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This paper studies the effect of ARQ retransmissions on packet error rate, delay, and jitter at the application layer for a real-
time video transmission at 1.03 Mbps over a mobile broadband network. The effect of time-correlated channel errors for various
Mobile Station (MS) velocities is evaluated. In the context of mobile WiMAX, the role of the ARQ Retry Timeout parameter and
the maximum number of ARQ retransmissions is taken into account. ARQ-aware and channel-aware scheduling is assumed in
order to allocate adequate resources according to the level of packet error rate and the number of ARQ retransmissions required.
A novel metric, namely, goodput per frame, is proposed as a measure of transmission efficiency. Results show that to attain quasi
error free transmission and low jitter (for real-time video QoS), only QPSK 1/2 can be used at mean channel SNR values between
12 dB and 16 dB, while 16QAM 1/2 can be used below 20 dB at walking speeds. However, these modes are shown to result in low
transmission efficiency, attaining, for example, a total goodput of 3 Mbps at an SNR of 14 dB, for a block lifetime of 90 ms. It is
shown that ARQ retransmissions are more effective at higher MS speeds.

1. Introduction

Mobile WiMAX (IEEE 802.16e) [1] and 3GPP LTE (Long-
Term Evolution) [2] represent mobile broadband standards
that offer high user data rates and support for bandwidth
hungry video applications. Both standards use very similar
PHY and MAC layer techniques, especially for downlink
(DL) transmission. In order to provide strong QoS, cross-
layer adaptive strategies must be implemented in the wireless
network [3, 4]. Video applications demand a low Packet
Error Rate (PER), which may be achieved via the use of MAC
layer Automatic Repeat ReQuest (ARQ) and the choice of
suitable Modulation and Coding Schemes (MCS). However,
ARQ consumes additional bandwidth and causes increased
end-to-end latency and jitter. ARQ is controlled in the MAC
layer by the block lifetime and ARQ Retry Timer parameters,
which define how many and how frequently retransmissions
may occur. Link adaptation is used in mobile broadband
networks to improve the PER by matching the QAM
constellation and forward error correction coding rate to the

time varying channel quality. The impact of specific ARQ
parameters and mechanisms has been extensively studied in
the literature, for example, [5–9].

In [8], the authors analyze delay and throughput using
probabilistic PHY layer error modelling. In [9], packet errors
were modelled as an uncorrelated process in time. Often
packet errors are modelled using statistical channel models,
such as Markov chains, for example, [3, 10, 11], based on
statistical measurements that have limited scalability and
adaptability to a variety of fading, shadowing, or mobility
circumstances. However, this type of modelling fails to
represent the bursty nature of errors in a fading channel and
the impact it has on ARQ retransmission performance.

To deliver video QoS the mobile WiMAX and LTE
standards specify a number of scheduling mechanisms, such
as Unsolicited Grant Service (UGS), rtPS (real-time Polling
Service), and BE (Best Effort). As scheduling of resources
is not specified in the standards, but instead left open for
vendor implementation, this is an area of considerable
research interest. In [12], a survey of several scheduling



2 Journal of Computer Networks and Communications

algorithms showed that, due to the nature of the wireless
medium and user mobility, the scheduler should take into
account the PER and the Carrier-to-Interference-plus-Noise
Ratio (CINR) reported by the channel quality indicator
(CQI) per connection. These schedulers are denoted as
“channel aware.” A channel-aware scheduler must take
into consideration the MCS mode selected through link
adaptation. The scheduling of resources must also take into
account ARQ retransmissions, as discussed in [6, 8, 12, 13].
The authors of [8, 13] propose an ARQ-aware scheduler,
where ARQ retransmissions have priority over new data. For
applications that are very sensitive to jitter and delay, such as
video, the QoS guarantees a maximum delay and error rate
for a given bitrate. If ARQ is enabled on these connections,
the BS scheduler must allocate sufficient resources in each
frame to accommodate new data and ARQ retransmissions.
The resources required per connection vary also according to
the MCS mode selected by the Link Adaptation (LA) process.

Many recent publications have studied video streaming
over WiMAX, for example, [10, 11, 14], but very few inves-
tigate unicast video with ARQ retransmission [4, 9]. In [4],
the authors proposed cross-layer parameter optimization to
achieve the required QoS, using queuing theory to minimize
the required bandwidth while assuming stop-and-wait ARQ
retransmission. None of the ARQ mechanisms specified
in the 802.16e standard were considered in [4]. In [3,
14], the issue of “bandwidth hungry” video applications
was highlighted. Nevertheless, the only video transmissions
considered in recent publications are based on low resolution
video (CIF, QVGA) with bitrates up to 400 kbps [8, 11, 14].

This work focuses on the transmission of high resolution
real-time video, at a bitrate of 1.03 Mbps, over the downlink
(DL) of a mobile broadband connection. The simulated
transmission of a flow of UDP packets corresponds to the
flow of video packets. Simulations are performed for a UDP
unicast DL transmission, with Selective ACK (S-ACK) ARQ
enabled. Moreover, multicast transmission without ARQ
enabled is also included in the analysis. The transmission
efficiency of ARQ enabled mobile WiMAX networks is
computed by proposing a novel efficiency metric, the goodput
per frame, which takes into account the amount of radio
resources required per DL subframe and the PER attained.
Channel-aware and ARQ-aware scheduling at the MAC
layer is assumed. Very importantly, block errors are time-
correlated, based on the use of the accurate time-correlated
3GPP SCM fading channel model [15]. Results are based
on the WiMAX Forum recommendations [16, 17] for the
ARQ Retry Timeout parameter and the maximum number
of ARQ retransmissions. The study shows for the first time
how PER and delay/jitter are affected by scheduling sufficient
(or insufficient) channel resources per frame, to cater for
ARQ retransmissions, according to the MCS mode selected.
The work identifies which MCS modes are suitable to deliver
QoS for real-time video, by maintaining quasi-zero PER
and low jitter at the application layer. Our previous work
[18] focused on received video quality (based on PSNR),
for a 7.63 Mbps HD video sequence, when no limitations
were applied to the ARQ Retry Timeout parameter and the
maximum number of ARQ retransmissions, as assumed in

