3,024 research outputs found

    Outer membrane proteins can be simply identified using secondary structure element alignment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Outer membrane proteins (OMPs) are frequently found in the outer membranes of gram-negative bacteria, mitochondria and chloroplasts and have been found to play diverse functional roles. Computational discrimination of OMPs from globular proteins and other types of membrane proteins is helpful to accelerate new genome annotation and drug discovery.</p> <p>Results</p> <p>Based on the observation that almost all OMPs consist of antiparallel β-strands in a barrel shape and that their secondary structure arrangements differ from those of other types of proteins, we propose a simple method called SSEA-OMP to identify OMPs using secondary structure element alignment. Through intensive benchmark experiments, the proposed SSEA-OMP method is better than some well-established OMP detection methods.</p> <p>Conclusions</p> <p>The major advantage of SSEA-OMP is its good prediction performance considering its simplicity. The web server implements the method is freely accessible at <url>http://protein.cau.edu.cn/SSEA-OMP/index.html</url>.</p

    Protein subcellular localization prediction based on compartment-specific features and structure conservation

    Get PDF
    BACKGROUND: Protein subcellular localization is crucial for genome annotation, protein function prediction, and drug discovery. Determination of subcellular localization using experimental approaches is time-consuming; thus, computational approaches become highly desirable. Extensive studies of localization prediction have led to the development of several methods including composition-based and homology-based methods. However, their performance might be significantly degraded if homologous sequences are not detected. Moreover, methods that integrate various features could suffer from the problem of low coverage in high-throughput proteomic analyses due to the lack of information to characterize unknown proteins. RESULTS: We propose a hybrid prediction method for Gram-negative bacteria that combines a one-versus-one support vector machines (SVM) model and a structural homology approach. The SVM model comprises a number of binary classifiers, in which biological features derived from Gram-negative bacteria translocation pathways are incorporated. In the structural homology approach, we employ secondary structure alignment for structural similarity comparison and assign the known localization of the top-ranked protein as the predicted localization of a query protein. The hybrid method achieves overall accuracy of 93.7% and 93.2% using ten-fold cross-validation on the benchmark data sets. In the assessment of the evaluation data sets, our method also attains accurate prediction accuracy of 84.0%, especially when testing on sequences with a low level of homology to the training data. A three-way data split procedure is also incorporated to prevent overestimation of the predictive performance. In addition, we show that the prediction accuracy should be approximately 85% for non-redundant data sets of sequence identity less than 30%. CONCLUSION: Our results demonstrate that biological features derived from Gram-negative bacteria translocation pathways yield a significant improvement. The biological features are interpretable and can be applied in advanced analyses and experimental designs. Moreover, the overall accuracy of combining the structural homology approach is further improved, which suggests that structural conservation could be a useful indicator for inferring localization in addition to sequence homology. The proposed method can be used in large-scale analyses of proteomes

    Meta-analytic approach to the accurate prediction of secreted virulence effectors in gram-negative bacteria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many pathogens use a type III secretion system to translocate virulence proteins (called effectors) in order to adapt to the host environment. To date, many prediction tools for effector identification have been developed. However, these tools are insufficiently accurate for producing a list of putative effectors that can be applied directly for labor-intensive experimental verification. This also suggests that important features of effectors have yet to be fully characterized.</p> <p>Results</p> <p>In this study, we have constructed an accurate approach to predicting secreted virulence effectors from Gram-negative bacteria. This consists of a support vector machine-based discriminant analysis followed by a simple criteria-based filtering. The accuracy was assessed by estimating the average number of true positives in the top-20 ranking in the genome-wide screening. In the validation, 10 sets of 20 training and 20 testing examples were randomly selected from 40 known effectors of <it>Salmonella enterica </it>serovar Typhimurium LT2. On average, the SVM portion of our system predicted 9.7 true positives from 20 testing examples in the top-20 of the prediction. Removal of the N-terminal instability, codon adaptation index and ProtParam indices decreased the score to 7.6, 8.9 and 7.9, respectively. These discrimination features suggested that the following characteristics of effectors had been uncovered: unstable N-terminus, non-optimal codon usage, hydrophilic, and less aliphathic. The secondary filtering process represented by coexpression analysis and domain distribution analysis further refined the average true positive counts to 12.3. We further confirmed that our system can correctly predict known effectors of <it>P. syringae </it>DC3000, strongly indicating its feasibility.</p> <p>Conclusions</p> <p>We have successfully developed an accurate prediction system for screening effectors on a genome-wide scale. We confirmed the accuracy of our system by external validation using known effectors of <it>Salmonella </it>and obtained the accurate list of putative effectors of the organism. The level of accuracy was sufficient to yield candidates for gene-directed experimental verification. Furthermore, new features of effectors were revealed: non-optimal codon usage and instability of the N-terminal region. From these findings, a new working hypothesis is proposed regarding mechanisms controlling the translocation of virulence effectors and determining the substrate specificity encoded in the secretion system.</p

