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Abstract-The present approaches on predicting stability of Delta-Sigma (Δ-Σ) modulators are mostly confined to DC 

inputs. This poses limitations as practical applications of Δ-Σ modulators involve a wide range of signals other than DC. 

In this paper, a quasi-linear model for Δ-Σ modulators with nonlinear feedback control analysis is presented that 

accurately predicts the stability of higher-order single-loop 1-bit Δ-Σ modulators for various  types of input signals such 

as single-sinusoids, dual-sinusoids, multiple-sinusoids and Gaussian.  Theoretical values are shown to match closely with 

simulation results. The results of this paper would significantly speed up the design and evaluation of higher-order single-

loop 1-bit Δ-Σ modulators for various applications including those that may require multiple-sinusoidal inputs or any 

general input composed of a finite number of sinusoidal components, circumventing the need to perform detailed time-

consuming simulations to quantify stability limits. By using the proposed method, the difference between the predicted 

and the actual stable amplitude limits results in an error of less than 1 dB in the in-band Signal-to-Noise Ratio (SNR) for 

3
rd

- and higher-order Δ-Σ modulators for single-sinusoidal inputs.  For single-, dual-, multiple-sinusoidal and Gaussian 

inputs the error is less than 2 dB for the 5
th

-order and reduces to less than 1 dB for 6
th

- and higher-order Δ-Σ modulators.  

 

 
Index Terms—delta-sigma, stability analysis, non-linear systems, multiple inputs 

 

I. INTRODUCTION 

The stable input amplitude limits for Delta-Sigma (Δ-Σ) modulators are complicated to predict due to the non-linearity of the 

quantizer. The stable input amplitude limit decreases as the order of the Δ-Σ modulator increases. One technique is to model the 

quantizer as a threshold function in the state equations, which gets complicated for higher-order Δ-Σ modulators and is limited to 

1
st
- and 2

nd
- order Δ-Σ modulators [1]. Another approach to simplify the analysis has been to assume a DC input to the Δ-Σ 

Nonlinear model based approach for accurate 

stability prediction of one-bit higher-order delta-

sigma (Δ-Σ) modulators  
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modulator [2]-[9]. A ‘look-ahead’ approach can be implemented by employing computational methods that enables the Δ-Σ 

modulator to look-ahead by a certain number of samples before deciding the output as 0 or 1, so as to avoid the conditions of 

instability. One such approach which is based on stack algorithms is given in [10]. Several performance issues including the 

stability of ∆-Σ modulators are highlighted as well as a comprehensive analysis covering the limitations of the existing 

approaches to stability have been discussed in [11]. This literature survey shows that a gap exists for providing such analyses for 

higher-order Δ-Σ modulators. The numerical-based nonlinear method reported in this paper proposes to fill this gap. The 

linearized modeling approach in [2] did not previously provide useful stability predictions, until a new interpretation of the 

instability mechanism for Δ-Σ modulators based on the Noise Amplification Factor was given in [12]. However, this is also 

restricted to DC inputs. The approaches of using separate signal and quantization noise gains in [2]; and of the noise 

amplification factor in [12] have been combined in [13] in which stability has been predicted for a single-sinusoidal input. In 

[14], the analysis is extended for predicting stability for dual-sinusoidal inputs. An in-depth analysis of the approach in [13], [14] 

with detailed simulation results are given in [15]. The approach in [12]-[15] is applied to quantify stability of low-pass ∆-Σ 

modulators and the analysis and results for predicting stability in band-pass ∆-Σ modulators are detailed in [16]. Although the 

analysis in [13]-[16] is similar, it is based on separate gains for each of the signal inputs and that of the quantization noise, which 

are derived from the concept of modified non-linearity. These result in different quantizer gains for different types of input 

signals such as DC, single-sinusoid or dual-sinusoid. Separate gains are required for the signal and quantization noise inputs. The 

analysis is therefore signal-specific and the approach gets further complicated as the number of inputs increases. In [15], the 

approach for dual-sinusoidal inputs results in three separate gains, one for each of the sinusoidal inputs and one for the 

quantization noise. As practical applications often utilize multiple-sinusoidal inputs such as speech signals, it is not possible to 