[8, 9] (since the frequency of ACK is not specified in the IEEE
802.16e standard [1]). The effect of ARQ-aware scheduling
was not investigated in our previous work.

In this paper, the effect of MS velocity on ARQ retrans-
missions is explored. This is made possible by the use of an
accurate time-correlated fading channel model. MS velocities
of 1 and 10 km/h are considered.

Mobile WiMAX [1], together with 3GPP LTE [2], is key
technology for next-generation broadband wireless access
(BWA) networks [19]. Both technologies have very simi-
lar DL PHY layers and strong similarities in their MAC
layers. For both technologies, radio resource management
techniques, such as scheduling and resource allocation, are
pivotal in research work on QoS support for multimedia
services [19].

In the next section, key aspects of the mobile WiMAX
PHY and MAC layers are described along with the time-
varying channel model. In Section 3, the MAC-PHY simu-
lator is described, detailing the assumptions made. Sections
4, 5, and 6 present an analysis of the simulation results.
Conclusions are presented in Section 7.

2. Overview of Mobile WiMAX and
the SCM Channel Model

Medium Access Control (MAC) Layer. The 802.16e MAC
layer [20] includes a number of adjustable features, such as
adaptive MCS, ARQ, packet fragmentation and aggrega-
tion, variable size MAC Protocol Data Units (PDU), and
application-specific service flows and PDU scheduling based
on QoS. Packets from the higher layers arrive in the con-
vergence sublayer (CS) of the MAC as MAC Service Data
Units (SDUs). Based on their QoS requirements, MAC SDUs
are classified into service flows. There is the option for SDU
fragmentation into PDUs, and this feature is assumed here.
SDUs are partitioned into ARQ blocks of fixed size when
ARQ is enabled. The MAC PDU is the data unit exchanged
between the BS and MS MAC layers. Once a PDU has been
constructed, it is placed in the appropriate service flow queue
and managed by the scheduler, which determines the PHY
resource allocation (i.e., bandwidth and OFDMA symbol
allocation) on a frame-by-frame basis.

Each transmitted PDU is either received correctly or in
error, depending on the channel response at the time of
transmission. The time-varying PHY layer PER is accurately
calculated based on the channel model for each ARQ block
in the transmitted PDU. The standard specifies a number
of ARQ feedback mechanisms, such as Cumulative ACK,
Cumulative and Selective ACK, and Selective ACK (S-ACK)
[1]. Here S-ACK feedback is used. An S-ACK feedback
message is generated for each transmission burst and any
PDUs containing errors are placed in the retransmission
queue [6]. No block rearrangement is enabled. The retrans-
mission of PDUs in error continues until they are received
correctly or their ARQ block lifetimes expire. The number
of retransmissions is determined by the block lifetime and
the ARQ Retry Timeout Timer, as shown in (1). The
ARQ Retry Timeout represents the minimum number of
OFDMA frames a transmitter will wait to retransmit an
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Table 1: OFDMA PHY profile parameters in 802.16e.

Parameters Values

Channel bandwidth (MHz) 1.25 5 10 20

FFT size 128 512 1024 2048

Sampling frequency (MHz) 1.4 5.6 11.2 22.4

Subcarrier frequency spacing
(kHz)

10.94

Useful symbol time Tb (μs) 91.4

Guard time Tg (μs) 11.4

OFDMA symbol duration
(Ts = Tb + Tg) (μs)

102.9

Number of OFDMA symbols
(5 ms frame)

47

Table 2: 802.16e link speeds.

No. Link speed Bits per slot Total data rate (Mbps)

0 QPSK 1/2 48 6.14

1 QPSK 3/4 72 9.21

2 16QAM 1/2 96 12.29

3 16QAM 3/4 144 18.43

4 64QAM 1/2 144 18.43

5 64QAM 2/3 192 24.58

6 64QAM 3/4 216 27.64

unacknowledged block [1]. This retry period begins from the
frame when the ARQ block was last transmitted. If the block
lifetime expires before it is received correctly then the block
is discarded.

Physical Layer (PHY). The mobile WiMAX standard has
adopted Scalable-OFDMA (S-OFDMA) [1]. Table 1 shows
the relevant parameters for the S-OFDMA PHY. Simulations
for this paper were performed for the 10 MHz channel
bandwidth profile (highlighted in italics in Table 1). The
payload data is modulated using the full range of link speeds
(MCS modes) as defined in the standard [1] and shown in
Table 2. Assuming a PUSC DL [1], the modulation symbols
allocated to a sequence of slots in each DL OFDMA frame
are assigned to a number of logical subchannels. An OFDMA
slot is the minimum possible data allocation unit. For PUSC
DL, it is defined as one subchannel by two OFDMA symbols.
For the 10 MHz channel, an OFDMA symbol consists of 30
subchannels for PUSC DL, each containing 24 data subcar-
riers [21]. Hence, a slot contains 48 data subcarriers. Based
on this, the slot payload capacity Psl for each MCS mode
is computed for PUSC DL. It is shown in Table 3, where m
represents the MCS modulation order and r the coding rate.
The channel resources (in terms of slots) required for data
transmission over a mobile WiMAX network are evaluated
based on the slot payload capacity for each MCS mode.

