new sparse estimate is calculated from hard thresholding via a monotonically
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decreasing threshold. After that, spectral hard thresholding takes place to attain the low-rank estimate.

IRPCA-IHT provably converges to the solution of RPCA.

1.9 Robust Principal Component Analysis with Side Information

Principal Component Pursuit (PCP) as proposed in [21,24] and its variants e.g. [4,6,19,109,133,143]

are the current methods of choice for recovering a low-rank subspace from a set of grossly corrupted

and possibly incomplete high-dimensional data. PCP employs the nuclear norm and the l1 norm (con-

vex surrogates of the rank and sparsity constraints, respectively) in order to approximate the original

l0 norm regularised rank minimisation problem. In particular, under certain conditions (such as the

restricted isometry property [20]), the relaxation gap is zero and rank minimisation is equivalent to

nuclear norm minimisation. However, these conditions rarely hold for real-world visual data and PCP

thus occasionally yields degenerate or suboptimal solutions. To alleviate this, it is advantageous for

PCP to take into account of domain-dependent prior knowledge [55], i.e. side information [129].

The use of side information has been studied in the context of matrix completion [31, 134] and

compressed sensing [79]. Recently, side information has been applied to the PCP framework in the

noiseless case [33,101]. In particular, an error-free orthogonal column space was used to drive a PCP-

based deformable image alignment algorithm [101]. More generally, Chiang et al. [33] used both a

column and a row space as side information and the algorithm had to recover the weights of their

interaction. The main limitation of such methods is that they require a set of clean, noise-free data

samples in order to determine the column and/or row spaces of the low-rank component. Clearly, these

data are are difficult to find in practice.

Shahid et al. [106, 107] incorporate structural knowledge into RPCA by adding spectral graph reg-

ularisation. Given the graph Laplacian Φ of each data similarity graph, Robust PCA on Graphs (RP-

CAG) and Fast Robust PCA on Graphs (FRPCAG) add an additional tr(LΦL⊺) term to the PCP

objective for the low-rank component L. The main drawback of the above mentioned models is that

the side information needs to be accurate and noiseless, which is not trivial in practical scenarios.
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1.10 Tensors

1.10.1 matrix products

The Kronecker product of A ∈ R
I×K and B ∈ R

J×L is the IJ ×KL matrix

A⊗B =













BA11 BA12 . . . BA1K

BA21 BA22 . . . BA2K

...
...

. . .
...

BAI1 BAI2 . . . BAIK













.

b⊺ ⊗ a = ab⊺ and vec(ab⊺) = b ⊗ a immediately follow. For A ∈ R
I×K ,M ∈ R

K×L and

B ∈ R
J×L, vec(AMB⊺) = (B ⊗ A)vec(M). This is useful when dealing with the linear least

squares problem

min
M

‖X −AMB⊺‖2F = min
m

‖vec(X)− (B ⊗A)m‖22,

where m = vec(M).

For two matrices with the same number of columns A = [a1, · · · ,al] and B = [b1, · · · , bl], the

Khatri-Rao product is

A⊙B = [a1 ⊗ b1, · · · ,al ⊗ bl].

If D is a diagonal matrix with diagonal elements in the vector d, the property vec(ADB⊺) = (B ⊙
A)d holds. This is useful when dealing with the linear least squares problem

min
diagnoal D

‖X −ADB⊺‖2F = min
d

‖vec(X)− (B ⊙A)d‖22.

The Hadamard product is the elementwise matrix product. Given matrices A,B ∈ R
I×J , the Hadam-

ard product A ◦B is defined by













a11b11 a12b12 . . . a1Jb1J

a21b21 a22b22 . . . a2Jb2J
...

...
. . .

...

aI1bI1 aI2bI2 . . . aIJbIJ













.

We also have the following properties:

– (A⊗B)⊗C = A⊗ (B ⊗C) = A⊗B ⊗C;

– (A⊗B)⊺ = (A⊺ ⊗B⊺);

– (A⊗B)(E ⊗ F ) = (AE ⊗BF );
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– (A⊗B)† = A† ⊗B†;

– For A = U1Σ1V
⊺

1 and B = U2Σ2V
⊺

2 , we have A⊗B = (U1 ⊗U2)(Σ2 ⊗Σ2)(V1 ⊗ V2)
⊺;

– rank(A⊗B) = rank(A)rank(B);

– For square matrices A,B, tr(A⊗B) = tr(A)tr(B);

– For square matrices A,B, det(A⊗B) = det(A)det(B);

– (A⊙B)⊙C = A⊙ (B ⊙C) = A⊙B ⊙C;

– (A⊗B)(E ⊙ F ) = (AE)⊙ (BF );

– (A⊙B)⊺(A⊙B) = A⊺A ∗B⊺B;

– (A⊙B)† = ((A⊺A) ∗ (B⊺B))†(A⊙B)⊺.

The tensor product or outer product of vectors a ∈ R
I and b ∈ R

J is the I × J matrix a ◦ b with

elements (a ◦ b)ij = aibj . The outer product of three vectors is an I × J × K three-way array or

three-way tensor a ◦ b ◦ c with elements (a ◦ b ◦ c)ijk = aibjck.

1.10.2 Tensor Basics

The order of a tensor is the number of dimensions, also known as ways or modes.

A fibre is defined by fixing every index but one. If the nth index is free, then the fibre is called n-

mode. Similarly, slices are defined by fixing every index but two.

Matricisation, also known as unfolding or flattening, is the process of reordering the elements of an N-

way array into a matrix. The mode-n matricisation of a tensor X ∈ R
I1×I2×···×IN is denoted by X(n)

and arranges the mode-n fibres to be the columns of the resulting matrix. Element Xi1i2···iN becomes

Xinj where

j = 1 +
N
∑

k=1,k 6=n

(ik − 1)Jk with Jk =
k−1
∏

m=1,m 6=n

im.

Multiplying a tensor by a matrix in mode n is known as the n-mode product. The n-mode product

of a tensor X ∈ R
I1×I2×···×IN with a matrix U ∈ R

J×In is denoted by X ×n U and is of size

I1 × · · · × In−1 × J × In+1 × · · · × IN . Elementwise,

(X ×n U)i1···in−1jin+1···iN =

In
∑

in=1

xi1i2···iNujin .
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By definition, we have the following properties:

– Y(n) = (X ×n U)(n) = UX(n);

– X ×m A×n B = X ×n B ×m A (m 6= n);

– X ×n A×n B = X ×n (BA);

– X ×m a×n b = (X ×m a)×n−1 b = (X ×n b)×m a for m < n;

– Y(n) = (X ×1 A
(1) ×2 A

(2) · · · ×N A(N))(n) = A(n)X(n)(A
(N) ⊗ · · · ⊗A(n+1) ⊗A(n−1) ⊗

· · · ⊗A(1))⊺;

– vec(X ×N
i=1 Ui) = (⊗1

i=NUi)vec(X ).

The Frobenius norm of a tensor X ∈ R
I1×I2×···×IN is

‖X‖F =

√

√

√

√

I1
∑

i1

I2
∑

i2

· · ·
IN
∑

iN

X 2
i1i2...iN

.

1.10.3 CP decomposition

A rank-one three-way tensor X of size I × J × K is an outer product of three vectors a ∈ R
I , b ∈

R
J , c ∈ R

K , i.e. X = a◦b◦c. A rank-one N-way tensor X is likewise an outer product of N vectors:

X = a1 ◦ a2 ◦ · · · ◦ aN .

The rank of tensor X is the minimum number of rank-one tensors needed to produce X as their

sum. See Fig. 1.1 for a tensor of rank three. Therefore, a three-way tensor of rank F can be written as

X =
F
∑

f=1

af ◦ bf ◦ cf .

It is common to use the notation X = [[A,B,C]], where A = [a1, · · · ,aF ], B = [b1, · · · , bF ] and

C = [c1, · · · , cF ].

The following relationships hold

– X(1) = A(C ⊙B)⊺;

– X(2) = B(C ⊙A)⊺;
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Figure 1.1: Schematic of tensor of rank three

Size Maximum attainable rank
I × J × 2 min(I, J) + min(I, J, ⌊max(I, J)/2⌋)
2× 2× 2 3
3× 3× 3 5

Table 1.1: Maximum attainable ranks.

– X(3) = C(B ⊙A)⊺;

– vec(X⊺

(3)) = (C ⊙B ⊙A)1, where 1 an F × 1 vector full of 1’s.

The rank F of a three-way tensor X satisfies the following inequality

max(R1, R2, R3) ≤ F ≤ min(R1R2, R2R3, R1R3),

where Rn is the mode-n rank of X .

However, if (C ⊙B) is full column rank as well as A, then rank(X(1)) = F =rank(X ). For this to

happen it is necessary that JK ≥ F and I ≥ F . Hence for the matricisation of X to be rank-revealing,

it must be really small relative to the upper bound.

In general, the rank of a tensor for decomposition over R is a random variable that can take more

than one value with positive probability. These values are called typical ranks. When there is only one

typical rank, it is called generic rank. Constraints such as symmetry and orthogonality of the factor

matrices or the matricisation can strongly affect the tensor rank. In particular, determining the rank of

a tensor is NP-hard. Some rank examples are shown in tables 1.1, 1.2 and 1.3.

We can also observe essential uniqueness for such decomposition under mild conditions. Given

a tensor X of rank F , we say that its rank decomposition into F rank-one terms is essentially unique

if the rank-one tensors in its decomposition are unique. Note that we have to allow the inherently un-

resolvable permutation and scaling ambiguity. That is, if X = [[A,B,C]], with A : I×F,B : J×F,
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Size Typical ranks
I × I × 2 {I, I + 1}

I × J × 2, I > J min(I, 2J)
I × J ×K, I > JK JK

I × J ×K, JK − J < I < JK I
I × J ×K, I = JK − J {I, I + 1}

Table 1.2: Typical ranks.

Size
Typical ranks,

symmetric frontal

Typical ranks,

no symmetry
I × I × 2 {I, I + 1} {I, I + 1}

I × 2× 2, I ≥ 4 3 4
9× 3× 3 6 9

Table 1.3: Ranks with symmetrical constraints.

and C : K × F , then essential uniqueness means that A,B and C are unique up to a common

permutation and scaling/counter-scaling of columns, meaning that if X = [[Ā, B̄, C̄]], for some

Ā : I × F, B̄ : J × F , and C̄ : K × F , then there exists a permutation matrix Π and diagonal

scaling matrices Λ1,Λ2,Λ3 such that

Ā = AΠΛ1, B̄ = BΠΛ2, C̄ = CΠΛ3,Λ1Λ2Λ3 = I.

The notion of Kruskal rank plays an important role in uniqueness results. The Kruskal rank kA of an

I×F matrix A is the largest integer k such that any k columns of A are linearly independent. Clearly,

kA ≤ rA =rank(A) ≤ min(I, F ).

The general result is provided by Kruskal’s theorem. Given X = [[A,B,C]], with A : I × F,B :

J × F , and C : K × F , if kA + kB + kC ≥ 2F + 2, then the decomposition of X in terms of A,B

and C is essentially unique.

A better uniqueness result can be obtained if one of the loading matrices is full column rank. Given

X = [[A,B,C]], with A : I×F,B : J ×F , and C : K×F , and assuming rC = F , it holds that the

decomposition X = [[A,B,C]] is essentially unique ⇔ no linear combination of columns of A⊙B

can be written as ⊗ product of two vectors.

The full-rank condition on C can be relaxed if one considers higher-order compound matrices. Let

X = [[A,B,C]], with A : I × F,B : J × F , and C : K × F . Assume I ≤ J ≤ K without loss

of generality. Let imax = max{i|2i ≤ I}, and jmax = max{j|2j ≤ J}. If F ≤ 2imax+jmax−2, then the
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Figure 1.2: Tucker tensor decomposition.

decomposition of X in terms of A,B and C is essentially unique, almost surely. In particular, when

I = 2i, J = 2j , then almost sure uniqueness holds for F ≤ IJ
4 . More generally, a sufficient condition

is F ≤ (I+1)(J+1)
16 .

The CANDECOMP/PARAFAC (CP) decomposition of a third-order tensor X ∈ R
I×J×K is the sum

of R component rank-one tensors that best approximates X , i.e. to find

min
{ar,br,cr}Rr=1

‖X −
R
∑

r=1

ar ◦ br ◦ cr‖2F ,

where R is a positive integer and ar ∈ R
I , br ∈ R

J , and cr ∈ R
K for r = 1, . . . , R. If R < F ,

then the problem becomes the low-rank tensor approximation problem. However, a tensor may be

arbitrarily well approximated by a lower rank tensor and this low rank is defined as the border rank. In

cases like this, the problem is ill-posed. Normal fixes involve adding application-specific constraints,

such as non-negativity or orthogonality of ar, br, cr or λ(‖A‖2F +‖B‖2F +‖C‖2F ) for Gaussian priors.

1.10.4 Tucker decomposition

To generalise SVD to tensors, we consider a full (possibly dense, but ideally sparse) core tensor G ∈
R
P×Q×R and matrices U ∈ R

I×P ,V ∈ R
J×Q and W ∈ R

K×R, such that

Xijk =
I

∑

l=1

J
∑

m=1

K
∑

n=1

GlmnUilVjmWkn,

where ul = U(:, l),vm = V (:,m),wn = W (:, n) and U⊺U = I,V ⊺V = I,W ⊺W = I . Without

fixing P,Q,R, the decomposition is non-unique. An example decomposition is illustrated in Fig. 1.2.

Several equivalent forms are summarised below:

– X =
∑I

l=1

∑J
m=1

∑K
n=1 Glmnul ◦ vm ◦wn;

– X = G ×1 U ×2 V ×3 W ;
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1.10. Tensors

– vec(X ) = (U ⊗ V ⊗W )vec(G);

– X(1) = UG(1)(V ⊗W )⊺.

Note that each column of U interacts with every column of V and every column of W in this de-

composition, and the strength of this interaction is encoded in the corresponding element of G. This is

different from the CP decomposition, which only allows interactions between corresponding columns

of A,B,C. A trivial decomposition is given by U = I ∈ R
I×I ,V = I ∈ R

J×J ,W = I ∈ R
K×K

and G = X .

The Tucker rank of a tensor X ∈ R
I×J×K is the tuple (k1, k2, k3) with elementwise minimal entries

kµ ∈ N such that there exist columnwise orthonormal matrices Uµ ∈ R
nµ×kµ and a core tensor

G ∈ R
k1×k2×k3 with

X = G ×1 U1 ×2 U2 ×3 U3.

This representation is known as the orthogonal Tucker format and the matrices are called mode frames

for the Tucker decomposition.

Let Rn be the mode-n rank of X as before, we can choose U to be an I × R1 orthonormal basis

of the row space of X(1) as UR1
and similarly for V and W . Then, we have

X = G ×1 UR1
×2 VR2

×3 WR2
,

where G ∈ R
R1×R2×R3 . Such a model is known as the multilinear SVD (MLSVD) or higher-order

SVD (HOSVD). We have the following connections with the matrix SVD:

– The slabs of G along each mode are orthogonal to each other, i.e., vec(G(l, :, :))⊺vec(G(l′, :, :

)) = 0 for l′ 6= l;

– ‖G(l, :, :)‖F equals the l-th singular value of X(l).

Given fixed general orthonormal U ,V ,W , the core tensor is uniquely defined. And it follows that

‖X‖2F = ‖G‖2F . Besides, if some of the outer products are dropped to form tensor X̃ , we have

‖X − X̃‖2F =
∑

l,m,n∈D |Glmn|2, where D is the set of dropped core element indices.

In practice, we are interested in a representation where the core tensor has modes e, f, h that best
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approximates X ∈ R
I×J×K . Formally,

min
G,U ,V ,W

‖X − G ×1 U ×2 V ×3 W ‖2F

s.t. G ∈ R
e×f×h,

U ∈ R
I×e,U⊺U = I,

V ∈ R
J×f ,V ⊺V = I,

W ∈ R
K×h,W ⊺W = I.

Such a solution (U∗,V ∗,W ∗,G∗) always exists but it is an NP-hard problem. We can compact

the energy |Glmn|2 of the core tensor in its upper-left-front corner by permuting the frontal, lateral

slabs, etc. of G and counter-permute the corresponding columns of U ,V ,W . We can obtain an

approximation by truncating the core keeping only the upper-left-front e × f × h part. The resulting

error is bounded as

‖X −X ′‖2F ≤
I

∑

l=e+1

‖G(l, :, :)‖2F +
J
∑

m=f+1

‖G(:,m, :)‖2F +
K
∑

n=h+1

‖G(:, :, n)‖2F .

However, this does not give the best approximation G∗. Alternatively, we can attempt a Tucker trun-

cation. Considering a tensor X ∈ R
n1×n2×n3 , let X(µ) = UµΣµV

⊺

µ , where Uµ ∈ R
nµ×nµ , be an

SVD with singular values {σµ,1, · · · , σµ,nµ}. The Tucker truncation of X to a tensor G ∈ R
e×f×h is

defined by

G = X ×1 (Ū1Ū
⊺

1 )×2 (Ū2Ū
⊺

2 )×3 (Ū3Ū
⊺

3 ),

where Ūµ is the matrix of the first e, f or h columns of Uµ. The error in this case is bounded by

‖X −X ′′‖2F ≤
3

∑

µ=1

nµ
∑

i=e,h,f+1

σ2
µ,i ≤ 3‖X −X ∗‖.

So this is not the best estimate either. The Eckart-Young theorem does not apply to higher-order

tensors. However, the above procedures provide a good warm start. In fact, we can prove the relation-

ship G∗
(1) = U∗TX(1)(V

∗ ⊗W ∗). Substituting for G, we can recast the original problem as

max
U ,V ,W

‖U⊺X(1)(V ⊗W )‖2F ,

with the same conditions on U ,V ,W as before. Furthemore, G∗
(1) has orthogonal columns and

U∗,V ∗,W ∗ are the first e, f or h columns of the left subspaces of X(1)(V
∗⊗W ∗),X(2)(U

∗⊗W ∗)

and X(3)(U
∗ ⊗ V ∗) respectively. Finaly, {‖G∗

(1)(:,m)‖22}em=1 are the e principal singular values of

X(1)(V
∗ ⊗W ∗).
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1.11 Rank Sparsity Tensor Decomposition

In many real-world applications, input data are naturally represented by tensors (i.e., multi-dimensional

arrays). Traditionally, such data would require vectorising before processing and thus destroy the inher-

ent higher-order interactions. As a result, novel models must be developed to preserve the multilinear

structure when extracting the hidden and evolving trends in such data. Typical tensor data are video

clips, color images, multi-channel EEG records, etc.

In practice, important information usually lie in a (multi-linear) low-dimensional space whose di-

mensionality is much lower dimensional space than observations.This is the essence of low-rank mod-

elling. In this chapter, we focus on the problem of recovering a low-dimensional multilinear structure

from tensor data corrupted by gross corruptions.

Given a tensor L ∈ R
d1×···×dN , its tensor rank [61] is defined by the smallest r such that L =

∑r
i=1 a

(1)
i ◦ · · · ◦ a(N)

i , where ◦ denotes outer products among some Nr vectors a
(1)
i , · · · ,a(N)

i , 1 ≤
i ≤ r. As such, robust low-rank tensor modelling seeks a decomposition X = L+S for an N th-order

tensor X ∈ R
d1×···×dN , where L has a low tensor rank and S is sparse. However, the tensor rank is

usually intractable [49]. A common adjustment [74, 95, 137] is to use a convex combination of the n-

ranks of L, that is γ =
∑N

i=1 αiranki(L), where αi ≥ 0,
∑N

i=1 αi = 1 and ranki(L) is the the column

rank of the mode-i matricisation [60] of L . It is, therefore, natural to obtain the decomposition by

solving optimisation problem (1.14)

min
L,S

γ + λ‖E‖0 s.t. γ =
N
∑

i=1

αiranki(L), X = L+ S, (1.14)

where ‖S‖0 is the l0 norm of the vectorisation of S and λ is a weighting parameter.

RSTD [65] is a direct multi-linear extension of matrix principal component pursuit (PCP) [21].

It approximates (1.14) by replacing ranki(L) and ‖S‖0 with convex surrogates ‖L(i)‖∗ and ‖S‖1
respectively, where ‖L(i)‖∗ is the nuclear norm of the mode-i matricisation of L and ‖S‖1 is the l1

norm of the vectorisation of S. As a result, it solves the following alternative objective

min
L,S

N
∑

i=1

αi‖L(i)‖∗ + λ‖S‖1 s.t. X = L+ S. (1.15)

An ALM solver can be found in [46]. It is also worth noting that under certain conditions RSTD is

guaranteed to exactly recover the low-rank component [52].
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1.12 Applications of Robust Principal Component Analysis

1.12.1 Image Classification

RPCA can be used to denoise images. Once clean, classification can be performed on those images.

The classification results directly reflect the image denoising ability. For a set of correlated images,

low-rank algorithms are normally used to remove noise that is sparse. The same classifier is thus able

to compare the different low-rank models.

1.12.2 Face Denoising

It is common practice to decompose raw facial images as a low-rank component for faithful face

representation and a sparse component for defects. This is because the face is a convex Lambertian

surface which under distant and isotropic lighting has an underlying model that spans a 9-D linear

subspace [7], but theoretical lighting conditions cannot be realised and there are unavoidable occlusion

and albedo variations in real images.

1.12.3 Background Subtraction

In automated video analytics, object detection is instrumental in object tracking, activity recognition

and behaviour understanding. Practical applications include surveillance, traffic control, robotic oper-

ation, etc, where foreground objects can be people, vehicles, products and so forth. Background sub-

traction segments moving objects by calculating the pixel-wise difference between each video frame

and the background. For a static camera, the background is almost static, while the foreground objects

are mostly moving. Consequently, a decomposition into a low-rank component for the background

and a sparse component for foreground objects is a valid model for such dynamics. Indeed, if the only

change in the background is illumination, then the matrix representation of vectorised backgrounds has

a rank of 1. It has been demonstrated that PCP is quite effective for such a low-rank matrix analysis

problem [21].

1.12.4 Face and Facial Expression Recognition

Recent research has established that an expressive face can be treated as a neutral face plus a sparse ex-

pression component [117], which is identity-independent due to its constituent local non-rigid motions,

i.e. action units. This is central to computer vision as it enables human emotion classification from

such visual cues. The images of the neutral face form a low-rank model whereas the facial expressions

can be treated as sparse noise.
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1.12.5 UV Map Completion

As faces form a convex Lambertian surface so do their UV textures. RPCA with missing values can

be applied to incomplete UV maps lifted from video frames that are due to self-occlusion of the faces

and also regional fitting errors of an imperfect 3D model such as the 3DMM. Once completed, this UV

map, combined with the corresponding 3D face, is extremely useful, as it can be used to synthesise 2D

faces of arbitrary poses. That way, we can probe image pairs of similar poses to improve recognition

performance.
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CHAPTER 2

Informed Non-Convex Robust

Principal Component Analysis with

Features

2.1 Introduction

Recent advances in non-convex optimization algorithms continue to undermine their convex counter-

parts [43,47,59]. In particular, non-convex RPCA algorithms such as fast RPCA [138] and AltProj [81]

exhibit better properties than the convex formulation. Most recently, [83] embedded features into a

non-convex RPCA framework known as IRPCA-IHT with faster speed. However, it remains unclear,

how to exploit side information in non-convex RPCA and whether it facilitates provably correct, fast,

and more accurate algorithms.

In this chapter, we give positive answers to the above questions by proposing a novel, non-convex

scheme that fully leverages side information (features) regarding row and column subspaces of the low-

rank matrix. Even though the proposed algorithm is inspired by the recently proposed fast RPCA [138],

our contributions are by no means trivial, especially from a theoretical perspective. First, fast RPCA

cannot be easily extended to consistently take account of features. Second, as we show in this work,

incoherence assumptions on the observation matrix and features play a decisive role in determining the

corruption bound and the computational complexity of the non-convex algorithm. Third, fast RPCA

is limited to a corruption rate of 50% due to their choice of the hard threshold, whereas our algorithm

ups this rate to 90%. Fourth, we prove that the costly projection onto factorized spaces is entirely

optional when features satisfy certain incoherence conditions. Although our algorithm maintains the

same corruption rate of O( n
r1.5

) and complexity of O(rn2 log(1ǫ )) as fast RPCA, we show empirically
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2. Informed Non-Convex Robust Principal Component Analysis with Features

that massive gains in accuracy and speed can still be obtained. Besides, the transfer of coherence

dependency from observation to features means that our algorithm is capable of dealing with highly

incoherent data.

Unavoidably, features adversely affect tolerance to corruption in IRPCA-IHT (O(nd )) compared to

its predecessor AltProj (O(nr )). This is not always true with our algorithm in relation to fast RPCA.

And when the underlying rank is low but features are only weakly informative, i.e. r ≪ d, which is

often the case, our tolerance to corruption is arguably better. IRPCA-IHT also has a higher complexity

of O((dn2 + d2r) log(1ǫ )) than that of our algorithm. Although feature-free convex and non-convex

algorithms have higher asymptotic error bounds than our algorithm, we show in our experiments that

this does not translate as accuracy in reality. Our algorithm still has the best performance in recov-

ering accurately the low-rank part from highly corrupted matrices. This may be attributed to the fact

that our bounds are not tight. Besides, PCPF and AltProj have much higher complexity (O( n
3√
ǫ
) and

O(r2n2 log(1ǫ ))) than ours. For PCPF, there does not exist any theoretical analysis under the determ-

inistic sparsity model. Nonetheless, we show in our experiments that our algorithm is superior with

regard to both recoverability and running time.

The contributions of this work are summarised as follows:

• A novel non-convex algorithm integrating features with informed sparsity is proposed in order

to solve the RPCA problem.

• We establish theoretical guarantees of exact recovery under different assumptions regarding the

incoherence of features and observation.

