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Abstract

The detection of non-protein-coding RNA (ncRNA) genes in bacteria and their diverse reg-

ulatory mode of action moved the experimental and bio-computational analysis of ncRNAs

into the focus of attention. Regulatory ncRNA transcripts are not translated to proteins

but function directly on the RNA level. These typically small RNAs have been found to

be involved in diverse processes such as (post-)transcriptional regulation and modification,

translation, protein translocation, protein degradation and sequestration.

Bacterial ncRNAs either arise from independent primary transcripts or their mature sequence

is generated via processing from a precursor. Besides these autonomous transcripts, RNA

regulators (e.g. riboswitches and RNA thermometers) also form chimera with protein-coding

sequences. These structured regulatory elements are encoded within the messenger RNA and

directly regulate the expression of their “host” gene.

The quality and completeness of genome annotation is essential for all subsequent analyses.

In contrast to protein-coding genes ncRNAs lack clear statistical signals on the sequence

level. Thus, sophisticated tools have been developed to automatically identify ncRNA genes.

Unfortunately, these tools are not part of generic genome annotation pipelines and therefore

computational searches for known ncRNA genes are the starting point of each study. More-

over, prokaryotic genome annotation lacks essential features of protein-coding genes. Many

known ncRNAs regulate translation via base-pairing to the 5’ UTR (untranslated region)

of mRNA transcripts. Eukaryotic 5’ UTRs have been routinely annotated by sequencing of

ESTs (expressed sequence tags) for more than a decade. Only recently, experimental setups

have been developed to systematically identify these elements on a genome-wide scale in

prokaryotes.

The first part of this thesis, describes three experimental surveys of exploratory field studies to

analyze transcript organization in pathogenic bacteria. To identify ncRNAs in Pseudomonas

aeruginosa we used a combination of an experimental RNomics approach and ncRNA predic-

tion. Besides already known ncRNAs we identified and validated the expression of six novel

RNA genes.
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Global detection of transcripts by next generation RNA sequencing techniques unraveled an

unexpectedly complex transcript organization in many bacteria. These ultra high-throughput

methods give us the appealing opportunity to analyze the complete RNA output of any species

at once. The development of the differential RNA sequencing (dRNA-seq) approach enabled

us to analyze the primary transcriptome of Helicobacter pylori and Xanthomonas campestris.

For the first time we generated a comprehensive and precise transcription start site (TSS)

map for both species and provide a general framework for the analysis of dRNA-seq data.

Focusing on computer-aided analysis we developed new tools to annotate TSS, detect small

protein-coding genes and to infer homology of newly detected transcripts. We discovered

hundreds of TSS in intergenic regions, upstream of protein-coding genes, within operons and

antisense to annotated genes. Analysis of 5’ UTRs (spanning from the TSS to the start codon

of the adjacent protein-coding gene) revealed an unexpected size diversity ranging from zero

to several hundred nucleotides. We identified and validated the expression of about 60 and

about 20 ncRNA candidates in Helicobacter and Xanthomonas, respectively. Among these

ncRNA candidates we found several small protein-coding genes that have previously evaded

annotation in both species. We showed that the combination of dRNA-seq and computational

analysis is a powerful method to examine prokaryotic transcriptomes.

Experimental setups are time consuming and often combined with huge costs. Another limi-

tation of experimental approaches is that genes which are expressed in specific developmental

stages or stress conditions are likely to be missed. Bioinformatic tools build an alternative

to overcome such restraints. General approaches usually depend on comparative genomic

data and evolutionary signatures are used to analyze the (non-)coding potential of multiple

sequence alignments. In the second part of my thesis we present our major update of the

widely used ncRNA gene finder RNAz and introduce RNAcode, an efficient tool to asses local

protein-coding potential of genomic regions.

RNAz has been successfully used to identify structured RNA elements in all domains of life.

However, our own experience and the user feedback not only demonstrated the applicability

of the RNAz approach, but also helped us to identify limitations of the current implementation.

Using a much larger training set and a new classification model we significantly improved the

prediction accuracy of RNAz.