    Ranking models of transmembrane β-barrel proteins using Z-coordinate predictions

    Get PDF
    Motivation: Transmembrane β-barrels exist in the outer membrane of gram-negative bacteria as well as in chloroplast and mitochondria. They are often involved in transport processes and are promising antimicrobial drug targets. Structures of only a few β-barrel protein families are known. Therefore, a method that could automatically generate such models would be valuable. The symmetrical arrangement of the barrels suggests that an approach based on idealized geometries may be successful

    Machine learning applications for the topology prediction of transmembrane beta-barrel proteins

    Get PDF
    The research topic for this PhD thesis focuses on the topology prediction of beta-barrel transmembrane proteins. Transmembrane proteins adopt various conformations that are about the functions that they provide. The two most predominant classes are alpha-helix bundles and beta-barrel transmembrane proteins. Alpha-helix proteins are present in larger numbers than beta-barrel transmembrane proteins in structure databases. Therefore, there is a need to find computational tools that can predict and detect the structure of beta-barrel transmembrane proteins. Transmembrane proteins are used for active transport across the membrane or signal transduction. Knowing the importance of their roles, it becomes essential to understand the structures of the proteins. Transmembrane proteins are also a significant focus for new drug discovery. Transmembrane beta-barrel proteins play critical roles in the translocation machinery, pore formation, membrane anchoring, and ion exchange. In bioinformatics, many years of research have been spent on the topology prediction of transmembrane alpha-helices. The efforts to TMB (transmembrane beta-barrel) proteins topology prediction have been overshadowed, and the prediction accuracy could be improved with further research. Various methodologies have been developed in the past to predict TMB proteins topology. Methods developed in the literature that are available include turn identification, hydrophobicity profiles, rule-based prediction, HMM (Hidden Markov model), ANN (Artificial Neural Networks), radial basis function networks, or combinations of methods. The use of cascading classifier has never been fully explored. This research presents and evaluates approaches such as ANN (Artificial Neural Networks), KNN (K-Nearest Neighbors, SVM (Support Vector Machines), and a novel approach to TMB topology prediction with the use of a cascading classifier. Computer simulations have been implemented in MATLAB, and the results have been evaluated. Data were collected from various datasets and pre-processed for each machine learning technique. A deep neural network was built with an input layer, hidden layers, and an output. Optimisation of the cascading classifier was mainly obtained by optimising each machine learning algorithm used and by starting using the parameters that gave the best results for each machine learning algorithm. The cascading classifier results show that the proposed methodology predicts transmembrane beta-barrel proteins topologies with high accuracy for randomly selected proteins. Using the cascading classifier approach, the best overall accuracy is 76.3%, with a precision of 0.831 and recall or probability of detection of 0.799 for TMB topology prediction. The accuracy of 76.3% is achieved using a two-layers cascading classifier. By constructing and using various machine-learning frameworks, systems were developed to analyse the TMB topologies with significant robustness. We have presented several experimental findings that may be useful for future research. Using the cascading classifier, we used a novel approach for the topology prediction of TMB proteins

    Transmembrane protein topology prediction using support vector machines

    Get PDF
    Background: Alpha-helical transmembrane (TM) proteins are involved in a wide range of important biological processes such as cell signaling, transport of membrane-impermeable molecules, cell-cell communication, cell recognition and cell adhesion. Many are also prime drug targets, and it has been estimated that more than half of all drugs currently on the market target membrane proteins. However, due to the experimental difficulties involved in obtaining high quality crystals, this class of protein is severely under-represented in structural databases. In the absence of structural data, sequence-based prediction methods allow TM protein topology to be investigated.Results: We present a support vector machine-based (SVM) TM protein topology predictor that integrates both signal peptide and re-entrant helix prediction, benchmarked with full cross-validation on a novel data set of 131 sequences with known crystal structures. The method achieves topology prediction accuracy of 89%, while signal peptides and re-entrant helices are predicted with 93% and 44% accuracy respectively. An additional SVM trained to discriminate between globular and TM proteins detected zero false positives, with a low false negative rate of 0.4%. We present the results of applying these tools to a number of complete genomes. Source code, data sets and a web server are freely available from http://bioinf.cs.ucl.ac.uk/psipred/.Conclusion: The high accuracy of TM topology prediction which includes detection of both signal peptides and re-entrant helices, combined with the ability to effectively discriminate between TM and globular proteins, make this method ideally suited to whole genome annotation of alpha-helical transmembrane proteins