PHY Layer Abstraction. To simplify the interface between
the link and system level simulators, whilst still modelling
dynamic system behaviour, a technique known as Effective

SINR Mapping (ESM) is used. This method, which can also
be used to model the LTE PHY layer, compresses the SINR
(per subcarrier) vector into a single effective SINR (ESINR).
The technique is described in detail in [22]. The PHY
abstraction model is described and validated in [23]. This
PHY abstraction model allows the instantaneous Block Error
Rate (BLER) to be computed for each channel realization,
based on the instantaneous fading channel and the length
of the ARQ block. Although many commercial network
simulators exist, such as OpNet and QualNet, these tend
to provide simplified physical layer support. For example,
QualNet uses bit error rate look up tables that average the
effects of time-varying fast fading. Video analysis requires the
use of time-varying instantaneous BLER in a fading channel
(not averaged BLER), since the bursty nature of the errors
has a detrimental effect on video quality, as shown in [24].

Wideband Channel Model. The channel model follows the
ETSI 3GPP spatial channel model (SCM), as described in
[15]. A time varying “urban micro” tapped delay line (TDL)
was generated for each channel snapshot. The TDL consists
of 6 time-correlated fading taps with nonuniform delays. The
carrier frequency is 2.3 GHz and the FFT size is 1024. Each
radio channel is made up of a number of channel samples
(sampled every 2.5 ms) corresponding to a duration of 85
seconds.

3. WiMAX MAC-PHY Simulator

Unicast and multicast transmission of high resolution video
is simulated over the mobile WiMAX system. This work is
based on a MAC-PHY simulator developed according to
the standard [1] and presented in [18]. The mobile WiMAX
PHY layer simulator is described in [25]. As discussed in
Section 2, the PHY layer PER is generated from the ESM
PHY layer abstraction method developed in [23].

3.1. Simulator Assumptions. The following key assumptions
were made for the design of the mobile WiMAX MAC-
PHY simulator. MAC SDU fragmentation (not packing) is
assumed, according to the 802.16e standard [1]. The MAC
PDU size is fixed for all MCS modes. It is small (less than
200 Bytes) to improve the error rate, according to [5]. The
simulated ARQ mechanism is Selective ACK (S-ACK) [1]. It
is assumed that no errors occur in the ARQ feedback mes-
sages. When errors occur during PDU transmission, no block
rearrangement is performed within the PDUs. PDUs that are
not acknowledged are placed in a separate queue within the
user flow, known as the retransmission queue [6, 26]. The
scheduler gives priority to PDUs from the retransmissions
queue. SDUs are delivered in order at the receiver, since the
ARQ-DELIVER IN ORDER MAC parameter is enabled.

Video is assumed to be sent at a constant bit rate (CBR),
with fixed size packets; therefore, the use of UGS scheduling
is assumed. The scheduler allocates a fixed amount of
resources per MAC frame for each DL burst, according to
the operation of UGS scheduling. As the standard [1] does
not specify how the scheduling of resources is performed,
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Table 3: Slot payload capacity per MCS for PUSC DL.

MCS m r Slot payload Psl (bits)

QPSK 1/2 4 1/2 48

QPSK 3/4 4 3/4 72

16QAM 1/2 16 1/2 96

16QAM 3/4 16 3/4 144

64QAM 1/2 64 1/2 144

64QAM 2/3 64 2/3 192

64QAM 3/4 64 3/4 216

but instead leaves the issue open for vendor implementation,
it is assumed that a “channel-aware scheduler” is used that
allocates resources according to the MCS mode selected
with an overallocation for ARQ retransmissions [13]. If
additional resources (i.e., overallocation) are not provided,
when retransmissions occur they will take up resources from
the new arriving data, since retransmissions have priority.
This would result in a queuing delay that is unacceptable
for real-time video applications. It is assumed that adequate
additional resources for ARQ are available per frame, as
required to cater for the expected number of retransmissions
depending on the BLER.

The data payload that each slot can carry for each MCS
mode is given in Table 3. The number of PDUs that can fit
within the allocated resource is calculated according to the
MCS mode and the size of retransmission PDU queue. For
each DL burst the retransmission PDUs are included in the
allocated resources, taking priority over new PDUs.

3.2. Simulator Functionality. The 802.16e MAC-PHY sim-
ulator provides an error modelling tool that predicts the
loss patterns for a sequence of RTP/UDP packets and thus
the losses in the sequence of video packets at the receiver.
The PHY abstraction model allows the instantaneous BLER
to be computed for each channel realization, based on the
instantaneous fading channel and the length of the ARQ
block. Thus, the computed BLER is time-correlated. A flow
of fixed size RTP/UDP packets arrive at the MAC layer and
are passed into the simulator. It is assumed that UDP packets
arrive at a constant rate. Each UDP packet corresponds one-
to-one to a MAC SDU. More details on the MAC-PHY
simulator are given in [18].

