385 research outputs found

    A describing function study of saturated quantization and its application to the stability analysis of multi-bit sigma delta modulators

    Get PDF
    Just as their single-bit counterparts, multi-bit sigma delta modulators exhibit nonlinear behavior due to the presence of the quantizer in the loop. In the multi-bit case this is caused by the fact that any quantizer has a limited output range and hence gives an implicit saturation effect. Due to this, any multi-bit modulator is prone to modulator overloading. Unfortunately, until now, designers had to rely on extensive time-domain simulations to predict the overloading level, because there is no adequate analytical theory to model this effect. In this work, we have developed such an analytical theory based on multiple input describing function analysis. This way, we obtained expressions for the signal gain, the noise gain and the variance of the quantization noise. Here, both the case of DC as well as sinusoidal signals was considered. These results were used for the stability analysis of multi-bit Sigma Delta modulators, which allows to predict the overloading level. Code implementing the proposed expressions is available for download at http://cas1.elis.ugent. be/cas/en/download

    Design, analysis and evaluation of sigma-delta based beamformers for medical ultrasound imaging applications

    Get PDF
    The inherent analogue nature of medical ultrasound signals in conjunction with the abundant merits provided by digital image acquisition, together with the increasing use of relatively simple front-end circuitries, have created considerable demand for single-bit beamformers in digital ultrasound imaging systems. Furthermore, the increasing need to design lightweight ultrasound systems with low power consumption and low noise, provide ample justification for development and innovation in the use of single-bit beamformers in ultrasound imaging systems. The overall aim of this research program is to investigate, establish, develop and confirm through a combination of theoretical analysis and detailed simulations, that utilize raw phantom data sets, suitable techniques for the design of simple-to-implement hardware efficient digital ultrasound beamformers to address the requirements for 3D scanners with large channel counts, as well as portable and lightweight ultrasound scanners for point-of-care applications and intravascular imaging systems. In addition, the stability boundaries of higher-order High-Pass (HP) and Band-Pass (BP) Σ−Δ modulators for single- and dual- sinusoidal inputs are determined using quasi-linear modeling together with the describing-function method, to more accurately model the modulator quantizer. The theoretical results are shown to be in good agreement with the simulation results for a variety of input amplitudes, bandwidths, and modulator orders. The proposed mathematical models of the quantizer will immensely help speed up the design of higher order HP and BP Σ−Δ modulators to be applicable for digital ultrasound beamformers. Finally, a user friendly design and performance evaluation tool for LP, BP and HP modulators is developed. This toolbox, which uses various design methodologies and covers an assortment of modulators topologies, is intended to accelerate the design process and evaluation of modulators. This design tool is further developed to enable the design, analysis and evaluation of beamformer structures including the noise analyses of the final B-scan images. Thus, this tool will allow researchers and practitioners to design and verify different reconstruction filters and analyze the results directly on the B-scan ultrasound images thereby saving considerable time and effort

    Nonlinear Model-Based Approach for Accurate Stability Prediction of One-Bit Higher-Order Delta-Sigma (Δ-Σ)Modulators

    Get PDF
    The present approaches on predicting stability of Delta-Sigma (Δ-Σ) modulators are mostly confined to DC inputs. This poses limitations as practical applications of Δ-Σ modulators involve a wide range of signals other than DC. In this paper, a quasi-linear model for Δ-Σ modulators with nonlinear feedback control analysis is presented that accurately predicts the stability of higher-order single-loop 1-bit Δ-Σ modulators for various types of input signals such as single-sinusoids, dual-sinusoids, multiple-sinusoids and Gaussian. Theoretical values are shown to match closely with simulation results. The results of this paper would significantly speed up the design and evaluation of higher-order single-loop 1-bit Δ-Σ modulators for various applications including those that may require multiple-sinusoidal inputs or any general input composed of a finite number of sinusoidal components, circumventing the need to perform detailed time-consuming simulations to quantify stability limits. By using the proposed method, the difference between the predicted and the actual stable amplitude limits results in an error of less than 1 dB in the in-band Signal-to-Noise Ratio (SNR) for 3rd- and higher-order Δ-Σ modulators for single-sinusoidal inputs. For single-, dual-, multiple-sinusoidal and Gaussian inputs the error is less than 2 dB for the 5th-order and reduces to less than 1 dB for 6th- and higher-order Δ-Σ modulators

    Accurate stability prediction of 1-bit higher-order Δ-Σ modulators for multiple-sinusoidal inputs

    Get PDF
    The present approaches on predicting stability of Delta-Sigma (Δ-Σ) modulators are mostly confined to DC inputs. This poses limitations as practical applications of Δ-Σ modulators involve a wide range of signals other than DC such as multiple sinusoidal inputs for speech modeling. In this paper, a quasi-linear model for Δ-Σ modulators with nonlinear feedback control analysis is presented that accurately predicts stability of single-loop 1-bit higher-order Δ-Σ modulators for multiple sinusoids. Theoretical values are shown to match closely with simulation results. The results of this paper would enable optimization of the design of higher-order single-loop Δ-Σ modulators with increased dynamic ranges for various applications that require multiple-sinusoidal inputs or any general input composed of a finite number of sinusoidal components