• Extensive experimental results on synthetic data indicate that the proposed algorithm is faster

and more accurate in low-rank matrix recovery than the compared state-of-the-art convex and

non-convex methods for RPCA (with and without features).

• Experiments on two real-world datasets, namely MNIST and Yale B database demonstrate the

practical merits of the proposed algorithm.
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2.2 Related Work

AltProj [81] addresses RPCA by minimizing an entirely different objective:

min
L,S

‖M −L− S‖F

subject to L ∈ set of low-rank matrices

S ∈ set of sparse matrices,

(2.1)

where the search consists of alternating non-convex projections. That is, during each cycle, hard-

thresholding takes place first to remove large entries and projection of appropriate residuals onto the

set of low-rank matrices with increasing ranks is carried out next. Exact recovery has also been estab-

lished.

Fast RPCA [138] follows yet another non-convex approach to solve RPCA. After an initialization

stage, fast RPCA updates bilinear factors U , V such that L = UV ⊺ through a series of projected

gradient descent and sparse estimations, where U , V minimize the following loss:

min
U ,V

1

2
‖UV ⊺ + S −M‖2F +

1

8
‖U⊺U − V ⊺V ‖2F , (2.2)

for U , V properly constrained. Recovery guarantee is ensured.

We also mention here several works of non-convex objectives [85,108], though exact recovery guar-

antees are lacking.

2.3 Problem Setup

Suppose that there is a known data matrix M ∈ R
n1×n2 , which can be decomposed into a low-rank

component L∗ and a sparse error matrix S∗ of compatible dimensions. Our aim is to identify these

underlying matrices and hence robustly recover the low-rank component with the help of available side

information in the form of feature matrices X and Y .

Concretely, let L∗ = U∗
Σ

∗V ∗T be the singular value decomposition and P ∗ = X⊺U∗
Σ

∗ 1

2 and

Q∗ = Y ⊺V ∗
Σ

∗ 1

2 . S∗ follows the random sparsity model. That is, the support of S∗ is chosen

uniformly at random from the collection of all support sets of the same size. Furthermore, let us be in-

formed of the proportion of non-zero entries per row and column, denoted by α. Assume that there are

also available features X ∈ R
n1×d1 and Y ∈ R

n2×d2 such that they are feasible, i.e. col(X)⊇col(U∗)

and col(Y )⊇col(V ∗) where col(A) is the column space of A and X⊺X = Y ⊺Y = I1.

1This can always achieved via orthogonalisation.
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2. Informed Non-Convex Robust Principal Component Analysis with Features

In this work, we discuss robust low-rank recovery using the above mentioned features and three

different incoherence conditions: (i) ‖U∗‖2,∞ ≤
√

µ1r
n1

and ‖V ∗‖2,∞ ≤
√

µ1r
n2

; (ii) ‖X‖2,∞ ≤
√

µ2d1
n1

and ‖Y ‖2,∞ ≤
√

µ2d2
n2

; (iii) both (i) and (ii), where r is the given rank of L∗ and µ1, µ2 are

constants.

2.4 Algorithm

We use a non-convex approach to achieve the above objective. The algorithm consists of an initializ-

ation phase followed by a gradient descent phase. At each stage, we keep track of the factors P , Q

such that L = XPQ⊺Y ⊺.

2.4.1 Hard-thresholding

We first introduce the sparse estimator via hard-thresholding which is used in both phases. Given a

threshold θ, Tθ(A) removes elements of A that are not among the largest θ-fraction of elements in

their respective rows and columns, breaking ties arbitrarily for equal elements:

Tθ(A)ij =







0 if |Aij | ≤ Aθ
i· or |Aij | ≤ Aθ

·j ,

Aij otherwise,
(2.3)

where Aθ
i·,A

θ
·j are the (n2θ)

th and (n1θ)
th largest element in absolute value in row i and column j

respectively.

2.4.2 Initialization

S is first initialized as S0 = Tα(M). Next, we obtain U0Σ0V
⊺

0 as the r-truncated SVD of L0, which

is calculated via L0 = M − S0. We can then construct P0 = X⊺U0Σ

1

2

0 and Q0 = Y ⊺V0Σ

1

2

0 . Such

an initialization scheme gives P , Q the desirable properties for use in the second phase.

2.4.3 Gradient Descent

In case (i), we need the following sets:

P = {A ∈ R
d1×r|‖XA‖2,∞ ≤

√

2µ1r

n1
‖P0‖2}, (2.4)

Q = {A ∈ R
d2×r|‖Y A‖2,∞ ≤

√

2µ1r

n2
‖Q0‖2}. (2.5)

Otherwise, we can simply take P as Rd1×r and Q as Rd2×r.
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Algorithm 4 Non-convex solver for robust principal component analysis with features

Input: Observation M , features X,Y , rank r, corruption approximation α and step size η.

Initialization:

1: S = Tα(M)
2: UΣV ⊺ = r-SVD(M − S)

3: P = X⊺UΣ
1

2

4: Q = Y ⊺V Σ
1

2

Gradient descent:

5: P = ΠP(P )
6: Q = ΠQ(Q)
7: while not converged do

8: S = Tα+min(10α,0.1)(M −XPQ⊺Y ⊺)
9: P = ΠP(P − η∇PL)

10: Q = ΠQ(Q− η∇QL)
11: end while

Return: L = XPQ⊺Y ⊺, S

To proceed, we first regularise P0 and Q0:

P = ΠP(P0), Q = ΠQ(Q0). (2.6)

At each iteration, we first update S with the sparse estimator using a threshold of α+min(10α, 0.1):

S = Tα+min(10α,0.1)(M −XPQ⊺Y ⊺). (2.7)

For P , Q, we define the following objective function

L(P ,Q) =
1

2
‖XPQ⊺Y ⊺ + S −M‖2F +

1

64
‖P ⊺P −Q⊺Q‖2F . (2.8)

P and Q are updated by minimizing the above function subject to the constraints imposed by the sets

P and Q. That is,

P = ΠP(P − η∇PL), (2.9)

Q = ΠQ(Q− η∇QL), (2.10)

where the step size η is determined analytically below. With properly initialized P and Q, such an

optimization design converges to P ∗ and Q∗. The procedure is summarized in Algorithm 4.

2.5 Analysis

We first provide theoretical justification of our proposed approach. Then we evaluate its computational

complexity. The proofs can be found in the appendix.
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2. Informed Non-Convex Robust Principal Component Analysis with Features

The Euclidean metric is not applicable here because of the non-uniqueness of the bi-factorisation

L∗ = A∗B∗T , which corresponds to a manifold rather than a point. Hence, we define the following

distance between (A,B) and any of the optimal pair (A∗,B∗) such that L∗ = A∗B∗T :

d(A,B,A∗,B∗) = min
R

√

‖A−A∗R‖2F + ‖B −B∗R‖2F , (2.11)

where R is an r × r orthogonal matrix.

2.5.1 Convergence

The initialization phase provides us with the following guarantees on P and Q.

Theorem 2. In cases (i) and (iii), if α ≤ 1
16κrµ1

, we have

d(P0,Q0,P
∗,Q∗) ≤ 18αrµ1

√

rκσ∗
1. (2.12)

In case (ii), if α ≤ 1
16κµ2

√
d1d2

, we have

d(P0,Q0,P
∗,Q∗) ≤ 18αµ2

√

rd1d2κσ∗
1, (2.13)

where κ is the condition number of L∗ and d is a distance metric defined in the appendix.

Theorem 3. For η ≤ 1
192‖L0‖2 , there exist constants c1 > 0, c2 > 0, c3 > 0, c4 > 0, c5 > 0 and

c6 > 0 such that, in case (i), when α ≤ c1

µ1(κr)
3
2

, we have the following relationship

d(Pt,Qt,P
∗,Q∗)2 ≤ (1− c2ησ

∗
r )

td(P0,Q0,P
∗,Q∗)2, (2.14)

in case (ii), when α ≤ c3

µ2dr
1
2 κ

3
2

, we have

d(Pt,Qt,P
∗,Q∗)2 ≤ (1− c4ησ

∗
r )

td(P0,Q0,P
∗,Q∗)2. (2.15)

and in case (iii), when α ≤ c5min( 1
µ2dκ

, 1

µ1(κr)
3
2

), we have

d(Pt,Qt,P
∗,Q∗)2 ≤ (1− c6ησ

∗
r )

td(P0,Q0,P
∗,Q∗)2. (2.16)

2.5.2 Complexity

From Theorem 2, it follows that our algorithm converges at a linear rate under assumptions (ii) and

(iii). To converge below ǫ of the initial error, O(log(1ǫ )) iterations are needed. At each iteration, the

most costly step is matrix multiplication which takes O(rn2) time. Overall, our algorithm has total

running time of O(rn2log(1ǫ )).
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2.6 Experiments

We have found that when the step size is set to 0.5, reasonable results can be obtained. For all al-

gorithms in comparison, we run a total of 3000 iterations or until ‖M −L− S‖F /‖M‖F < 10−7 is

met.

2.6.1 Phase transition

Here, we vary the rank and the error sparsity to investigate the behavior of both our algorithm and

existing state-of-art algorithms in terms of recoverability. True low-rank matrices are created via L∗ =

JK⊺, where 200 × r matrices J ,K have independent elements drawn randomly from a Gaussian

distribution of mean 0 and variance 5 · 10−3 so r becomes the rank of L∗. Next, we corrupt each

column of L∗ such that α of the elements are set independently with magnitude U(0, r
40). However,

this does not guarantee α row corruption. We thus select only matrices whose maximum row corruption

does not exceed α + 6.5% but we still feed α to the algorithms in order to demonstrate that our

algorithm does not need the exact value of corruption ratio. We consider two types of signs for error:

Bernoulli ±1 and sgn(L∗). The resulting M thus becomes the simulated observation. In addition, let

L∗ = UΣV ⊺ be the SVD of L∗. Feature X is formed by randomly interweaving column vectors of

U with 5 arbitrary orthonormal bases for the null space of U⊺, while permuting the expanded columns

of V with 5 random orthonormal bases for the kernel of V ⊺ forms feature Y . Hence, the feasibility

conditions are fulfilled: col(X) ⊇col(L0), col(Y ) ⊇col(L⊺

0). For each (r, α) pair, three observations

are constructed. The recovery is successful if for all these three problems,
‖L−L∗‖F
‖L∗‖F < 10−3 from the

recovered L.

Figures 2.1(I) plot results from algorithms incorporating features. Besides, our algorithm contrasts

with fast RPCA in Figure 2.1(II). Other feature-free algorithms are investigated in Figure 2.1(III).

Figures 2.1(a) illustrate the random sign model and Figures 2.1(b) for the coherent sign model. All

previous non-convex attempts fail to outperform their convex equivalents. IRPCA-IHT is unable to

deal with even moderate levels of corruption. The frontier of recoverability that has been advanced

by our algorithm over PCPF is phenomenal, massively ameliorating fast RPCA. The anomalous asym-

metry in the two sign models is no longer observed in non-convex algorithms.
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Figure 2.1: Domains of recovery by various algorithms: (a) for random signs and (b) for coherent

signs.
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2.6.2 Running Time

Next, we highlight the speed of our algorithm for large-scale matrices, typical of video sequences

[132]. 1500×1500 to 2500×2500 random observation matrices are generated, where the rank is chosen

to be 20% of the column number and random sign error corrupts 11% of the entries, with features X,Y

having a dimension of 50% of the column number. The running times of all algorithms except IRPCA-

IHT are plotted in 2.2 (i) because IRPCA-IHT is not able to achieve a relative error (
‖L−L∗‖F
‖L∗‖F ) less

than 1% for larger matrices. For fair comparison, we have relaxed the rank to 0.3% of the column

number and error rate to 0.1% to compare our algorithm with IRPCA-IHT for matrices ranging from

2000×2000 to 10000×10000. We have used features X,Y having a dimension of 80% of the column

number to speed up the process. The result is shown in Figure 2.2 (ii). All times are averaged over

three trials. It is evident that, for large matrices, our algorithm overtakes all existing algorithms in

terms of speed. Note that features in PCPF even slow down the recovery process.
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Figure 2.2: (i) Running times for observation matrices of increasing dimensions for (i) PCP, PCPF, fast

RPCA, AltProj, our algorithm and (ii) IRPCA-IHT and our algorithm when
‖L−L∗‖F
‖L∗‖F ≤ 1%.
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Table 2.1: Classification results obtained by a linear SVM.

α clean noisy PCP PCPF AltProj IRPCA-IHT fast RPCA our algorithm
10 30.45 82.75 83.35 81.4 65.2 81.1 86.9
15 25.1 82.95 83.4 81.15 49.65 79.65 84.8
20 89.65 23.15 83.5 84 79.3 37.8 78.65 83.8
25 18.65 81.35 82.65 74.05 30.35 75.3 83.15
30 18.6 77.95 79 71.5 24.1 72.9 82.05
35 16.95 71.2 73.4 67.75 21.05 71.45 79.05

Table 2.2: Classification results obtained by an SVM with RBF kernel.

α clean noisy PCP PCPF AltProj IRPCA-IHT fast RPCA our algorithm
10 87 87.25 87.3 86.45 89.3 89.25 90.3
15 75.85 87.15 87.4 86.75 82.85 87.2 89.8
20 92.25 64.35 87.6 87.55 84.65 71.2 85.55 88.55
25 55.85 87 86.95 79.4 62.35 82.65 87.8
30 47.15 81.15 81.55 76.75 53.5 78.3 85.65
35 40.55 74.8 75.7 71 47.4 76.75 85.15

2.6.3 Image Classification

The MNIST dataset contains hand-written digits divided into training and testing sets which can be

used for image classification experiments. Let the observation matrix be composed of 2000 vectorized

random images from the test set stacked column-wise. In this case, the left feature obtained from

the training set is also applicable to the test set because of the Eigendigit nature. This imparts our

algorithm to supervised learning where there are clean related training samples available. The right

feature does not posses such property and is set to the identity matrix. We add a range of sparse noise

to the test set separately where the noise sets the pixel to 255. For PCPF, we take d = 300 as in [32]

and for IRPCA-IHT and our algorithm we use d = 150 instead.

The relative error between the recovered matrix by the competing algorithms and the clean test

matrix is plotted in Figure 2.3. Our algorithm is most accurate in removing the added artificial noise. To

evaluate how classifiers perform on the recovered matrices, we train the linear and kernel SVM using

the training set and test the corresponding models on the recovered images. Table 2.1 tabulates the

linear SVM. Table 2.2 tabulates the kernel SVM. Both classifiers confirm the recovery result obtained

by various models corroborating our algorithm’s pre-eminent accuracy.
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Figure 2.3: Relative error (
‖L−L∗‖F
‖L∗‖F ) for sparsity values: 10%, 15%, 20%, 25%, 30%, 35%.

2.6.4 Face denoising

We demonstrate that there can be a substantial boost to the performance of facial denoising by lever-

aging dictionaries learnt from the images themselves. The extended Yale B database is used as our

observation which consists images under different illuminations for a fixed pose. We study all 64

images of a randomly chosen person. A 32556 × 64 observation matrix is formed by vectorizing

each 168 × 192 image. For fast RPCA and our algorithm, a sparsity of 0.2 is adopted. We learn the

feature dictionary as in [135]. In a nutshell, the feature learning process can be treated as a sparse

encoding problem. More specifically, we simultaneously seek a dictionary D ∈ R
n1×c and a sparse
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representation B ∈ R
c×n2 such that:

minimize
D,B

‖M −DB‖2F

s. t. to γi ≤ t for i = 1 . . . n2,

(2.17)

where c is the number of atoms, γi’s count the number of non-zero elements in each sparsity code and

t is the sparsity constraint factor. This can be solved by the K-SVD algorithm. Here, feature X is

the dictionary D, feature Y corresponds to a similar solution using the transpose of the observation

matrix as input. We set c to 40, t to 40 and used 10 iterations.

As a visual illustration, recovered images from all algorithms are exhibited in Figure 2.5. For this

challenging scenario, our algorithm totally removed all shadows. PCPF is smoother than PCP but still

suffers from shade. AltProj and fast RPCA both introduced extra artefacts. Although IRPCA-IHT man-

aged to remove the shadows but brought back a severely distorted image. To quantitatively verify the

improvement made by our proposed method, we examine the structural information contained within

the denoised eigenfaces. Singular values of the recovered low-rank matrices from all algorithms are

plotted in Figure 2.4. All non-convex algorithms are competent in incorporating the rank information

to keep only 9 singular values, vastly outperforming convex approaches. Among them, our algorithm

has the most rapid decay that is found naturally [126].
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Figure 2.4: Log-scale singular values of the denoised matrices.
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(i)

(ii) (iii) (iv)

(v) (vi) (vii)

Figure 2.5: (i) original; (ii) PCPF; (iii) our algorithm; (iv) IRPCA-IHT; (v) PCP; (vi) fast RPCA; (vii)

AltProj.
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2.7 Appendix

2.7.1 Convex Projection

Given P , the problem of finding ΠP(P ) can be seen as projection onto the intersection of a series of

closed convex sets Pi, that is P = P1
⋂ · · ·⋂Pd1 , where Pi = {A ∈ R

d1×r||Xi·A|2 ≤
√

2µ1r
n1

‖P0‖2}.

We have emperically found that the Cyclic Dykstra algorithm [96] has the fastest rate of conver-

gence. Let A0 = P , and B−(d1−1) = B−(d1−2) = · · · = B−1 = B0 = 0 ∈ R
d1×r, the

Cyclic Dykstra algorithm updates, at each iteration, Ak+1 = ΠPk+1 mod d1
(Ak + Bk+1−d1) and

Bk+1 = Ak +Bk+1−d1 −Ak+1.

For ΠPi
(P ), we formulate the equivalent optimisation problem below

min
A

‖A− P ‖2F s.t. |Xi·A|2 =
√

2µ1r

n1
‖P0‖2, (2.18)

for |Xi·P |2 >
√

2µ1r
n1

‖P0‖2. Its solution is given by

A = (Id1×d1 +

( |Xi·P |2
√

2µ1r

n1
‖P0‖2

− 1)X⊺

i·Xi·

|Xi·|22
)−1P . (2.19)

For Q, ΠQ(Q) follows similarly.

We have also run experiments to see how much improvement can be gained by convex projection.

200×200 high-incoherence matrices are created with ranks from 140 to 155 and corrupted by 10%

random sign errors. Our algorithm is applied with projection several times. Each uses a different

number of iterative steps ranging from 0 to 2000. Recoverability is plotted against the number of

iterative projections in Figure 2.6. There is hardly any noticeable improvement so we do not use convex

projection in our comparison experiments. Further analysis is demanded to justify the redundency of

convex projection.
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Figure 2.6: Effectiveness of convex projection.
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2.7.2 Proofs

For simplicity, we assume that n1 = n2 = n, d1 = d2 = d.

2.7.3 Proof of Theorem 1

We first declare some lemmas that will be essential to our result.

Lemma 2.7.1. Let S0 be obtained from the initialisation phase, we have

‖M − S0 −L∗‖∞ ≤ 2‖L∗‖∞. (2.20)

Proof. See [138] theorem 1.

Lemma 2.7.2. For any matrix A ∈ R
n×n for which the proportion of non-zero entries per row and

column is β, we have

‖A‖2 ≤ βn‖A‖∞. (2.21)

Proof. See [81] lemma 4.

Lemma 2.7.3. For two rank r matrices L1 and L2 of the same dimension whose compact SVDs are

L1 = U1Σ1V
⊺

1 and L2 = U2Σ2V
⊺

2 , we have

d(U1Σ

1

2

1 ,V1Σ

1

2

1 ,U2Σ

1

2

2 ,V2Σ

1

2

2 )
2 ≤ 2√

2− 1

‖L1 −L2‖2F
σr(L2)

, (2.22)

provided ‖L1 −L2‖2 ≤ 1
2σr(L2).

Proof. See [120] lemma 5.14.

Lemma 2.7.4. For any matrices A and B of consistent sizes, we have

‖AB‖2,∞ ≤ ‖A‖2,∞‖B‖2. (2.23)

Proof. See [69] lemma 4.2.

Lemma 2.7.5. For any matrix A with compact SVD A = UΣV ⊺,

‖A‖∞ ≤ ‖Σ‖2‖U‖2,∞‖V ‖2,∞. (2.24)

Proof. See [138] theorem 1.
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Lemma 2.7.6. Let U0,V0,Σ0,S0 be obtained from the initialisation phase, we have

‖U0Σ0V
⊺

0 −M + S0‖2 ≤ ‖M − S0 −L∗‖2 (2.25)

Proof. Weyl’s theorem tells us that, for 1 ≤ i ≤ n, |σi(L∗) − σi(M − S0)| ≤ ‖M − S0 − L∗‖2.

When i = r+1, σi(L
∗) = 0 and σi(M −S0) = ‖U0Σ0V

⊺

0 −M +S0‖2 because L∗ has rank r and

U0Σ0V
⊺

0 = r-SVD(M − S0).

Lemma 2.7.7. For A,B,C,D ∈ R
d×r

d(X⊺A,Y ⊺B,X⊺C,Y ⊺D) ≤ d(A,B,C,D). (2.26)

Proof.

d(X⊺A,Y ⊺B,X⊺C,Y ⊺D)

= min
R

√

‖X⊺(A−CR)‖2F + ‖Y ⊺(B −DR)‖2F

≤ min
R

√

‖X⊺‖22‖(A−CR)‖2F + ‖Y ⊺‖22‖(B −DR)‖2F

= min
R

√

‖(A−CR)‖2F + ‖(B −DR)‖2F

= d(A,B,C,D).

(2.27)

We begin by deriving a bound on ‖M − S0 −L∗‖2,

‖M − S0 −L∗‖2 ≤ 2αn‖M − S0 −L∗‖∞ ≤ 4αn‖L∗‖∞
≤ 4αn‖Σ∗‖2‖U∗‖2,∞‖V ∗‖2,∞,

(2.28)

where the first inequality follows from Lemma 2.7.2 with β = 2α, the second from Lemma 2.7.1 and

the third from Lemma 2.7.5. Next, we look at ‖U0Σ0V
⊺

0 −L∗‖2:

‖U0Σ0V
⊺

0 −L∗‖2
≤ ‖U0Σ0V

⊺

0 −M + S0‖2 + ‖M − S0 −L∗‖2
≤ 2‖M − S0 −L∗‖2
≤ 8αn‖Σ∗‖2‖U∗‖2,∞‖V ∗‖2,∞,

(2.29)
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where we have used Lemma 2.7.6 and (2.28).

In cases (i) and (iii), the condition α ≤ 1
16κµ1r

gives ‖U0Σ0V
⊺

0 −L∗‖2 ≤ 1
2σr(L

∗) and we have

d(P0,Q0,P
∗,Q∗)2

= d(X⊺U0Σ

1

2

0 ,Y
⊺V0Σ

1

2

0 ,X
⊺U∗

Σ
∗ 1

2 ,Y ⊺V ∗
Σ

∗ 1

2 )2

≤ d(U0Σ

1

2

0 ,V0Σ

1

2

0 ,U
∗
Σ

∗ 1

2 ,V ∗
Σ

∗ 1

2 )2

≤ 2√
2− 1

‖U0Σ0V
⊺

0 −L∗‖2F
σr(L∗)

≤ 2r√
2− 1

‖U0Σ0V
⊺

0 −L∗‖22
σr(L∗)

≤ 128r3α2κσ∗
1µ

2
1√

2− 1
,

(2.30)

using Lemma 2.7.7, Lemma 2.7.3 and (2.29). So, we have

d(P0,Q0,P
∗,Q∗) ≤ 18µ1αr

√

rκσ∗
1. (2.31)

In case (ii), we have

‖U∗‖2,∞ = ‖XX⊺U∗‖2,∞ ≤ ‖X⊺U∗‖2‖X‖2,∞ ≤
√

µ2d

n
, (2.32)

‖V ∗‖2,∞ = ‖Y Y ⊺V ∗‖2,∞ ≤ ‖Y ⊺V ∗‖2‖Y ‖2,∞ ≤
√

µ2d

n
. (2.33)

The condition α ≤ 1
16κµ2d

gives ‖U0Σ0V
⊺

0 −L∗‖2 ≤ 1
2σr(L

∗) and we have similar to (2.31)

d(P0,Q0,P
∗,Q∗) ≤ 18µ2αd

√

rκσ∗
1. (2.34)

2.7.4 Proof of Theorem 2

To ease our exposition, we define the following auxiliary quantities.

Let the solution set be

E = {(A,B) ∈ R
d×r × R

d×r|d(A,B,P ∗,Q∗) = 0}. (2.35)

For any (P ,Q) ∈ R
d×r × R

d×r, the corresponding solution is given by

(P †,Q†) ∈ arg min
(A,B)∈E

‖P −A‖2F + ‖Q−B‖2F . (2.36)
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Let ∆P = P − P †, ∆Q = Q−Q† and δ = ‖∆P ‖2F + ‖∆Q‖2F , from which we have

2‖∆P ‖F ‖∆Q‖F ≤ ‖∆P ‖2F + ‖∆Q‖2F ,
‖∆P ‖F + ‖∆Q‖F ≤

√
2δ,

‖∆P ‖2F + ‖∆Q‖F ‖∆P ‖F ≤
√
2δ‖∆P ‖F ,

‖∆Q‖2F + ‖∆Q‖F ‖∆P ‖F ≤
√
2δ‖∆Q‖F ,

4‖∆Q‖F ‖∆P ‖F ≤ ‖∆P ‖2F + ‖∆Q‖2F + 2‖∆Q‖F ‖∆P ‖F
≤

√
2δ(‖∆Q‖F + ‖∆P ‖F ).