At the receiver, SDUs are reassembled from the
appropriate ARQ blocks. Since the MAC parameter
ARQ DELIVER IN ORDER is enabled, SDUs are delivered
in sequential order to the transport layer, as UDP packets.
This means that an SDU cannot be delivered to the higher
layers unless all the SDUs preceding it in the flow have been
received correctly, or have been discarded. If an ARQ block is
finally discarded, despite retransmissions, the IEEE 802.16e
standard mandates that the SDU to which it belongs cannot
be delivered to the higher layers [1]. A block diagram of the
simulator is shown in Figure 1.

The MAC-PHY simulator provides an accurate way to
determine the MAC BLER and SDU error rate (SER) for
the SDUs that are discarded, taking into account the MAC

layer parameters, data encapsulation, and the ARQ process.
Importantly, the BLER for contiguous blocks is not indepen-
dent due to the time-correlated nature of the fading channel,
and this is enabled by modelling the instantaneous PHY PER
Pe(t). The simulator computes the following as a function
of mean channel SNR, MCS mode, ARQ block lifetime, and
MS velocity, taking into account MAC layer parameters such
as packet size, the ARQ Retry timer, and the ARQ feedback
time:

(i) block error rate (BLER),

(ii) SDU error rate (SER), equivalent to UDP PER (one-
to-one mapping of SDUs to UDP packets),

(iii) the time pattern of the ARQ block and SDU losses,

(iv) end-to-end delay and jitter for blocks and SDUs,

(v) channel capacity consumed during each DL sub-
frame, measured in physical slots,

(vi) transmission throughput and goodput.

The simulator records the transmission times for each ARQ
block and SDU for a flow of N SDUs. The number of ARQ
retransmissions kre is estimated from the total ARQ block
transmission time TARQ, computed as

TARQ = kre ·
(
ARQRetr y · TOFDMA

)
+ TOFDMA, (1)

where TOFDMA is the duration of an OFDMA frame (i.e.,
5 ms) and ARQRetry is the ARQRetry Timeout parameter
(number of frames).

The number of ARQ retransmissions kre is estimated
when a bound is imposed on TARQ by the block lifetime lbl,
as

TARQ ≤ lbl, (2)

max(kre) =
⌊

lbl − TOFDMA

ARQRetr y · TOFDMA

⌋

. (3)

In general, if insufficient resources are allocated for all
retransmissions in the frame where the PDU is to be resent,
according to the ARQ Retry Timeout timer, an additional
queuing time, Tq, will be added in (1). This represents the
block queuing time in the retransmission queue. In this case,
the number of retransmissions that will take place will be less
than max(kre), as TARQ is limited by (2). Hence, kre is not
deterministic for all blocks.

The simulator calculates the end-to-end SDU latency and
jitter for a flow of N SDUs∈ {1, 2, 3, . . . , j, j+1, j+2, . . . ,N}.
The SDU end-to-end latency for SDU j, Dj is calculated as
the time difference between the arrival of the MAC SDU j at
the MAC layer transmitter, Tarr, j , and the delivery of the SDU
j to the transport layer at the receiver, Trec, j , as shown in (4)

Dj = Trec, j − Tarr, j , (4)

Dj = Dtx + Ddel. (5)

The end-to-end latency of an SDU j, Dj , consists
of the transmission time Dtx and the delivery time Ddel.
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Figure 1: WiMAX MAC-PHY simulator.

The transmission time Dtx includes the retransmission time
for the PDUs containing blocks of SDU j and the waiting
time in the retransmission buffer, if any of the ARQ blocks
contained in the SDU were retransmitted. An SDU is
delivered to the receiver (at the transport layer) when all the
ARQ blocks it consists of have been correctly received, after
retransmission. Also, SDU packets are delivered in order.
This is because the receiver must first receive correctly and
reassemble all the ARQ blocks of SDU j and then deliver the
SDUs following j. This means that if the ARQ blocks in SDU
j have undergone retransmission, the SDUs j + 1, j + 2, . . .
which follow SDU j will be delayed as well, even if no
errors and retransmissions occurred for them. Therefore,
retransmissions can cause a build up of delay, not only for
the SDU which suffered the transmission errors, but also for
SDUs following it. If the channel is poor and errors occur
frequently, the delay build-up can be significant.

Figure 2 depicts the delay build-up for a number of
SDUs, when some of the ARQ blocks of SDU S3 are lost
and later retransmitted. Although SDUs S4, S5, and S6,
succeeding S3, are received correctly, they are not delivered
to the higher layers until all the ARQ blocks from SDU S3
have been received correctly (after ARQ retransmission). So
SDUs S4 to S6 are delayed.

The variation in the end-to-end delay (latency) of the
SDUs, for a flow of SDUs, is referred to as jitter. Another term
commonly used is Packet Delay Variation (PDV), defined in
ITU-T Recommendation Y.1540. Jitter is calculated as the
variance of the SDU delay as follows

jitter = var(DSDU) = 1
N

N∑

i=1

(
Di − μD

)2, (6)

where DSDU is the discrete function of the SDU latency. Di

is the end-to-end delay of SDU i, μD is the mean SDU delay,
and N is the total number of SDUs transmitted.
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Figure 2: SDU delays due to retransmissions and ARQ Deliv-
er In Order.

In accordance with 802.16e recommendations [16, 17],
here it is assumed that retransmissions cannot occur in the
next frame but are sent at the earliest on the 4th DL subframe
after transmission. Furthermore, the maximum number of
retransmissions is limited to 4. These values result from
processing time at the receiver and transmission delays
in the radio network. The MAC parameter ARQ Retry
Timeout is set to 4 and performance is simulated for 1–4
retransmissions, corresponding to 30–90 ms block lifetimes,
according to (3).
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Table 4: Mobile WiMAX simulator parameters.