    Transmembrane protein structure prediction using machine learning

    Get PDF
    This thesis describes the development and application of machine learning-based methods for the prediction of alpha-helical transmembrane protein structure from sequence alone. It is divided into six chapters. Chapter 1 provides an introduction to membrane structure and dynamics, membrane protein classes and families, and membrane protein structure prediction. Chapter 2 describes a topological study of the transmembrane protein CLN3 using a consensus of bioinformatic approaches constrained by experimental data. Mutations in CLN3 can cause juvenile neuronal ceroid lipofuscinosis, or Batten disease, an inherited neurodegenerative lysosomal storage disease affecting children, therefore such studies are important for directing further experimental work into this incurable illness. Chapter 3 explores the possibility of using biologically meaningful signatures described as regular expressions to influence the assignment of inside and outside loop locations during transmembrane topology prediction. Using this approach, it was possilbe to modify a recent topology prediction method leading to an improvement of 6% prediction accuracy using a standard data set. Chapter 4 describes the development of a novel support vector machine-based topology predictor that integrates both signal peptide and re-entrant helix prediction, benchmarked with full cross-validation on a novel data set of sequences with known crystal structures. The method achieves state-of-the-art performance in predicting topology and discriminating between globular and transmembrane proteins. We also present the results of applying these tools to a number of complete genomes. Chapter 5 describes a novel approach to predict lipid exposure, residue contacts, helix-helix interactions and finally the optimal helical packing arrangement of transmembrane proteins. It is based on two support vector machine classifiers that predict per residue lipid exposure and residue contacts, which are used to determine helix-helix interaction with up to 65% accuracy. The method is also able to discriminate native from decoy helical packing arrangements with up to 70% accuracy. Finally, a force-directed algorithm is employed to construct the optimal helical packing arrangement which demonstrates success for proteins containing up to 13 transmembrane helices. The final chapter summarises the major contributions of this thesis to biology, before future perspectives for TM protein structure prediction are discussed

    Machine-learning methods for structure prediction of β-barrel membrane proteins

    Get PDF
    Different types of proteins exist with diverse functions that are essential for living organisms. An important class of proteins is represented by transmembrane proteins which are specifically designed to be inserted into biological membranes and devised to perform very important functions in the cell such as cell communication and active transport across the membrane. Transmembrane β-barrels (TMBBs) are a sub-class of membrane proteins largely under-represented in structure databases because of the extreme difficulty in experimental structure determination. For this reason, computational tools that are able to predict the structure of TMBBs are needed. In this thesis, two computational problems related to TMBBs were addressed: the detection of TMBBs in large datasets of proteins and the prediction of the topology of TMBB proteins. Firstly, a method for TMBB detection was presented based on a novel neural network framework for variable-length sequence classification. The proposed approach was validated on a non-redundant dataset of proteins. Furthermore, we carried-out genome-wide detection using the entire Escherichia coli proteome. In both experiments, the method significantly outperformed other existing state-of-the-art approaches, reaching very high PPV (92%) and MCC (0.82). Secondly, a method was also introduced for TMBB topology prediction. The proposed approach is based on grammatical modelling and probabilistic discriminative models for sequence data labeling. The method was evaluated using a newly generated dataset of 38 TMBB proteins obtained from high-resolution data in the PDB. Results have shown that the model is able to correctly predict topologies of 25 out of 38 protein chains in the dataset. When tested on previously released datasets, the performances of the proposed approach were measured as comparable or superior to the current state-of-the-art of TMBB topology prediction