During transcriptome analysis we repeatedly identified small protein-coding genes that have

not been annotated so far. Only a few of those genes are known to date and standard protein-

coding gene finding tools suffer from the lack of training data. To avoid an excess of false

positive predictions, gene finding software is usually run with an arbitrary cutoff of 40-50

amino acids and therefore misses the small sized protein-coding genes. We have implemented
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RNAcode which is optimized for emerging applications not covered by standard protein-coding

gene annotation software. In addition to complementing classical protein gene annotation, a

major field of application of RNAcode is the functional classification of transcribed regions.

RNA sequencing analyses are likely to falsely report transcript fragments (e.g. mRNA degra-

dation products) as non-coding. Hence, an evaluation of the protein-coding potential of these

fragments is an essential task. RNAcode reports local regions of high coding potential instead

of complete protein-coding genes. A training on known protein-coding sequences is not neces-

sary and RNAcode can therefore be applied to any species. We showed this with our analysis

of the Escherichia coli genome where the current annotation could be accurately reproduced.

We furthermore identified novel small protein-coding genes with RNAcode in this extensively

studied genome. Using transcriptome and proteome data we found compelling evidence that

several of the identified candidates are bona fide proteins.

In summary, this thesis clearly demonstrates that bioinformatic methods are mandatory to

analyze the huge amount of transcriptome data and to identify novel (non-)coding RNA

genes. With the major update of RNAz and the implementation of RNAcode we contributed to

complete the repertoire of gene finding software which will help to unearth hidden treasures

of the RNA World.
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1
The fascinating world of

RNA

The term ”RNA World” dates back to 1986 when Walter Gilbert proposed an RNA centered

perspective of the origin of life [Gilbert 1986]. He described how the universe of today’s known

molecules might be originated from RNA. Particularly the idea that DNA, the universal

information storage, and even proteins, the functional translation of DNA, have arisen from

RNA raised a lot of discussions. The most prominent counterargument of the RNA World

hypothesis is that a spontaneous emergence of complicated molecules such as RNA is highly

unlikely. Hence, scientists struggle to show how ribonucleotides and from that RNA molecules

could be synthesized. Only recently John D. Sutherland showed how ribonucleotides could

have been assembled under plausible prebiotic conditions [Sutherland 2010]. Thus, a milestone

to proof the RNA World hypothesis has been achieved by biochemical investigations.

Beside this fundamental research the term RNA World is also used to emphasize the great

variety of known RNA molecules. Thus, the detection and functional characterization of RNA

molecules gives another perspective onto the fascinating world of RNA. It has to be distin-

guished between protein-coding and non-protein-coding RNAs (ncRNAs). Protein-coding

RNAs, better known as messenger RNAs (mRNAs), are transcribed from DNA and are

subsequently translated into proteins. For a long time RNA was only seen as a template

for the functional instance protein. However, ncRNAs that do not encode a protein tem-

plate gain more and more interest. Well known ncRNAs are ribosomal RNA (rRNA) and

transfer RNA (tRNA). Both essential for the process of protein synthesis in all domains of life.

Other omnipresent ncRNA examples are RNase P RNA and the Signal Recognition Particle

1



1. The fascinating world of RNA

(SRP) RNA. While the first plays a major role in the generation of mature 5’-ends of tRNAs,

which are processed from a precursor sequences, the latter is involved in the co-translational

trans-location of proteins through membranes. Interestingly, all mentioned ncRNAs act in

combination with proteins. Both, the protein and the RNA component(s) are essential for

the function of the complex.

As this thesis will mainly focus on bacteria some ubiquitous prokaryotic regulators should be

mentioned here as well. One is the transfer-messenger RNA (tmRNA). As the name suggests,

this RNA molecule exhibits two domains. The first domain has a tRNA like shape and by that

the tmRNA can enter the ribosome. The nascent polypeptide is transferred to the tmRNA and

the second domain serves as mRNA template. By this two step mechanism the tmRNA can

free stalled ribosomes from damaged mRNA transcripts. Another prokaryotic housekeeping

RNA is 6S. It has a conserved secondary structure that mimics an open promoter complex and

RNA polymerase (RNAP) binds 6S RNA instead of DNA. Prokaryotes utilize this RNAP–6S

RNA storage to overcome periods of starvation. Those few ncRNA examples already show

how essential and complex regulation by non-protein-coding molecules is.