Parameter Value

OFDMA

Carrier frequency 2.3 GHz

Channel bandwidth 10 MHz

FFT length 1024

Subcarrier frequency spacing 10.94 kHz

Frame length 5 ms (48 OFDMA symbols)

Guard interval 1/8

DL subcarrier permutation scheme PUSC DL

Number of active DL subcarriers 840

Number of subchannels 30 DL/35 UL

Data subcarriers per subchannel 24

OFDMA data symbols 22 DL/15 UL

DL capacity 330 slots

DL/UL ratio 60/40

MAC

MAC SDU size 815 bytes

ARQ block size 32 bytes

MAC PDU size max 200 bytes

PDU packing No

SDU fragmentation Yes

QoS scheduling UGS

Block rearrangement No

ARQ feedback type Selective-ACK

ARQ retry timeout 4 frames

ARQ block lifetime 0–90 ms

Max no. retransmissions 4

ARQ DELIVER IN ORDER Yes

3.3. Simulation Parameters. Table 4 summarises the PHY
and MAC layer parameters used in the MAC-PHY mobile
WiMAX simulator. Simulation results are presented in the
next sections for a flow of UDP packets corresponding to
the “ICE” video sequence [27] (704 × 576 pixels at 30 fps)
encoded using H.264 at 1.03 Mbps, with I, P, and B frames.

The simulator captures the transmission of 2000 UDP
packets, 815 Bytes each, transmitted through the 802.16e
PHY and MAC layers. UDP packets correspond 1 : 1 to MAC
SDUs, also 815 Bytes long. Each MAC SDU was fragmented
into ARQ blocks, 32 bytes long. Simulations were carried out
for MS velocities v = 1 km/h and 10 km/h for mean channel
SNR values varying from 8 dB–22 dB.

4. Analysis of BLER and UDP PER

In Figures 3 and 4, the BLER and SDU error rate are
compared for an ARQ lifetime of 65 ms (i.e., up to 3 retrans-
missions may have occurred). The simulated MS speed is
1 km/h. It is observed that the BLER seen at the MAC layer
after the retransmissions is projected to a much higher SER
and UDP PER at the higher layers. For example, at SNR =
16 dB 16QAM 3/4 results in 0.063 BLER, which corresponds
to 0.089 SER. This is because, according to the standard [1],
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Figure 3: BLER versus SNR when block lifetime is 65 ms and MS
v = 1 km/h.

even if just one ARQ block in an SDU is discarded it will
result in the whole SDU being discarded. The SDU error rate
is accentuated more for higher BLER, for example, at 14 dB
64QAM 2/3 gives 0.53 BLER and 0.65 SER. This shows that
in order to achieve high video quality and quasi-zero PER
at the video receiver (i.e., SER), the ARQ retransmissions
must achieve quasi-zero BLER. However, with the number
of retransmissions limited to 3, only lower modes can
deliver error free data in a slowly time-varying channel. From
Figure 3, it is obvious that only the QPSK modes and 16QAM
1/2 can deliver SER ≤ 10−2 for SNR ≤ 18 dB, when the MS
speed is 1 km/h and the block lifetime is 65 ms.

In Figure 5, SER versus channel SNR is shown for an MS
speed of 1 km/h, when up to 4 retransmissions are allowed,
for a block lifetime of 90 ms. It is shown that the SER is lower
with a longer block lifetime. QPSK 1/2 delivers error free data
for SNR ≥ 12 dB and 16QAM 1/2 attains an SER < 0.02 for
SNR ≥ 14 dB.

Our previous work in [18] focused on the BLER attained
(rather than SER) when ARQ retransmissions occurred in
the next DL subframe, without limitation on the maximum
number of retransmissions (since the ARQ retransmission
frequency is not specified in the 802.16e standard [1]). In
[18], it was shown that the BLER achieved was below 10−2 at
a mean channel SNR of 8 dB, for a block lifetime of 100 ms,
with MCS modes 16QAM 1/2 or lower. All MCS modes up
to 64QAM 1/2 attained quasi error free transmission when
the mean channel SNR was 12 dB and block lifetimes were
greater than 70 ms. This was possible because, in that sce-
nario, the maximum number of permitted retransmissions
was 7 for a block lifetime of 70 ms; this resulted in more
favorable ARQ performance. In this work, it is shown that
imposing practical limitations on the ARQ Retry Timeout
parameter and the maximum number of retransmissions (as
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Figure 5: SER versus SNR for a block lifetime of 90 ms and MS
v = 1 km/h.

recommended in [16, 17]) results in a residual BLER. This
residual BLER is further accentuated as UDP PER at the
higher layers.

In Figure 6, the SER versus SNR across all MCS modes
for an MS speed of 10 km/h is compared with the SER
versus SNR for an MS speed of 1 km/h, as shown in Figure 4.
The maximum number of retransmissions in both cases is
determined by a 65 ms block lifetime. It is clear that the SER
attained for the 1 km/h channel is higher than the SER for
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Figure 6: SER versus SNR when block lifetime is 65 ms and MS
v = 10 km/h.

the 10 km/h channel at all channel SNR values. For example,
at 16 dB 16QAM 3/4 attains SER = 0.089 at 1 km/h while this
drops to SER = 0.045 at 10 km/h. QPSK 1/2 at 12 dB attains
SER = 0.03 for 1 km/h speed, whereas it gives SER = 0 (below
the simulation accuracy level) for a 10 km/h MS speed. The
low MS speed means that the channel coherence time is
longer and the channel decorrelates slower in time. Hence,
more ARQ retransmissions are required at the slower speed
to achieve a quasi-zero level of SER. The effect of channel
coherence time on ARQ retransmissions was also studied in
[24] for 802.11 a/g networks, where ARQ retransmission was
implemented according to a stop-and-wait mechanism and
was governed by the CSMA/CA access protocol.