    Expanding the repertoire of bacterial (non-)coding RNAs

    Get PDF
    The detection of non-protein-coding RNA (ncRNA) genes in bacteria and their diverse regulatory mode of action moved the experimental and bio-computational analysis of ncRNAs into the focus of attention. Regulatory ncRNA transcripts are not translated to proteins but function directly on the RNA level. These typically small RNAs have been found to be involved in diverse processes such as (post-)transcriptional regulation and modification, translation, protein translocation, protein degradation and sequestration. Bacterial ncRNAs either arise from independent primary transcripts or their mature sequence is generated via processing from a precursor. Besides these autonomous transcripts, RNA regulators (e.g. riboswitches and RNA thermometers) also form chimera with protein-coding sequences. These structured regulatory elements are encoded within the messenger RNA and directly regulate the expression of their “host” gene. The quality and completeness of genome annotation is essential for all subsequent analyses. In contrast to protein-coding genes ncRNAs lack clear statistical signals on the sequence level. Thus, sophisticated tools have been developed to automatically identify ncRNA genes. Unfortunately, these tools are not part of generic genome annotation pipelines and therefore computational searches for known ncRNA genes are the starting point of each study. Moreover, prokaryotic genome annotation lacks essential features of protein-coding genes. Many known ncRNAs regulate translation via base-pairing to the 5’ UTR (untranslated region) of mRNA transcripts. Eukaryotic 5’ UTRs have been routinely annotated by sequencing of ESTs (expressed sequence tags) for more than a decade. Only recently, experimental setups have been developed to systematically identify these elements on a genome-wide scale in prokaryotes. The first part of this thesis, describes three experimental surveys of exploratory field studies to analyze transcript organization in pathogenic bacteria. To identify ncRNAs in Pseudomonas aeruginosa we used a combination of an experimental RNomics approach and ncRNA prediction. Besides already known ncRNAs we identified and validated the expression of six novel RNA genes. Global detection of transcripts by next generation RNA sequencing techniques unraveled an unexpectedly complex transcript organization in many bacteria. These ultra high-throughput methods give us the appealing opportunity to analyze the complete RNA output of any species at once. The development of the differential RNA sequencing (dRNA-seq) approach enabled us to analyze the primary transcriptome of Helicobacter pylori and Xanthomonas campestris. For the first time we generated a comprehensive and precise transcription start site (TSS) map for both species and provide a general framework for the analysis of dRNA-seq data. Focusing on computer-aided analysis we developed new tools to annotate TSS, detect small protein-coding genes and to infer homology of newly detected transcripts. We discovered hundreds of TSS in intergenic regions, upstream of protein-coding genes, within operons and antisense to annotated genes. Analysis of 5’ UTRs (spanning from the TSS to the start codon of the adjacent protein-coding gene) revealed an unexpected size diversity ranging from zero to several hundred nucleotides. We identified and validated the expression of about 60 and about 20 ncRNA candidates in Helicobacter and Xanthomonas, respectively. Among these ncRNA candidates we found several small protein-coding genes that have previously evaded annotation in both species. We showed that the combination of dRNA-seq and computational analysis is a powerful method to examine prokaryotic transcriptomes. Experimental setups are time consuming and often combined with huge costs. Another limitation of experimental approaches is that genes which are expressed in specific developmental stages or stress conditions are likely to be missed. Bioinformatic tools build an alternative to overcome such restraints. General approaches usually depend on comparative genomic data and evolutionary signatures are used to analyze the (non-)coding potential of multiple sequence alignments. In the second part of my thesis we present our major update of the widely used ncRNA gene finder RNAz and introduce RNAcode, an efficient tool to asses local protein-coding potential of genomic regions. RNAz has been successfully used to identify structured RNA elements in all domains of life. However, our own experience and the user feedback not only demonstrated the applicability of the RNAz approach, but also helped us to identify limitations of the current implementation. Using a much larger training set and a new classification model we significantly improved the prediction accuracy of RNAz. During transcriptome analysis we repeatedly identified small protein-coding genes that have not been annotated so far. Only a few of those genes are known to date and standard proteincoding gene finding tools suffer from the lack of training data. To avoid an excess of false positive predictions, gene finding software is usually run with an arbitrary cutoff of 40-50 amino acids and therefore misses the small sized protein-coding genes. We have implemented RNAcode which is optimized for emerging applications not covered by standard protein-coding gene annotation software. In addition to complementing classical protein gene annotation, a major field of application of RNAcode is the functional classification of transcribed regions. RNA sequencing analyses are likely to falsely report transcript fragments (e.g. mRNA degradation products) as non-coding. Hence, an evaluation of the protein-coding potential of these fragments is an essential task. RNAcode reports local regions of high coding potential instead of complete protein-coding genes. A training on known protein-coding sequences is not necessary and RNAcode can therefore be applied to any species. We showed this with our analysis of the Escherichia coli genome where the current annotation could be accurately reproduced. We furthermore identified novel small protein-coding genes with RNAcode in this extensively studied genome. Using transcriptome and proteome data we found compelling evidence that several of the identified candidates are bona fide proteins. In summary, this thesis clearly demonstrates that bioinformatic methods are mandatory to analyze the huge amount of transcriptome data and to identify novel (non-)coding RNA genes. With the major update of RNAz and the implementation of RNAcode we contributed to complete the repertoire of gene finding software which will help to unearth hidden treasures of the RNA World
    corecore