(2.37)

Let H = 1
2‖XPQ⊺Y ⊺ + S −M‖2F and ∆M = ∇LH(P ,Q), we have

∇LH(P ,Q) = XPQ⊺Y ⊺ + S −M = L+ S −L∗ − S∗. (2.38)

We also have

∇PH(P ,Q) = X⊺∇LHY Q, (2.39)

∇QH(P ,Q) = (X⊺∇LHY )⊺P . (2.40)

Let G(P ,Q) = 1
64‖P ⊺P −Q⊺Q‖2F , we have

∇PG(P ,Q) =
1

16
P (P ⊺P −Q⊺Q), (2.41)

∇QG(P ,Q) =
1

16
Q(Q⊺Q− P ⊺P ). (2.42)

Let F =

[

P

Q

]

, F † =

[

P †

Q†

]

and ∆F = F − F †, then we have δ = ‖∆F ‖2F .

We now state several lemmas that will help us construct the proof.

Lemma 2.7.8. For any P ∈ R
d×r and Q ∈ R

d×r, we have

‖L−L∗‖2F ≤ 2δ(
√

σ∗
1 +

√
2δ

4
)2. (2.43)
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Proof.

‖L−L∗‖F = ‖XPQ⊺Y ⊺ −XP †Q†TY ⊺‖F
= ‖X(P †∆Q⊺ +∆PQ†T +∆P∆Q⊺)Y ⊺‖F
≤ ‖P †∆Q⊺‖F + ‖∆PQ†T ‖F + ‖∆P∆Q⊺‖F
≤ ‖P †‖2‖∆Q‖F + ‖∆P ‖F ‖Q†‖2 + ‖∆P ‖F ‖∆Q‖F

≤
√

σ∗
1‖∆Q‖F +

√

σ∗
1‖∆P ‖F +

√
2δ

4
(‖∆Q‖F + ‖∆P ‖F )

≤ (
√

σ∗
1 +

√
2δ

4
)(‖∆Q‖F + ‖∆P ‖F ) ≤ (

√

σ∗
1 +

√
2δ

4
)
√
2δ.

(2.44)

Lemma 2.7.9. For 1 ≤ i, j ≤ n, in case (i), if ‖XP ‖2,∞ ≤
√

3µ1rσ∗

1

2n and ‖Y Q‖2,∞ ≤
√

3µ1rσ∗

1

2n ,

then

|(L−L∗)ij | ≤
1

2

√

µ1rσ∗
1

n
(3 +

√

3

2
)(‖(X∆P )i·‖2 + ‖(Y ∆Q)j·‖2) (2.45)

and in cases (ii) and (iii), if ‖XP ‖2,∞ ≤
√

3µ2dσ∗

1

2n and ‖Y Q‖2,∞ ≤
√

3µ2dσ∗

1

2n , then

|(L−L∗)ij | ≤
1

2

√

µ2dσ∗
1

n
(3 +

√

3

2
)(‖(X∆P )i·‖2 + ‖(Y ∆Q)j·‖2). (2.46)

Proof.

|(L−L∗)ij |
= |(XPQ⊺Y ⊺ −XP †Q†TY ⊺)ij |
≤ |(XP †)i·(Y ∆Q)⊺·j |+ |(X∆P )i·(Y Q†)⊺·j |+ |(X∆P )i·(Y ∆Q)⊺·j |
≤ ‖(XP †)i·‖2‖(Y ∆Q)j·‖2 + ‖(X∆P )i·‖2‖(Y Q†)j·‖2 + ‖(X∆P )i·‖2‖(Y ∆Q)j·‖2
≤ ‖XP †‖2,∞‖(Y ∆Q)j·‖2 + ‖Y Q†‖2,∞‖(X∆P )i·‖2

+
1

2
‖X∆P ‖2,∞‖(Y ∆Q)j·‖2 +

1

2
‖Y ∆Q‖2,∞‖(X∆P )i·‖2

≤ 1

2
((3‖XP †‖2,∞ + ‖XP ‖2,∞)‖(Y ∆Q)j·‖2

+ (3‖Y Q†‖2,∞ + ‖Y Q‖2,∞)‖(X∆P )i·‖2),

(2.47)

where we have used ‖X∆P ‖2,∞ ≤ ‖XP †‖2,∞ + ‖XP ‖2,∞ and ‖Y ∆Q‖2,∞ ≤ ‖Y Q†‖2,∞ +

‖Y Q‖2,∞.
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In case (i),

|(L−L∗)ij | ≤
1

2
(3

√

µ1rσ∗
1

n
+

√

3µ1rσ∗
1

2n
)(‖(X∆P )i·‖2 + ‖(Y ∆Q)j·‖2)

=
1

2

√

µ1rσ∗
1

n
(3 +

√

3

2
)(‖(X∆P )i·‖2 + ‖(Y ∆Q)j·‖2).

(2.48)

In cases (ii) and (iii),

|(L−L∗)ij | ≤
1

2
(3

√

µ2dσ∗
1

n
+

√

3µ2dσ∗
1

2n
)(‖(X∆P )i·‖2 + ‖(Y ∆Q)j·‖2)

=
1

2

√

µ2dσ∗
1

n
(3 +

√

3

2
)(‖(X∆P )i·‖2 + ‖(Y ∆Q)j·‖2).

(2.49)

Lemma 2.7.10. For any α ∈ (0, 1), suppose the support index set Ω ⊆ [n] × [n] satisfies |Ωi·| ≤ αn

for all i ∈ [n] and |Ω·j | ≤ αn for all j ∈ [n] where Ωi· = {(i, j) ∈ Ω|j ∈ [n]} and Ω·j = {(i, j) ∈
Ω|i ∈ [n]}. In case (i), we have

‖ΠΩ(L−L∗)‖2F ≤ αµ1rσ
∗
1

2
(3 +

√

3

2
)2(‖∆P ‖2F + ‖∆Q‖2F ), (2.50)

and in cases (ii) and (iii), we have

‖ΠΩ(L−L∗)‖2F ≤ αµ2dσ
∗
1

2
(3 +

√

3

2
)2(‖∆P ‖2F + ‖∆Q‖2F ). (2.51)

Proof.

‖ΠΩ(L−L∗)‖2F =
∑

i,j∈Ω
|(L−L∗)ij |2. (2.52)
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Using Lemma 2.7.9, in case (i),

∑

i,j∈Ω
|(L−L∗)ij |2

≤
∑

i,j∈Ω

µ1rσ
∗
1

4n
(3 +

√

3

2
)2(‖(X∆P )i·‖2 + ‖(Y ∆Q)j·‖2)2

≤
∑

i,j∈Ω

µ1rσ
∗
1

2n
(3 +

√

3

2
)2(‖(X∆P )i·‖22 + ‖(Y ∆Q)j·‖22)

≤ µ1rσ
∗
1

2n
(3 +

√

3

2
)2(

∑

i,j∈Ω
‖(X∆P )i·‖22 +

∑

i,j∈Ω
‖(Y ∆Q)j·‖22)

≤ µ1rσ
∗
1

2n
(3 +

√

3

2
)2(

∑

i

∑

j∈Ωi·

‖(X∆P )i·‖22 +
∑

j

∑

i∈Ω·j

‖(Y ∆Q)j·‖22)

≤ αµ1rσ
∗
1

2
(3 +

√

3

2
)2(‖X∆P ‖2F + ‖Y ∆Q‖2F )

≤ αµ1rσ
∗
1

2
(3 +

√

3

2
)2(‖∆P ‖2F + ‖∆Q‖2F ).

(2.53)

and in cases (ii) and (iii),

∑

i,j∈Ω
|(L−L∗)ij |2

≤
∑

i,j∈Ω

µ2dσ
∗
1

4n
(3 +

√

3

2
)2(‖(X∆P )i·‖2 + ‖(Y ∆Q)j·‖2)2

≤
∑

i,j∈Ω

µ2dσ
∗
1

2n
(3 +

√

3

2
)2(‖(X∆P )i·‖22 + ‖(Y ∆Q)j·‖22)

≤ µ2dσ
∗
1

2n
(3 +

√

3

2
)2(

∑

i,j∈Ω
‖(X∆P )i·‖22 +

∑

i,j∈Ω
‖(Y ∆Q)j·‖22)

≤ µ2dσ
∗
1

2n
(3 +

√

3

2
)2(

∑

i

∑

j∈Ωi·

‖(X∆P )i·‖22 +
∑

j

∑

i∈Ω·j

‖(Y ∆Q)j·‖22)

≤ αµ2dσ
∗
1

2
(3 +

√

3

2
)2(‖X∆P ‖2F + ‖Y ∆Q‖2F )

≤ αµ2dσ
∗
1

2
(3 +

√

3

2
)2(‖∆P ‖2F + ‖∆Q‖2F ).

(2.54)
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Lemma 2.7.11. Given that S = Tα+min(10α,0.1)(M −XPQ⊺Y ⊺), we have in case (i)

〈X⊺∇LH(P ,Q)Y ,PQ⊺ − P †Q†T +∆P∆Q⊺〉 ≥ ‖L−L∗‖2F

− µ1rσ
∗
1δ

4
((4 + β)α+ 2min(10α, 0.1))(3 +

√

3

2
)2 − 2αδ

βmin(10α, 0.1)
(
√

σ∗
1 +

√
2δ

4
)2

−

√
2 + 2

√

α
min(10α,0.1)

2

√
δ3(

√

σ∗
1 +

√
2δ

4
), (2.55)

and in cases (ii) and (iii)

〈X⊺∇LH(P ,Q)Y ,PQ⊺ − P †Q†T +∆P∆Q⊺〉 ≥ ‖L−L∗‖2F

− µ2dσ
∗
1δ

4
((4 + β)α+ 2min(10α, 0.1))(3 +

√

3

2
)2 − 2αδ

βmin(10α, 0.1)
(
√

σ∗
1 +

√
2δ

4
)2

−

√
2 + 2

√

α
min(10α,0.1)

2

√
δ3(

√

σ∗
1 +

√
2δ

4
). (2.56)

Proof.

〈X⊺∇LH(P ,Q)Y ,PQ⊺ − P †Q†T +∆P∆Q⊺〉
= 〈L+ S −L∗ − S∗,L−L∗ +X∆P∆Q⊺Y ⊺〉
≥ ‖L−L∗‖2F − |〈S − S∗,L−L∗〉| − |〈L+ S −L∗ − S∗,X∆P∆Q⊺Y ⊺〉|.

(2.57)

Following [138] lemma 2, we have

|〈S−S∗,L−L∗〉| ≤ ‖ΠΩ(L−L∗)‖2F +(1+
β

2
)‖Π∗

Ω\Ω(L−L∗)‖2F +
α

βmin(10α, 0.1)
‖L−L∗‖2F ,

(2.58)

where β > 0, Ω and Ω
∗ are supports of S and S∗ respectively.

On the other hand,

|〈L+ S −L∗ − S∗,X∆P∆Q⊺Y ⊺〉| ≤ |〈Π∗c
Ω ∩Ω

c(L−L∗),X∆P∆Q⊺Y ⊺〉|
+ |〈Π∗

Ω ∩Ω
c(∆M),X∆P∆Q⊺Y ⊺〉|, (2.59)

because ∆M has support Ωc. From Cauchy-Swartz inequality, we have

|〈Π∗c
Ω ∩Ω

c(L−L∗),X∆P∆Q⊺Y ⊺〉|
≤ ‖Π∗c

Ω ∩Ω
c(L−L∗)‖F ‖X∆P∆Q⊺Y ⊺‖F

≤ ‖L−L∗‖F ‖X∆P∆Q⊺Y ⊺‖F
≤ ‖L−L∗‖F ‖∆P ‖F ‖∆Q‖F

≤ δ

2
‖L−L∗‖F .

(2.60)
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From [138] lemma 2, we have

|〈Π∗
Ω ∩Ω

c(∆M),X∆P∆Q⊺Y ⊺〉| ≤
√

2α

min(10α, 0.1)
‖L−L∗‖F ‖X∆P∆Q⊺Y ⊺‖F

≤ δ

√

α

2min(10α, 0.1)
‖L−L∗‖F .

(2.61)

So,

|〈L+ S −L∗ − S∗,X∆P∆Q⊺Y ⊺〉| ≤ δ

2
‖L−L∗‖F + δ

√

α

2min(10α, 0.1)
‖L−L∗‖F

≤ δ

2
(1 +

√

2α

min(10α, 0.1)
)‖L−L∗‖F .

(2.62)

Together, we have

〈X⊺∇LH(P ,Q)Y ,PQ⊺ − P †Q†T +∆P∆Q⊺〉 ≥ ‖L−L∗‖2F − ‖ΠΩ(L−L∗)‖2F

−(1+
β

2
)‖Π∗

Ω\Ω(L−L∗)‖2F−
α

βmin(10α, 0.1)
‖L−L∗‖2F−

δ

2
(1+

√

2α

min(10α, 0.1)
)‖L−L∗‖F .

(2.63)

From Lemma 2.7.8, we have

〈X⊺∇LH(P ,Q)Y ,PQ⊺ − P †Q†T +∆P∆Q⊺〉 ≥ ‖L−L∗‖2F − ‖ΠΩ(L−L∗)‖2F

−(1+
β

2
)‖Π∗

Ω\Ω(L−L∗)‖2F−
2αδ

βmin(10α, 0.1)
(
√

σ∗
1+

√
2δ

4
)2−

√
2 + 2

√

α
min(10α,0.1)

2

√
δ3(

√

σ∗
1+

√
2δ

4
).

(2.64)

Since ΠΩ(L − L∗) and Π
∗
Ω
\Ω(L − L∗) have at most α + min(10α, 0.1)-fraction and α-fraction

non-zero entries per row and column respectively, from Lemma 2.7.10, we have in case (i)

〈X⊺∇LH(P ,Q)Y ,PQ⊺ − P †Q†T +∆P∆Q⊺〉

≥ ‖L−L∗‖2F − αµ1rσ
∗
1

2
(3 +

√

3

2
)2(‖∆P ‖2F + ‖∆Q‖2F )

− min(10α, 0.1)µ1rσ
∗
1

2
(3 +

√

3

2
)2(‖∆P ‖2F + ‖∆Q‖2F )

− αµ1rσ
∗
1

2
(1 +

β

2
)(3 +

√

3

2
)2(‖∆P ‖2F + ‖∆Q‖2F )

− 2αδ

βmin(10α, 0.1)
(
√

σ∗
1 +

√
2δ

4
)2 −

√
2 + 2

√

α
min(10α,0.1)

2

√
δ3(

√

σ∗
1 +

√
2δ

4
)

≥ ‖L−L∗‖2F − µ1rσ
∗
1δ

4
((4 + β)α+ 2min(10α, 0.1))(3 +

√

3

2
)2

− 2αδ

βmin(10α, 0.1)
(
√

σ∗
1 +

√
2δ

4
)2 −

√
2 + 2

√

α
min(10α,0.1)

2

√
δ3(

√

σ∗
1 +

√
2δ

4
),

(2.65)

67



2. Informed Non-Convex Robust Principal Component Analysis with Features

and in cases (ii) and (iii)

〈X⊺∇LH(P ,Q)Y ,PQ⊺ − P †Q†T +∆P∆Q⊺〉

≥ ‖L−L∗‖2F − αµ2dσ
∗
1

2
(3 +

√

3

2
)2(‖∆P ‖2F + ‖∆Q‖2F )

− min(10α, 0.1)µ2dσ
∗
1

2
(3 +

√

3

2
)2(‖∆P ‖2F + ‖∆Q‖2F )

− αµ2dσ
∗
1

2
(1 +

β

2
)(3 +

√

3

2
)2(‖∆P ‖2F + ‖∆Q‖2F )

− 2min(10α, 0.1)αδ

β
(
√

σ∗
1 +

√
2δ

4
)2 −

√
2 + 2

√

α
min(10α,0.1)

2

√
δ3(

√

σ∗
1 +

√
2δ

4
)

≥ ‖L−L∗‖2F − µ2dσ
∗
1δ

4
((4 + β)α+ 2min(10α, 0.1))(3 +

√

3

2
)2

− 2min(10α, 0.1)αδ

β
(
√

σ∗
1 +

√
2δ

4
)2 −

√
2 + 2

√

α
min(10α,0.1)

2

√
δ3(

√

σ∗
1 +

√
2δ

4
).

(2.66)

Lemma 2.7.12. When ‖F − F †‖2 ≤
√
2σ∗

r , given that ‖P ‖2 ≤
√

3σ∗

1

2 and ‖Q‖2 ≤
√

3σ∗

1

2 we have

〈∇PG(P ,Q),P − P †〉+ 〈∇QG(P ,Q),Q−Q†〉 ≥ 1

64
‖P ⊺P −Q⊺Q‖2F

+
1

64
(2
√

σ∗
rδ − δ)2 − 1

16
‖L−L∗‖2F −

√
2 +

√
3

32

√

σ∗
1δ

3. (2.67)

Proof.

P †TP † = (X⊺U∗
Σ

∗ 1

2R)⊺(X⊺U∗
Σ

∗ 1

2R)

= R⊺
Σ

∗ 1

2
TU∗TXX⊺U∗

Σ
∗ 1

2R

= R⊺
Σ

∗ 1

2
TU∗TU∗

Σ
∗ 1

2R

= R⊺
Σ

∗ 1

2
T
Σ

∗ 1

2R

= R⊺
Σ

∗ 1

2
TV ∗TV ∗

Σ
∗ 1

2R

= R⊺
Σ

∗ 1

2
TV ∗TY Y ⊺V ∗

Σ
∗ 1

2R

= (Y ⊺V ∗
Σ

∗ 1

2R)⊺(Y ⊺V ∗
Σ

∗ 1

2R)

= Q†TQ†.

(2.68)

Then, following [138] lemma 3, we have

〈∇PG(P ,Q),P − P †〉+ 〈∇QG(P ,Q),Q−Q†〉

=
1

32
‖P ⊺P −Q⊺Q‖2F +

1

32
〈P ⊺P −Q⊺Q,∆P ⊺∆P −∆Q⊺∆Q〉. (2.69)
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1

32
〈P ⊺P −Q⊺Q,∆P ⊺∆P −∆Q⊺∆Q〉

≤ 1

32
|〈P ⊺P −Q⊺Q,∆P ⊺∆P −∆Q⊺∆Q〉|

≤ 1

32
‖P ⊺P −Q⊺Q‖F ‖∆P ⊺∆P −∆Q⊺∆Q‖F

≤ 1

32
‖P ⊺P −Q⊺Q‖F (‖∆P ‖2F + ‖∆Q‖2F )

≤ 1

32
‖P ⊺P − P †TP † +Q†TQ† −Q⊺Q‖F δ

≤ 1

32
(‖P ⊺P − P †TP †‖F + ‖Q⊺Q−Q†TQ†‖F )δ

≤ 1

32
(‖P ⊺P − P ⊺P † + P ⊺P † − P †TP †‖F + ‖Q⊺Q−Q⊺Q† +Q⊺Q† −Q†TQ†‖F )δ

≤ 1

32
(‖P ⊺∆P +∆P ⊺P †‖F + ‖Q⊺∆Q+∆Q⊺Q†‖F )δ

≤ 1

32
((‖P ‖2 + ‖P †‖2)‖∆P ‖F + (‖Q‖2 + ‖Q†‖2)‖∆Q‖F )δ

≤ 1

32
(
√

σ∗
1 +

√

3σ∗
1

2
)(‖∆P ‖F + ‖∆Q‖F )δ

≤
√
2 +

√
3

32

√

σ∗
1δ

3.

(2.70)

Following [138] lemma 3, we have

1

32
‖P ⊺P −Q⊺Q‖2F ≥ 1

64
‖P ⊺P −Q⊺Q‖2F +

1

64
(
√
2‖∆FF †T ‖F − δ)2 − 1

16
‖L−L∗‖2F , (2.71)

where we have used the fact that −‖PQ⊺ − P †Q†T ‖2F ≥ −‖XPQ⊺Y ⊺ −XP †Q†TY ⊺‖2F .

We know that F † =

[

P †

Q†

]

=

[

X⊺U∗

Y ⊺V ∗

]

Σ
∗ 1

2R. If we let E =

[

X⊺U∗

Y ⊺V ∗

]

, then E⊺E = [U∗TX V ∗TY ]

[

X⊺U∗

Y ⊺V ∗

]

=

2I ∈ R
r×r. So

F † = (

√
2

2

[

X⊺U∗

Y ⊺V ∗

]

)(
√
2Σ∗ 1

2 )R, (2.72)

is the SVD of F †. Therefore,

1

32
‖P ⊺P −Q⊺Q‖2F ≥ 1

64
‖P ⊺P −Q⊺Q‖2F +

1

64
(2
√

σ∗
rδ − δ)2 − 1

16
‖L−L∗‖2F . (2.73)

Thus, altogether we have

〈∇PG(P ,Q),P − P †〉+ 〈∇QG(P ,Q),Q−Q†〉 ≥ 1

64
‖P ⊺P −Q⊺Q‖2F

+
1

64
(2
√

σ∗
rδ − δ)2 − 1

16
‖L−L∗‖2F −

√
2 +

√
3

32

√

σ∗
1δ

3. (2.74)
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Lemma 2.7.13. When S = Tα+min(10α,0.1)(M−XPQ⊺Y ⊺), given that ‖P ‖2 ≤
√

3σ∗

1

2 and ‖Q‖2 ≤
√

3σ∗

1

2 , we have

‖∇LH(P ,Q)‖2F ≤ (1 +

√

2α

min(10α, 0.1)
)2‖L−L∗‖2F , (2.75)

‖∇PG(P ,Q)‖2F + ‖∇QG(P ,Q)‖2F ≤ 3σ∗
1

256
‖P ⊺P −Q⊺Q‖2F . (2.76)

Proof.

‖∇PG(P ,Q)‖2F + ‖∇QG(P ,Q)‖2F
= ‖ 1

16
P (P ⊺P −Q⊺Q)‖2F + ‖ 1

16
Q(Q⊺Q− P ⊺P )‖2F

≤ 1

256
(‖P ‖22 + ‖Q‖22)‖P ⊺P −Q⊺Q‖2F

≤ 1

256
(
3σ∗

1

2
+

3σ∗
1

2
)‖P ⊺P −Q⊺Q‖2F

≤ 3σ∗
1

256
‖P ⊺P −Q⊺Q‖2F .

(2.77)

From Lemma 2.7.11, we have

‖∇LH(P ,Q)‖F ≤ (1 +

√

2α

min(10α, 0.1)
)‖L−L∗‖F , (2.78)

so

‖∇LH(P ,Q)‖2F ≤ (1 +

√

2α

min(10α, 0.1)
)2‖L−L∗‖2F . (2.79)

We conduct the proof of Theorem 2 by induction.

If α is small, then from Theorem 1 we have ‖U0Σ0V
⊺

0 − L∗‖2 ≤ 1
2σ

∗
1 . By Weyl’s theorem, we

have

‖U0Σ

1

2

0 ‖2 ≤
√

3σ∗
1

2
, (2.80)

‖V0Σ

1

2

0 ‖2 ≤
√

3σ∗
1

2
, (2.81)

and

‖P0‖2 ≤ ‖X⊺U0Σ

1

2

0 ‖2 ≤ ‖X‖2‖U0Σ

1

2

0 ‖2 ≤
√

3σ∗
1

2
, (2.82)

70



2.7. Appendix

‖Q0‖2 ≤ ‖Y ⊺V0Σ

1

2

0 ‖2 ≤ ‖Y ‖2‖V0Σ

1

2

0 ‖2 ≤
√

3σ∗
1

2
. (2.83)

In case (i), we thus have

‖XΠP(P0)‖2,∞ ≤
√

2µ1r

n
‖P0‖2 ≤

√

3σ∗
1µ1r

n
, (2.84)

‖Y ΠQ(Q0)‖2,∞ ≤
√

2µ1r

n
‖Q0‖2 ≤

√

3σ∗
1µ1r

n
. (2.85)

And it also follows that d(ΠP(Pt),ΠQ(Qt),P
∗,Q∗) ≤ d(Pt,Qt,P

∗,Q∗).