Next, the BLER and SER attained when multicasting is
studied. In Figures 7 and 8 ARQ is not enabled, as is the
case for multicasting. The MS speed is 1 km/h. It can be
seen that the SER in Figure 8 is much higher than the BLER
for the same channel SNR and MCS mode. For example,
at 14 dB QPSK 3/4 delivers BLER = 0.039, while the SER
is 0.15. The lack of ARQ error correction limits the video
broadcast performance over mobile WiMAX, as explained in
[11]. Without additional error correction, real-time video
multicasting could not be offered for an SNR range below
16 dB (as SER > 10−2 [28]), and even then only with
the lowest throughput mode QPSK 1/2, which consumes
considerable channel capacity.

5. ARQ-Aware Scheduling and Latency/Jitter

Another very important aspect of video transmission with
ARQ is the latency and jitter that occurs. As discussed in
[29–31], for video applications the playback buffer that
masks network jitter can take values in the order of 250 ms,
while latency is acceptable up to 100–150 ms, depending on
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the specific video characteristics and applications. Assuming
ARQ-aware scheduling, here the latency and jitter associated
with ARQ retransmissions is studied over an 802.16e net-
work.

For the 2000 transmitted SDUs, the simulator calculates
the total latency for each SDU. Figure 9 shows the PDF of the
end-to-end SDU delay computed during the transmission of
2000 SDUs at a channel SNR = 12 dB, MCS mode 1 (QPSK
3/4), and MS speed 1 km/h, for block lifetimes of 30 ms (up
to 1 retransmission), 65 ms (up to 3 retransmissions), and
90 ms (up to 4 retransmissions).
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Figure 9: PDF of end-to-end SDU delay, SNR = 12 dB, mode = 1,
v = 1 km/h.
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Figure 10: Maximum delay versus block lifetime, for MCS modes 0
and 1 when channel SNR = 12 dB and MS v = 1 km/h.

The simulator computes the latency during transmission
and the jitter as the variance of the SDU latency across the
2000 SDUs, for each SNR, MCS mode, and block lifetime.
Figure 10 shows the maximum latency attained versus block
lifetime, when the mean channel SNR is 12 dB and the
MS speed is 1 km/h. It is observed that at SNR = 12 dB
(when the channel is poor) the maximum latency is fixed to
approximately 82 ms for block lifetimes of 30–90 ms when
QPSK 1/2 is used. This MCS mode delivers SER = 0.003 (see
Figure 4). If QPSK 3/4 is used, the maximum delay increases
for each block lifetime, reaching over 300 ms for a block
lifetime of 90 ms. This occurs because a very large number
of ARQ blocks are in error and many retransmissions occur.
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Table 5: Overallocation of resources for lifetime 65 ms.

MCS SNR = 10 dB SNR = 22 dB

0 0.06 0

1 0.42 0

2 0.68 0

3 2.48 0.03

4 3.05 0.02

5 3.98 0.15

6 3.99 0.36

This MCS mode attains SER = 0.05 when the block lifetime
is 65 ms, despite the retransmissions that take place (see
Figure 4). This mode would not be selected for transmission
at SNR = 12 dB by the link adaptation algorithm because
the BLER is very high for the amount of retransmissions
allowed. The amount of resources allocated by the scheduler
in this case does not cater for the very large number of
retransmissions that occur, resulting in a buildup of queuing
delay and also a large increase in jitter. The amount
of “overallocation” of resources the ARQ-aware scheduler
predicts is related to the level of PER attained by the selected
MCS mode and the ARQ block lifetime.

In Table 5, the overallocation γ required for different
MCS modes is given for mean channel SNR values of 10 dB
and 22 dB, when the block lifetime is 65 ms. If S is the number
of slots required per DL frame, for a given bitrate and MCS
mode, the scheduler needs to allocate (1 + γ) · S slots per
DL frame. The overallocation γ is calculated by dividing
the number of slots required per DL frame for the desired
number of ARQ retransmissions (according to the MCS
mode), by S. From this table, it is obvious that, for example,
if mode 1 was selected at SNR = 10 dB, the scheduler
would need to allocate γ = 0.42 more resources than
that required if ARQ was not enabled. A smaller allocation
than this results in queuing delays. It is also obvious that
the overallocation required for the higher modes at low
SNR values is unacceptable (i.e., three times the amount of
resources required for the video bitrate).

Figures 11 and 12 show jitter versus block lifetime for
SNR = 22 dB at an MS speed of 1 km/h and for SNR =
12 dB at an MS speed of 10 km/h, correspondingly. Jitter
is studied for the MCS modes that attain SER ≤ 0.02 and
that can deliver quality video. In Figure 11, where the mean
channel SNR = 22 dB, the jitter is below 100 ms when the
block lifetime is 65 ms, for MCS modes 0 to 4. All of these
modes deliver quasi error free data.

Figure 12 shows the jitter when the MS speed is 10 km/h
at SNR = 12 dB. The jitter is approximately 100 ms for mode
1 when the block lifetime is 65 ms. Both QPSK 3/4 and
16QAM 1/2 attain an SER of approximately 0.02, but for
16QAM 1/2 more retransmissions occur and therefore higher
jitter ensues.