In fact most of the recently detected bacterial ncRNAs seem to be linage-specific without

detectable homologs in other species. The majority of functionally analyzed ncRNAs were

initially discovered in the well studied model organism Escherichia coli. The multi-target reg-

ulating GcvB is such an example [Urbanowski et al. 2000, Sharma et al. 2007]. Homologs of

this ncRNA have been identified in enterobacteria such as Salmonella typhimurium and Vibrio

cholerae only. Another example is the cyanobacterial functional RNA Yfr1. A motif-based

search revealed Yfr1 orthologs only within cyanobacteria lineages [Voss et al. 2007]. Com-

paring ncRNA expression between Mycobacteria species identified pathogen specific RNA

molecules. DiChiara et al. [2010] found several ncRNAs expressed in Mycobaterium tubercu-

losis which could be functioning in mediation of virulence. Thus, the presence of ncRNAs

makes the difference between (non-)pathogenic strains.

The gain and loss of ncRNAs is an ongoing process. As recent studies suggest we are far

from a comprehensive understanding of the RNA World at the moment. If we understand,

however, the functional roles RNA molecules can have we might elucidate their role in the

origin of life.

2



Organization of this thesis

Chapter 2 reviews the biological background of ncRNA mediated regulation in prokaryotes.

This chapter, furthermore, summarizes state of the art experimental and computational ap-

proaches for ncRNA gene detection.

In Chapter 3 the application of experimental RNomics and next generation sequencing tech-

niques for the identification of RNA transcripts in the three model organisms Pseudomonas

aeruginosa, Helicobacter pylori and Xanthomonas campestris is described.

The question: “How to assess non-coding and protein-coding potential of comparative genomic

data” is addressed in Chapter 4. There, I describe the major update of the ncRNA gene finder

RNAz and outline the general RNAcode-approach.

Chapter 5 summarizes and discusses the outcome of the presented studies and gives a brief

outlook.
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2
Background

The majority of annotated prokaryotic genes are protein-coding∗. On DNA level the complete

template of the transcribed gene is encoded. It encompasses the 5’ untranslated region (UTR),

the open reading frame (ORF) and the 3’ UTR. A gene spans from the so called transcription

start site (TSS) to the 3’ end of the terminator sequence, see Figure 2.1. Only the ORF

serves as the nucleotide template of the protein and its length is usually dividable by three.

An ORF, typically, begins with an ATG triplet which encodes the amino acid methionine and

ends with a canonical stop codon (TAG, TGA or TAA). Both UTRs have regulatory functions.

The 5’ UTR comprises regulatory elements, e.g. the Shine-Dalgarno (SD) sequence which is

essential for ribosome binding and the subsequent translation. The 3’ UTR on the other

hand is important for transcript stability. The promoter region is located upstream of the

protein-coding gene. It involves regulatory sequences, e.g. -10 (Pribnow box) and -35 region,

which guide the RNAP complex to the proximity of the TSS. The minimal core-enzyme of

RNAP in E. coli is a multi-subunit complex of two α, β, β′ subunits and an additive ω factor.

For the DNA specific binding the so-called holoenzyme is formed by the addition of a specific

σ factor. In E. coli at least seven σ factors are known . Out of this set σ70 regulates almost

all of the ’housekeeping’ genes within the exponential growth [Maeda et al. 2000].

For ncRNA genes the mechanisms of transcription initiation and termination are similar.