By definition,

‖P − P †‖2F ≤ δ,

‖P − P †‖2 ≤ ‖P − P †‖F ≤ δ
1

2 .
(2.86)

And from Weyl’s theorem, if δ
1

2 ≤ (
√

3
2 − 1)

√

σ∗
1 , we have

‖P ‖2 ≤
√

3σ∗
1

2
. (2.87)

Similarly, we also have

‖Q‖2 ≤
√

3σ∗
1

2
. (2.88)

In cases (ii) and (iii), we have

‖XP ‖2,∞ ≤ ‖P ‖2‖X‖2,∞ ≤
√

3σ∗
1

2
×
√

µ2d

n
≤

√

3dµσ∗
1

2n
, (2.89)

‖Y Q‖2,∞ ≤ ‖Q‖2‖Y ‖2,∞ ≤
√

3σ∗
1

2
×
√

µ2d

n
≤

√

3dµσ∗
1

2n
. (2.90)
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Now, we verify that δ diminishes:

δt+1 = ‖Pt+1 − P
†
t+1‖2F + ‖Qt+1 −Q

†
t+1‖2F

≤ ‖Pt+1 − P
†
t ‖2F + ‖Qt+1 −Q

†
t‖2F

= ‖Pt − η∇PHt − η∇PGt − P
†
t ‖2F + ‖Qt − η∇QHt − η∇QGt −Q

†
t‖2F

= δt − 2η〈∇PHt +∇PGt,Pt − P
†
t 〉 − 2η〈∇QHt +∇QGt,Qt −Q

†
t〉

+ η2‖∇PHt +∇PGt‖2F + η2‖∇QHt +∇QGt‖2F
= δt + η2‖∇PHt +∇PGt‖2F + η2‖∇QHt +∇QGt‖2F − 2η〈∇PGt,Pt − P

†
t 〉

− 2η〈∇QGt,Qt −Q
†
t〉 − 2η〈∇LHt,X(PtQ

⊺

t − P
†
t Q

†T
t +∆Pt∆Q

⊺

t )Y
⊺〉

≤ δt − 2η〈∇PGt,Pt − P
†
t 〉 − 2η〈∇QGt,Qt −Q

†
t〉

− 2η〈∇LHt,X(PtQ
⊺

t − P
†
t Q

†T
t +∆Pt∆Q

⊺

t )Y
⊺〉

+ η2(‖∇PHt‖F + ‖∇PGt‖F )2 + η2(‖∇QHt‖F + ‖∇QGt‖F )2

≤ δt − 2η〈∇PGt,Pt − P
†
t 〉 − 2η〈∇QGt,Qt −Q

†
t〉

− 2η〈∇LHt,X(PtQ
⊺

t − P
†
t Q

†T
t +∆Pt∆Q

⊺

t )Y
⊺〉

+ 2η2(‖X⊺∇LHtY Q‖2F + ‖∇PGt‖2F + ‖(X⊺∇LHtY )⊺P ‖2F + ‖∇QGt‖2F )
≤ δt − 2η〈∇PGt,Pt − P

†
t 〉 − 2η〈∇QGt,Qt −Q

†
t〉

− 2η〈∇LHt,X(PtQ
⊺

t − P
†
t Q

†T
t +∆Pt∆Q

⊺

t )Y
⊺〉

+ 2η2(‖∇QGt‖2F + ‖∇PGt‖2F )
+ 2η2(‖Q‖22‖X⊺∇LHtY ‖2F + ‖P ‖22‖(X⊺∇LHtY )⊺‖2F )

≤ δt − 2η〈∇PGt,Pt − P
†
t 〉 − 2η〈∇QGt,Qt −Q

†
t〉

− 2η〈∇LHt,X(PtQ
⊺

t − P
†
t Q

†T
t +∆Pt∆Q

⊺

t )Y
⊺〉

+ 2η2(‖∇QGt‖2F + ‖∇PGt‖2F )
+ 2η2(‖Q‖22‖X‖22‖Y ‖22‖∇LHt‖2F + ‖P ‖22‖X‖22‖Y ‖22‖∇LHt‖2F )

≤ δt − 2η〈∇PGt,Pt − P
†
t 〉 − 2η〈∇QGt,Qt −Q

†
t〉

− 2η〈∇LHt,X(PtQ
⊺

t − P
†
t Q

†T
t +∆Pt∆Q

⊺

t )Y
⊺〉

+ 2η2(‖∇QGt‖2F + ‖∇PGt‖2F )

+ 2η2(
3σ∗

1

2
‖∇LHt‖2F +

3σ∗
1

2
‖∇LHt‖2F )

≤ δt − 2η〈∇PGt,Pt − P
†
t 〉 − 2η〈∇QGt,Qt −Q

†
t〉

− 2η〈∇LHt,X(PtQ
⊺

t − P
†
t Q

†T
t +∆Pt∆Q

⊺

t )Y
⊺〉

+ 2η2(‖∇QGt‖2F + ‖∇PGt‖2F + 3σ∗
1‖∇LHt‖2F ).

(2.91)
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Applying Lemma 2.7.13, we get

δt+1 ≤ δt − 2η〈∇PGt,Pt − P
†
t 〉 − 2η〈∇QGt,Qt −Q

†
t〉

− 2η〈∇LHt,X(PtQ
⊺

t − P
†
t Q

†T
t +∆Pt∆Q

⊺

t )Y
⊺〉

+ η2(
3σ∗

1

128
‖P ⊺

t Pt −Q
⊺

tQt‖2F + 6(1 +

√

2α

min(10α, 0.1)
)2σ∗

1‖Lt −L∗
t ‖2F ).

(2.92)

Applying Lemma 2.7.12, we get

δt+1 ≤ δt + η(
1

8
‖Lt −L∗

t ‖2F − 1

32
‖P ⊺

t Pt −Q
⊺

tQt‖2F )

+ η(

√
2 +

√
3

16

√

σ∗
1δ

3
t −

1

32
(2
√

σ∗
rδt − δt)

2)

− 2η〈∇LHt,X(PtQ
⊺

t − P
†
t Q

†T
t +∆Pt∆Q

⊺

t )Y
⊺〉

+ η2(
3σ∗

1

128
‖P ⊺

t Pt −Q
⊺

tQt‖2F + 6(1 +

√

2α

min(10α, 0.1)
)2σ∗

1‖Lt −L∗
t ‖2F ).

(2.93)

Applying Lemma 2.7.11, we have in case (i)

δt+1

≤ δt − η(
1

32
‖P ⊺

t Pt −Q
⊺

tQt‖2F +
15

8
‖Lt −L∗

t ‖2F )

+ η(

√
2 +

√
3

16

√

σ∗
1δ

3
t −

1

32
(2
√

σ∗
rδt − δt)

2 + (
√
2 + 2

√

α

min(10α, 0.1)
)
√

δ3t (
√

σ∗
1 +

√
2δt
4

))

+ η(
µ1rσ

∗
1δt

2
((4 + β)α+ 2min(10α, 0.1))(3 +

√

3

2
)2 +

4αδt
βmin(10α, 0.1)

(
√

σ∗
1 +

√
2δt
4

)2)

+ η2(
3σ∗

1

128
‖P ⊺

t Pt −Q
⊺

tQt‖2F + 6(1 +

√

2α

min(10α, 0.1)
)2σ∗

1‖Lt −L∗
t ‖2F ),

(2.94)

and in cases (ii) and (iii)

δt+1

≤ δt − η(
1

32
‖P ⊺

t Pt −Q
⊺

tQt‖2F +
15

8
‖Lt −L∗

t ‖2F )

+ η(

√
2 +

√
3

16

√

σ∗
1δ

3
t −

1

32
(2
√

σ∗
rδt − δt)

2 + (
√
2 + 2

√

α

min(10α, 0.1)
)
√

δ3t (
√

σ∗
1 +

√
2δt
4

))

+ η(
µ2dσ

∗
1δt

2
((4 + β)α+ 2min(10α, 0.1))(3 +

√

3

2
)2 +

4αδt
βmin(10α, 0.1)

(
√

σ∗
1 +

√
2δt
4

)2)

+ η2(
3σ∗

1

128
‖P ⊺

t Pt −Q
⊺

tQt‖2F + 6(1 +

√

2α

min(10α, 0.1)
)2σ∗

1‖Lt −L∗
t ‖2F ),

(2.95)
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If 10α < 0.1, then min(10α, 0.1) = 10α.

Therefore, we have in case (i)

δt+1

≤ δt − η(
1

32
‖P ⊺

t Pt −Q
⊺

tQt‖2F +
15

8
‖Lt −L∗

t ‖2F )

+ η(

√
2 +

√
3

16

√

σ∗
1δ

3
t −

1

32
(2
√

σ∗
rδt − δt)

2 + (
√
2 +

√

2

5
)
√

δ3t (
√

σ∗
1 +

√
2δt
4

))

+ η(
µ1rσ

∗
1δt

2
((4 + β)α+ 20α)(3 +

√

3

2
)2 +

2δt
5β

(
√

σ∗
1 +

√
2δt
4

)2)

+ η2(
3σ∗

1

128
‖P ⊺

t Pt −Q
⊺

tQt‖2F + 6(1 +

√

1

5
)2σ∗

1‖Lt −L∗
t ‖2F )

≤ δt − η(
1

32
‖P ⊺

t Pt −Q
⊺

tQt‖2F +
15

8
‖Lt −L∗

t ‖2F )

+ η(

√
2 +

√
3

16

√

σ∗
1δ

3
t −

1

32
(2
√

σ∗
rδt − δt)

2 + (
√
2 + 2

√
10)

√

δ3t (
√

σ∗
1 +

√
2δt
4

))

+ η(
µ1rσ

∗
1δt

2
((24 + β)α)(3 +

√

3

2
)2 +

40δt
β

(
√

σ∗
1 +

√
2δt
4

)2)

+ η2(
3σ∗

1

128
‖P ⊺

t Pt −Q
⊺

tQt‖2F + 6(1 +
√
20)2σ∗

1‖Lt −L∗
t ‖2F ),

(2.96)

and in cases (ii) and (iii)

δt+1

≤ δt − η(
1

32
‖P ⊺

t Pt −Q
⊺

tQt‖2F +
15

8
‖Lt −L∗

t ‖2F )

+ η(

√
2 +

√
3

16

√

σ∗
1δ

3
t −

1

32
(2
√

σ∗
rδt − δt)

2 + (
√
2 + 2

√
10)

√

δ3t (
√
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On the other hand, we have min(10α, 0.1) = 0.1 if 10α ≥ 0.1.

Then, we have in case (i)
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But α ≤ 1, so
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And, similarly, we have in cases (ii) and (iii)
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If η ≤ 5
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and in cases (ii) and (iii)
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If δt ≤ 2σ∗
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and in cases (ii) and (iii)
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In case (i), if α ≤ 1
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, we have
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In case (ii), if α ≤ 1
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In case (iii), if α ≤ 1
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In case (i), we require that
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which leads to
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Since other constraints on α are milder, for β large enough, there exist c1 and c2 such that if α ≤
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Since other constraints on α are milder, for β large enough, there exist c1 and c2 such that if α ≤
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which leads to
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Since other constraints on α are milder, for β large enough, there exist c5 and c6 such that if α ≤
c5min( 1

µ2dκ
, 1

µ1(κr)
3
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CHAPTER 3

Side Information in Robust Principal

Component Analysis: Algorithms and

Applications

3.1 Introduction

In this chapter, we investigate the idea of using a noisy approximation of the low-rank component

to guide PCP. Knowledge regarding the low-rank component, albeit noisy, is available in many ap-

plications. In background subtraction, we may find some frames of the video that do not contain

changes and therefore may be used to accurately estimate the background. Another example con-

cerns the problem of disentangling identity and expression components in expressive faces, where the

low-rank component is roughly similar to the neutral face. Note that side information which has the

same form as the source is already subject to wide-spread usage. Watermark detection methods re-

quire a reference image to identify ownership [35]. Automated photo tagging explores visually similar

social images [127]. Locality preserving projection can be enhanced by exploiting similar pairs of

patterns [3]. Spatial and temporal correlation can improve signal recovery algorithms in compress-

ive imaging [114]. In content-based image retrieval, historical feedback log data can help retrieve

semantically relevant images [140]. Low-resolution images can help adapt a high-resolution com-

pressive sensing system [121]. Near-accurate fingerprint or DNA can be used as side information to

hack a biometric authentication system [57].

Our contributions are summarised as follows:

• A novel convex program is proposed to use side information, which is a noisy approximation of
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the low-rank component, within the PCP framework with a provably convergent solver.

• Furthermore, we extend our proposed PCP model using side information to exploit prior know-

ledge regarding the column and row spaces of the low-rank component in a more general al-

gorithmic framework.

• We demonstrate the applicability and effectiveness of the proposed approaches in several applic-

ations, namely background subtraction, facial image denoising as well as face recognition and

facial expression classification.

• We also show that our proposed methods can mitigate the transductive constraint of RPCA.

With side information, training can be performed on fewer samples and hence reducing the

computational cost.

3.2 Models

In this section, the proposed RPCA models with side information are introduced. In particular, we

propose to incorporate the side information into PCP by using the trace distance of the difference

between the low-rank component and the noisy estimate, which is reasonable if their difference is

of low rank. However, we show empirically (Section 3.3) that it also works if the difference is full-

rank. This may be attributed to the fact that the trace distance is a natural distance metric between two

dissimilar distributions from Kolmogorov−Smirnov statistics [82]. Besides that, this is a generalisation

of the compressed sensing with side information where the l1 norm has been used in order to measure

the distance of the target signal with prior information [79].

3.2.1 The PCPS model

Assuming that a noisy estimate of the low-rank component of the data W ∈ R
n1×n2 is available, we

propose the following model of PCP using side information (PCPS):

minimize
L,S

‖L‖∗ + κ‖L−W ‖∗ + λ‖S‖1

s. t. to L+ S = M ,

(3.1)

where κ > 0, λ > 0 are parameters that weigh the effects of side information and noise sparsity.

The proposed PCPS can be revamped to generalise the previous attempt of PCPF by the following

objective of PCPS with features (PCPSF):

minimize
H,S

‖H‖∗ + κ‖H −D‖∗ + λ‖S‖1

s. t. to XHY ⊺ + S = M , XWY ⊺ = D,

(3.2)
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where H ∈ R
d1×d2 ,D ∈ R

d1×d2 are bilinear mappings for the recovered low-rank matrix L and side

information W respectively. If W = L + C, then D = X⊺(L + C)Y = L + X⊺CY . That is,

we have reduced the noise onto a smaller region R
d×d rather than R

n×n which has made the problem

easier to solve. Note that the low-rank matrix L is recovered from the optimal solution (H∗,S∗) to

objective (3.2) via L = XH∗Y ⊺. If side information W is not available, PCPSF reduces to PCPF by

setting κ to zero. If the features X,Y are not present either, PCP can be restored by fixing both of them

at identity. However, when only the side information W is accessible, objective (3.2) is transformed

back into PCPS.

3.2.2 The algorithm

If we substitute E for H −D and orthogonalise X and Y , the optimisation problem (3.2) is identical

to the following convex but non-smooth problem:

minimize
H,S

‖H‖∗ + κ‖E‖∗ + λ‖S‖1

s. t. to XHY ⊺ + S = M , E −H = −X⊺WY ,

(3.3)

which is amenable to the multi-block alternating direction method of multipliers (ADMM).

The corresponding augmented Lagrangian of (3.3) is:

L(H,E,S,Z,N) = ‖H‖∗ + κ‖E‖∗ + λ‖S‖1
+ 〈Z,M − S −XHY ⊺〉+ µ

2
‖M − S −XHY ⊺‖2F

+ 〈N ,H −E −X⊺WY 〉+ µ

2
‖H −E −X⊺WY ‖2F ,

(3.4)

where Z ∈ R
n1×n2 and N ∈ R

d1×d2 are Lagrange multipliers and µ is the learning rate.

The ADMM operates by carrying out repeated cycles of updates till convergence. During each

cycle, H,E,S are updated serially by minimising (3.4) with other variables fixed. Afterwards, Lag-

range multipliers Z,N are updated at the end of each iteration. Direct solutions to the single variable

minimisation subproblems rely on the shrinkage and the singular value thresholding operators [21]. Let

Sτ (a) ≡ sgn(a)max(|a| − τ, 0) serve as the shrinkage operator, which naturally extends to matrices,

Sτ (A), by applying it to matrix A element-wise. Similarly, let Dτ (A) ≡ USτ (Σ)V ⊺ be the singular

value thresholding operator on real matrix A, with A = UΣV ⊺ being the singular value decomposi-

tion (SVD) of A.

Minimising (3.4) w.r.t. H at fixed E,S,Z,N is equivalent to the following:

argmin
H

‖H‖∗ + µ‖P −XHY ⊺‖2F , (3.5)
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Algorithm 5 ADMM solver for PCPSF

Input: Observation M , side information W , features X,Y , parameters κ, λ > 0, scaling ratio α >
1.

1: Initialize: Z = 0, N = E = H = 0, µ = 1
‖M‖2 .

2: while not converged do

3: S = Sλµ−1(M −XHY ⊺ + 1
µZ)

4: H = X⊺D 1

2µ
(12(M − S +W + 1

µZ +X(E − 1
µN)Y ⊺))Y

5: E = Dκµ−1(H −X⊺WY + 1
µN)

6: Z = Z + µ(M − S −XHY ⊺)
7: N = N + µ(H −E −X⊺WY )
8: µ = µ× α
9: end while

Return: L = XHY ⊺, S

where P = 1
2(M − S +W + 1

µZ +X(E − 1
µN)Y ⊺). Its solution is shown to be X⊺D 1

2µ
(P )Y .

Furthermore, for E,

argmin
E

L = argmin
E

κ‖E‖∗ +
µ

2
‖Q−E‖2F , (3.6)

where Q = H −X⊺WY + 1
µN , whose update rule is Dκ

µ
(Q), and for S,

argmin
S

L = argmin
S

λ‖S‖1 +
µ

2
‖R− S‖2F , (3.7)

where R = M−XHY ⊺+ 1
µZ with a closed-form solution Sλµ−1(R). Finally, Lagrange multipliers

are updated as usual:

Z = Z + µ(M − S −XHY ⊺), (3.8)

N = N + µ(H −E −X⊺WY ). (3.9)

The overall algorithm is summarised in Algorithm 5.

3.2.3 Complexity and convergence

Orthogonalisation of the features X,Y via the Gram-Schmidt process has an operation count of

O(n1d
2
1) and O(n2d

2
2) respectively. The H update in Step 4 is the most costly step of each iteration in

Algorithm 5. Specifically, the SVD required in the singular value thresholding action dominates with

O(min(n1n
2
2, n

2
1n2)) complexity.

It has been recently established that for a 3-block separable convex minimisation problem, the dir-

ect extension of the ADMM achieves global convergence with linear convergence rate if one block

in the objective is sub-strongly monotonic [115]. In our case, it can be shown that ‖S‖1 possesses

82



3.3. Experiments

such sub-strong monotonicity. We have also used the fast continuation technique to increase µ in-

crementally for accelerated superlinear performance. The cold start initialisation strategies for vari-

ables H,E and Lagrange multipliers Z,N are described in [17]. Besides, we have scheduled S to

be updated first. As for stopping criteria, we have employed the Karush-Kuhn-Tucker (KKT) feas-

ibility conditions. Namely, within a maximum number of 1000 iterations, when the maximum of

‖M −Sk −XHkY
⊺‖F /‖M‖F and ‖Hk −Ek −X⊺WY ‖F /‖M‖F dwindles from a pre-defined

threshold ǫ, the algorithm is terminated, where k signifies values at the kth iteration.

3.3 Experiments

In this section, we illustrate the enhancement made by side information through both numerical simula-

tions and real-world applications. First, we compare the recoverability of our proposed algorithms with

state-of-the-art methods for incorporating features or dictionaries, i.e. PCPF [33] and RAPS [101] on

synthetic data as well as the baseline PCP [21] when there are no features available. Second, we show

how powerful side information can be for the task of object segmentation in video pre-processing.

Third, we demonstrate that side information is instructive in the low-dimensionality face modeling

from images of different illuminations. Last, we reveal that the more accurately reconstructed expres-

sions in the light of side information lead to better emotion classification.

For RAPS, clean subspace X is used instead of the observation M itself as the dictionary in LRR

[67]. PCP is solved via the inexact ALM and the heuristics for predicting the dimension of principal

singular space is not adopted here due to its lack of validity on uncharted real data. We also include

Partial Sum of Singular Values (PSSV) [84] in our comparison for its stated advantage in view of the

limited number of expression observations available.

3.3.1 Parameter calibration

The process of tuning the algorithmic parameters for various models is described in the appendix.

Although theoretical determination of κ and λ is beyond the scope of this research, we nevertheless

provide empirical guidance based on extensive experiments. λ = 1/
√

max(n1, n2) for a general

matrix of dimension n1 × n2 from PCP works well for both of our proposed models. κ depends

on the quality of the side information. When the side information is accurate, a large κ should be

selected to capitalise upon the side information as much as possible, whereas when the side information

is improper, a small κ should be picked to sidestep the dissonance caused by the side information.

Here, we have discovered that a κ value of 0.2 works best with synthetic data and a value of 0.5 is

suited for public video sequences. It is worth emphasising again that prior knowledge of the structural

information about the data yields more appropriate values for κ and λ.
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3.3.2 Phase transition on synthetic datasets

Figure 3.1: Domains of recovery by various algorithms: (I,III) for random signs and (II,IV) for coher-

ent signs. (a) for entry-wise corruptions, (b) for deficient ranks and (c) for distorted singular values.

We now focus on the recoverability problem, i.e. recovering matrices of varying ranks from errors of

varying sparsity. True low-rank matrices are created via L0 = JK⊺, where 200×r matrices J ,K have

independent elements drawn randomly from a Gaussian distribution of mean 0 and variance 5 ·10−3 so

r is the rank of L0. Next, we generate 200× 200 error matrices S0, which possess ρs · 2002 non-zero

elements located randomly within the matrix. We consider two types of entries for S0: Bernoulli ±1

and PΩ(sgn(L0)), where P is the projection operator and Ω is the support set of S0. M = L0 + S0

thus becomes the simulated observation. For each (r, ρs) pair, three observations are constructed. The
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recovery is successful if for all these three problems,

‖L−L0‖F
‖L0‖F

< 10−3 (3.10)

from the recovered L. In addition, let L0 = UΣV ⊺ be the SVD of L0. Feature X is formed by

randomly interweaving column vectors of U with d arbitrary orthonormal bases for the null space of

U⊺, while permuting the expanded columns of V with d random orthonormal bases for the kernel of

V ⊺ forms feature Y . Hence, the feasibility conditions are fulfilled: C(X) ⊇ C(L0), C(Y ) ⊇ C(L⊺

0),

where C is the column space operator.

Entry-wise corruptions. For these trials, we construct the side information by directly adding small

Gaussian noise to each element of L0: Lij → Lij + N (0, 2.5r · 10−9), i, j = 1, 2, · · · , 200. As a

result, the standard deviation of the error in each element is 1% of that among the elements themselves.

On average, the Frobenius percent error, ‖W −L0‖F /‖L0‖F , is 1%. Such side information is genuine

in regard to the fact that classical PCA with accurate rank is not able to eliminate the noise [105]. For

d = 10, Figures 3.1(a.I) and 3.1(a.II) plot results from PCPF, RAPS and PCPSF. On the other hand,

the situation with no available features is investigated in Figures 3.1(a.III) and 3.1(a.IV) for PCP and

PCPS. The frontier of PCPF has been advanced by PCPSF everywhere for both sign types. Especially

at low ranks, errors with much higher density can be removed. Without features, PCPS surpasses PCP

by and large with significant expansion at small sparsity for both cases.

Deficient ranks. Now we first make a new matrix Σ
′ by retaining only the singular values from σ1 to

σ90% in Σ. Then, side information is constructed according to W = UΣ
′V ⊺, aka hard thresholding.

As rank increases, Frobenius percent error of W decreases from 23.3% to 5.8% sublinearly. Figures

3.1(b.I) and 3.1(b.II) show results from PCPF, RAPS and PCPSF where d is again kept at 10. The

corresponding cases with no features are presented in Figures 3.1(b.III) and 3.1(b.IV) for PCP and

PCPS. Notwithstanding the most spurious side information, PCPSF and PCPS have reclaimed the

largest region unattainable by PCPF and PCP respectively for the two signs.

Distorted singular values. Here, we produce the matrix Σ
′ by adding Gaussian noise to singular

values in Σ: σi → σi + 0.01 · N (0, σ2
i ) for all i. Next, side information is formed by W = UΣ

′V ⊺.

The mean Frobenius percent error in W is 1%. With d relaxed to 50, recoverability diagrams for

PCPF, RAPS, PCPSF and PCP, PCPS are drawn in Figures (c.I), (c.II) and (c.III), (c.IV). We observe

substantial growth of recoverability for PCPS over PCP across the full range of ranks. And with

features, there is still omniscient gain in recoverablity for PCPSF against PCPF, which is marked at

low ranks.

We remark that in unrecoverable areas, PCPS and PCPSF still obtain much smaller values of ‖L−
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 3.2: Comparison of face denoising ability: In row I, (a, e) sample frames from subjects 2

and 33; (b, f) single-person PCP; (c, g) single-person PCPF; (h, i) multi-person PCP and PCPF; (d)

average of other subjects. In row II, (a, e) average of a single subject; (b, f) single-person PCPS; (c,

g) single-person PCPSF; (h, i) multi-person PCPS and PCPSF; (d) PCPS using the side information

above.

L0‖F . In view of the marginal improvement of RAPS contrasted with PCPF and PCPSF, we will

not consider it any longer. Results from RPCAG and PSSV are worse than PCP (see the appendix).

FRPCAG fails to recover anything at all.

3.3.3 Face denoising under variable illumination

It has been previously proved that a convex Lambertian surface under distant and isotropic lighting has

an underlying model that spans a 9-D linear subspace. Albeit faces can be described as Lambertian,

it is only approximate and harmonic planes are not real images due to negative pixels. In addition,

theoretical lighting conditions cannot be realised and there are unavoidable occlusion and albedo vari-

ations. It is thus more natural to decompose facial image formation as a low-rank component for face

description and a sparse component for defects. What is more, we suggest that further boost to the per-

formance of facial characterisation can be gained by leveraging an image which faithfully represents

the subject.

We consider images of a fixed pose under different illuminations from the extended Yale B database

for testing. Ten subjects were randomly chosen and all 64 images were studied for each person. For

single-person experiments, 32556×64 observation matrices were formed by vectorising each 168×192

image and the side information was chosen to be the average of all images, tiled to the same size as the

observation matrix for each subject. For the multiperson experiment, both single-person observation

and side information matrices were concatenated into 32556× 640 matrices respectively.

For PCPF and PCPSF to run, we learn the feature dictionary following an approach by Vishal et
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al [88]. In a nutshell, the feature learning process can be treated as a sparse encoding problem. More

specifically, we simultaneously seek a dictionary D ∈ R
n1×c and a sparse representation B ∈ R

c×n2

such that:

minimize
D,B

‖M −DB‖2F

s. t. to γi ≤ t for i = 1 . . . n2,

(3.11)

where c is the number of atoms, γi’s count the number of non-zero elements in each sparsity code and

t is the sparsity constraint factor. This can be solved by the K-SVD algorithm. Here, feature X is

the dictionary D, feature Y corresponds to a similar solution using the transpose of the observation

matrix as input and the sparse codes are irrelevant. For implementation details, we set c to 40, t to

40 and used 10 iterations. Because K-SVD could not converge in reasonable time for the multiperson

experiment, we resorted to classical PCA applied to the observation matrix to obtain features X,Y of

dimension 400.