continue with the approach given in [13]-[16] for quantifying stability. In [17] a single quantizer gain for the signal and 

quantization noise has been used to quantify stability of a composite signal of five sinusoids. As the approach is simpler to the 

ones developed in [13]-[16] (by employing separate signal and quantization noise gains), this novel concept has been 

investigated and developed for a variety of signals that may be useful for other applications viz., single-, dual and Gaussian 

signal inputs in this paper. Detailed simulation results are undertaken for 3
rd

, 4
th

-, 5
th

- and 6
th

-order Δ-Σ modulators for these 

signals (including for the five-sinusoidal case as [17] only details the results for the 4
th

-order Δ-Σ modulator) to validate the 

proposed method which is then supported by detailed simulations. This has been achieved by assuming that the quantizer gain 

simultaneously captures the statistics of the composite signal, consisting of the multiple-sinusoids and quantization noise at the 

quantizer input. This novel, yet simplified approach, is based on the assumption that the input to the quantizer has a Gaussian 

Probability Density Function (PDF). A comparative analysis is undertaken of the multiple- and the single-sinusoidal input to 

quantify the increase in dynamic ranges. The difference between the predicted and the actual stable amplitude limits results in an 



 

3 

 

error of less than 1 dB in the in-band Signal-to-Noise Ratio (SNR) for 3
rd

- and higher-order Δ-Σ modulators for single-sinusoidal 

inputs.  For single-, dual-, multiple-sinusoidal and Gaussian inputs the error is less than 2 dB for the 5
th

-order and reduces to less 

than 1 dB for 6
th

- and higher-order Δ-Σ modulators. 

The results from this novel model would significantly speed up the design and evaluation of higher-order Δ-Σ modulators for 

numerous applications including those that may require multiple-sinusoidal inputs or any general input composed of a finite set 

of sinusoidal components. The method would facilitate a detailed testing of a given Δ-Σ modulator based Analog-to-Digital 

Converter (ADC) or a Digital-to-Analog Converter (DAC) with arbitrary test signals generated from a combination of multiple-

sinusoids without having to go through the actual excitation of the Δ-Σ modulator with real and lengthy raw signals. As an 

example, speech signals that may be generated from the combination of five sinusoids, using this method would circumvent the 

need to feed real speech signals into the ADC and undertake lengthy simulations to establish the stability limits. The only 

requirement here would be to feed the model developed with the set of five sinusoid combinations to have very rapid results. 

Section II describes the stability mechanism in terms of the quasi-linear model and the Noise Amplification Factor. Section III 

elaborates on the concept of the ratio of the signal variance to the quantization noise variance at the quantizer input followed by 

the variation of quantization noise in the Δ-Σ modulator. Subsequently a comparative analysis for the multiple- and the single-

sinusoidal inputs is undertaken. Simulations are given in Section IV, followed by conclusions in Section V. 

 

II. QUASI-LINEAR Δ-Σ MODULATOR AND NOISE AMPLIFICATION FACTOR 

 

A quasi-linear model of a Δ-Σ modulator is shown in Fig.1, where G(z) is the input transfer function, H(z) the feedback filter 

transfer function and the quantizer is replaced by a gain factor K followed by an additive white quantization noise source q(n):  

 

Fig. 1.  Quasi-linear Δ-Σ modulator. 

 

Assuming q (n) to be white with a zero mean and variance σq
2
, and the Noise Transfer Function (NTF) between q(n) and y(n) to 

be known, the noise variance V0 at the output of the Δ-Σ modulator is given by [12]: 
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                                                                                                                                          (1) 

where, A(K) is the Noise Amplification Factor. Using Parseval’s theorem, A(K) can also be found in the time-domain as in [12]: 

                                                                                                                                    (2) 

where ntf(n) is the impulse response corresponding to NTF(z) and ||ntf||2
2
 is the squared second-norm of ntf(n). The variation of 

A(K) with K  can be plotted as A(K) curves from (2) and is used to explain the stability of Δ-Σ modulators. A typical curve for a 

4
th

-order Δ-Σ modulator is shown in Fig. 2, where Amin is the global minimum value of the curve which is 2.41.  