Position of promoter elements and terminator sequences define the size of the transcribed

gene, see Figure 2.1. However, these RNAs are often referred to as non-protein-coding RNAs

as they do not contain an ORF. In contrast to protein-coding genes these molecules act

on RNA level (see below). Several ncRNAs, e.g. 6S and tmRNA, are processed by RNase

∗96% of E. coli genes listed in NCBI database are protein-coding
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2. Background

TSS

Promoter

Transcription

DNA template
CGCCGGATACCGGCGTTTTT

UUUUU

ncRNA

Terminator sequence
A

A

Polymerase

−35 nt −10 nt

DNA template

Polymerase

6..7nt
ATG StopORF

TSS

Promoter

Transcription

CGCCGGATACCGGCGTTTTT

Terminator sequence
A−35 nt −10 nt RBS

6..7nt
AUG StopORF

Translation start site Translation

mRNA transcript
5’ UTR 3’ UTR

protein

UUUUUA

Ribosome

RBS

ββ’

β

ββ’

β

30S

50S

α
α

α
α

σ

σ

Figure 2.1. Schematic drawing of protein (top) and ncRNA synthesis (bottom). Specific

sequence motifs, e.g. -35 and -10 region, in the promoter region guide the RNA Polymerase

holoenzyme onto the DNA. The DNA sequence spanning from the TSS (transcription start

site) to the end of terminator sequence is transcribed. In case of a protein-coding gene

additional regulatory regions are encoded on DNA level and are copied to the mRNA

transcript. The RBS (ribosome entry site) within the 5’ UTR recruits the ribosome close

to the translation start site which is the A of the canonical AUG start codon. An ORF

(open reading frame) is the blueprint of the encoded protein. Starting with the AUG all

coding base triplets are translated into amino acids until the stop codon. The translated

protein forms the functional instance. An non-protein-coding gene is transcribed from its

DNA template. Here, the functional instance is a (structured) ncRNA.
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2.1. Functional roles of RNA regulators

cleavage from a precursor sequence.

A special gene organization is the so called operon. In contrast to the above described

monocystronic transcript organization encodes an operon a set of ORFs and/or ncRNAs

which are simultaneously transcribed (polycistronic transcript). Hence, already one promoter

and terminator sequence is sufficient to express a set of functional related genes at the same

time.

2.1 Functional roles of RNA regulators

With respect to the location of their target, RNA regulators are often classified as cis- or

trans-acting molecules. A cis-acting regulator is typically encoded within the same operon,

gene or directly on the opposite strand (antisense) of its target gene. Whereas trans-acting

means that the RNA regulator modulates the expression of a distant gene. I introduce

these terms as they are often used in literature. However, such a classification becomes

obsolete when typical cis-acting elements also regulate targets in trans. Only recently this

has been shown for a riboswitch, a classical cis-acting regulator. Loh et al. [2009] evidenced

the existence of a trans-acting riboswitch in Listeria monocytogenes. Furthermore, Han et al.

[2010] discussed possible cross-recognition between different copies of the Ibs-sib systems, a

classical cis-antisense regulated toxin-antitoxin module.

In the context of my thesis the term RNA regulator covers both independent ncRNAs and

structured elements (e.g. riboswitches, RNA thermometer) that are encoded within mRNA

transcripts. Non-coding RNA regulators are involved in various cellular processes: mRNA

stability and translation, protein translocation, protein degradation and sequestration, tran-

scriptional regulation as well as RNA processing and modification. Most known bacterial

RNA regulators arise from independent genes and have a typical length of 50-600 nucleotides

(nts) [Pichon & Felden 2008, Repoila & Darfeuille 2009]. Small RNA (sRNA) is therefore

a commonly used synonym for these bacterial molecules. The principle modes of action are

summarized in the following sections.

