473 research outputs found

    Direct volume rendering of unstructured tetrahedral meshes using CUDA and OpenMP

    Get PDF
    Cataloged from PDF version of article.Direct volume visualization is an important method in many areas, including computational fluid dynamics and medicine. Achieving interactive rates for direct volume rendering of large unstructured volumetric grids is a challenging problem, but parallelizing direct volume rendering algorithms can help achieve this goal. Using Compute Unified Device Architecture (CUDA), we propose a GPU-based volume rendering algorithm that itself is based on a cell projection-based ray-casting algorithm designed for CPU implementations. We also propose a multicore parallelized version of the cell-projection algorithm using OpenMP. In both algorithms, we favor image quality over rendering speed. Our algorithm has a low memory footprint, allowing us to render large datasets. Our algorithm supports progressive rendering. We compared the GPU implementation with the serial and multicore implementations. We observed significant speed-ups that, together with progressive rendering, enables reaching interactive rates for large datasets

    MFA-DVR: Direct Volume Rendering of MFA Models

    Full text link
    3D volume rendering is widely used to reveal insightful intrinsic patterns of volumetric datasets across many domains. However, the complex structures and varying scales of volumetric data can make efficiently generating high-quality volume rendering results a challenging task. Multivariate functional approximation (MFA) is a new data model that addresses some of the critical challenges: high-order evaluation of both value and derivative anywhere in the spatial domain, compact representation for large-scale volumetric data, and uniform representation of both structured and unstructured data. In this paper, we present MFA-DVR, the first direct volume rendering pipeline utilizing the MFA model, for both structured and unstructured volumetric datasets. We demonstrate improved rendering quality using MFA-DVR on both synthetic and real datasets through a comparative study. We show that MFA-DVR not only generates more faithful volume rendering than using local filters but also performs faster on high-order interpolations on structured and unstructured datasets. MFA-DVR is implemented in the existing volume rendering pipeline of the Visualization Toolkit (VTK) to be accessible by the scientific visualization community

    Interactive isosurface ray tracing of time-varying tetrahedral volumes

    Get PDF
    Journal ArticleAbstract- We describe a system for interactively rendering isosurfaces of tetrahedral finite-element scalar fields using coherent ray tracing techniques on the CPU. By employing state-of-the art methods in polygonal ray tracing, namely aggressive packet/frustum traversal of a bounding volume hierarchy, we can accomodate large and time-varying unstructured data. In conjunction with this efficiency structure, we introduce a novel technique for intersecting ray packets with tetrahedral primitives. Ray tracing is flexible, allowing for dynamic changes in isovalue and time step, visualization of multiple isosurfaces, shadows, and depth-peeling transparency effects. The resulting system offers the intuitive simplicity of isosurfacing, guaranteed-correct visual results, and ultimately a scalable, dynamic and consistently interactive solution for visualizing unstructured volumes

    Stochastic Volume Rendering of Multi-Phase SPH Data

    Get PDF
    In this paper, we present a novel method for the direct volume rendering of large smoothed‐particle hydrodynamics (SPH) simulation data without transforming the unstructured data to an intermediate representation. By directly visualizing the unstructured particle data, we avoid long preprocessing times and large storage requirements. This enables the visualization of large, time‐dependent, and multivariate data both as a post‐process and in situ. To address the computational complexity, we introduce stochastic volume rendering that considers only a subset of particles at each step during ray marching. The sample probabilities for selecting this subset at each step are thereby determined both in a view‐dependent manner and based on the spatial complexity of the data. Our stochastic volume rendering enables us to scale continuously from a fast, interactive preview to a more accurate volume rendering at higher cost. Lastly, we discuss the visualization of free‐surface and multi‐phase flows by including a multi‐material model with volumetric and surface shading into the stochastic volume rendering

    Visuelle Analyse großer Partikeldaten

    Get PDF
    Partikelsimulationen sind eine bewĂ€hrte und weit verbreitete numerische Methode in der Forschung und Technik. Beispielsweise werden Partikelsimulationen zur Erforschung der KraftstoffzerstĂ€ubung in Flugzeugturbinen eingesetzt. Auch die Entstehung des Universums wird durch die Simulation von dunkler Materiepartikeln untersucht. Die hierbei produzierten Datenmengen sind immens. So enthalten aktuelle Simulationen Billionen von Partikeln, die sich ĂŒber die Zeit bewegen und miteinander interagieren. Die Visualisierung bietet ein großes Potenzial zur Exploration, Validation und Analyse wissenschaftlicher DatensĂ€tze sowie der zugrundeliegenden Modelle. Allerdings liegt der Fokus meist auf strukturierten Daten mit einer regulĂ€ren Topologie. Im Gegensatz hierzu bewegen sich Partikel frei durch Raum und Zeit. Diese Betrachtungsweise ist aus der Physik als das lagrange Bezugssystem bekannt. Zwar können Partikel aus dem lagrangen in ein regulĂ€res eulersches Bezugssystem, wie beispielsweise in ein uniformes Gitter, konvertiert werden. Dies ist bei einer großen Menge an Partikeln jedoch mit einem erheblichen Aufwand verbunden. DarĂŒber hinaus fĂŒhrt diese Konversion meist zu einem Verlust der PrĂ€zision bei gleichzeitig erhöhtem Speicherverbrauch. Im Rahmen dieser Dissertation werde ich neue Visualisierungstechniken erforschen, welche speziell auf der lagrangen Sichtweise basieren. Diese ermöglichen eine effiziente und effektive visuelle Analyse großer Partikeldaten

    Visualization for the Physical Sciences

    Get PDF

    Volume MLS Ray Casting

    Full text link

    Efficient and High-Quality Rendering of Higher-Order Geometric Data Representations