 

 

Fig. 2.  Noise Amplification Factor variation with quantizer gain. 

 

The Δ-Σ modulator is considered to be stable in the positive slope section of the A(K) curve. If K increases slightly in this section 

of the curve, which is monotonically increasing, then A(K) will increase. This results in higher noise amplification leading to 

more noise circulating in the Δ-Σ modulator loop. Higher quantization noise power tends to decrease K, which in turn decreases 

A(K) and the system is therefore in equilibrium. In the negative slope section of the curve however, such an equilibrium does not 

exist and even small perturbations would destabilize the system. Therefore, for stable operation, the Δ-Σ modulator must operate 

in the positive section of the slope. It would be seen as per the analysis undertaken that as the input amplitude increases, A(K) 

continues to decrease, until A(K) reaches Amin. At this point the Δ-Σ modulator commences operation in the negative section of 

the slope and hence becomes unstable. For stable operation of the Δ-Σ modulator therefore, A(K) > Amin.[12]. If one can quantify 

the variation of A(K) with the input signal amplitude a for which A(K) > Amin, then the maximum stable input amplitude limits 

can be established. Quantifying A(K)  is done in two steps, first by estimating the ratio of signal variance to quantization noise 

variance at the input to the quantizer gain K and subsequently by estimating the variation of quantization noise variance σq
2
 with 

the input signal amplitude in the Δ-Σ modulator loop. 
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III. SIGNAL AND NOISE VARIANCE AT QUANTIZER INPUT AND QUANTIZATION NOISE  

A. The ratio of the signal variance to quantization noise variance at the quantizer input. 

Consider a signal with a Gaussian PDF at the quantizer input with variance σex
2
. If σeq

2
 is the variance of the quantization noise at 

the input to the quantizer and the signal and quantization noise are uncorrelated then the combined variance at the quantizer input 

is given by: 

                                                                                                                                                                                (3) 

The quantizer gain K of a Δ-Σ modulator for a Gaussian input with variance σe
2
 for a single-bit output  is given by [18]:                                                                                                                                                              

                                                                                                                                                                                         (4) 

Defining ρ
2
 as the ratio of the signal variance to the quantization noise variance at the quantizer input, yields the equation below: 

                                                                                                                                                                                           (5) 

The quantizer gain K can be found from (3), (4) and (5) as given by: 

                                                                                                                                                                              (6) 

From Figure 1 we have:                 

 

As the Signal Transfer Function (STF) of the Δ-Σ modulator should ideally be ≈ 1, therefore . From (7) we have: 

 

From (8) it follows that: 

                                                                                                                                                                                   (9) 

As ∆ can be assumed to be equal to 1 for a single-bit quantizer, one gets the following relationship from (5), (6) and (9): 

                                                                                                                                                                          (10) 

For a single-sinusoidal input with amplitude a, the signal variance is given by . From (10) one can obtain an equivalent 

relationship: 

                                                                                                                                                                        (11) 

Consider an input signal consisting of N multiple incommensurate sinusoids with the variances σi
2
, i=1,2,…N. For example, dual-

sinusoidal inputs (where N=2) are useful for parametric sonar transmission applications [19]-[21]. Multiple-sinusoids consisting 

of five sinusoids in this case (where N=5) are useful for a synthetic speech application. There is no upper limit on the maximum 
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number of sinusoids as the input signal variance can be incremented accordingly. The input signal variance for the dual-

sinusoidal input is given by: 

                                                                                                                                                                                                        (12) 

For the dual-sinusoidal input from (10) and (12), one obtains: 

                                                                                                                                                                (13) 

For a multiple-sinusoidal input with N = 5, the input signal variance is given by: 

                                                                                                                                                                  (14) 

For the multiple-sinusoidal input from (10) and (14), one can obtain: 

                                                                                                                                                                (15) 

Equivalently from (10) for a Gaussian signal with an input variance   one gets: 

                                                                                                                                                                            (16) 

By solving (11), (13), (15) and (16), one can get ρ for the various types of input signals which are plotted in Fig. 3. The signal 

amplitude a for the dual/multiple-sinusoidal input corresponds to the sum of the amplitudes of the sinusoids and for the Gaussian 

input, it corresponds to the standard deviation of the input signal. It is observed that ρ increases almost linearly for the single-

sinusoidal input but nonlinearly for the multiple-sinusoidal and Gaussian inputs for a > 0.6 as shown in Fig. 3. 