As a visual illustration, two challenging cases are exhibited in Figure 3.2 (PSSV, RPCAG, FRPCAG

do not improve upon PCP and are shown in the appendix). For subject 2, it is clearly evident that PCPS

and PCPSF outperform the best existing methods through the complete elimination of acquisition

faults. More surprisingly, PCPSF even manages to restore the flash in the pupils that is not present

in the side information. For subject 33, PCPS indubitably reconstructs a more vivid left eye than that

from PCP which is only discernible. With that said, PCPSF still prevails by uncovering more shadows,

especially around the medial canthus of the left eye, and revealing a more distinct crease in the upper

eyelid as well a more translucent iris. We also notice that results from the single-person experiment

outdo their counterparts from the multiperson experiment. Thence, we will focus on a single subject

alone.

To quantitatively verify the improvement made by our proposed approaches, we examine the struc-

tural information contained within the deionised eigenfaces. Singular values of the recovered low-rank

matrices from all algorithms are plotted in Figure 3.3. Singular values decease most sharply for PCPSF

followed by PCPS. By the theoretical limit, they are orders of magnitude smaller than those values from

other methods. This validates our proposed approaches.

We further unmask the strength of PCPS by considering the stringent side information made of the

average of other subjects. Surprisingly, PCPS still manages to remove the noise recovering an authentic

image (see Figure 3.2 (d)).
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Figure 3.3: Log-scale singular values of the denoised matrices: (a) subject 2; (b) subject 33; (c) all

subjects.

3.3.4 Background subtraction from surveillance video

We show that useful side information can help achieve better background restoration through the ap-

plication of our proposed algorithm to a background-foreground separation scenario. One video se-

quence from the PETS 2006 dataset and one from the I2R dataset were utilised for evaluation. Each

consists of scenes at a hall where people walk intermittently. 200 consecutive frames of 720 × 576
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resolution grayscale images were stacked by columns into a 414720 × 200 observation matrix from

the first video and 200 frames of 176 × 144 images from the second video were stacked into another

25344 × 200 observation matrix. Two side information arrays comprised columns that are copies of

a vectorised photo which contains an empty hallway. To commence object detection, PCP and PCPS

were first run to extract the backgrounds. Then objects were recovered by calculating the absolute

values of the difference between the original frame and the estimated background. Since parameters

for dictionary learning need exhaustive search, we will not be comparing PCPF and PCPSF for what

follows.

We quantitatively compare the performance of the competing methods according to the weighted F-

measure [77] against manually annotated bounding boxes provided as the ground truth. The resulting

scores for each frame are presented in Figure 3.5. From the consistently higher precision statistics,

the merit of PCPS over PCP is confirmed. For qualitative reference, representative images of the

recovered background and foreground from all methods are listed in Figure 3.4 (For space reasons,

we have only included the most noticeable sector. See the appendix for whole images.). PCP and its

variants only partially detect infrequent moving objects, people who stop moving for extended periods

of time, leaving ghost artifacts in the background. In contrast, PCPS segments a fairly sharp silhouette

of slowly moving objects to produce a much cleaner background, promoting its novelty.

To further unravel of the robustness of our propositions, shortened videos from PETS and Airport

consisting of 60 frames are analysed via PCPS. Figures 3.4 (c,d) & (o,p) show that PCPS with less

input can achieve comparative or better results than PCP with more input. This suggests that the

transductive constraint of RPCA no longer applies because with the help of side information we can

run PCPS on fewer frames rather than the entire collection every time new observation arrives. The

speed-ups for PETS and Airport are 2.44× and 2.62× respectively.
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) (p)

Figure 3.4: Background subtraction results for two sample frames, PETS in row I and Airport in row II:

(a) original images; (b) ground truth; (c,d) PCP; (e,f) PCPS; (g,h) PSSV; (i,j) RPCAG; (k,l ) FRPCAG;

(m,n) PCP (60 frames); (o,p) PCPS (60 frames).
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Figure 3.5: Weighted F-measure scores: (a) PETS; (b) Airport.
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3.3.5 Face and facial expression recognition

We demonstrate how the accurate reconstruction of facial expressions guided by side information

ameliorates classification analysis. To begin with, evaluation was effected on the CMU Multi-PIE

dataset. Aligned and cropped 165 × 172 images of frontal pose and normal lighting from 54 subjects

were used. We batch-processed each subject forming a 28380 × 6 observation matrix to extract ex-

pressions: Neutral, Smile, Surprise, Disgust, Scream and Squint. For each subject, side information

was offered by a sextet of neutral face repetitions. Archetypal expressions recovered by PCP, PCPS,

PSSV, RPCAG are laid out in Figure 3.6 (the restricted number of expressions disallows FRPCAG). It

is noteworthy that local appearance changes separated by PCPS are the most salient which paves the

way for better classification. We avail ourselves of the multi-class RBF-kernel SVM and the SRC [125]

to map expressions to emotions. 9-fold cross-validation results are reported in Table 3.1. PCPS leads

PCP by a fair margin with PSSV, RPCAG underperforming PCP.

Table 3.1: Classification accuracy (%) on the Multi-PIE dataset for PCP, PSSV, PCPS and RPCAG by

means of non-linear SVM and SRC learning.

Algorithm PCP PSSV PCPS RPCAG

Non-linear SVM 78.40 74.69 79.94 77.16

SRC 79.01 74.38 82.72 79.01

Lastly, the CK+ dataset was incorporated to assess the joint face and expression recognition cap-

abilities of various algorithms. Each test image is sparsely coded via a dictionary of both identities

and universal expressions (Anger, Disgust, Fear, Happiness, Sadness and Surprise). The least resulting

reconstruction residual thereupon determines its identity or expression. We refer readers to [45] for the

exact problem set-up and implementation details. Table 3.2 collects the computed recognition rates.

Although RPCAG and FRPCAG are superior than PCP as expected, PCPS performs distinctly better

than all others.
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Table 3.2: Recognition rates (%) for joint identity & expression recognition averaged over 10 trials on

CK+

Algorithm PCP PSSV PCPS RPCAG FRPCAG

Identity 87.35 87.05 95.23 89.77 90.98

Expression 49.24 45.30 67.50 58.26 57.73
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(a) (b) (c) (d) (e) (f)

Figure 3.6: Expression extraction for a single subject: Expressive faces reside in row I. Identity classes

produced by PCP, PSSV, PCPS, RPCAG are in rows II, IV, VI, VIII. The complementary expression

components are depicted in rows III, V, VII, IX.
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3.4 Appendix

3.4.1 Parameter calibration

In order to tune the algorithmic parameters, we first conduct a benchmark experiment as follows: a low-

rank matrix L0 is generated from L0 = JK⊺, where J ,K ∈ R
200×10 have entries from a N (0, 0.005)

distribution; a 200×200 sparse matrix S0 is generated by randomly setting 38, 000 entries to zero with

others taking values of ±1 with equal probability.

If X is set as the left-singular vectors of L0 and Y is set as the right-singular vectors of L0, then a

scaling ratio α = 1.1, a tolerance threshold ǫ = 10−7 and a maximum step size µ = 1018 to avoid ill-

conditioning can bring PCP, RAPS, PCPF to convergence with a recovered L of rank 10, a recovered

S of sparsity 5% and an accuracy ‖L− L0‖F /‖L0‖F on the order of 10−6. Hereafter, we will adopt

these parameter settings for PCP, RAPS, PCPF and will apply them to PCPS and PCPSF as well. PSSV

also uses these parameter settings as done similarly in [19].

For RPCAG and FRPCAG, the graphs are built using k-nearest neighbors. Using Euclidean dis-

tances, each sample is connected to 10 nearest neighbors with weight e−
s2

σ2 , where s is the Euclidean

distance between the two samples and σ is the average of s. Weight between unconnected samples

is set to 0. Having obtained such weight matrix A, we can calculate the normalised graph Laplacian

Φ = I −D− 1

2AD− 1

2 , where D is the diagonal degree matrix. The tolerance threshold for RPCAG

and FRPCAG are all set to ǫ = 10−7 for reasons of consistency. We choose λ = 1/
√

max(n1, n2)

for a general matrix of dimension n1 × n2 as suggested in [23,24]. For simulation experiments, γ in

RPCAG is given by the minimiser (at γ = 0.2) of
‖L−L0‖F
‖L0‖F on the benchmark problem (Figure 3.7).

And for real-world datasets, γ is set to 10 following [23]. For FRPCAG, we take γ = γ1 = γ2 which is

searched over [0.01, 10] on the benchmark problem (Figure 3.8). The resulting minimiser (at γ = 7.3)

of
‖L−L0‖F
‖L0‖F is used in both simulation and real-world experiments.

94



3.4. Appendix

0 0.2 0.4 0.6 0.8 1

γ

10-5

10-4

10-3

10-2

10-1

|L
-L

0
| F

/|
L

0
| F

Figure 3.7: Relative error (
‖L−L0‖F
‖L0‖F ) of RPCAG for γ ∈ [0.01, 1].
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Figure 3.8: Relative error (
‖L−L0‖F
‖L0‖F ) of FRPCAG for γ ∈ [0.01, 10].
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To find λ and κ in PCPS, a parameter sweep in the κ− λ space for perfect side information (W =

L0) is shown in Figure 3.9 (a) and for observation as side information (W = M ) in Figure 3.9 (b)

to impart a lower bound and a upper bound respectively. It can be easily seen that λ = 1/
√
200

from PCP works well in both cases. Conversely, κ depends on the quality of the side information. At

λ = 1/
√
200, the minimiser of

‖L−L0‖F
‖L0‖F occurs at κ = 0.2 for noisy side information. This value of

κ together with λ = 1/
√
200 is used in simulation experiments for both PCPS and PCPSF. For public

video sequences, increasing the value of κ to 0.5 can produce visual results that are noticeable to the

naked eye.

Figure 3.9: Relative error (
‖L−L0‖F
‖L0‖F ) of PCPS: (a) when side information is perfect; (b) when side

information is the observation.
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3.4.2 Simulation Results

Figure 3.10: Domains of recovery by various algorithms: random signs in row I and coherent signs in

row II. (a) for entry-wise corruptions, (b) for deficient ranks and (c) for distorted singular values.

A direct comparison of RAPS, RPCAG and PCP from simulation studies is presented in Figure 3.10.

Simulation results for PSSV are shown in Figure 3.11.
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Figure 3.11: Domains of recovery by PSSV: random signs in row I and coherent signs in row II. (a)

for entry-wise corruptions, (b) for deficient ranks and (c) for distorted singular values.
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3.4.3 Real-world applications

3.4.4 Data sources

The datasets used herein are listed below:

The Extended Yale Face Database B: http://vision.ucsd.edu/˜iskwak/ExtYaleDatabase/

ExtYaleB.html.

Performance Evaluation of Tracking and Surveillance Workshop 2006: http://www.cvg.reading.

ac.uk/PETS2006/data.html.

I2R Dataset: http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html.

The CMU Multi-PIE Face Database: http://www.cs.cmu.edu/afs/cs/project/PIE/

MultiPie/Multi-Pie/Home.html.

The Extended Cohn-Kande Dataset (CK+): http://www.consortium.ri.cmu.edu/ckagree/.

3.4.5 Face denoising

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 3.12: Comparison of face denoising ability: (a,d) single-person PSSV; (b,e) single-person

RPCAG; (c,f) single-person FRPCAG; (g) multi-person PSSV; (h) multi-person RPCAG; and (i) multi-

person FRPCAG;.

Illustration of face denoising ability of PSSV, RPCAG, FRPCAG is presented in Figure 3.12. The

average running times of different algorithms for a single subject and multiple subjects are summarised

in Table 3.3 1.

1All experiments were performed on a 3.60GHz quad-core computer with 16GB RAM running MATLAB R2016a.
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Table 3.3: Running times of various algorithms.

Algorithm
Time

Single Subject Multiple Subjects
K-SVD (X) 9 min —
K-SVD (Y) 78 min —

PCP 12s 5 min
PCPS 27s 12 min
PCPF 16s 9 min

PCPSF 19s 8 min
PSSV 13s 5 min

k-NN (X) 7s 4 min
k-NN (Y) 1s 8s
RPCAG 2min 17 min

FRPCAG 8s 1 min
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3.4.6 Background Subtraction

Recovered images of the background and the foreground from all methods are listed in Figure 3.13 for

Airport and Figure 3.14 for PETS. The running times of different algorithms for Airport and PETS are

summarised in Table 3.4.

(a) (b) (c) (d)

Figure 3.13: Background subtraction results for Airport : row I (a) original image; row III (a) ground

truth; row I,III (b) PCP; row I,III (c) PCP (60 frames); I,III (d) PCPS (60 frames); row II,IV (a)

PCPS; row II,IV (b) PSSV; row II,IV (c) RPCAG; row II,IV (d) FRPCAG.
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(a) (b) (c) (d)

Figure 3.14: Background subtraction results for PETS : row I (a) original image; row III (a) ground

truth; row I,III (b) PCP; row I,III (c) PCP (60 frames); I,III (d) PCPS (60 frames); row II,IV (a)

PCPS; row II,IV (b) PSSV; row II,IV (c) RPCAG; row II,IV (d) FRPCAG.
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Table 3.4: Running times of various algorithms.

Algorithm
Time

Airport PETS
PCP 52s 17 min

PCPS 2 min 36 min
PSSV 51s 17 min

k-NN (X) 52s 2h
k-NN (Y) 1s 24s
RPCAG 7 min 3h

FRPCAG 11s 34s
PCP (60 frames) 52s 3 min

PCPS (60 frames) 20s 7 min
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3.4.7 Derivations

Here we give deviations of the various equivalent subproblems for the algorithm quoted in the text:

argmin
H

L(H,E,S,Z,N)

= argmin
H

||H||∗ + κ||E||∗ + λ||S||1 + 〈Z,M − S −XHY ⊺〉+ µ

2
||M − S −XHY ⊺||2F

+ 〈N ,H −E −X⊺WY 〉+ µ

2
||H −E −X⊺WY ||2F

=argmin
H

||H||∗ + 〈Z,M − S −XHY ⊺〉+ µ

2
||M − S −XHY ⊺||2F

+ 〈N ,H −E −X⊺WY 〉+ µ

2
||H −E −X⊺WY ||2F

=argmin
H

||H||∗ + tr(Z⊺(M − S −XHY ⊺))

+
µ

2
tr((M − S −XHY ⊺)⊺(M − S −XHY ⊺)) + tr(N⊺(H −E −X⊺WY ))

+
µ

2
tr((H −E −X⊺WY )⊺(H −E −X⊺WY ))

= argmin
H

||H||∗ − tr(Z⊺XHY ⊺) + tr(N⊺H)

+
µ

2
tr(Y H⊺X⊺XHY ⊺ − Y H⊺X⊺(M − S)− (M − S)⊺XHY ⊺)

+
µ

2
tr((H −E −X⊺WY )⊺X⊺X(H −E −X⊺WY )Y ⊺Y )

= argmin
H

||H||∗ + µ tr(− 1

µ
Z⊺XHY ⊺) + µ tr(

1

µ
N⊺X⊺XHY ⊺Y )

+
µ

2
tr(Y H⊺X⊺XHY ⊺ − Y H⊺X⊺(M − S)− (M − S)⊺XHY ⊺)

+
µ

2
tr(Y H⊺X⊺XHY ⊺ − Y H⊺X⊺X(E +X⊺WY )Y ⊺

− Y (E +X⊺WY )⊺X⊺XHY ⊺)

= argmin
H

||H||∗ + µ tr(Y H⊺X⊺XHY ⊺ − 1

2
Y H⊺X⊺(M − S)− 1

2
(M − S)⊺XHY ⊺

− 1

2
Y H⊺X⊺X(E +X⊺WY )Y ⊺ − 1

2
Y (E +X⊺WY )⊺X⊺XHY ⊺

− 1

2µ
Y H⊺X⊺Z − 1

2µ
Z⊺XHY ⊺ +

1

2µ
Y H⊺X⊺XNY ⊺ +

1

2µ
Y N⊺X⊺XHY ⊺)

= argmin
H

||H||∗ + µ tr((
1

2
(M − S +XEY ⊺ +W +

1

µ
(Z −XNY ⊺))−XHY ⊺)⊺

(
1

2
(M − S +XEY ⊺ +W +

1

µ
(Z −XNY ⊺))−XHY ⊺))

= argmin
H

||H||∗ + µ||1
2
(M − S +W +

1

µ
Z +X(E − 1

µ
N)Y ⊺)−XHY ⊺||2F

(3.12)
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argmin
E

L(H,E,S,Z,N)

= argmin
E

||H||∗ + κ||E||∗ + λ||S||1 + 〈Z,M − S −XHY ⊺〉+ µ

2
||M − S −XHY ⊺||2F

+ 〈N ,H −E −X⊺WY 〉+ µ

2
||H −E −X⊺WY ||2F

=argmin
E

κ||E||∗ + 〈N ,H −E −X⊺WY 〉+ µ

2
||H −E −X⊺WY ||2F

=argmin
E

κ||E||∗ + tr(N⊺(H −E −X⊺WY ))

+
µ

2
tr((H −E −X⊺WY )⊺(H −E −X⊺WY ))

= argmin
E

κ||E||∗ +
µ

2
tr(− 2

µ
N⊺E)

+
µ

2
tr(E⊺E −E⊺(H −X⊺WY )− (H −X⊺WY )⊺E)

= argmin
E

κ||E||∗

+
µ

2
tr(E⊺E −E⊺(H −X⊺WY )− (H −X⊺WY )⊺E − 1

µ
E⊺N − 1

µ
N⊺E)

= argmin
E

κ||E||∗ +
µ

2
tr((H −X⊺WY +

1

µ
N −E)⊺(H −X⊺WY +

1

µ
N −E))

= argmin
E

κ||E||∗ +
µ

2
||H −X⊺WY +

1

µ
N −E||2F

(3.13)
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argmin
S

L(H,E,S,Z,N)

= argmin
S

||H||∗ + κ||E||∗ + λ||S||1 + 〈Z,M − S −XHY ⊺〉+ µ

2
||M − S −XHY ⊺||2F

+ 〈N ,H −E −X⊺WY 〉+ µ

2
||H −E −X⊺WY ||2F

=argmin
S

λ||S||1 + 〈Z,M − S −XHY ⊺〉+ µ

2
||M − S −XHY ⊺||2F

=argmin
S

λ||S||1 + tr(Z⊺(M − S −XHY ⊺))

+
µ

2
tr((M − S −XHY ⊺)⊺(M − S −XHY ⊺))

= argmin
S

λ||S||1 +
µ

2
tr(− 2

µ
Z⊺S)

+
µ

2
tr(S⊺S − S⊺(M −XHY ⊺)− (M −XHY ⊺)⊺S)

= argmin
S

λ||S||1

+
µ

2
tr(S⊺S − S⊺(M −XHY ⊺)− (M −XHY ⊺)⊺S − 1

µ
S⊺Z − 1

µ
Z⊺S)

= argmin
S

λ||S||1 +
µ

2
tr((M −XHY ⊺ +

1

µ
Z − S)⊺(M −XHY ⊺ +

1

µ
Z − S))

= argmin
S

λ||S||1 +
µ

2
||M −XHY ⊺ +

1

µ
Z − S||2F

(3.14)
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3.4.8 Further comments

One might suggest that a potentially better and more direct approach in using the side information is

to subtract the side information. That is, do RPCA on M ′ = M −W , where M is the data and W

is the noisy side information, to obtain M ′ = L′ + S with L = L′ +W .

We argue that this is not correct for the following reasons:

• The rank of L′ is no smaller than L, which does not make the problem any simpler than the

original one.

• When W is merged into M , the additional information provided by W is lost and the features

can on longer be applied.

• When W includes full-rank noise on L, L′ is not low-rank anymore. This violates the assump-

tion of RPCA.

To verify our claim, we perform the Airport experiment again, but with different side information

than that used in the paper. We collect 200 different frames of relatively clean backgrounds and stack

them into the side information W . Comparison of the suggestion with PCPS and PCP is shown in

Figure 3.15, 3.16 and 3.17. It is clearly visible that the low-rank structure cannot be recovered by the

suggestion and spurious noises are introduced in the segmentation, whereas PCPS works impeccably

segmenting accurately the foreground moving objects leaving a clean background.
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Figure 3.15: Background subtraction by suggestion: background in row I and segmentaion in row II .
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Figure 3.16: Background subtraction by PCPS: background in row I and segmentaion in row II .
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Figure 3.17: Background subtraction by PCP: background in row I and segmentaion in row II .
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CHAPTER 4

Side Information for Face

Completion: a Robust PCA Approach

4.1 Introduction

UV space embeds the manifold of a 3D face into a 2D contiguous atlas. Contiguous UV spaces are

natural products of many 3D scanning devices and are often used by 3D Morphable Model (3DMM)

construction [9, 13, 87]. Although UV space by nature cannot be constructed from an arbitrary 2D

image, a UV map can still be obtained by fitting a 3DMM to the image and sampling the corresponding

texture [12]. We illustrate this procedure in Figure 4.1. Unfortunately, due to self-occlusion of the

face, those UV maps are often incomplete and lack facial parts that are informative. Once completed,

this UV map, combined with the corresponding 3D face, is extremely useful, as it can be used to

synthesise 2D faces of arbitrary poses. Afterwards, we can probe image pairs of similar poses to

improve recognition performance [22]. Hence, the success of pose-invariant face recognition relies on

the quality of UV map completion.

Recovering UV maps from a sequence of related facial frames is a challenging task because self-

occlusion at large poses leads to incomplete and missing data. Meanwhile, the imperfection in fitting

leads to regional errors. We adapt the approach of robust principal component analysis (RPCA) with

missing data [109] to address this difficult problem. In other words, we operate directly on the im-

ages themselves rather than on their labels [27]. Principal Component Pursuit (PCP) as proposed

in [21, 24] and its variants e.g., [4, 6, 19, 71, 72, 133, 143] are popular algorithms to solve RPCA. PCP

employs the nuclear norm and the l1-norm (convex surrogates of the rank and sparsity constraints,

respectively) in order to approximate the original l0-norm regularised rank minimisation problem. Un-

avoidably, PCP operates in an isolated manner where domain-dependent prior knowledge [55], i.e.,
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Figure 4.1: The procedure of getting the UV map from an arbitrary 2D image.

side information [129], is always ignored. Moreover, real-world visual data rarely satisfies the strin-

gent assumptions imposed by PCP for exact recovery [20]. These call for a more powerful framework

that can assimilate useful priors to alleviate the degenerate or suboptimal solutions of PCP.

It has already been shown that side information is propitious in the context of matrix completion [31,

Figure 4.2: Given an input sequence of incomplete UV maps, we extract the shape using 3DMM and

perform preliminary completion using GAN. With the left subspace and side information provided by

GAN, we then carry out PCPSFM to produce more refined completion results. After that, we attach

the completed UV texture to the shape creating images at various poses for face recognition.
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134] and compressed sensing [80]. Recently, noiseless features have been capitalised on in the PCP

framework [33, 68, 69, 101]. In particular, an error-free orthogonal column space was used to drive

a person-specific facial deformable model [101]. And such features can also remove dependency on

the row-coherence which is beneficial in the case of a union of multiple subspaces [67–69, 73]. More

generally, Chiang et al. [33] used both a column and a row space to recover only the weights of their

interaction in a simpler problem. The main hindrance to the success of these methods is the need

for a set of clean, noise-free data samples in order to determine the column and/or row spaces of the

low-rank component. But there are no prescribed way to find them in practice.

On a separate note, rapid advances in neural networks for image inpainting offer an agglomeration

of useful priors. Pathak et al. [89] proposed to use context encoders with a reconstruction and an

adversarial loss to generate contents for the missing regions that comply with the neighbourhood.

Yang et al. [136] further improved inpainting with a multi-scale neural patch synthesis method. This

approach is based on a joint optimisation of image content and texture constraints, which not only

preserves contextual structures but also produces fine details. Li et al. [64] combined a reconstruction

loss, two adversarial losses, and a semantic parsing loss to ensure genuineness and consistency of

local-global contents. These methods are by no means definitive for the following reasons: (a) their

masks are artificial and do not have semantic correspondence with a 3D face; (b) they do not allow

missing regions to be over 50% which is commonplace in our case.

This research is based on our preliminary work [135] but has been extended to 1) the problem of

UV completion and 2) to incorporate side information provided by generative adversarial networks. As

such, we have extended PCP to take advantage of noisy prior information aiming to realise better UV

map reconstruction. We then perform pose-invariant face recognition experiments using the completed

UV maps. Experimental results indicate the superiority of our framework. The overall workflow is

explicated in Figure 4.2. Our contributions are summarised as follows:

• A novel convex program is proposed to use side information, which is a noisy approximation

of the low-rank component, within the PCP framework. The proposed method is able to handle

missing values while the developed optimisation algorithm has convergence guarantees.

• Furthermore, we extend our proposed PCP model using side information to exploit prior know-

ledge regarding the column and row spaces of the low-rank component in a more general al-

gorithmic framework.

• In the case of UV completion, we suggest the use of generative adversarial networks to provide

subspace features and side information, resulting in a seamless integration of deep learning into
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the robust PCA framework.

• We demonstrate the applicability and effectiveness of the proposed approaches on synthetic data

as well as on facial image denoising, UV texture completion and pose-invariant face recognition

experiments with both quantitative and qualitative evaluation.

The remainder of this chapter is organised as follows. We discuss relevant literature in Section 4.2,

while the proposed robust principal component analysis using side information with missing values

(PCPSM) along with its extension that incorporates features (PCPSFM) is presented in Section 4.3.

In Section 4.4, we first evaluate our proposed algorithms on synthetic and real-world data. Then we

introduce GAN as a source of features and side information for the subject of UV completion. Finally,

face recognition experiments are presented in the last subsection.

