30 research outputs found

    ARQ-Aware Scheduling and Link Adaptation for Video Transmission over Mobile Broadband Networks

    Get PDF
    This paper studies the effect of ARQ retransmissions on packet error rate, delay, and jitter at the application layer for a real-time video transmission at 1.03 Mbps over a mobile broadband network. The effect of time-correlated channel errors for various Mobile Station (MS) velocities is evaluated. In the context of mobile WiMAX, the role of the ARQ Retry Timeout parameter and the maximum number of ARQ retransmissions is taken into account. ARQ-aware and channel-aware scheduling is assumed in order to allocate adequate resources according to the level of packet error rate and the number of ARQ retransmissions required. A novel metric, namely, goodput per frame, is proposed as a measure of transmission efficiency. Results show that to attain quasi error free transmission and low jitter (for real-time video QoS), only QPSK 1/2 can be used at mean channel SNR values between 12 dB and 16 dB, while 16QAM 1/2 can be used below 20 dB at walking speeds. However, these modes are shown to result in low transmission efficiency, attaining, for example, a total goodput of 3 Mbps at an SNR of 14 dB, for a block lifetime of 90 ms. It is shown that ARQ retransmissions are more effective at higher MS speeds

    Evaluation of 3GPP Technology Candidate Towards Fourth Generation Mobile

    Full text link
    [ES] LTE-Advanced es una de las tecnologías candidatas para convertirse en la próxima generación de comunicaciones móviles (4G). Es responsabilidad de la Unión Internacional de las Telecomunicaciones (UIT) evaluar esta tecnología a través de los Grupos de Evaluación Externos (GEE), entre los cuales se encuentra el consorcio WINNER+ (Wireless World Initiative New Radio +). El Grupo de Comunicaciones Móviles (GCM) del Instituto de Telecomunicaciones y Aplicaciones Multimedia, como socio de WINNER+, está analizando diferentes técnicas para optimizar la red de acceso radio LTEAdvanced. Esta tesina de máster se enmarca dentro de este trabajo, y especialmente, en la comparación de los turbo-códigos (TC) y Low Density Partity Check (LDPC) para anchos de banda de hasta 100 MHz. Los resultados obtenidos muestran que tanto los TC como los LDPC son buenos codificadores para esos tamaños de bloque. Los códigos LDPC representan una mejora de 0.5 dB como máximo respecto a los TC. Además, se ha realizado un estudio de prestaciones de la capa física de LTE en el enlace ascendente y descendente, junto con una propuesta de calibración de este tipo de simulaciones de enlace.[EN] LTE-Advanced is one promising candidate technology to become part of the next generation mobile (4G). It is up to the International Telecommunication Union (ITU) standardization body to assess this technology through the External Evaluation Groups (EEG), being one of them the WINNER+ project (Wireless World Initiative New Radio +). The Mobile Communications Group (MCG) of the Institute of Telecommunications and Multimedia Applications, as a partner of WINNER+, is currently analyzing and proposing different techniques with the aim of optimizing the LTE-Advanced radio access network. This Master Thesis is part of this activity and, especially, on the comparison of Turbo (TC) and Low Density Parity Check (LDPC) codes for bandwidths up to 100 MHz. Results prove that both TC and LDPC codes are good encoders for those block sizes. The LDPC codes only entail a maximum 0.5 dB improvement as compared with TC. In addition to this assessment, a performance study of LTE downlink/uplink (DL/ UL) physical layer together with a calibration proposal for link level simulations has been carried out.Cabrejas Peñuelas, J. (2009). Evaluation of 3GPP Technology Candidate Towards Fourth Generation Mobile. http://hdl.handle.net/10251/27347.Archivo delegad

    Improving initiation, decision and execution phases for vertical handover in heterogeneous wireless mobile networks