2.1.1 Translation regulation

The canonical model of sRNA mediated translation regulation is to control the access of

the Shine-Dalgarno sequence of the respective target mRNA (Figure 2.2). Translation re-

pression is typically achieved by sequestration of the Shine-Dalgarno sequence via imperfect

base pairing between sRNA and mRNA. Well studied examples are MicA, MicC and MicF

7



2. Background

sRNAs that regulate the expression outer membrane proteins, OmpA, OmpC and OmpF,

respectively. Furthermore RybB, RseX and IpeX sRNAs are likely to use the same mech-

anism to regulate the expression of ompC (reviewed in [Guillier et al. 2006]). The mRNA

of ompA is an additional target of RseX [Douchin et al. 2006]. Interestingly, in V. cholerae

ompA is found to be regulated by the VrrA RNA which has been shown to use the canonical

translation repression mechanism [Song et al. 2008]. Other sRNA-mRNA target pairs are

OxyS-fhlA, Spot42-galK, DsrA-hns, SgrS-ptsG, SR1-ahrC, RNAIII-spa and many more as

reviewed by Repoila & Darfeuille [2009]. The mechanism of translation inhibition by base

pairing is also known for antisense RNA systems (reviewed by Brantl [2002]). Since the sRNA

is encoded directly on the opposite strand of the target gene an intrinsic feature of these sys-

tems are stretches of complementary nucleotides between sRNA and mRNA. Toxin-antitoxin

pairs are specific antisense systems (reviewed by Gerdes & Wagner [2007], Fozo et al. [2008a]).

The toxin-encoding stable mRNA encodes a protein that rapidly leads to cell death unless its

translation is suppressed by a short-lived small RNA. These typically plasmid-encoded mod-

ules prevent the growth of plasmid-free offspring thus ensuring the persistence of the plasmid

in the population. E. coli ’s hok/Sok system is only one but possibly the best studied exam-

ple. Bacterial mRNA stability and therefore the half-life of the molecule is strongly affected

by the association with ribosomes [Deana & Belasco 2005]. When sRNA-mRNA complex

formation inhibits ribosome binding RNase dependent degradation of the repressed target is

quickly initiated (see Section 2.1.5).

Translation activation is typically supported by the opening of local Shine-Dalgarno blocking

structures, see Figure 2.2. One well studied example is the activation of E. coli ’s major stress

and stationary phase sigma factor, RpoS. The mRNA comprises an extreme long 5’ UTR (600

nt) which folds into an translational inactive structure. Two sRNAs, DsrA and RprA, are

known to initiate a refolding of rpoS and thereby activate translation of the mRNA. Although

both sRNAs bind to the same region within the mRNA they act under different conditions.

DsrA regulates at low growth temperatures whereas RprA is induced upon cell surface stress

(reviewed by Repoila et al. [2003]). Other examples of sRNA-mRNA pairs where translation

is activated upon base pair interaction are RyhB-shiA, GlmY/GmZ-gmlS and RNAIII-hla

(recently reviewed by Repoila & Darfeuille [2009]). Antisense conformations are also known

to activate translation. GadY RNA, for instance, is transcribed from the opposite strand of

the gadX 3’ UTR. Upon base pairing accumulation of the GadX protein has been observed

[Opdyke et al. 2004]. Further studies showed that the polycistronic mRNA, gadXW, is rapidly

cleaved after GadY binding [Tramonti et al. 2008]. The cleavage has a stabilizing effect on

gadX mRNA and seems to be responsible for the observed GadX protein accumulation.

8



2.1. Functional roles of RNA regulators

Ribosome

Ribosome

Ribosome

Ribosome

AUG ORFRBS

AUG ORFRBS

AUG ORFRBS

AUG ORF
Repression

Activation

RBS

Figure 2.2. Small RNAs can either repress (top) or enhance (bottom) translation of their

target. In both cases an (imperfect) sRNA-mRNA interaction regulates the accessibility of

the ribosome binding site (RBS). Translation repression: In absence of the sRNA regulator

the ribosome binds and translates the mRNA transcript. If the sRNA becomes available

it binds close to the RBS and therefore inhibits ribosome binding. Translation activa-

tion: Under non active conditions the mRNA folds into an inhibitory structure (blocked