The study of the simulation results on SER, latency and
jitter, when the recommendations from [17, 32] regarding
ARQ parameters are applied, leads to the conclusion that
when the channel SNR is poor (SNR ≤ 14 dB) only the lower
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channel SNR = 12 dB and MS v = 10 km/h.

QPSK modes can deliver quality video with acceptable jitter.
For a UDP unicast video transmission, in order to attain
quasi error free SER, and at the same time limit jitter to below
100 ms, QPSK modes should be used with up to 3 retrans-
missions. When the channel has a long coherence time more
retransmissions are required in order to deliver the ARQ
blocks error free, and only QPSK 1/2 can be used. However,
even then the SER attained (0.03) is not quasi error free.
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6. Transmission Efficiency

Having discussed the mobile WiMAX performance in terms
of SER and jitter when ARQ is enabled, the channel
resources required during unicast video transmission are
now studied. The simulator estimates the total number of
physical slots required for the transmission of 2000 SDUs,
at each mean channel SNR and MCS mode, including all
ARQ retransmissions. Then the channel capacity required
is calculated as a percentage of the total number of DL
slots available, for the duration of the transmission. This
work focuses on the goodput attained. A novel transmission
efficiency metric is proposed, namely the goodput per frame,
which takes into account the goodput achieved for the
amount of channel resources required per DL subframe.

Figure 13 shows the channel capacity required, as a
percentage of the total physical DL slots available per DL
subframe, versus the mean channel SNR, for all MCS modes
when up to 3 retransmissions are allowed. It is shown that
for QPSK 1/2 there is a very small differentiation in the
channel resources required for SNR ≥ 14 dB, as resource
requirements drop from 38.5% of slots at SNR = 8 dB to
33%. This is because very few retransmissions occur for
higher channel SNR values with QPSK 1/2, therefore the
resources required are constant, corresponding to the new
data arrivals. In other cases, the differentiation of resources
required across SNR values is much greater. For example,
for 64QAM 1/2 at SNR = 8 dB approximately 55% of the
total slots are required, whereas for SNR = 22 dB only
11.5% of the total slots are required. This is because more
ARQ retransmissions are required at low SNR values. It
is also obvious that the higher throughput modes require
less resources than the lower modes, even at low SNR
values when retransmissions occur. For example, 16QAM

3/4 requires 29% of the total resources at SNR= 12 dB, while
QPSK 1/2 requires 34% of the resources. This is because the
lower modes pack less data bits per slot, as shown in Table 3.

It is clear that greater bandwidth efficiency can be
achieved when higher MCS modes are used. However, as
shown by the SDU loss rate, in order to support QoS for
real time video transmission, only lower MCS modes can be
successfully used at lower SNR values.

The goodput delivered per OFDMA frame for one flow of
data, Gflow(s, l,m), is computed as the correct number of bits
received, CorrectBits, divided by transmission duration, FT ,
in number of OFDMA frames, required for the transmission
of N UDP packets. The goodput delivered per OFDMA
frame is calculated for each mean channel SNR s, MCS mode
m, and block lifetime l, as

Gflow(s, l,m) = CorrectBits(s, l,m)
FT(s, l,m) · TOFDMA

, (7)

where TOFDMA is the duration of an OFDMA frame (i.e.,
5 ms).

The average channel capacity, in slots, required for the
data flow per OFDMA frame, θflow,fr, is calculated as the
total number of required physical slots CT divided by the
transmission duration, FT , for each mean channel SNR s,
MCS mode m, and block lifetime l

θflow,fr(s, l,m) = CT(s, l,m)
FT(s, l,m)

. (8)

Therefore, a θflow,fr capacity per DL frame delivers Gflow

goodput per frame, for each channel SNR, MCS mode,
and block lifetime. The goodput-per-frame efficiency metric
measures the goodput Gflow delivered per frame taking into
account the average capacity required per frame (in slots),
θflow,fr. Hence goodput per frame, gfr, is defined as

gfr(s, l,m) = Gflow(s, l,m)
θflow,fr(s, l,m)

. (9)

If the total capacity of the DL frame, Sfr, is used, the
system can support a total goodput per frame Gdpfr,
calculated using (10). The total capacity of a DL frame, Sfr,
in slots, is a system dependent parameter and for the mobile
WiMAX system simulated, assuming a PUSC enabled DL,
Sfr = 330 slots (Table 1). The system therefore can support
a total goodput per frame Gdpfr given by

Gdpfr(s, l,m) = Gflow(s, l,m) · Sfr

θflow,fr(s, l,m)
. (10)

Figure 14 shows the total goodput per frame versus
channel SNR, estimated for all MCS modes when the block
lifetime is 90 ms and the MS speed is 1 km/h. It can be seen
that QPSK 1/2 offers the highest transmission efficiency for
SNR ≤ 10 dB and 16QAM 1/2 for SNR values in the range
10 dB to 16 dB. For higher SNR values 16QAM 3/4 is more
efficient. 16QAM 3/4 can support 7-8 Mbps when the mean
channel SNR is 18–20 dB. The goodput per frame metric
helps identify the most efficient mode per channel SNR for
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Figure 14: Total goodput for lifetime = 90 ms and MS v = 1 km/h.

a particular block lifetime. It can also be seen that only lower
throughput modes (up to mode 3) are selected for SNR
values below 20 dB.