    Get PDF
    One of the challenging issues in Next Generation Wireless Systems (NGWS) is seamless Vertical Handover (VHO) during the mobility between different types of technologies (3GPP and non-3GPP) such as Global System for Mobile Communication (GSM), Wireless Fidelity (Wi-Fi), Worldwide Interoperability for Microwave Access (WiMAX), Universal Mobile Telecommunications System (UMTS) and Long Term Evolution (LTE). Therefore, the telecommunication operators are required to develop aninteroperability strategy for these different types of existing networks to get the best connection anywhere, anytime without interruption of the ongoing sessions. In order to identify this problem accurately, the research study presented in this thesis provides four surveys about VHO approaches found in the literature. In these surveys, we classify the existing VHO approaches into categories based on the available VHO techniques for which we present their objectives and performances issues. After that, we propose an optimised VHO approach based on the VHO approaches that have been studied in the literature and take into consideration the research problems and conclusions which arearisen in our surveys. The proposed approach demonstrates better performance (packet loss, latency and signaling cost), less VHO connection failure (probability of minimising VHO reject sessions), less complexity and an enhanced VHO compared with that foundin the literature. It consists of a procedure which is implemented by an algorithm. The proposed procedure of loose coupling and Mobile Internet Protocol version 4 (MIPv4) provides early buffering for new data packets to minimise VHO packet loss and latency. Analysis and simulation of the proposed procedure show that the VHO packet loss and latency are significantly reduced compared with previous MIPv6 procedures found in the literature.The proposed algorithm is composed of two main parts: Handover Initiation and Optimum Radio Access Technologies (RATs) list of priority. The first part includes two main types of VHO and gives priority to imperative sessions over alternative sessions. IIIThis part is also responsible for deciding when and where to perform the handover by choosing the best RATs from the multiple ones available. Then, it passes them to the decision phase. This results in reducing the signaling cost and the inevitable degradation in Quality of Service (QoS) as a result of avoiding unnecessary handover processes. The second part defines RATs list of priority to minimise VHO connection failure. Analysis and simulation based performance evaluations then demonstrate that the proposed algorithm outperforms the traditional algorithms in terms of: (a) the probability of VHOconnection failure as a result of using the optimum RATs list of priority and (b) thesignaling cost and the inevitable degradation in QoS as a result of avoiding unnecessary handover processes

    Performance analysis of 4G wireless networks using system level simulator

    Get PDF
    Doutoramento em Engenharia ElectrotécnicaIn the last decade, mobile wireless communications have witnessed an explosive growth in the user’s penetration rate and their widespread deployment around the globe. In particular, a research topic of particular relevance in telecommunications nowadays is related to the design and implementation of mobile communication systems of 4th generation (4G). 4G networks will be characterized by the support of multiple radio access technologies in a core network fully compliant with the Internet Protocol (all IP paradigms). Such networks will sustain the stringent quality of service (QoS) requirements and the expected high data rates from the type of multimedia applications (i.e. YouTube and Skype) to be available in the near future. Therefore, 4G wireless communications system will be of paramount importance on the development of the information society in the near future. As 4G wireless services will continue to increase, this will put more and more pressure on the spectrum availability. There is a worldwide recognition that methods of spectrum managements have reached their limit and are no longer optimal, therefore new paradigms must be sought. Studies show that most of the assigned spectrum is under-utilized, thus the problem in most cases is inefficient spectrum management rather spectrum shortage. There are currently trends towards a more liberalized approach of spectrum management, which are tightly linked to what is commonly termed as Cognitive Radio (CR). Furthermore, conventional deployment of 4G wireless systems (one BS in cell and mobile deploy around it) are known to have problems in providing fairness (users closer to the BS are more benefited relatively to the cell edge users) and in covering some zones affected by shadowing, therefore the use of relays has been proposed as a solution. To evaluate and analyse the performances of 4G wireless systems software tools are normally used. Software tools have become more and more mature in recent years and their need to provide a high level evaluation of proposed algorithms and protocols is now more important. The system level simulation (SLS) tools provide a fundamental and flexible way to test all the envisioned algorithms and protocols under realistic conditions, without the need to deal with the problems of live networks or reduced scope prototypes. Furthermore, the tools allow network designers a rapid collection of a wide range of performance metrics that are useful for the analysis and optimization of different algorithms. This dissertation proposes the design and implementation of conventional system level simulator (SLS), which afterwards enhances for the 4G wireless technologies namely cognitive Radios (IEEE802.22) and Relays (IEEE802.16j). SLS is then used for the analysis of proposed algorithms and protocols.FC