RBS). By base pairing with a complementary region of the mRNA, the sRNA disrupts

the inhibitory secondary structure. The ribosome gets access to the RBS and translation

is initiated.
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The fact that several sRNAs (e.g. RybB and DsrA) are listed as translational repressor and

activator already indicates the complexity of sRNA mediated regulation. The expression

of one mRNA can be modulated by several sRNAs as exemplified by ompC and its sRNA

regulators MicC, RseX, RybB and Ipex. Furthermore is the opposite, one sRNA regulates

different mRNA targets, true. GcvB, for instance, is known to regulate the expression of

at least seven mRNA targets [Sharma et al. 2007]. Functional redundancy of four sRNAs,

Qrr1-4, has been described in Vibrio species. The known targets luxO, hapR and vca0939

are regulated by each of the Qrr sRNAs [Svenningsen et al. 2009]. As exemplified by GadY,

not only monocystronic mRNAs but also polycistronic transcripts are sRNA targets. Thus

the expression of several genes in polycistronic transcripts can be regulated by a single sRNA

molecule. It remains to be seen whether these examples are exceptions to the rule. However,

they support the assumption that sRNA mediated translation regulation might be far more

complex than previously expected.

2.1.2 Protein sequestration

Small RNAs regulate also non-mRNAs. The most prominent examples of sRNAs that directly

interact with cellular proteins are summarized below. All three examples modulate protein

activity by mimicking the structure of the actual RNA or DNA target.

6S RNA, one of the first known sRNAs, was detected and sequenced in the late 1960s [Hindley

1967, Brownlee 1971]. The ubiquitous RNA molecule interacts with the RNAP holoenzymes

and therefore regulates the transcription of many “housekeeping” genes in bacteria. Generally

one copy of the 6S RNA was found within almost all eubacteria and two copies are present

in Gram-positive bacteria. Further analysis of the two copies in Bacillus subtilis revealed a

distinct expression during different growth phases [Barrick et al. 2005]. Axmann et al. [2007]

reported two alternative structural conformations of the 6S RNA molecule in Cyanobacteria

species.

6S RNA has a well characterized secondary structure that folds into a three domain (’closing

stem’, ’central bubble’ and ’terminal loop’) long hairpin (Figure 2.3). In all known 6S RNAs

the ’central bubble’ is flanked by G-C rich stems [Barrick et al. 2005]. In E. coli bio-genesis

of 6S RNA relies on co-ordinated transcription and cleavage of a dicystronic transcript [Hsu

et al. 1985, Kim & Lee 2004].

The 6S RNA is linked with two functions: i) inhibition of σ70-dependent transcription and

ii) release of σ70-RNAP complex during the outgrowth. The amount of 6S RNA molecules

within the cells increases 10-fold from exponential to stationary growth and up to 75% of all
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Figure 2.3. Comparison of 6S RNA consensus secondary structure (top) and an open pro-

moter complex (bottom). 6S RNA consists of three structurally conserved domains,

namely ”closing stem”, ”central bubble” and ”terminal loop”. Nucleotides correspond

to highly conserved regions and open circles are conserved in more than 60% of all species.

Adapted from Barrick et al. [2005].

σ70-RNAP-holoenzymes are bound by 6S RNA molecules [Wassarman & Storz 2000, Wassar-

man & Saecker 2006]. Since this mechanism is common during the (late) stationary phase,

when nucleotides become scarce 6S RNA seems to store the RNAP-holoenzyme. When nu-

cleotides become available RNAP uses the 6S RNA molecule as template for the 14-20 nt long

pRNA [Wassarman & Saecker 2006]. This short RNA molecule binds to the template region

of 6S RNA and mediates the release of the RNAP-holoenzyme. The 6S-pRNA complex is only

observed during the outgrowth and seems to be subjected to rapid degradation [Wassarman

2007].

The transfer-messenger RNA (tmRNA), also known as 10Sa RNA or SsrA, is part of a complex

that acts as an unique translation quality-control and ribosome rescue system in all eubacteria

and some eukaryotic organelles. Initially transcribed as a precursor, the tmRNA molecule

needs to be processed before it becomes functional. In E. coli, this precursor has a length of

457 nts and is finally cleaved by cellular ribonucleases to a mature tmRNA molecule with a

length of 363 nts. The 5’ and the 3’ ends of the tmRNA form a tRNA-like domain, including

an acceptor stem, a D-loop without stem, and a T-arm. Instead of the anticodon stem-loop

structure, typical for normal tRNAs, a long stem connects the tRNA-like domain to the rest

of the tmRNA molecule. A peptide reading frame, which ends with a stop codon forms the

second essential domain of the tmRNA molecule.