    Σ-Δ Modulators - Stability Analysis and Optimization

    Get PDF

    Nonlinear Stability Prediction of Multibit Delta-Sigma Modulators for Sinusoidal Inputs

    Get PDF
    This paper proposes a novel algorithm that can be integrated with various design and evaluation tools, to more accurately and rapidly predict stability in multi-bit delta-sigma (Δ-Σ) modulators. Analytical expressions using the nonlinear gains from the concept of modified nonlinearity in control theory are incorporated into the mathematical model of multi-bit Δ-Σ modulators to predict the stable amplitude limits for sinusoidal input signals. The nonlinear gains lead to a set of equations which can numerically estimate the quantizer gain as a function of the input sinusoidal signal amplitude. This method is shown to accurately predict the stable amplitude limits of sinusoids for 2nd-, 3rd-, 4th-, 5th- and 6th-order 3- and 5-level mid-tread quantizer based Δ-Σ modulators. The algorithm is simple to apply and can be extended to midrise quantizers or to any number of quantizer levels. The only required input parameters for this algorithm are the number of quantizer levels and the coefficients of the noise transfer function

    1-Bit processing based model predictive control for fractionated satellite missions

    Get PDF
    In this thesis, a 1-bit processing based Model Predictive Control (OBMPC) structure is proposed for a fractionated satellite attitude control mission. Despite the appealing advantages of the MPC algorithm towards constrained MIMO control applications, implementing the MPC algorithm onboard a small satellite is certainly challenging due to the limited onboard resources. The proposed design is based on the 1-bit processing concept, which takes advantage of the affine relation between the 1-bit state feedback and multi-bit parameters to implement a multiplier free MPC controller. As multipliers are the major power consumer in online optimization, the OBMPC structure is proven to be more efficient in comparison to the conventional MPC implementation in term of power and circuit complexity. The system is in digital control nature, affected by quantization noise introduced by Δ∑ modulators. The stability issues and practical design criteria are also discussed in this work. Some other aspects are considered in this work to complete the control system. Firstly, the implementation of the OBMPC system relies on the 1-bit state feedbacks. Hence, 1-bit sensing components are needed to implement the OBMPC system. While the ∆∑ modulator based Microelectromechanical systems (MEMS) gyroscope is considered in this work, it is possible to implement this concept into other sensing components. Secondly, as the proposed attitude mission is based on the wireless inter-satellite link (ISL), a state estimator is required. However, conventional state estimators will once again introduce multi-bit signals, and compromise the simple, direct implementation of the OBMPC controller. Therefore, the 1-bit state estimator is also designed in this work to satisfy the requirements of the proposed fractionated attitude control mission. The simulation for the OBMPC is based on a 2U CubeSat model in a fractionated satellite structure, in which the payload and actuators are separated from the controller and controlled via the ISL. Matlab simulations and FPGA implementation based performance analysis shows that the OBMPC is feasible for fractionated satellite missions and is advantageous over the conventional MPC controllers

    1-Bit processing based model predictive control for fractionated satellite missions

    Get PDF
    In this thesis, a 1-bit processing based Model Predictive Control (OBMPC) structure is proposed for a fractionated satellite attitude control mission. Despite the appealing advantages of the MPC algorithm towards constrained MIMO control applications, implementing the MPC algorithm onboard a small satellite is certainly challenging due to the limited onboard resources. The proposed design is based on the 1-bit processing concept, which takes advantage of the affine relation between the 1-bit state feedback and multi-bit parameters to implement a multiplier free MPC controller. As multipliers are the major power consumer in online optimization, the OBMPC structure is proven to be more efficient in comparison to the conventional MPC implementation in term of power and circuit complexity. The system is in digital control nature, affected by quantization noise introduced by Δ∑ modulators. The stability issues and practical design criteria are also discussed in this work. Some other aspects are considered in this work to complete the control system. Firstly, the implementation of the OBMPC system relies on the 1-bit state feedbacks. Hence, 1-bit sensing components are needed to implement the OBMPC system. While the ∆∑ modulator based Microelectromechanical systems (MEMS) gyroscope is considered in this work, it is possible to implement this concept into other sensing components. Secondly, as the proposed attitude mission is based on the wireless inter-satellite link (ISL), a state estimator is required. However, conventional state estimators will once again introduce multi-bit signals, and compromise the simple, direct implementation of the OBMPC controller. Therefore, the 1-bit state estimator is also designed in this work to satisfy the requirements of the proposed fractionated attitude control mission. The simulation for the OBMPC is based on a 2U CubeSat model in a fractionated satellite structure, in which the payload and actuators are separated from the controller and controlled via the ISL. Matlab simulations and FPGA implementation based performance analysis shows that the OBMPC is feasible for fractionated satellite missions and is advantageous over the conventional MPC controllers
    • …
    corecore