    Energy Efficient and Cooperative Solutions for Next-Generation Wireless Networks

    Get PDF
    Energy efficiency is increasingly important for next-generation wireless systems due to the limited battery resources of mobile clients. While fourth generation cellular standards emphasize low client battery consumption, existing techniques do not explicitly focus on reducing power that is consumed when a client is actively communicating with the network. Based on high data rate demands of modern multimedia applications, active mode power consumption is expected to become a critical consideration for the development and deployment of future wireless technologies. Another reason for focusing more attention on energy efficient studies is given by the relatively slow progress in battery technology and the growing quality of service requirements of multimedia applications. The disproportion between demanded and available battery capacity is becoming especially significant for small-scale mobile client devices, where wireless power consumption dominates within the total device power budget. To compensate for this growing gap, aggressive improvements in all aspects of wireless system design are necessary. Recent work in this area indicates that joint link adaptation and resource allocation techniques optimizing energy efficient metrics can provide a considerable gain in client power consumption. Consequently, it is crucial to adapt state-of-the-art energy efficient approaches for practical use, as well as to illustrate the pros and cons associated with applying power-bandwidth optimization to improve client energy efficiency and develop insights for future research in this area. This constitutes the first objective of the present research. Together with energy efficiency, next-generation cellular technologies are emphasizing stronger support for heterogeneous multimedia applications. Since the integration of diverse services within a single radio platform is expected to result in higher operator profits and, at the same time, reduce network management expenses, intensive research efforts have been invested into design principles of such networks. However, as wireless resources are limited and shared by clients, service integration may become challenging. A key element in such systems is the packet scheduler, which typically helps ensure that the individual quality of service requirements of wireless clients are satisfied. In contrastingly different distributed wireless environments, random multiple access protocols are beginning to provide mechanisms for statistical quality of service assurance. However, there is currently a lack of comprehensive analytical frameworks which allow reliable control of the quality of service parameters for both cellular and local area networks. Providing such frameworks is therefore the second objective of this thesis. Additionally, the study addresses the simultaneous operation of a cellular and a local area network in spectrally intense metropolitan deployments and solves some related problems. Further improving the performance of battery-driven mobile clients, cooperative communications are sought as a promising and practical concept. In particular, they are capable of mitigating the negative effects of fading in a wireless channel and are thus expected to enhance next-generation cellular networks in terms of client spectral and energy efficiencies. At the cell edges or in areas missing any supportive relaying infrastructure, client-based cooperative techniques are becoming even more important. As such, a mobile client with poor channel quality may take advantage of neighboring clients which would relay data on its behalf. The key idea behind the concept of client relay is to provide flexible and distributed control over cooperative communications by the wireless clients themselves. By contrast to fully centralized control, this is expected to minimize overhead protocol signaling and hence ensure simpler implementation. Compared to infrastructure relay, client relay will also be cheaper to deploy. Developing the novel concept of client relay, proposing simple and feasible cooperation protocols, and analyzing the basic trade-offs behind client relay functionality become the third objective of this research. Envisioning the evolution of cellular technologies beyond their fourth generation, it appears important to study a wireless network capable of supporting machine-to-machine applications. Recent standardization documents cover a plethora of machine-to-machine use cases, as they also outline the respective technical requirements and features according to the application or network environment. As follows from this activity, a smart grid is one of the primary machine-to-machine use cases that involves meters autonomously reporting usage and alarm information to the grid infrastructure to help reduce operational cost, as well as regulate a customer's utility usage. The preliminary analysis of the reference smart grid scenario indicates weak system architecture components. For instance, the large population of machine-to-machine devices may connect nearly simultaneously to the wireless infrastructure and, consequently, suffer from excessive network entry delays. Another concern is the performance of cell-edge machine-to-machine devices with weak wireless links. Therefore, mitigating the above architecture vulnerabilities and improving the performance of future smart grid deployments is the fourth objective of this thesis. Summarizing, this thesis is generally aimed at the improvement of energy efficient properties of mobile devices in next-generation wireless networks. The related research also embraces a novel cooperation technique where clients may assist each other to increase per-client and network-wide performance. Applying the proposed solutions, the operation time of mobile clients without recharging may be increased dramatically. Our approach incorporates both analytical and simulation components to evaluate complex interactions between the studied objectives. It brings important conclusions about energy efficient and cooperative client behaviors, which is crucial for further development of wireless communications technologies