4.2 Related work

Recent advances in convolutional neural networks (CNN) also show great promises in visual feature

learning. Context encoders (CE) [89] use an encoder-decoder pipeline where the encoder takes an

input image with missing regions producing a latent feature representation and the decoder takes the

feature representation generating the missing image content. CE uses a joint loss function:

L = λrecLrec + λadvLadv, (4.1)

where Lrec is the reconstruction loss and Ladv is the adversarial loss. The reconstruction loss is given

by:

Lrec(x) = ‖w ◦ (x− F ((1−w) ◦ x)‖22, (4.2)

where w is a binary mask, x is an example image and CE produces an output F (x). The adversarial

loss is based on Generative Adversarial Networks (GAN). GAN learns both a generative model Gi

from noise distribution Z to data distribution X and a discriminative model Di by the following ob-

jective:

Lai = min
Gi

max
Di

Ex∈X [log(Di(x))] + Ez∈Z [log(1−Di(Gi(z)))]. (4.3)

For CE, the adversarial loss is modified to

Ladv = max
D

Ex∈X [log(D(x)) + log(1−D(F ((1−w) ◦ x)))]. (4.4)

Generative face completion [64] uses two discriminators instead with the following objective

L = Lr + λ1La1 + λ2La2 + λ3Lp, (4.5)
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where Lp is a parsing loss of pixel-wise softmax and Lr is the reconstruction loss between the estimated

UV texture Iij and the ground truth texture I∗ij of width W and height H

Lp =
1

W ×H

W
∑

i=1

H
∑

j=1

∣

∣Iij − I∗ij
∣

∣ . (4.6)

Patch synthesis [136] optimises a loss function of three terms: the holistic content term, the local

texture term and the TV-loss term. The content constraint penalises the l2 difference between the

optimisation result and the previous content prediction

Lc = ‖w ◦ (x− xi)‖22, (4.7)

where xi is the optimisation result from the last iteration at a coarser scale. The texture constraint

penalises the texture appearance across the hole,

Lt =
1

|wφ|
∑

i∈wφ

‖Pi ◦ φ(x)− Pnn(i) ◦ φ(x)‖22, (4.8)

where wφ is the corresponding mask in the VGG-19 feature map φ(x), |wφ| denotes the number of

patches sampled in wφ, Pi is the local neural patch at location i, and nn(i) is the nearest neighbor of

i. Last, the TV loss encourages smoothness:

LTV =
∑

i,j∈wφ

((xi,j+1 − xi,j)
2 + (xi+1,j − xi,j)

2). (4.9)

4.3 Models

In this section, we propose models of RPCA using side information. In particular, we incorporate side

information into PCP by using the trace distance of the difference between the low-rank component

and the noisy estimate, which can be seen as a generalisation of compressed sensing with prior in-

formation where l1 norm has been used to minimise the distance between the target signal and side

information [80].

4.3.1 The PCPSM and PCPSFM models

Assuming that a noisy estimate of the low-rank component of the data S ∈ R
n1×n2 is available, we

propose the following model of PCP using side information with missing values (PCPSM):

min
L,E

‖L‖∗ + α‖L− S‖∗ + λ‖W ◦E‖1

s. t. X = L+E,

(4.10)
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where α > 0, λ > 0 are parameters that weigh the effects of side information and noise sparsity.

The proposed PCPSM can be revamped to generalise the previous attempt of PCPF by the following

objective of PCP using side information with features and missing values (PCPSFM):

min
H,E

‖H‖∗ + α‖H −D‖∗ + λ‖W ◦E‖1

s. t. X = UHV ⊺ +E, D = U⊺SV ,

(4.11)

where H ∈ R
d1×d2 ,D ∈ R

d1×d2 are bilinear mappings for the recovered low-rank matrix L and side

information S respectively. Note that the low-rank matrix L is recovered from the optimal solution

(H∗,E∗) to objective ( 4.11) via L = UH∗V ⊺. If side information S is not available, PCPSFM

reduces to PCPF with missing values by setting α to zero. If the features U ,V are not present either,

PCP with missing values can be restored by fixing both of them at identity. However, when only the

side information S is accessible, objective ( 4.11) is transformed back into PCPSM.

4.3.2 The algorithm

If we substitute B for H−D and orthogonalise U and V , the optimisation problem ( 4.11) is identical

to the following convex but non-smooth problem:

min
H,E

‖H‖∗ + α‖B‖∗ + λ‖W ◦E‖1

s. t. X = UHV ⊺ +E, B = H −U⊺SV ,

(4.12)

which is amenable to the multi-block alternating direction method of multipliers (ADMM).

The corresponding augmented Lagrangian of ( 4.12) is:

l(H,B,E,Z,N) = ‖H‖∗ + α‖B‖∗ + λ‖W ◦E‖1
+ 〈Z,X −E −UHV ⊺〉+ µ

2
‖X −E −UHV ⊺‖2F

+ 〈N ,H −B −U⊺SV 〉+ µ

2
‖H −B −U⊺SV ‖2F ,

(4.13)

where Z ∈ R
n1×n2 and N ∈ R

d1×d2 are Lagrange multipliers and µ is the learning rate.

The ADMM operates by carrying out repeated cycles of updates till convergence. During each

cycle, H,B,E are updated serially by minimising ( 4.13) with other variables fixed. Afterwards,

Lagrange multipliers Z,N are updated at the end of each iteration. Direct solutions to the single

variable minimisation subproblems rely on the shrinkage and the singular value thresholding operat-

ors [21]. Let Sτ (a) ≡ sgn(a)max(|a| − τ, 0) serve as the shrinkage operator, which naturally extends

to matrices, Sτ (A), by applying it to matrix A element-wise. Similarly, let Dτ (A) ≡ MSτ (Σ)Y ⊺ be
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Algorithm 6 ADMM solver for PCPSFM

Input: Observation X , mask W , side information S, features U ,V , parameters α, λ > 0, scaling

ratio β > 1.

1: Initialize: Z = 0, N = B = H = 0, β = 1
‖X‖2 .

2: while not converged do

3: E = Sλµ−1(X −UHV ⊺ + 1
µZ) ◦W + (X −UHV ⊺ + 1

µZ) ◦ (1−W )

4: H = U⊺D 1

2µ
(12(X −E + 1

µZ +U(B +U⊺SV − 1
µN)V ⊺))V

5: B = Dαµ−1(H −U⊺SV + 1
µN)

6: Z = Z + µ(X −E −UHV ⊺)
7: N = N + µ(H −B −U⊺SV )
8: µ = µ× β
9: end while

Return: L = UHV ⊺, E

the singular value thresholding operator on real matrix A, with A = MΣY ⊺ being the singular value

decomposition (SVD) of A.

Minimising ( 4.13) w.r.t. H at fixed B,E,Z,N is equivalent to the following:

argmin
H

‖H‖∗ + µ‖P −UHV ⊺‖2F , (4.14)

where P = 1
2(X−E+ 1

µZ+U(B+U⊺SV − 1
µN)V ⊺). Its solution is shown to be U⊺D 1

2µ
(P )V .

Furthermore, for B,

argmin
B

l = argmin
B

α‖B‖∗ +
µ

2
‖Q−B‖2F , (4.15)

where Q = H −U⊺SV + 1
µN , whose update rule is Dα

µ
(Q), and for E,

argmin
E

l = argmin
E

λ‖W ◦E‖1 +
µ

2
‖R−E‖2F , (4.16)

where R = X −UHV ⊺+ 1
µZ with a closed-form solution Sλµ−1(R) ◦W +R ◦ (1−W ). Finally,

Lagrange multipliers are updated as usual:

Z = Z + µ(X −E −UHV ⊺), (4.17)

N = N + µ(H −B −U⊺SV ). (4.18)

The overall algorithm is summarised in Algorithm 6.

4.3.3 Complexity and convergence

Orthogonalisation of the features U ,V via the Gram-Schmidt process has an operation count of

O(n1d
2
1) and O(n2d

2
2) respectively. The H update in Step 4 is the most costly step of each iteration in
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Algorithm 6. Specifically, the SVD required in the singular value thresholding action dominates with

O(min(n1n
2
2, n

2
1n2)) complexity. Note that this complexity is shared by both of our proposed PCPSM

and PCPSFM algorithms, as well as exsiting PCP and LRR algorithms.

A direct extension of the ADMM has been applied to our 3-block separable convex objective. Its

global convergence is proved in Theorem 4. We have also used the fast continuation technique already

applied to the matrix completion problem [119] to increase µ incrementally for accelerated superlinear

performance [97]. The cold start initialisation strategies for variables H,B and Lagrange multipliers

Z,N are described in [17]. Besides, we have scheduled E to be updated first and taken the initial

learning rate µ as suggested in [66]. As for stopping criteria, we have employed the Karush-Kuhn-

Tucker (KKT) feasibility conditions. Namely, within a maximum number of 1000 iterations, when the

maximum of ‖X −Ek −UHkV
⊺‖F /‖X‖F and ‖Hk −Bk −U⊺SV ‖F /‖X‖F dwindles from a

pre-defined threshold ǫ, the algorithm is terminated, where k signifies values at the kth iteration.

Theorem 4. Let the iterative squence {(Ek,Hk,Bk,Zk,Nk)} be generated by the direct extension

of ADMM, Algorithm 6, then the sequence {(Ek,Hk,Bk,Zk,Nk) converges to a Karush-Kuhn-

Tucher (KKT) point in the fully observed case.

Proof. We first show that function θ3(x3) = ‖E‖1 is sub-strong monotonic. From [21], we know that

(x∗
1,x

∗
2,x

∗
3,λ

∗) = (H0,E0,B0,Z0) is a KKT point, where H0 = U⊺L0V , B0 = H0 − U⊺SV ,

(Z0)ij = λ[sgn(E0)]ij , if (i, j) ∈ Ω and |(Z0)ij | < λ, otherwise. Since θ3(x3) is convex, by

definition, we have

θ3(x
∗
3) ≥ θ3(x3) + 〈y3,x

∗
3 − x3〉, ∀x3 and ∀y3 ∈ ∂θ3(x3). (4.19)

Since A3 is identity in ( 4.12), we have

θ3(x3)− θ3(x
∗
3) + 〈A⊺

3λ
∗,x∗

3 − x3〉
=λ‖E‖1 − λ‖E0‖1 + 〈Z0,E0〉 − 〈Z0,E〉,
=λ‖E‖1 − 〈Z0,E〉
≥0,

(4.20)

where the third line follows from (Z0)ij = λ[sgn(E0)]ij when (i, j) ∈ Ω and (E0)ij = 0 when

(i, j) /∈ Ω, and the fourth line follows from |(Z0)ij | ≤ λ, |(Z0)ijEij | ≤ |(Z0)ij ||Eij | and ‖E‖1 =
∑

i,j |Eij |. As E is bounded, there always exists µ > 0 such that

λ‖E‖1 − 〈Z0,E〉 ≥ µ‖E −E0‖2F . (4.21)

Thus, overall we have

θ3(x3) ≥ θ3(x
∗
3) + 〈A⊺

3λ
∗,x3 − x∗

3〉+ µ‖E −E0‖2F . (4.22)
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Combining with ( 4.19), we arrive at

〈y3 −A
⊺

3λ
∗,x3 − x∗

3〉 ≥ µ|x3 − x∗
3|2, ∀x3 and ∀y3 ∈ ∂θ3(x3), (4.23)

which shows that ‖E‖1 satisfies the sub-strong monotonicity assumption.

Additionally, ‖H‖∗, ‖B‖∗ are close and proper convex and A’s have full column rank. We thus

deduce that the direct extension of ADMM, Algorithm 6, applied to objective ( 4.12) is convergent

according to [115].

4.4 Experiments

4.4.1 Parameter calibration

In this section, we illustrate the enhancement made by side information through both numerical simu-

lations and real-world applications. First, we explain how parameters used in our implementation are

tuned. Second, we compare the recoverability of our proposed algorithms with state-of-the-art methods

for incorporating features or dictionary, viz. PCPF [17] and LRR [11] on synthetic data as well as the

baseline PCP [9] when there are no features available. Last, we show how powerful side information
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Figure 4.3: Log-scale relative error (log ‖L−L0‖F
‖L0‖F ) of PCPSM (a) when side information is perfect

(S = L0) and (b) when side information is the observation (S = M ).
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can be for the task of UV completion in post-invariant face recognition, where both features and side

information are derived from generative adversarial networks.

For LRR, a clean subspace U is used as in [101] instead of the observation X itself as the dictionary.

PCP is solved via the inexact ALM [66] and the heuristics for predicting the dimension of principal

singular space is not adopted here due to its lack of validity on uncharted real data [51]. We also

include Partial Sum of Singular Values (PSSV) [84] in our comparison for its stated advantage in view

of the limited number of images available. The stopping criteria for PCPF, LRR, PCP and PSSV are

all set to the same KKT optimality conditions for reasons of consistency.

In order to tune the algorithmic parameters, we first conduct a benchmark experiment as follows:

a low-rank matrix L0 is generated from L0 = JK⊺, where J ,K ∈ R
200×10 have entries from a

N (0, 0.005) distribution; a 200×200 sparse matrix E0 is generated by randomly setting 38000 entries

to zero with others taking values of ±1 with equal probability; side information S is assumed perfect,

that is, S = L0; U is set as the left-singular vectors of L0; and V is set as the right-singular vectors

of L0; all entries are observed. It has been found that a scaling ratio β = 1.1, a tolerance threshold

ǫ = 10−7 and a maximum step size µ = 107 to avoid ill-conditioning can bring all models except

PSSV to convergence with a recovered L of rank 10, a recovered E of sparsity 5% and an accuracy

‖L−L0‖F /‖L0‖F on the order of 10−6. Still, these apply to PSSV as is done similarly in [84].

Although theoretical determination of α and λ is beyond the scope of this work, we nevertheless

provide empirical guidance based on extensive experiments. A parameter weep in the α − λ space

for perfect side information is shown in Figure 4.3(a) and for observation as side information in

Figure 4.3(b) to impart a lower bound and a upper bound respectively. It can be easily seen that

λ = 1/
√
200 (or λ = 1/

√

max(n1, n2) for a general matrix of dimension n1 ×n2) from Robust PCA

works well in both cases. Conversely, α depends on the quality of the side information. When the side

information is accurate, a large α should be selected to capitalise upon the side information as much

as possible, whereas when the side information is improper, a small α should be picked to sidestep the

dissonance caused by the side information. Here, we have discovered that a κ value of 0.2 works best

with synthetic data and a value of 0.5 is suited for public video sequences, both of which will be used

in all experiments in subsequent sections together with other aforementioned parameter settings. It is

worth emphasising again that prior knowledge of the structural information about the data yields more

appropriate values for α and λ.
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Figure 4.4: Domains of recovery by various algorithms in the fully observed case: (I,III) for random

signs and (II,IV) for coherent signs.

4.4.2 Phase transition on synthetic datasets

We now focus on the recoverability problem, i.e. recovering matrices of varying ranks from errors of

varying sparsity. True low-rank matrices are created via L0 = JK⊺, where 200 × r matrices J ,K

have independent elements drawn randomly from a Gaussian distribution of mean 0 and variance

5 · 10−3, thus r is the rank of L0. Next, we generate 200 × 200 error matrices E0, which possess

ρs · 2002 non-zero elements located randomly within the matrix. We consider two types of entries for

E0: Bernoulli ±1 and PΩ(sgn(L0)), where P is the projection operator. X = L0+E0 thus becomes

the simulated observation. For each (r, ρs) pair, three observations are constructed. The recovery is

successful if for all these three problems, the following criteria regarding the recovered L is met:

‖L−L0‖F
‖L0‖F

< 10−3. (4.24)

In addition, let L0 = MΣY ⊺ be the SVD of L0. Feature U is formed by randomly interweaving

column vectors of M with d arbitrary orthonormal bases for the null space of M⊺, while permuting

the expanded columns of Y with d random orthonormal bases for the kernel of Y ⊺ forms feature
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4. Side Information for Face Completion: a Robust PCA Approach

V . Hence, the feasibility conditions are fulfilled: C(U) ⊇ C(L0), C(V ) ⊇ C(L⊺

0), where C is the

column space operator.

For each trial, we construct the side information by directly adding small Gaussian noise to each

element of L0: Lij → Lij + N (0, 2.5r · 10−9), i, j = 1, 2, · · · , 200. As a result, the standard

deviation of the error in each element is 1% of that among the elements themselves. On average, the

Frobenius percent error, ‖S − L0‖F /‖L0‖F , is 1%. Such side information is genuine in regard to

the fact that classical PCA with accurate rank is not able to eliminate the noise [105]. We set d to 10

throughout.
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Figure 4.5: Domains of recovery by various algorithms in the partially observed case: (I,III) for

random signs and (II,IV) for coherent signs.

Full observation Figures 4.4 (a.I) and (a.II) plot results from PCPF, LRR and PCPSFM. On the

other hand, the situation with no available features is investigated in Figures 4.4 (a.III) and 4.4 (a.IV)

for PCP and PCPSM. The frontier of PCPF has been advanced by PCPSFM everywhere for both sign

types. Especially at low ranks, errors with much higher density can be removed. Without features,

PCPSM surpasses PCP by and large, with significantly more recovery at small sparsity levels for both

sign cases. Results from RPCAG and PSSV are worse than PCP with LRR marginally improving (see

Figures 4.4(b.I), (b.II), (b.III) and b(IV)).
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Partial observation Figures 4.5 (a.I) and (a.II) map out the results for PCPF, LRR and PCPSFM

when 10% of the elements are occluded and Figures 4.5 (a.III) and (a.IV) for featureless PCP and

PCPSM. In all cases, areas of recovery are reduced. However, there are now larger gaps between PCPF

and PCPSFM, so as for PCP and PCPSM. This marks the usefulness of side information particularly in

the event of missing observations. We realise that in unrecoverable areas, PCPSM and PCPSFM still

obtain much smaller values of ‖L−L0‖F . FRPCAG fails to recover anything at all.

4.4.3 Face denoising

If a surface is convex Lambertian and the lighting is isotropic and distant, then the rendered model

spans a 9-D linear subspace [7]. Nonetheless, facial images are only approximately so because facial

harmonic planes have negative pixels and real lighting conditions entail unavoidable occlusion and

albedo variations. It is thus more reasonable to decompose facial image formation as a low-rank com-

ponent for face description and a sparse component for defects. In pursuit of this low-rank portrayal,

we suggest that there can be further boost to the performance of facial characterisation by leveraging

an image which faithfully represents the subject.

We consider images of a fixed pose under different illuminations from the extended Yale B database

for testing. All 64 images were studied for each person. 32556×64 observation matrices were formed

by vectorising each 168 × 192 image and the side information was chosen to be the average of all

images, tiled to the same size as the observation matrix for each subject. In addition, 5% of the

(c.I) (c.II) (c.III) (c.IV) (c.V) (c.VI) (c.VII) (c.VIII) (c.IX) (c.X)

(b.I) (b.II) (b.III) (b.IV) (b.V) (b.VI) (b.VII) (b.VIII) (b.IX) (b.X)

(a.I) (a.II) (a.III) (a.IV) (a.V) (a.VI) (a.VII) (a.VIII) (a.IX) (a.X)

Figure 4.6: Comparison of face denoising ability: (I) Observation; (II) side information; (III) PCP;

(IV) PCPSM; (V) LRR; (VI) PCPF; (VII) PCPFSM; (VIII) PSSV; (IX) RPCAG; and (X) FRPCAG.
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randomly selected pixels within each image were set as missing entries.

For LLR, PCPF and PCPSFM to run, we learn the feature dictionary following an approach by Vishal

et al. [88], which is a popular method for extracting high-level attributes [142]. In a nutshell, the feature

learning process can be treated as a sparse encoding problem. More specifically, we simultaneously

seek a dictionary D ∈ R
n1×c and a sparse representation B ∈ R

c×n2 such that:

min
D,B

‖M −DB‖2F s. t. γi ≤ t for i = 1 . . . n2, (4.25)

where c is the number of atoms, γi counts the number of non-zero elements in each sparsity code and t

is the sparsity constraint factor. This can be solved by the K-SVD algorithm [2]. Here, feature U is the

dictionary D and feature V corresponds to a similar solution using the transpose of the observation

matrix as input. For implementation details, we set c to 40, t to 40 and used 10 iterations for each

subject.

As a visual illustration, two challenging cases are exhibited in Figure 4.6. For subject #2, it is

clearly evident that PCPSM and PCPSFM outperform the best existing methods through the complete

elimination of acquisition faults. More surprisingly, PCPSFM even manages to restore the flash in the

pupils that is barely present in the side information. For subject #34, PCPSM indubitably reconstructs

a more vivid right eye than that from PCP which is only discernible. With that being said, PCPSFM

still prevails by uncovering more shadows, especially around the medial canthus of the right eye, and

revealing a more distinct crease in the upper eyelid as well a more translucent iris. We further unmask

the strength of PCPSM and PCPSFM by considering the stringent side information made of the average

of 10 other subjects. Surprisingly, PCPSM and PCPSFM still manage to remove the noise and recover

an authentic image (Figure 4.6 (c.IV) and 4.6 (c.VII)). We also notice that PSSV, RPCAG, FRPCAG

do not improve upon PCP as in simluation experiments. Thence, we will focus on comparisons with

PCP, LRR, PCPF only.

4.4.4 UV map completion

We concern ourselves with the problem of completing the UV texture for each of a sequence of video

frames. That is, we apply PCPSM and PCPSFM to a collection of incomplete textures lifted from

a video. This parameter-free approach is advantageous to a statistical texture model such as the 3D

Morphable Model (3DMM) [10,16] by virtue of its difficulty in reconstructing unseen images captured

’in-the-wild’ (using any commercial cameras in arbitrary conditions).
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Texture extraction

Given a 2D image, we extract its UV texture by fitting the 3DMM. More specifically, following [14],

three parametric models are employed. These are a 3D shape model ( 4.26), a texture model ( 4.27)

and a camera model ( 4.28):

S(p) = s+Usp, (4.26)

T (λ) = t+Utλ, (4.27)

W(p, c) = P(S(p), c), (4.28)

where p ∈ R
ns ,λ ∈ R

nt and c ∈ R
nc are shape, texture and camera parameters to optimise; Us ∈

R
3N×ns and Ut ∈ R

3N×nt are the shape and texture eigenbases respectively, with N being the number

of vertices in the shape model; s ∈ R
3N and t ∈ R

3N are the corresponding means of shape and

texture models, which are learnt from facial scans of 10000 individuals [16]; P(s, c) : R3N → R
2N

is a perspective camera transformation function. The complete cost function for 3DMM fitting is:

min
p,λ,c

‖F (W(p, c))− T (λ)‖2 + βl‖W(p, c))− sl‖2

+ βs‖p‖2
Σ

−1
s

+ βt‖λ‖2
Σ

−1
t

, (4.29)

where F (W(p, c)) denotes the operation of sampling the feature image onto the projected 2D loca-

tions. The second term is a landmark term with weighting βl in order to accelerate in-the-wild 3DMM

fitting, where the 2D shape, sl, is provided by [18]. The final two terms are regularisation terms to

counter over-fitting, where Σs and Σt are diagonal matrices with the main diagonal being eigenvalues

of the shape and texture models respectively. Eq. 4.29 is solved by the Gauss-Newton optimisation

framework (see [14] for details). We empirically set βl = 105, βs = 3 × 106 and βt = 1 follow-

ing [15,36]. Note that any landmark localisation techniques [62] can be applied within our framework

and the visible mask of facial region is a natural product of the 3DMM fitting process.

Quantitative evaluation

We quantitatively evaluate the completed UV maps by our proposed methods on the 4DFAB data-

set [30]. 4DFAB is the first 3D dynamic facial expression dataset designed for biometric applications,

where 180 participants are invited to attend four sessions at different times. Hence, to complete UV

maps for one session, we can leverage images from another session as side information. For each of

5 randomly selected subjects, one dynamic sequence of 155 frames is randomly cut from the second

session. After vectorisation, a 32556 × 155 observation matrix is formed. To produce UV masks of
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I

II

III

IV

V

VI

VII

VIII

Figure 4.7: (row I) original sequences; (row II) random masks; (row III) sample inputs; (row IV) side

information; (row V) PCP; (row VI) PCPSM; (row VII) LRR; (row VIII) PCPSFM.
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Table 4.1: Quantitative measures of UV completion by various algorithms on the 4DFAB dataset.

Subject #1 #2 #3 #4 #5
PSNR PCP 35.99 ±0.79 26.75 ±0.88 32.65 ±0.88 31.33 ±0.99 29.10 ±1.68
(dB) PCPSM 39.56±1.30 30.63±1.47 34.66±1.29 35.86±1.85 32.80±2.93

LRR 40.94 ±2.13 30.69 ±1.71 36.38 ±2.10 35.94 ±2.53 33.97 ±3.93
PCPSFM 41.48±2.06 31.46±1.69 37.29±2.37 36.60±2.36 34.80±4.14

SSIM PCP 0.973±0.004 0.922±0.012 0.962±0.010 0.956±0.007 0.949±0.013
PCPSM 0.987±0.004 0.952±0.013 0.969±0.010 0.981±0.006 0.973±0.013

LRR 0.990±0.005 0.952±0.013 0.975±0.010 0.982±0.007 0.978±0.014
PCPSFM 0.991±0.004 0.958±0.013 0.979±0.010 0.984±0.007 0.981±0.013

different poses, we rotate each face with different yaw and pitch angles. The yaw angle ranges from

−90◦ to 90◦ in steps of 6◦, whereas the pitch angle is selected from {−10◦,−5◦, 0◦, 5◦, 10◦}. There-

fore, for each subject, a set of 155 unique masks are generated. We also tiled one image of the same

subject from the first session into a 32556× 155 matrix as side information. U is provided by the left

singular vector of the original sequence while V is set to the identity.