 

 Fig. 3.  Variation of  and . 

B. Quantization noise variance. 

If E(.) is the expectation operator, the power at the output of the Δ-Σ modulator is given by: 

                                                                                                                                        (17) 

The quantization noise variance σq
2
 can be found from (6), (9) and (17):               
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                                                                                                                                           (18) 

Assuming ∆ as ±1 for the single-bit quantizer, the quantization noise variance σq
2
 is obtained from (18) and is plotted for various 

types of inputs as shown in Fig. 3.  The quantization noise variance is found to be the same in all cases. This is expected, as the 

quantization noise power in the ∆-Σ loop should depend on the number of quantizer bits, which is unity in this case. Assuming 

the quantization noise to be uniformly distributed between ±∆ implies a variance of  [2]. This is 0.33 for a quantizer, whose ∆ 

values are ±1. The amplitude of the quantization noise variance from Fig. 3 is 0.36.  

C. Noise Amplification Factor. 

The noise variance at the output of a Δ-Σ modulator is: 

                                                                                                                                                                            (19)    

From (6) and (19), one gets: 

                                                                                                                                                                             (20)       

The variation of A(K) with a can be found by (1) and (20), which is given as: 

                                                                                                                                                                  (21)      

Using (21), A(K) is plotted in Fig. 4 for various input signals. It decreases as a increases reaching Amin at which point the Δ-Σ 

modulator becomes unstable. From (1)  is directly proportional to the NTF, which is dependent on the Δ-Σ modulator order, 

the higher the order, the bigger  becomes. From (1) and (21), it is seen that as the Δ-Σ modulator order increases, so does Vo 

thereby increasing Amin in Fig. 2. Thus, the Δ-Σ modulator becomes unstable at lower amplitudes for higher NTF orders. On the 

other hand, as the number of quantizer bits increases, the quantization noise variance σq
2 

is expected to decrease. This increases 

A(K) in Fig. 4, thereby increasing  the stable input amplitude limit for the same NTF order. This is because the A(K) curves get 

flatter and will therefore require higher values of a to reach the same Amin. 
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Fig. 4.  Variation of A(K )  with signal input amplitude/standard deviation. 

 

 

The  values obtained for the single-sinusoid are higher than those for the multiple-sinusoidal inputs. This is because the signal 

variance at the input to the quantizer is higher for a single-sinusoid with an amplitude a than for a multiple-sinusoid with equal 

amplitudes. This is illustrated by the variation of with  for i=5 in Fig.5. 

 

                                

Fig. 5.  Variation of  and   . 

 

Assuming the stable input amplitude limit for the single-sinusoidal input for a 3
rd

-order Δ-Σ modulator to be 0.7, it would be 

incorrect to conclude that the stable limit for an input with five sinusoids would be 0.14 (i.e. 0.7/5).  As the signal variance at the 
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input to the quantizer would be much lower for five sinusoids with equal amplitudes of 0.14 than for a single-sinusoidal input 

with an amplitude of 0.7, the 3
rd

-order Δ-Σ modulator is likely to be stable for a > 0.7 for the multiple-sinusoidal input. This is 

observed from the A(K) values for the single-sinusoidal input shown in Fig. 4, which are obtained from (20), wherein the A(K) 

values for the single-sinusoidal input are lower than the multiple-sinusoidal A(K) values. This results in the Δ-Σ modulator 

reaching the unstable limits at lower values of a for the single-sinusoidal input.  

IV. SIMULATION RESULTS 

A. Simulation Results. 

Simulations were undertaken for 3
rd

-, 4
th

-, 5
th

- and 6
th

-order single-loop single-bit Δ-Σ modulators. The corresponding A(K) 

curves for these Δ-Σ modulators are shown in Fig 6. The Amin values for the curves are 2.11, 2.41, 2.67 and 2.74 respectively. 