    Cooperative control of relay based cellular networks

    Get PDF
    PhDThe increasing popularity of wireless communications and the higher data requirements of new types of service lead to higher demands on wireless networks. Relay based cellular networks have been seen as an effective way to meet users’ increased data rate requirements while still retaining the benefits of a cellular structure. However, maximizing the probability of providing service and spectrum efficiency are still major challenges for network operators and engineers because of the heterogeneous traffic demands, hard-to-predict user movements and complex traffic models. In a mobile network, load balancing is recognised as an efficient way to increase the utilization of limited frequency spectrum at reasonable costs. Cooperative control based on geographic load balancing is employed to provide flexibility for relay based cellular networks and to respond to changes in the environment. According to the potential capability of existing antenna systems, adaptive radio frequency domain control in the physical layer is explored to provide coverage at the right place at the right time. This thesis proposes several effective and efficient approaches to improve spectrum efficiency using network wide optimization to coordinate the coverage offered by different network components according to the antenna models and relay station capability. The approaches include tilting of antenna sectors, changing the power of omni-directional antennas, and changing the assignment of relay stations to different base stations. Experiments show that the proposed approaches offer significant improvements and robustness in heterogeneous traffic scenarios and when the propagation environment changes. The issue of predicting the consequence of cooperative decisions regarding antenna configurations when applied in a realistic environment is described, and a coverage prediction model is proposed. The consequences of applying changes to the antenna configuration on handovers are analysed in detail. The performance evaluations are based on a system level simulator in the context of Mobile WiMAX technology, but the concepts apply more generally

    Content-aware radio resource management for IMT-advanced systems

    Get PDF
    Radio Resource Management (RRM) is crucial to efficiently and correctly manage the delivery of quality-of-service (QoS) in IMT-Advanced systems. Various methods on radio resource management for LTE/LTE-Advanced traffic have been studied by researchers especially regarding QoS handling of video packet transmissions. Usually, cross-layer optimisation (CLO) involving the PHY and MAC layers, has been used to provide proper resource allocation and distribution to the entire system. Further initiatives to include the APP layer as part of CLO techniques have gained considerable attention by researchers. However, some of these methods did not adequately consider the level of compatibility with legacy systems and standards. Furthermore, the methods did not wholly address User Equipment (UE) mobility or performance metrics for a specific data type or a specified period. Consequently, in this thesis, a content-aware radio RRM model employing a cross-layer optimiser focusing on a video conferencing/streaming application for a single cell long-term evolution (LTE) system has been proposed. Based on two constructed look-up tables, the cross-layer optimiser was found to dynamically adjust the transmitted video data rates depending on the UE or eNodeB SINR performance. The proposed look-up tables were derived from the performance study of the LTE classical (baseline) simulation model for various distances at a certain UE velocity. Two performance parameters, namely the average throughput and measured SINR were matched together to find the most suitable data rates for video delivery in both the uplink and downlink transmissions. The developed content-aware RRM model was then tested against the LTE baseline simulation model, to benchmark its capability to be used as an alternative to existing RRM methods in the present LTE system. Based on the detailed simulations, the output performance demonstrated that for video packet delivery in both uplink and downlink transmissions, the content-aware RRM model vastly outperformed the legacy LTE baseline simulation model with regard to the packet loss ratio and average end-to-end delay for the same amount of throughput. The baseline simulation model and the newly developed cross-layer approach were investigated and compared with practical measurement results in which PodNode technology, besides other components and supporting simulation software, were used to emulate the LTE communication system. The first emulation experiment involving the baseline model was generally in sync with the uplink throughput simulation performance. The second test which implemented the cross-layer approach employing the look-up table derived from the previous emulated results, confirmed the viability of the proposed content-aware RRM model to be used in current LTE or LTE-Advanced systems for improving the performance in the packet loss ratio and average packet delay
    corecore