From Figure 4.7, we observe that (I) RPCA approaches can deal with cases where more than 50%

of the pixels are missing; (II) imperfect side information (shaved beard, removed earrings and different

lightings) still help with the recovery process. We record peak signal-to-noise ratios (PSNR) and struc-

tural similarity indices (SSIM) between the completed UV maps and the original maps in Table 4.1. It

is evident that with the assistance of side information, much higher fidelity can be achieved. The use

of imperfect side information nearly comes on a par with perfect features.

Generative adversarial networks

More often than not, ground-truth U , V are not accessible to us for in-the-wild videos. Learning

methods such as ( 4.25) must be leveraged to acquire U or V . However, ( 4.25) is not ideal: (I) it

is not robust to errors of arbitrary magnitude; (II) it cannot handle missing values; (III) it requires

exhaustive search of optimal parameters which vary from video to video; (IV) it only admits greedy

solutions1. As a matter of fact, we can use GAN to produce authentic pseudo ground-truth. Then we

apply truncated singular value decomposition to the vectorised frames and use the obtained left and

right singular vectors as U and V subspace features respectively. Moreover, such completed sequence

provides us with good side information. For each color channel, we average the video frames before

tiling it back to the original length. This resulting matrix is taken as side information. For GAN, we

employ the image-to-image conditional adversarial network [54] (appropriately customised) to conduct

1There is a variant of KSVD [76] that can fill holes which are smaller than the size of the atoms. We evaluate it against

our GAN-based approach in Figure 3 and Table 1 of the appendix.
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UV completion. Details regarding the architecture and training of GAN can be found in the appendix.

Qualitative demonstration

To examine the ability of our proposed methods on in-the-wild images. We perform experiments on

the 300VW dataset [112]. This dataset contains 114 in-the-wild videos that exhibit large variations in

pose, expression, illumination, background, occlusion, and image quality. Each video shows exactly

one person, and each frame is annotated with 68 facial landmarks. We perform 3DMM fitting on

these videos and lift one corresponding UV map for each frame, where the visibility mask is produced

by z-buffering based on the fitted mesh. Side information is generated by taking the average of the

completed UVs from GAN. U and V are assigned to the singular vectors of the completed texture

sequence from GAN.

We display results for one sample frame from each of 9 arbitrary videos in Figure 4.8. As evident

from the images, GAN alone has unavoidable drawbacks: (I) when 3DMM fitting is not accurate,

GAN is unable to correct such defects; (II) when the image itself contains errors, GAN is unable to

remove them. On the other hand, PCP often fails to produce a complete UV. PCPSM always produces

a completed UV texture, which is an improvement over PCP, but it generates undesirable boundaries.

Visually, LRR and PCPSFM have the best performance, being able to produce good completed UVs

for a large variety of poses, identities, lighting conditions and facial characteristics. This justifies the

quality of subspaces and side information from GAN for use in the robust PCA framework. We also

synthesise 2D faces of three different poses using the the completed UV maps in Figure 4.9.
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I II III IV V VI VII VIII

Figure 4.8: 300VW: (column I) sample frame; (column II) mask; (column III) side information;

(column IV) GAN; (column V) PCP; (column VI) PCPSM; (column VII) LRR; (column VIII)

PCPSFM.
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GAN PCP PCPSM LRR PCPSFM

Figure 4.9: 2D face synthesis of three views (−45◦, 0◦, 45◦) from the completed UV maps by various

methods.

4.4.5 Face recognition

Face recognition is a crucial element of biometrics [28, 86, 93, 102, 111, 116, 118]. In this work, we

focus on the set-based face verification, i.e. to decide whether two sets of facial images are of the

same person or not. One face set could consist of one or multiple samples of the same person (e.g.

still images, or frames from a video of the person, or a mixture of both). Therefore, traditional face

verification is a special case of the set-based face verification.

The simplest approach to the set-based face verification problem is to generate a feature vector per

image, aggregate them into one vector to represent the set (e.g. calculate the feature centre by average),

and then compute the cosine similarity between sets. However, the combination rule of averaging is

oversimplified since not all face images in one set are of equal importance. The features derived from

a profile face is probably of less importance than the features coming from a frontal face as there is

signal loss due to self-occlusion under pose variations.
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More specifically, we focus on pose-invariant face recognition. Modern approaches to pose-invariant

face recognition include pose-robust feature extraction [41], multi-view subspace learning [42], face

frontalisation by synthesis [36, 40], etc. Nonetheless, these methods often fall short of expectations

either due to fundamental limitations or inability to fuse with other useful methods. For example,

Generalised Multi-view Analysis [110] cannot take account of pose normalisation [39] or deep neural

network-based pose-robust feature extraction [56], and vice versa. Hence, it is fruitful to provide

a framework where information from different perspectives can be fused together to deliver better

prediction.

We quantitatively evaluate our proposed fusion methods by carrying out set-based face verification

experiments. The experiments are performed on four standard databases, namely CFP [104], IJB

[58, 78, 123], YTF [124] and PaSC [8]. Evaluation results on these benchmarks will be given in

the next few sections. Overall, the proposed method outperforms current state-of-the-art approaches

[23, 86, 102, 130, 131] by a large margin.

Face Feature Embedding

We employ ArcFace [37] with ResNet50 [50] as the backbone. The additive angular margin loss

(m = 0.35) is used to train a 512-D facial feature embedding model on the VGG2 training set [23],

which contains 3,141,890 images from 8,631 identities. Following [37], we use five facial landmarks

(eye centres, nose tip and mouth corners) [139] to normalise the face images by similarity transforma-

tion. The faces are cropped and resized to 112× 112. Figure 4.10 illustrates the set-based face feature

embedding used for face verification. For one facial image set, we first extract 3D face shapes and

incomplete UV maps via 3DMM fitting [14]. Then, we utilise the proposed UV completion meth-

ods (GAN [36], PCP, PCPSM, LRR and PCPSFM) to derive completed UV maps. Frontal faces are

synthesised from the full UV maps and the 3D shapes, which are then fed into the feature embedding

network. A set of 512-D features from the last fully connected layer of network, is used to compute

the feature centre and eventually taken as the feature descriptor.

Evaluation Metrics

In this work, we employ the standard 1:1 verification protocol. The performance is reported by the

true accept (positive) rates (TAR) vs. false accept (positive) rates (FAR) (from the receiver operating

characteristics (ROC) curve). Following [130], we are interested in the TAR values where FAR=1e-

4 and FAR=1e-5, which is also the security level for financial applications. Apart from the ROC

curve, we also calculate the best threshold value from the positive and negative pairs, and report the

corresponding classification accuracy for each method on the YTF dataset.
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Figure 4.10: The proposed pipeline for video-based face recognition. The 3DMM [14] is fitted on the

frames of the video and the incompleted UV maps are estimated. The trained GAN [36] is then used to

provide an initial estimate of the side information and the proposed methodology is applied to generate

the completed UV maps. The 3D model is reused to render the images in the frontal view. Deep neural

network is used to extract features from all frames and the average of the features is used to represent

the video.

Ablation Experiments on CFP

The CFP dataset [104] consists of 500 subjects, each of which has 10 frontal and 4 profile images.

For each subject, we construct four sets (with 3, 3, 4 and 4 faces respectively) where each set includes

at least one profile face. For set-based face verification on CFP, we extensively compare all possible

3, 000 positive pairs and 1, 996K negative pairs.

As shown in Table 4.2 and Figure 4.11, we compare the proposed methods with several baseline

methods. It can be clearly observed that by leveraging subspace features or side information from

GAN (LRR/PCPSM), we ameliorate the recognition results in terms of TAR over the vanilla PCP,

while a further boost in performance can be achieved when both of them are considered together

(PCPSFM). Compared to the result of ArcFace, the proposed PCPSFM achieves a TAR improvement

of 1.7% at FAR=1e-5.

Table 4.2: Verification TAR on the CFP dataset, the higher TAR the better.

Method FAR=1e-6 FAR=1e-5 FAR=1e-4
ArcFace 0.901 0.950 0.989

GAN+ArcFace 0.905 0.957 0.991
PCP+ArcFace 0.902 0.953 0.990
LRR+ArcFace 0.911 0.963 0.993

PCPSM+ArcFace 0.907 0.961 0.991
PCPSFM+ArcFace 0.916 0.967 0.993
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Figure 4.11: ROC curves on the CFP dataset.

Experiments on IJB

The IARPA Janus Benchmarks have been gradually enlarged from IJB-A [58] to IJB-B [123] and

IJB-C [78]. The IJB-A dataset contains 5, 712 images and 2, 085 videos from 500 subjects, with an

average of 11.4 images and 4.2 videos per subject. The IJB-B dataset is an extension of IJB-A, which

contains 1, 845 subjects with 21.8K still images and 55K frames from 7, 011 videos. In total, there

are 12, 115 templates with 10, 270 genuine matches and 8M impostor matches. The IJB-C dataset

is a further extension of IJB-B, having 3, 531 subjects with 31.3K still images and 117.5K frames

from 11, 779 videos. In total, there are 23, 124 templates with 19, 557 genuine matches and 15, 639K

impostor matches. All images and videos from the IARPA Janus Benchmarks are captured under

unconstrained environment and show large variations in expression and image qualities. Since IJB-A

has been superseded by IJB-B with its images being a subset of IJB-B, we only report the results on

IJB-B and IJB-C.
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In Figure 4.12, we illustrate the ROC curves of the proposed method against the baselines. We see

that ArcFace [37] achieves strong performance. However, PCPSFM further increases the performance

through incorporating feature subspace and side information even when there are some low-resolution

face images within the template. This is because the proposed method can integrate information from

different face images within the template and therefore make the final template feature representation

robust. To conduct fair comparison with other methods [23, 130, 131], no flip test and face detection

scores are used during evaluation even though both tricks are known to improve the performance.

In Table 4.3 and 4.4, comparisons between the proposed PCPSFM and the most recent methods [23,

26,92,130,131] are made. We can see from the results that the baseline method, ArcFace [37], already

achieves similar or even better performance compared to the methods proposed in [26, 92]. With the

assistance of the proposed PCPSFM, our method achieves the best result on both IJB-B and IJB-C

datasets outperforming counterparts [26,92] even with less identities in the training data and a smaller

CNN embedding network.

Table 4.3: 1:1 verification TAR on the IJB-B dataset (Higher is better).

Method FAR=1e-4 FAR=1e-3
GOTS [123] 0.160 0.330

VGGFaces [86, 123] 0.550 0.720
FPN [26] 0.832 0.916

Light CNN [128] 0.877 0.920
Centre Loss [122] 0.807 0.900
Crystal Loss [92] 0.898 0.944

Whitelam et al. [123] 0.540 0.700
Navaneeth et al. [11] 0.685 0.830

ResNet50 [23] 0.784 0.878
SENet50 [23] 0.800 0.888

ResNet50+SENet50 [23] 0.800 0.887
MN-v [131] 0.818 0.902
MN-vc [131] 0.831 0.909

ResNet50+DCN(Kpts) [130] 0.850 0.927
ResNet50+DCN(Divs) [130] 0.841 0.930
SENet50+DCN(Kpts) [130] 0.846 0.935
SENet50+DCN(Divs) [130] 0.849 0.937

ArcFace [37] 0.899 0.945
GAN+ArcFace 0.904 0.949
PCP+ArcFace 0.901 0.947

PCPSM+ArcFace 0.907 0.951
LRR+ArcFace 0.909 0.952

PCPSFM+ArcFace 0.911 0.954
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Figure 4.12: ROC curves of 1:1 verification protocol on the IJB-B and IJB-C dataset.
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Table 4.4: 1:1 verification TAR on the IJB-C dataset (Higher is better).

Method FAR=1e-4 FAR=1e-3
Centre Loss [122] 0.853 0.912
Crystal Loss [92] 0.919 0.957

GOTS [123] 0.160 0.320
FaceNet [102] 0.490 0.660

VGG [86] 0.600 0.750
ResNet50 [23] 0.825 0.900
SENet50 [23] 0.840 0.910

ResNet50+SENet50 [23] 0.841 0.909
MN-v [131] 0.852 0.920
MN-vc [131] 0.862 0.927

ResNet50+DCN(Kpts) [130] 0.867 0.940
ResNet50+DCN(Divs) [130] 0.880 0.944
SENet50+DCN(Kpts) [130] 0.874 0.944
SENet50+DCN(Divs) [130] 0.885 0.947

ArcFace [37] 0.921 0.959
GAN+ArcFace 0.926 0.962
PCP+ArcFace 0.924 0.961

PCPSM+ArcFace 0.928 0.963
LRR+ArcFace 0.931 0.964

PCPSFM+ArcFace 0.934 0.965

Experiments on YTF

The YouTube Face (YTF) dataset [124] consists of 3, 425 videos from 1, 595 different people. The

clip duration varies from 48 frames to 6, 070 frames. The average length is 181.3 frames. We follow

the unrestricted with labelled outside data protocol and report the results on 5, 000 video pairs (2, 500

positive pairs and 2, 500 negative pairs).

This dataset is very challenging not only due to the rich pose variations but also the serious com-

pression artifacts. We compare the performance of the proposed method with current state-of-the-art

approaches on the YTF dataset. In Table 4.5, we list the verification accuracy for the best-performing

deep learning methods. We see that our GAN model alone is among the best reported architectures

and it outperforms the classical PCP. Nonetheless, their fusion (PCPSM, LRR and PCPSFM) is su-

perior to either of them. More specifically, PCPSM improves PCP and GAN by 0.12% and 0.06%

respectively. Regarding LRR, the improvements over PCP and GAN are 0.16% and 0.10% respect-

ively. Overall, PCPSFM achieves the best result, i.e., 0.12% over PCPSM and 0.08% over LRR. We

also plot the ROC curves for these methods in Figure 4.13. In Table 4.6, we list the TAR values under

different FAR values. The proposed PCPSFM achieves highest TAR (83.0%) at FAR=1e-3. Arguably,

the proposed PCPSFM does improve the accuracy of video-based face verification.
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Table 4.5: Verification accuracy (%) of different methods on the YTF dataset.

Methods Images Acc (%)

DeepID [116] 0.2M 93.20
VGG Face [86] 2.6M 97.30
Deep Face [118] 4M 91.40
FaceNet [102] 200M 95.10

Center Loss [122] 0.7M 94.9
Range Loss [141] 1.5M 93.70
Sphere Loss [75] 0.5M 95.0

Marginal Loss [38] 4M 95.98
ArcFace 3.1M 97.52

GAN+ArcFace 3.1M 97.66
PCP+ArcFace 3.1M 97.60

PCPSM+ArcFace 3.1M 97.72
LRR+ArcFace 3.1M 97.76

PCPSFM+ArcFace 3.1M 97.84
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Figure 4.13: ROC curves of the proposed methods on the YouTube Faces database under the “restric-

ted” protocol.
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Table 4.6: Verification TAR on the YTF dataset (Higher is better).

Method FAR=1e-3 FAR=1e-2 FAR=1e-1
ArcFace 0.790 0.953 0.985

GAN+ArcFace 0.810 0.961 0.987
PCP+ArcFace 0.807 0.957 0.986

PCPSM+ArcFace 0.820 0.962 0.987
LRR+ArcFace 0.822 0.963 0.987

PCPSFM+ArcFace 0.830 0.965 0.988

Experiments on PaSC

The PaSC dataset [8] includes 9, 376 still images and 2, 802 videos from 293 people. The images are

evenly split with respect to the distance to the camera, alternative sensors, frontal versus not-frontal

views and different environments. There are three protocols for face verification: comparing still

images to still images, videos to videos, and still images to videos. Since we have conducted image-

to-image and video-to-video experiments in previous sections, we only report image-to-video results

on PaSC with the public evaluation toolkit.

As the PaSC dataset [8] includes static images and videos of the same people, it is very interesting

to explore face verification performance between modalities: static image to dynamic video. Simply

put, given only a few images of a person, can we verify this person in the subsequent video that he/she

is seen or claimed to be seen? To set up this experiment, we prepare a query set of 1, 401 handheld (or

alternatively controlled) videos and a target set comprising of 9, 376 still images from 293 identities.

Figure 4.14 presents the ROC curve of each method. In Table 4.7, we report the TAR at different FARs.

The proposed PCPSFM significantly improves TAR from 82.4% to 85.7% at FAR=1e-5. In [8], the

baseline method only obtains TAR of 42% at FAR=1e-2, whereas our method PCPSFM achieves TAR

of 99.0% at FAR=1e-2.

Table 4.7: Verification TAR on the PaSC dataset (Higher is better).

Method FAR=1e-5 FAR=1e-4 FAR=1e-3

ArcFace 0.824 0.948 0.976

GAN+ArcFace 0.833 0.953 0.979

PCP+ArcFace 0.824 0.950 0.978

PCPSM+ArcFace 0.839 0.953 0.979

LRR+ArcFace 0.849 0.954 0.980

PCPSFM+ArcFace 0.857 0.956 0.981
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Figure 4.14: ROC curves of the proposed methods on the PaSC dataset.

4.5 Appendix

4.5.1 Generative adversarial networks

For GAN, we employ the image-to-image conditional adversarial network [54] to conduct UV com-

pletion. As is shown in Figure 4.15, there are two main components in the image-to-image conditional

GAN: a generator module and a discriminator module.

Generator Module Given incomplete UV texture input, the generator G works as an auto-encoder to

construct completed instances. We adopt the pixel-wise l1 norm as the reconstruction loss:

Lgen =
1

W ×H

W
∑

i=1

H
∑

j=1

∣

∣Iij − I∗ij
∣

∣ , (4.30)

where Iij is the estimated UV texture and I∗ij is the ground truth texture of width W and height H .
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Figure 4.15: Our GAN framework consists of one generator and one discriminator. The generator

takes the incomplete UV map as input and outputs the full UV map. The discriminator is learnt to

validate the genuineness of the synthesised UV texture. Note that only the generator is used at the

testing stage.

To preserve the image information in the original resolution, we follow the encoder-decoder design

in [54], where skip connections between mirrored layers in the encoder and decoder stacks are made.

We first fill the incomplete UV texture with random noise and then concatenate it with its mirror im-

age as the generator input. Since the face is not exactly symmetric, we have avoided using symmetry

loss as in [53]. Also, unlike the original GAN model [48] which is initialised from a noise vector,

the hidden representations obtained from our encoder capture more variations as well as relationships

between invisible and visible regions, and thus help the decoder fill up the missing regions.

Discriminator Module Although the previous generator module can fill missing pixels with small

reconstruction errors, it does not guarantee the output textures to be visually realistic and informative.

With only the pixel-wise l1 reconstruction loss, the UV completion results would be quite blurry and

missing important details. To improve the quality of synthetic images and encourage more photo-

realistic results, we adopt a discriminator module D to distinguish real and fake UVs. The adversarial

loss, which is a reflection of how the generator could maximally fool the discriminator and how well

the discriminator could distinguish between real and fake UVs, is defined as

Ladv = min
G

max
D

Ex∼pd(x),y∼pd(y) [logD(x, y)] +

Ex∼pd(x),z∼pz(z) [log(1−D(x, G(x, z)))] , (4.31)

where pz(z), pd(x) and pd(y) represent the distributions (Gaussian) of the noise variable z, the partial

UV texture x and the full UV texture y respectively.
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Objective Function The final loss function for the proposed UV-GAN is a weighted sum of generator

loss and discriminator loss:

L = Lgen + λLadv g. (4.32)

where λ is the weight to balance generator loss and discriminator loss. In all our experiments, we

empirically set λ = 10−2 following [36, 64] as best UV completion results can be obtained under this

setting.

Architecture The network architecture of [54] is adopted here2. The encoder unit consists of con-

volution, batch normalisation and ReLU, while the decoder unit consists of deconvolution, batch nor-

malisation and ReLU. The convolution involves 4× 4 spatial filters applied with stride 2. Convolution

in the encoder and the discriminator is also downsampled by a factor of 2, while in the decoder it is

upsampled by a factor of 2.

As shown in Figure 4.16(a), the generator utilises the U-Net [98] architecture which has skip con-

nections between ith layer in the encoder and the (n − i)th layer in the decoder, where n is the total

number of layers. These skip connections concatenate activations from the ith layer to the (n − i)th

layer. Note that batch normalisation is not applied to the first Conv64 layer in the encoder. All ReLUs

in the encoder are leaky, with slope 0.2, whereas ReLUs in the decoder are not leaky.

For the discriminator, we use the 70 × 70 PatchGAN as in [54]. In Figure 4.16(b), we depict the

architecture of the discriminator. Again, batch normalisation is not applied to the first Conv64 layer.

However, all ReLUs are now leaky, with slope 0.2. We have also set the stride of the last two encoder

modules to 1.

Training We train our networks from scratch by initialising the weights from a Gaussian distribution

with zero mean and 0.02 standard deviation. In order to train our UV completion model by pair-

wise image data, we make use of both under-controlled and in-the-wild UV datasets. For the under-

controlled UV data, we randomly select 180 subjects from the 4DFAB dataset [30]. For the in-the-

wild UV data, we employ the pseudo-complete UVs from the UMD video dataset [5] via Poisson

blending [91]. We have meticulously chosen videos with large pose variations such that coverage of

different poses is adequate. In the end, we have a combined UV dataset of 1,892 identities with 5,638

unique UV maps.

2https://github.com/phillipi/pix2pix
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(a) Generator architecture (b) Discriminator architecture

Figure 4.16: The encoder unit consists of convolution, batch normalisation and ReLU, and the decoder

unit consists of de-convolution, batch normalisation and ReLU. The input to the generator is the oc-

cluded UV map x that is filled with random noise z and concatenated with its flipped image. The input

to the discriminator is the original input x and either the ground-truth UV map y or the generated UV

map G(x, z).

4.5.2 Deep face feature embedding networks

We use Arcface3 [37] for 512-D facial feature embedding with resnet-50 and additive angular margin

loss. The size of all the convolutional filters is 3× 3 with stride 1. And the kernel size of max-pooling

is set to 2×2 with stride 2. The network is initialised from the Gaussian distribution and trained on the

VGG training set (c3.1 million images) under the supervisory signals of additive angular margin loss.

After an initial learning rate of 0.1, we successively contract it by a factor of 10 at the 6th, 14th, 22th

and 30th epoch. We train the network in parallel on four GPUs so the overall batch size is 128 × 4.

The input face size of the network is 112× 112 pixels.

4.5.3 Dictionary Learning

We compare the performance of different methods for learning subspace features by doing recognition

experiments on the recovered images of the CFP dataset. For KSVD, we use the formulation of eq.

30 of the main text, where we set c and t to 13 and used 10 iterations. For Non-homogeneous KSVD,

we modify eq. 30 according to [76]. Given a weight matrix β ∈ R
n1×n2 , we simultaneously seek a

dictionary D ∈ R
n1×c and a sparse representation B ∈ R

c×n2 such that:

min
D,B

‖β ⊗ (M −DB) ‖2F s. t. γi ≤ t for i = 1 . . . n2, (4.33)

where ⊗ is element-wise multiplication, c is the number of atoms, γi’s count the number of non-zero

elements in each sparsity code and t is the sparsity constraint factor. Again, we set c and t to 13 and

used 10 iterations with a boolean mask for β that denotes missing regions of the image.

The set-based face verification performance for LRR using subspace features generated by KSVD

(KSVD+ArcFace), non-homogeneous KSVD (WKSVD+ArcFace) and GAN (LRR+ArcFace) is shown

3https://github.com/deepinsight/insightface
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in Figure 4.11 and Table 4.2. Although there can be a small gain by introducing non-homogeneity into

KSVD, GAN is obviously preferable to both KSVD algorithms in extracting subspace features. Con-

sequently, we adopt the approach of using GAN for the source of subspace features as well as side

information, S.

Table 4.8: Verification TAR on the CFP dataset (Higher is better).

Method FAR=1e-6 FAR=1e-5 FAR=1e-4 FAR=1e-3 FAR=1e-2 FAR=1e-1
ArcFace 0.901 0.950 0.989 0.996 0.999 0.999

KSVD+ArcFace 0.892 0.950 0.989 0.996 0.999 0.999
WKSVD+ArcFace 0.895 0.954 0.989 0.996 0.999 0.999

LRR+ArcFace 0.911 0.963 0.993 0.997 0.999 0.999
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Figure 4.17: ROC curves on the CFP dataset.
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4.5.4 Quantitative measures of UV completion

For each video sequence, we plot the probability distributions of PSNR and SSIM values of all the

images recovered by algorithms PCP, LRR, PCPSM, PCPSFM in Figure 4.18- 4.22. To test for differ-

ence between their means, we assume that scores from any algorithm are normally distributed (this is

a good approximation by central limit theorem as the data size, 155, is quite large). We use unbiased

estimators for the population variances. The p-values under the null hypothesis, there is no difference

between the mean scores between any two algorithms, are summarised in Table 4.9- 4.13.

Figure 4.18: Distributions of PSNR and SSIM for all algorithms on Sequence 1 of the 4DFAB dataset.
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Figure 4.19: Distributions of PSNR and SSIM for all algorithms on Sequence 2 of the 4DFAB dataset.

Figure 4.20: Distributions of PSNR and SSIM for all algorithms on Sequence 3 of the 4DFAB dataset.
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Figure 4.21: Distributions of PSNR and SSIM for all algorithms on Sequence 4 of the 4DFAB dataset.

Figure 4.22: Distributions of PSNR and SSIM for all algorithms on Sequence 5 of the 4DFAB dataset.
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Table 4.9: P-values of PSNR and SSIM for any pair of algorithms on Sequence 1 of the 4DFAB dataset.