    Get PDF
    Computer-Aided Design (CAD) bezeichnet den Entwurf industrieller Produkte mit Hilfe von virtuellen 3D Modellen. Ein CAD-Modell besteht aus parametrischen Kurven und FlĂ€chen, in den meisten FĂ€llen non-uniform rational B-Splines (NURBS). Diese mathematische Beschreibung wird ebenfalls zur Analyse, Optimierung und PrĂ€sentation des Modells verwendet. In jeder dieser Entwicklungsphasen wird eine unterschiedliche visuelle Darstellung benötigt, um den entsprechenden Nutzern ein geeignetes Feedback zu geben. Designer bevorzugen beispielsweise illustrative oder realistische Darstellungen, Ingenieure benötigen eine verstĂ€ndliche Visualisierung der Simulationsergebnisse, wĂ€hrend eine immersive 3D Darstellung bei einer Benutzbarkeitsanalyse oder der Designauswahl hilfreich sein kann. Die interaktive Darstellung von NURBS-Modellen und -Simulationsdaten ist jedoch aufgrund des hohen Rechenaufwandes und der eingeschrĂ€nkten HardwareunterstĂŒtzung eine große Herausforderung. Diese Arbeit stellt vier neuartige Verfahren vor, welche sich mit der interaktiven Darstellung von NURBS-Modellen und Simulationensdaten befassen. Die vorgestellten Algorithmen nutzen neue FĂ€higkeiten aktueller Grafikkarten aus, um den Stand der Technik bezĂŒglich QualitĂ€t, Effizienz und Darstellungsgeschwindigkeit zu verbessern. Zwei dieser Verfahren befassen sich mit der direkten Darstellung der parametrischen Beschreibung ohne Approximationen oder zeitaufwĂ€ndige Vorberechnungen. Die dabei vorgestellten Datenstrukturen und Algorithmen ermöglichen die effiziente Unterteilung, Klassifizierung, Tessellierung und Darstellung getrimmter NURBS-FlĂ€chen und einen interaktiven Ray-Casting-Algorithmus fĂŒr die IsoflĂ€chenvisualisierung von NURBSbasierten isogeometrischen Analysen. Die weiteren zwei Verfahren beschreiben zum einen das vielseitige Konzept der programmierbaren Transparenz fĂŒr illustrative und verstĂ€ndliche Visualisierungen tiefenkomplexer CAD-Modelle und zum anderen eine neue hybride Methode zur Reprojektion halbtransparenter und undurchsichtiger Bildinformation fĂŒr die Beschleunigung der Erzeugung von stereoskopischen Bildpaaren. Die beiden letztgenannten AnsĂ€tze basieren auf rasterisierter Geometrie und sind somit ebenfalls fĂŒr normale Dreiecksmodelle anwendbar, wodurch die Arbeiten auch einen wichtigen Beitrag in den Bereichen der Computergrafik und der virtuellen RealitĂ€t darstellen. Die Auswertung der Arbeit wurde mit großen, realen NURBS-DatensĂ€tzen durchgefĂŒhrt. Die Resultate zeigen, dass die direkte Darstellung auf Grundlage der parametrischen Beschreibung mit interaktiven Bildwiederholraten und in subpixelgenauer QualitĂ€t möglich ist. Die EinfĂŒhrung programmierbarer Transparenz ermöglicht zudem die Umsetzung kollaborativer 3D Interaktionstechniken fĂŒr die Exploration der Modelle in virtuellenUmgebungen sowie illustrative und verstĂ€ndliche Visualisierungen tiefenkomplexer CAD-Modelle. Die Erzeugung stereoskopischer Bildpaare fĂŒr die interaktive Visualisierung auf 3D Displays konnte beschleunigt werden. Diese messbare Verbesserung wurde zudem im Rahmen einer Nutzerstudie als wahrnehmbar und vorteilhaft befunden.In computer-aided design (CAD), industrial products are designed using a virtual 3D model. A CAD model typically consists of curves and surfaces in a parametric representation, in most cases, non-uniform rational B-splines (NURBS). The same representation is also used for the analysis, optimization and presentation of the model. In each phase of this process, different visualizations are required to provide an appropriate user feedback. Designers work with illustrative and realistic renderings, engineers need a comprehensible visualization of the simulation results, and usability studies or product presentations benefit from using a 3D display. However, the interactive visualization of NURBS models and corresponding physical simulations is a challenging task because of the computational complexity and the limited graphics hardware support. This thesis proposes four novel rendering approaches that improve the interactive visualization of CAD models and their analysis. The presented algorithms exploit latest graphics hardware capabilities to advance the state-of-the-art in terms of quality, efficiency and performance. In particular, two approaches describe the direct rendering of the parametric representation without precomputed approximations and timeconsuming pre-processing steps. New data structures and algorithms are presented for the efficient partition, classification, tessellation, and rendering of trimmed NURBS surfaces as well as the first direct isosurface ray-casting approach for NURBS-based isogeometric analysis. The other two approaches introduce the versatile concept of programmable order-independent semi-transparency for the illustrative and comprehensible visualization of depth-complex CAD models, and a novel method for the hybrid reprojection of opaque and semi-transparent image information to accelerate stereoscopic rendering. Both approaches are also applicable to standard polygonal geometry which contributes to the computer graphics and virtual reality research communities. The evaluation is based on real-world NURBS-based models and simulation data. The results show that rendering can be performed directly on the underlying parametric representation with interactive frame rates and subpixel-precise image results. The computational costs of additional visualization effects, such as semi-transparency and stereoscopic rendering, are reduced to maintain interactive frame rates. The benefit of this performance gain was confirmed by quantitative measurements and a pilot user study
    • 

    corecore