 

 

Fig.6. Variation of Noise Amplification Factor with quantizer gain. 

 

The Δ-Σ modulators were implemented by deploying a cascade-of-accumulators feedback-form (CAFB) topology as shown in 

Fig. 7 for the 4
th

-order Δ-Σ modulator case. 

 

Fig.7.  Fourth-order Δ-Σ modulator in CAFB topology. 
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The coefficient values for the Δ-Σ modulators are shown in Table I. The coefficients were obtained using the Matlab based delta-

sigma toolbox in [22]. 

 

TABLE I 

COEFFICIENTS FOR Δ-Σ MODULATORS 

 

Δ Σ i 1 2 3 4 5 6 7 

 

6th-order 

δi 0.0003 0.0055 0.0423 0.2001 0.6104 1.1151 1.0000 

αi 0.0003 0.0055 0.0423 0.2001 0.6104 1.1151 - 

βi 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 - 

γi 0.0001 0.0011 0.0021 - - - - 

 

 

   5th-order 

δi 0.0028 0.0334 0.1852 0.5904 1.1120 1.0000 - 

αi 0.0028 0.0334 0.1852 0.5904 1.1120 - - 

βi 1.0000 1.0000 1.0000 1.0000 1.0000 - - 

γi 0.0007 0.002 - - - - - 

   

 

   4th-order 

δi 0.0157 0.1359 0.5140 0.3609 1.0000 - - 

αi 0.0157 0.1359 0.5140 0.3609 - - - 

βi 1.0000 1.0000 1.0000 1.0000 - - - 

γi 0.003 0.0018 - - - - - 

   

 

   3rd-order 

δi 0.0751 0.0421 0.9811 1.0000 - - - 

αi 0.0751 0.0421 0.9811 - - - - 

βi 1.0000 1.0000 1.0000 - - - - 

γi 0.0014 - - - - - - 

 

The multiple-sinusoidal input signal consists of five incommensurate sinusoid amplitudes, which are increased in steps of 

0.0003. The sinusoids are selected at random frequencies of 1 kHz, 3.25 kHz, 5.5 kHz, 7.5 kHz and 8 kHz. For comparison with 

the single-sinusoidal input, the frequency chosen is 8 kHz and for the dual-sinusoidal input, the frequencies are 5.5 kHz and        

8 kHz to ensure the same Over-Sampling Ratio (OSR). The simulation parameters for the Δ-Σ modulators are an OSR of 32 and 

a sampling frequency of 512 kHz. All the initial conditions of the Δ-Σ modulators are set to zero. In order to have the number of 

FFT input samples as a power of 2, a simulation time of 4.096 seconds is used giving 2097152 FFT samples at the Δ-Σ 

modulator output. The SNR is obtained by plotting the FFT Power Spectral Density (PSD) using a Hanning window. The SNR 

increases as a increases and the SNR for the single-sinusoidal input remains higher than the multiple- sinusoidal input due to the 

greater signal variance. As the variance of the signal at the quantizer input is also higher, the 3
rd

-order Δ-Σ modulator becomes 

unstable at a lower value of a= 0.66 than it does for the multiple-sinusoidal input for a = 0.99.  At a = 0.66, it starts to fall 

showing the onset of instability for the single-sinusoidal input. The numerical stable value of a as predicted from Fig. 4 is 0.68, 

when A(K) = 2.11 = Amin. The predicted stable value of 0.68 is very close to the 0.66 obtained via simulations. The SNR for the 

multiple-sinusoidal input falls at a = 0.99 indicating the onset of instability. The numerical stable value of a as predicted from 

Fig. 4 is 1.55 when A(K) = 2.11. The simulation time to quantify the stability limits of Δ-Σ modulators is substantially reduced by 

using this method. The simulation time required for plotting a typical A(K) curve for the 5
th

-order Δ-Σ modulator in Fig. 6  is 7 
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seconds on an Intel® Core™ 2 Duo 2.26 GHz processor, operating with Windows 7 2009 and Matlab version 