PSNR
P-values PCP PCPSM LRR PCPSFM

PCP - <0.01 <0.01 <0.01
PCPSM <0.01 - <0.01 <0.01

LRR <0.01 <0.01 - 0.01
PCPSFM <0.01 <0.01 0.01 -

SSIM
P-values PCP PCPSM LRR PCPSFM

PCP - <0.01 <0.01 <0.01
PCPSM <0.01 - <0.01 <0.01

LRR <0.01 <0.01 - 0.02
PCPSFM <0.01 <0.01 0.02 -

Table 4.10: P-values of PSNR and SSIM for any pair of algorithms on Sequence 2 of the 4DFAB

dataset.

PSNR
P-values PCP PCPSM LRR PCPSFM

PCP - <0.01 <0.01 <0.01
PCPSM <0.01 - 0.37 <0.01

LRR <0.01 0.37 - <0.01
PCPSFM <0.01 <0.01 <0.01 -

SSIM
P-values PCP PCPSM LRR PCPSFM

PCP - <0.01 <0.01 <0.01
PCPSM <0.01 - 0.37 <0.01

LRR <0.01 0.37 - <0.01
PCPSFM <0.01 <0.01 <0.01 -

Table 4.11: P-values of PSNR and SSIM for any pair of algorithms on Sequence 3 of the 4DFAB

dataset.

PSNR
P-values PCP PCPSM LRR PCPSFM

PCP - <0.01 <0.01 <0.01
PCPSM <0.01 - <0.01 <0.01

LRR <0.01 <0.01 - <0.01
PCPSFM <0.01 <0.01 <0.01 -

SSIM
P-values PCP PCPSM LRR PCPSFM

PCP - <0.01 <0.01 <0.01
PCPSM <0.01 - <0.01 <0.01

LRR <0.01 <0.01 - <0.01
PCPSFM <0.01 <0.01 <0.01 -

Table 4.12: P-values of PSNR and SSIM for any pair of algorithms on Sequence 4 of the 4DFAB

dataset.

PSNR
P-values PCP PCPSM LRR PCPSFM

PCP - <0.01 <0.01 <0.01
PCPSM <0.01 - 0.37 <0.01

LRR <0.01 0.37 - 0.01
PCPSFM <0.01 <0.01 0.01 -

SSIM
P-values PCP PCPSM LRR PCPSFM

PCP - <0.01 <0.01 <0.01
PCPSM <0.01 - 0.31 <0.01

LRR <0.01 0.31 - <0.01
PCPSFM <0.01 <0.01 <0.01 -
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Table 4.13: P-values of PSNR and SSIM for any pair of algorithms on Sequence 5 of the 4DFAB

dataset.

PSNR
P-values PCP PCPSM LRR PCPSFM

PCP - <0.01 <0.01 <0.01
PCPSM <0.01 - <0.01 <0.01

LRR <0.01 <0.01 - 0.04
PCPSFM <0.01 <0.01 0.04 -

SSIM
P-values PCP PCPSM LRR PCPSFM

PCP - <0.01 <0.01 <0.01
PCPSM <0.01 - <0.01 <0.01

LRR <0.01 <0.01 - 0.04
PCPSFM <0.01 <0.01 0.04 -
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4.5.5 Verification experiments on VGG

The VGG2 dataset [23] contains a test set of 500 identities (169,396 images). VGG2 has large vari-

ations in pose, age, illumination, ethnicity and profession. To facilitate the evaluation of face matching

across different poses, VGG2 provides a face template list for 368 subjects, which contains 2 front

templates, 2 three-quarter templates and 2 profile templates. Each template includes 5 images. For

set-based face verification on VGG2, we first utilise the released template settings where each subject

contains 6 view-specific sets. Thus, there are 5, 520 positive pairs and 2, 431K negative pairs. Since

the proposed method targets on information fusion from different views, we also create 5 view-mixed

sets for every subject, each of which includes 6 face images from three different views. Thus, there are

3, 680 positive pairs and 1, 688.2K negative pairs.

In Figure 4.23 and Table 4.14 and 4.15, we compare the proposed methods with baseline methods.

We observe significant improvement through incorporating feature subspace and side information in

the proposed PCPSFM. For the single view set setting, PCPSFM improves TAR by 10.3% at FAR=1e-

5 compared to that of ArcFace. For the mixed view set setting, PCPSFM improves TAR by 14.8%

at FAR=1e-5 compared to that of ArcFace. The improvement on the mixed view set setting is much

higher than on the single view set setting, which indicates that the proposed PCPSFM can effectively

integrate information from different views so as to improve pose-invariant face recognition.
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Figure 4.23: ROC curves on the VGG2 test set.

4.5.6 Running times

We benchmark running times of various algorithms on the PaSC dataset. We selected 3 videos of

different lengths and repeated each experiment 5 times on a machine with Intel Xeon E5-1650 6-core
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Table 4.14: Verification TAR on the VGG2 single-view test set (Higher is better).

Method FAR=1e-6 FAR=1e-5 FAR=1e-4 FAR=1e-3 FAR=1e-2 FAR=1e-1
ArcFace 0.079 0.462 0.992 0.998 0.999 1.000

GAN+ArcFace 0.122 0.481 0.993 0.998 0.999 1.000
PCP+ArcFace 0.102 0.449 0.993 0.998 0.999 1.000

PCPSM+ArcFace 0.140 0.516 0.993 0.998 0.999 1.000
LRR+ArcFace 0.145 0.526 0.994 0.998 0.999 1.000

PCPSFM+ArcFace 0.166 0.565 0.994 0.998 0.999 1.000

Table 4.15: Verification TAR on the VGG2 mixed-view test set (Higher is better).

Method FAR=1e-6 FAR=1e-5 FAR=1e-4 FAR=1e-3 FAR=1e-2 FAR=1e-1
ArcFace 0.205 0.615 0.998 0.999 1.000 1.000

GAN+ArcFace 0.333 0.694 0.998 0.999 1.000 1.000
PCP+ArcFace 0.300 0.671 0.998 0.999 1.000 1.000

PCPSM+ArcFace 0.356 0.717 0.998 0.999 1.000 1.000
LRR+ArcFace 0.388 0.736 0.998 0.999 1.000 1.000

PCPSFM+ArcFace 0.410 0.763 0.998 0.999 1.000 1.000

3.50GHz CPU and 16GB RAM. Table 4.17 summarises the running time results. Table 4.16 also gives

the running time (per image) of each processing step in our pipeline.

Table 4.16: Average running times of each processing step in our pipeline.

Processing step Per image running time
Face detection 15.7ms
Face alignment 12.2ms
3DMM fitting 20s
GAN 25.6ms
PCPSFM <1.5s
Face rendering [34, 44] 0.6ms
Feature embedding 8.9ms
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Table 4.17: Average running times of various algorithms. WKSVD stands for non-homogenous

KSVD [76].

Average running time
Method video length = 10 video length = 40 video length = 200
KSVD 1.4s 23.2s 12.1min
WKSVD 54.6s 4.2min 1.7hr
GAN 256.2ms 1.0s 5.1s
PCP 2.4s 18.6s 2.5min
LRR 2.5s 23.5s 3.2min
PCPSM 5.5s 36.5s 5.5min
PCPSFM 3.4s 31.0s 3.9min
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CHAPTER 5

Robust Low-rank Tensor Modelling

Using Tucker and CP Decomposition

5.1 Introduction

Here we present two novel robust tensor methods based on Tucker and CP decomposition that recover

the latent low-rank component from noisy observations by relaxing (1.14), which is NP-hard. In

section 5.2, we review relevant literature on matrix and tensor algorithms. In section 5.3, we explain

our proposed tensor methods in detail. In section 5.4, we demonstrate the advantages of our models on

both synthetic data and a real-world dataset.

5.2 Related work

Much recent research on subspace analysis for the matrix case has direct applicability to tensor data.

The costly singular value decomposition step in classical PCP prohibits large-scale analysis. A general

approach to mitigate this issue is to look for a factorisation of the low rank component A. ORPCA [70]

uses a linear combination of the active subspace, A = UV , U⊺U = I , where bilinear factors

U ∈ R
m×k and V ∈ R

k×n are the principal components and the combination coefficients respectively

and k is an upper bound of rank(A).
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5.3 Models

5.3.1 Soft and hard thresholding operators

For fixed X ∈ R
d1×···×dN , the optimal analytical solution for minY κ‖Y‖1 + 1

2‖X − Y‖2F is given

by the soft thresholding operation Θκ(X ), where

Θκ(X )ι1···ιN = (Xι1···ιN − κ)+ − (−Xι1···ιN − κ)+. (5.1)

And for fixed X ∈ R
m×n, the optimal analytical solution for minY κ‖X‖∗ + 1

2‖X − Y ‖2F is

given by the hard thresholding operation Φκ(X), where

Φκ(X) = UΘκ(S)V
⊺, (5.2)

for singular value decomposition X = USV ⊺.

5.3.2 Tensor Orthonormal Robust PCA

Generalisation of ORPCA to tensors corresponds to the following factorisation of the low-rank com-

ponent L:

L = V ×1 U1 × · · · ×N UN ≡ V ×N
i=1 Ui, U

⊺

i Ui = I, (5.3)

which is exactly the HOSVD [63] of L and the following relationship holds

‖L(i)‖∗ = ‖V(i)‖∗. (5.4)

Based on the above, (1.15) can be re-written as

min
V,S

N
∑

i=1

αi‖V(i)‖∗ + λ‖S‖1,

s.t. X = V ×N
i=1 Ui + S, U

⊺

i Ui = I, 1 ≤ i ≤ N.

(5.5)

To separate variables, we make the substitution V(i) = Ji, to arrive at an equivalent problem:

min
Ji,S

N
∑

i=1

αi‖Ji‖∗ + λ‖S‖1,

s.t. X = V ×N
i=1 Ui + S, U

⊺

i Ui = I,

V(i) = Ji, 1 ≤ i ≤ N.

(5.6)
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To apply ADMM, the augmented Lagrangian of (5.6) is constructed first:

L(Ji,V ,S,Ui,Y ,Zi) =
N
∑

i=1

αi‖Ji‖∗ + λ‖S‖1

+ 〈X − V ×N
i=1 Ui − S,Y〉+

N
∑

i=1

〈V(i) − Ji,Zi〉

+
µ

2
‖X − V ×N

i=1 Ui − S‖2F +
N
∑

i=1

µ

2
‖V(i) − Ji‖2F ,

(5.7)

where U
⊺

i Ui = I has not been incorporated.

Ji is updated by the minimiser of L(Ji):

Ji = argmin
Ji

αiµ
−1‖Ji‖∗ +

1

2
‖Ji − (V(i) +

1

µ
Zi)‖2F

= Φαiµ−1(V(i) +
1

µ
Zi)

(5.8)

V is updated by the minimiser of L(V):

V = argmin
V

〈V ,−(µ(X − S) +Y)×N
i=1 U

⊺

i 〉

+
N
∑

i=1

〈V −J i,Z i〉+
µ

2
‖V‖2F +

N
∑

i=1

µ

2
‖V −J i‖2F ,

(5.9)

where we have used the fact that U
⊺

i Ui = I , the Frobenius norm is invariant under rotations and

J i,Z i are the inverse of mode-i matricisations, Ji,Zi respectively. To obtain V , setting the gradient

of (5.9) to zero gives:

V =
1

N + 1
((X −S +

1

µ
Y)×N

i=1 U
⊺

i +
N
∑

i=1

(J i −
1

µ
Z i)). (5.10)

S is updated by the minimiser of L(S):

S =argmin
S

λµ−1‖S‖1

+
1

2
‖S − (X − V ×N

i=1 Ui +
1

µ
Y)‖2F

=Θλµ−1(X − V ×N
i=1 Ui +

1

µ
Y).

(5.11)

Ui is updated by the minimiser of L(Ui) subject to U
⊺

i Ui = I:

Ui =argmin
Ui

1

2
‖X(i) − S(i) +

1

µ
Y(i) −UiBi‖2F ,

where Bi = (V ×i−1
j=1 Uj ×N

j=i+1 Uj)(i).

(5.12)

157



5. Robust Low-rank Tensor Modelling Using Tucker and CP Decomposition

Algorithm 7 ADMM solver for TORPCA

Input: Observation X , parameter λ > 0, scaling κ > 1, weights αi, ranks ki
1: Initialise: Ji = Zi = 0, S = Y = 0, V = 0, Ui = first ki left singular vectors of X(i), µ > 0
2: while not converged do

3: for i ∈ {1, 2, · · · , N} do

4: Ji = Φαiµ−1(V(i) +
1
µZi)

5: end for

6: V = 1
N+1((X − S + 1

µY)×N
i=1 U

⊺

i +
∑N

i=1(J i − 1
µZ i))

7: S = Θλµ−1(X − V ×N
i=1 Ui +

1
µY)

8: for i ∈ {1, 2, · · · , N} do

9: Bi = (V ×i−1
j=1 Uj ×N

j=i+1 Uj)(i)
10: CiDiV

⊺

i = (X(i) − S(i) +
1
µY(i))B

⊺

i

11: Ui = CiV
⊺

i

12: end for

13: Y = Y + µ(X − V ×N
i=1 Ui − S)

14: for i ∈ {1, 2, · · · , N} do

15: Zi = Zi + µ(V(i) − Ji)
16: end for

17: µ = µ× κ
18: end while

Return: V ,S,Ui

If we have the following SVD

(X(i) − S(i) +
1

µ
Y(i))B

⊺

i = CiDiV
⊺

i , (5.13)

then according to the Reduced Rank Procrustes Theorem [144], the solution is given by

Ui = CiV
⊺

i . (5.14)

The complete algorithm is presented in Algorithm 0.

5.3.3 Tensor robust CP decomposition

Let U (i) = [a
(i)
1 ,a

(i)
2 , · · · ,a(i)

r ], then we can express L compactly as L = U (1) ◦U (2) ◦ · · · ◦U (N).

In particular, it can be shown that ranki(L) ≤ rank(Ui), for 1 ≤ i ≤ N . So, it is beneficial to solve

the following objective

min
Ui,S

N
∑

i=1

αi‖Ui‖∗ + λ‖S‖1, X = U1 ◦U2 ◦ · · · ◦UN + S. (5.15)
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Again, we make the substitution Ui = Ji before performing ADMM, which leads to the following

problem

min
Ji,S

N
∑

i=1

αi‖Ji‖∗ + λ‖S‖1

s.t. X = U1 ◦ · · · ◦UN + S, Ui = Ji, 1 ≤ i ≤ N.

(5.16)

The corresponding augmented Lagrangian is

L(Ji,Ui,S,Y ,Zi) =
N
∑

i=1

αi‖Ji‖∗ + λ‖S‖1

+ 〈X −U1 ◦ · · · ◦UN − S,Y〉+
N
∑

i=1

〈Ui − Ji,Zi〉

+
µ

2
‖X −U1 ◦ · · · ◦UN − S‖2F +

N
∑

i=1

µ

2
‖Ui − Ji‖2F .

(5.17)

Ji is updated by the minimiser of L(Ji):

Ji = argmin
Ji

αiµ
−1‖Ji‖∗ +

1

2
‖Ji − (Ui +

1

µ
Zi)‖2F

= Φαiµ−1(Ui +
1

µ
Zi).

(5.18)

Ui is updated by the minimiser of L(Ui):

Ui = argmin
Ui

〈X(i) −UiŨi − S(i),Y(i)〉+ 〈Ui − Ji,Zi〉

+
µ

2
‖X(i) −UiŨi − S(i)‖2F +

µ

2
‖Ui − Ji‖2F ,

where Ũi = (UN ⊙ · · · ⊙Ui+1 ⊙Ui−1 ⊙ · · · ⊙U1)
⊺

(5.19)

Setting the derivative of (5.19) to zero gives:

Ui =((X(i) − S(i) +
1

µ
Y(i))Ũ

⊺

i

+ Ji −
1

µ
Zi)(ŨiŨ

⊺

i + I)−1.

(5.20)

S is updated by the minimiser of L(S):

S = argmin
S

λµ−1‖S‖1

+
1

2
‖S − (X −U1 ◦ · · · ◦UN ) +

1

µ
Y‖2F

= Θλµ−1(X −U1 ◦ · · · ◦UN + µ−1Y).

(5.21)

The complete algorithm is described in Algorithm 0.
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Algorithm 8 ADMM solver for TRCPD

Input: Observation X , parameter λ > 0, scaling κ > 1, weights αi, rank k
1: Initialise: Ji = Ui = rand, S = Y = 0, Zi = 0, µ > 0
2: while not converged do

3: for i ∈ {1, 2, · · · , N} do

4: Ji = Φαiµ−1(Ui +
1
µZi)

5: Ũi = (UN ⊙ · · · ⊙Ui+1 ⊙Ui−1 ⊙ · · · ⊙U1)
⊺

6: Ui = ((X(i) − S(i) +
1
µY(i))Ũ

⊺

i + Ji − 1
µZi)(ŨiŨ

⊺

i + I)−1

7: end for

8: S = Θλµ−1(X −U1 ◦ · · · ◦UN + 1
µY)

9: Y = Y + µ(X −U1 ◦ · · · ◦UN − S)
10: for i ∈ {1, 2, · · · , N} do

11: Zi = Zi + µ(Ui − Ji)
12: end for

13: µ = µ× κ
14: end while

Return: Ui,S

5.3.4 Complexity and convergence

For ease of exposition, we assume that d1, · · · , dN = ζ. For TORPCA, the most expansive calculation

in each iteration is the i-mode product which has a time complexity of O(NrζN ). For TRCPD, the

dominant term is the chain of matrix outer products which costs O(NrζN ). Note that both methods

have lower complexity than RSTD whose complexity is O(NζN+1) due to SVD if r < ζ.

Although both of our proposed tensor methods are non-convex, we have empirically found that the

warm initialisation of using the first ki left singular vectors of X(i) for Ui works well for TORPCA

and uniform initialisation of Ui, 1 ≤ i ≤ k from [0, 1] suffices for TRCPD (see Section 5.4).

5.4 Experiments

5.4.1 Implementation details

For stopping criteria, we use one of the KKT opimality conditions,
‖X−L−S‖F

‖X‖F < δ and we have set

δ = 10−7. The initial value of µ is set to 10−3, which is geometrically increased by a factor of κ = 1.2

up to 109. The weights αi are assumed equal.

5.4.2 Simulation

We first evaluate the performance of all algorithms on synthetic data. A low-rank tensor L ∈ R
100×100×100

is generated via L = U1◦U2◦U3, where elements of U1,U2,U3 ∈ R
100×8 are independently sampled
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from the standard Gaussian distribution. The variance of L is normalised to 1 afterwards. A sparse

tensor S ∈ R
100×100×100 is constructed by uniform sampling from [−10, 10]. Then only 20% of the

elements are kept, with others set to zero.
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Figure 5.1: Relative error from all algorithms for a range of λ.

Each tensor algorithm takes X = L+S as input, whereas matrix algorithms take mode-1 matricisa-

tion of X as input. Since rank(L) ≤ 8, the rank k in TRCPD is set to 8 and the ranks ki in TORPCA

are all set to 8 because ranki(L) ≤ 8. The relative error
‖L−L̃‖F
‖L‖F averaged over 5 trials against λ is

plotted for the optimal L̃ in each algorithm in Fig 5.1. The total execution time for each algorithm

versus λ is shown in Fig 5.2.

It is clear that tensor methods are superior to matrix-based methods. Particularly, TRCPD performs

the best and TORPCA is also better than RSTD. Both TRCPD and TORPCA are stable in terms of λ

whereas RSTD depends on tuning heavily. The execution time confirms our complexity analysis. Both

of TORCPA and TRCPD are significantly faster than RSTD.

5.4.3 Facial image denoising

It is well understood that a convex Lambertian surface, viz. faces, under distant and isotropic lighting

has a low-rank underlying model. In light of this, we consider images of a fixed pose under different
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Figure 5.2: Running time of all algorithms as λ varies.

illuminations from the extended Yale B database for benchmarking. All 64 images for one person were

studied. For matrix-based methods, 32556× 64 observation matrices were formed by vectorising each

168× 192 image. All images are also re-scaled such that every pixel lies in [0, 1].

• Salt & Pepper Noise Salt & pepper noise is observed in real images, commonly caused by data

transmission errors. To apply salt & pepper noise, we randomly set pixels to black (0) or white (1) with

equal probability. This is close to the Laplacian noise hypothesis, where noise is heavy, non-Gaussian

and potentially wide-ranging. We test an extreme case, where 60% of all the pixels are affected.

• Partial Occlusion Partial occlusion is ubiquitous in visual information, which can usually be com-

pleted during human visual perception [103]. For the partial occlusion noise, we generate randomly

sized patches at random locaions. The maximum dimension is 160 pixels and the occlusion is full of

Salt & Pepper noise.

The successful application of various algorithms requires careful tuning of the algorithmic paramet-

ers. These include the penalty parameter λ, an estimate of k = rank(L) and ki = ranki(L) = ⌈di×α⌉.

The ranges of interest and the optimal choices are summarised in Table 5.1.

Reconstruction from salt & pepper noise is illustrated in the first row of Fig 5.3, where the first
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Table 5.1: Optimal parameter choices for all algorithms used in different experiments.

Senario Algorithm λ ∈ [10−4, 10−1] k ∈ {10, 20, · · · , 200} α ∈ {0.1, 0.2, · · · , 0.9}
S

al
t

&
P

ep
p
er RSTD 0.0092 — —

TORPCA 0.2000 — 0.2

TRCPD 0.0134 160 —

ORPCA 0.0621 20 —

o
cc

lu
si

o
n

RSTD 0.0076 — —

TORPCA 0.0190 — 0.2

TRCPD 0.0017 50 —

ORPCA 0.0300 40 —

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

Figure 5.3: Image Denoising Experiments: (a) & (h) are original images from the sequence. Salt &

pepper is introduced as shown in (b) and occlusion is demonstrated in (i). (c) & (j) present recovery

results for RSTD. (d) & (k) for TORPCA. (e) & (l) for TRCPD. (f) & (m) for PCP. And (g) & (n) for

ORCPA.

image in the sequence is shown. RSTD and matrix-based methods fail to remove the introduced

noise, whereas TORPCA and TRCPD are extremely promising such that no trail of noise can be seen.

Recovery from partial occlusion is displayed in the second row of Fig 5.3. ORPCA has little effect.

The region where noise was introduced is severely distorted in the recovered image of RSTD. Both

TORPCA and TRCPD mananged to denoise the occlusion though they have an additional smoothing

effect. PCP achieves the highest quality of recovery but there is still unremoved noise left in the image.

This may be attributed to the fact that the nature of the occlusion is inherently in a matrix form.
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CHAPTER 6

Conclusion

6.1 Thesis summary

First, this dissertation revisits RPCA with features in the context of non-convex optimisation. Exact

recovery can be guaranteed if the error sparsity is known to some degree and one of three incoherence

assumptions for features and the data matrix is met. Extensive experiments on simulation data indicate

that our algorithm can recover matrices with higher ranks and corrupted with more errors than previous

state-of-the-art algorithms. Moreover, when the size of the observation matrix increases, our algorithm

scales favorably. We further observe that when our algorithm is applied to real-world data, i.e. MNIST

and Yale B, significant improvement can be achieved over the compared algorithms. Second, this

work, for the first time, incorporates side information which has the same dimension as the observa-

tion matrix into the RPCA framework leveraging the format of trace norms. The proposed framework

can also assimilate subspace features in the convex optimisation altogether, thus generalising previ-

ous approaches. Experiments demonstrate the greater applicability of our algorithm which not only

surpasses RPCA in usual applications but also remains potent when RPCA is ineffective. Third, we

extend the previous work of robust principal component analysis with features and side information to

the case of missing values. Furthermore, for the application domain of UV completion, we propose the

use of generative adversarial networks to extract side information and subspaces, which, to the best of

our knowledge, is the first time RPCA and GAN have been combined. We also provide a proof of the

convergence of the multi-block ADMM optimiser for our convex program. The effectiveness of side

information can be seen through experiments on both simulated and real-world datasets. Face recog-

nition benchmarks further justify our fusion approach on in-the-wild data. Last but not the least, we

move on to propose two robust tensors models, TORPCA and TRCPD, to deal with low-rank recovery.

These models not only outpace their matrix counterparts but also several recent tensor attempts. We

firmly believe that our work has further reach in signal processing beyond experiments conducted in
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this dissertation.

6.2 Limitations and Future work

The derived bound for the non-convex RPCA with features is not optimal. Further efforts are needed to

improve the convergence bound for the the proposed algorithm. The initialisation strategy in our non-

convex program can still be considered primitive and crude. More efforts should be exerted to pursue

better initialisation in order to improve the recovery bound. Only clean features are considered in the

RPCA framework in this thesis. However, clean features are not trivial to find the in the real world and

investigation to exploit noisy features is called for. We have only considered side information which

is an approximation of the low-rank component. Still rigorous characterisation of the side information

is demanded to facilitate the full understanding of the effect of side information. We have constrained

ourselves to the Euclidean metric. More work is required to generalise the RPCA framework into

other manifolds. Additionally, there remains an opportunity to consider graphical knowledge for side

information. There are many schemes for tensor decomposition: the tensor-train format, hierarchical

tensor decomposition, tensor average rank to name a few. Future works on RPCA could explore ex-

tensions to these frameworks. Our analysis on side information is confined within the matrix domain

using convex relaxations. Generalising to the tensor domain using non-convex approaches are prom-

ising directions for future research. RPCA is essentially an unsupervised learning approach. Labels

may also help recovery and form an interesting line of future research by incorporating them into the

optimisation objective. Moreover, for complex tasks, it is also beneficial to embed the task-specific

metric into the RPCA objective. An example is to consider features, side information, tensor general-

isations for kernel RPCA. Given the recent progress of deep learning approaches, it is advantageous

to combine the techniques of deep learning and RPCA to form an enhanced algorithm. We limit our

application study only to facial recognition from videos, but new application domains, such as pose es-

timation and gender estimation [94] are also accessible with our proposed approaches after adaptation.

Novel application domains where low-rank modelling is appropriate and RPCA is applicable should

also be explored.
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