In order to select the most efficient MCS mode that
also delivers zero PER, or the PER below a minimum
acceptable value (such that video QoS can be guaranteed),
a constraint should be applied based on the PER attained
at the application layer per channel SNR. Loss of packets
can seriously degrade the quality of received video [28, 33].
In the following, UDP PER is constrained to less than 1%.
Figure 15 shows the total goodput per frame versus channel
SNR, for all MCS modes with UDP PER ≤ 10−2, when the
block lifetime is 90 ms and the MS speed is 1 km/h. If the
PER attained for a particular MCS mode and SNR value
is higher than 10−2, then the total goodput is set to zero.
It is observed that below an SNR value of 12 dB no MCS
mode can achieve quasi error free transmission. Therefore,
quality unicast video cannot be offered for channel SNR
below 12 dB. For SNR values in the range 12 dB to 16 dB only
QPSK 1/2 can achieve the desired PER. For SNR values in
the range 16 dB to 20 dB the most efficient MCS mode that
offers quasi error free transmission is 16QAM 1/2, whereas
for SNR = 22 dB mode 64QAM 1/2 offers the highest
transmission efficiency, for a PER below 10−2. In Figure 15,
the total goodput attained for multicast transmission (no
ARQ enabled) is also shown. The multicast transmission also
observes the PER ≤ 10−2 constraint. It can be seen that the
multicast video service cannot be offered quasi error free
for SNR values below about 16 dB. For SNR values in the
range 16 dB to 18 dB only QPSK 1/2 can achieve the desired
PER. For SNR values in the range 20 dB to 22 dB mode
16QAM 1/2 offers the highest transmission efficiency while
keeping the PER below 10−2. This comparison shows that
using ARQ with a block lifetime of 90 ms offers a significant
gain of approximately 3 Mbps (i.e., double the goodput) for
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16 dB ≤ SNR ≤ 18 dB and a gain of 2.8 Mbps at a channel
SNR of 22 dB. Also the range of the service is extended
by approximately 4 dB when ARQ is enabled with a block
lifetime of 90 ms.

7. Conclusions

From the simulation results presented in this work, it has
been possible to study the performance of different MCS
modes and block lifetimes for various channel SNR values
in a mobile broadband network. The performance of ARQ
retransmissions was shown to depend on the MS velocity.
It was shown that at walking speeds (e.g., 1 km/h) ARQ
retransmissions are less efficient. Only mode 0 succeeds in
delivering data with PER ≤ 10−2 for 12 ≤ SNR < 16 dB,
and only modes 1 and 2 for SNR ≤ 20 dB, with up to 4
retransmissions. The SER attained is lower for the same MCS
mode, block lifetime and channel SNR, when the channel
coherence time is short.

It was demonstrated that a channel-aware and ARQ-
aware scheduler should be used in order to predict and
provide sufficient resources per frame for delay sensitive
services, such as real-time video. The novel efficiency metric,
goodput per frame, has enabled a performance comparison
in terms of PER achieved and radio resources required
when S-ACK ARQ is enabled, for various MCS modes. This
efficiency metric showed the total goodput that each MCS
mode could support for each channel SNR for a given block
lifetime. The goodput per frame metric was found to be a
valuable tool for radio resource management in broadband
wireless networks.
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Insight has been gained on the importance of the ARQ
Retry Timeout MAC parameter and how it affects system
performance, not only in terms of SDU delay, but PER as
well. When practical considerations are taken into account
regarding the frequency and number of possible retrans-
missions based on the WiMAX Forum recommendations,
only modes 0, 1, and 2 can deliver quasi error free data.
Jitter in these cases is maintained within acceptable limits
for video QoS. However, the lower modes, 0 and 2, that
attain quasi error free transmission, require 35% and 18% of
the total channel resources, correspondingly, to successfully
deliver video at 1.03 Mbps quasi error free. The total goodput
attained is 3Mbps for SNR ≤ 16 dB (with MCS mode 0) and
6 Mbps for channel SNR values in the range 16 dB to 20 dB
(with MCS mode 2). A quality unicast video service cannot
be offered for channel SNR values below 12 dB.

Multicasting real-time video, while observing a QoS
without ARQ retransmissions, is ineffective below about
16 dB SNR. Additional error correction mechanisms are nec-
essary in order to support high quality multicast video, such
as the Application Layer Forward Error Correction (FEC)
mechanism based on Raptor codes, endorsed by the 3GPP
MBMS [34].
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[24] V. Sgardoni, P. Ferré, A. Doufexi, A. Nix, and D. Bull, “Frame
delay and loss analysis for video transmission over time-
correlated 802.11A/G channels,” in Proceedings of the 18th
Annual IEEE International Symposium on Personal, Indoor and
Mobile Radio Communications (PIMRC ’07), pp. 1–5, Athens,
Greece, September 2007.

[25] M. Tran, D. Halls, A. Nix, A. Doufexi, and M. Beach, “Mobile
WiMAX: MIMO performance analysis from a quality of
service (QoS) viewpoint,” in Proceedings of the IEEE Wireless
Communications and Networking Conference (WCNC ’09), pp.
1–6, Budapest, Hungary, April 2009.



Journal of Computer Networks and Communications 13

[26] C. Cicconetti, A. Erta, L. Lenzini, and E. Mingozzi, “Perfor-
mance evaluation of the IEEE 802.16 MAC for QoS support,”
IEEE Transactions on Mobile Computing, vol. 6, no. 1, pp. 26–
38, 2007.

[27] “video test sequences,” http://media.xiph.org/video/derf/.
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