7.7.0.471(R2008b). This is for varying K from 0.01 to 2.8 in steps of 0.01 giving a total of 280 plot points. For a single 4.096 

second simulation, the time required is 35 seconds. As the amplitude is varied in smaller steps of 0.0003 for rigorous 

quantification, a total of 1100 simulations are required to reach the stable amplitude limit of 0.33 for the multiple-sinusoidal 

input for the 5
th

-order Δ-Σ modulator resulting in a net simulation time of 4505 seconds. Therefore the simulation time is reduced 

from 4505 seconds to 7 seconds, which is a reduction of over 99 %. Higher stable limits are expected for the 3
rd

- and 4
th
-order Δ-

Σ modulator leading to even further increases in the simulation time, while there is marginal change in the simulation time for 

the A (K) curves for the Δ-Σ modulators.  

 

B. Accuracy of Results. 

The numerically predicted stable limits along with the ones obtained via simulations are shown in Table II. For the single-

sinusoidal, dual-sinusoidal and multiple-sinusoidal inputs, the error ∆E in dB represents the in-band SNR error due to the 

difference between the numerically predicted input signal amplitudes and those obtained via simulations. For the Gaussian input, 

it indicates the error in the predicted variance and that obtained via simulations at the Δ-Σ modulator input for the stable limits of 

operation. 

TABLE II 

SIMULATION VALUES 

Single-sinusoidal Order Stable Limit Error ∆E 

(dB) 

  Simulated Numerically 

Predicted 

 

 III 0.66 0.68 0.71 

 IV 0.47 0.49 0.96 

 V 0.21 0.23 0.7 

 VI 0.07 0.075 0.5 

Dual-sinusoidal III 0.7 0.95 0.5 

 IV 0.45 0.70 2.8 

 V 0.24 0.34 1.7 

 VI 0.07 0.08 0.72 

Multiple-sinusoidal III 0.99 1.55 2.00 

 IV 0.61 1.30 4.00 

 V 0.33 0.38 1.10 

 VI 0.15 0.19 0.8 

Gaussian  Variance 
 

 

Simulated Numerically 

Predicted 

 III 0.07 0.22 4.9 

 IV 0.032 0.12 5.7 

 V 0.0054 0.0081 1.7 

 VI 0.000175 0.00018 0.1 

 

The variation of the error (∆E) versus the ∆-Σ modulator order is plotted in Fig. 8. It is observed that ∆E is less than 1 dB for 3
rd

-, 

4
th

-, 5
th

- and 6
th

-order Δ-Σ modulators when the input signal is a single-sinusoid. In addition, accurate results can be predicted for 

the 5
th

- and 6
th

-order for the single-sinusoidal, multiple-sinusoidal and Gaussian inputs with less than 2 dB in ∆E. As the ∆-Σ 
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modulator order increases from 3 to 4, the rate of increase in SNR with the signal amplitude increases, thereby resulting in a 

higher increase in the values of ∆E. Although the rate of increase in the SNR continues as the order is further increased from 4 to 

6, ∆E reduces to less than 1 dB because the characteristics of the quantization noise become more Gaussian-like as the modulator 

order is increased. This result validates (4) and the subsequent analysis. 

 

Fig. 8 Error (∆E) variation with ∆-Σ modulator order. 

 

V. CONCLUSIONS 

The stable input amplitude limits have been predicted for higher-order Δ-Σ modulators for various types of signals, including a 

composite signal that consists of five sinusoidal inputs, by employing a novel simplified approach of a single quantizer gain for 

the signal and quantization noise. The theoretical values are shown to be in very close agreement with the simulation results. The 

analysis can be extended to any number of sinusoids greater than five, for a given NTF, be it low-pass or band-pass or any other. 

The Δ-Σ modulator relationship between stability and increase in the NTF order has been mathematically investigated and novel 

results are reported. The novel results would enable optimizing the design of higher-order Δ-Σ modulators for various 

applications that make use of multiple-sinusoidal inputs such as speech processing and moreover for any general inputs that can 

be modeled as the Fourier series decomposition of individual sinusoids. The results from this work will also make it possible to 

design and commission Δ-Σ modulators for the applications mentioned without the need for exhaustive time-consuming stability 

analysis and simulations. The analysis can be extended to multi-level quantizers, the results of which would be reported in a 

future publication.  
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