Sometimes, messenger RNAs lack appropriate termination signals. These ”nonstop” mR-

NAs are unable to promote the release of the nascent protein and the recycling of stalled

ribosomes (see Dulebohn et al. [2007] for a recent review). Together with SmpB (small pro-

tein B), EF-Tu (Elongation factor Tu) and GTP the tmRNA forms the ”stalled ribosome
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Figure 2.4. The ”stalled ribosome recognition complex” (EF-Tu, SmpB, GTP and tmRNA)

recognizes nonstop mRNA-Ribosome complexes. tmRNA enters the ribosome and the

nascent polypeptide is transferred (tRNA-mode). The ribosome continuous translation

using the mRNA-domain as template (tRNA-mode). The aberrant mRNA is released and

directly degraded by RNase R (Pakman symbol). Finally translation terminates and both

tmRNA and ribosome are free. The polypeptide is released and recognized, probably by

the attached tag (red), for degradation. Adapted from Ibba & Söll [1999].

recognition complex”. This complex recognizes ribosomes stalled at the 3’ end of nonstop

mRNAs (Figure 2.4). Acting in a tRNA mode tmRNA enters the ribosome [Valle et al. 2003,

Sundermeier et al. 2008] and the nascent polypeptide is transferred to the tmRNA. At this

point, the tmRNA switches from a tRNA- to an mRNA-like mode. The ribosome continues

the translation process with the mRNA-domain as a surrogate template, whereas the dam-

aged mRNA is selectively recognized and degraded by RNase R (reviewed by Richards et al.

[2008]). The translation terminates at a tmRNA-encoded stop codon, releasing the nascent

polypeptide with the 11-amino acid degradation tag at its C-terminus. This permits recycling

of the ribosomal subunits into the cellular pool and an efficient decay of the tagged peptide

which otherwise might have deleterious effects for the cell. In conclusion, tmRNAs perform

three key functions: i) promoting the degradation of aberrant mRNAs ii) rescuing stalled

ribosomes and iii) tagging incomplete polypeptide chains.

Proteins of the Csr (Carbon storage regulator) system and its homolog, Rsm (Repressor of

secondary metabolites), are involved in the regulation of various biological processes, e.g.

quorum sensing, pathogenesis, motility and biofilms, by mRNA binding (reviewed by [Tim-

mermans & Melderen 2010]). Antagonists are sRNAs, which sequester and therefore inhibit

the regulatory function of the respective protein (reviewed by Babitzke & Romeo [2007]).

CsrA is the central RNA binding protein of the Csr system and binds to GGA motifs of

its mRNA targets. Homologs involved in virulence are RsmA in Pseudomonas and RsmE

12
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Figure 2.5. Schematic drawing of direct protein regulation as known from the Csr and Rsm

systems. In absence of the sRNA molecules the proteins (pink circles) bind to the mRNA

and therefore, repress translation. Upon sRNA expression, multiple stem-loops of the

sRNA molecule interact with the protein and thus inhibit protein activity. This allows

ribosome binding and enables translation. Adapted from Lapouge et al. [2008].

in Erwinia species. In E. coli two sRNAs, namely CsrB and CsrC, are the antagonists of

the CsrA protein. These sRNAs form complex structures with repeated loop-exposed GGA

motifs and therefore mimic mRNA targets of CsrA, see Figure 2.5. Similar to E. coli a single

sRNA homolog (RsmB) has been detected in E. carotovora. However, two sRNAs (RsmY

and RsmZ) are present in P. aeruginosa and up to three RNA molecules are encoded in the

genome of V. cholerae (CsrB, CsrC and CsrD) as well as P. fluroscens (RsmX, RsmY and

RsmZ) [Lapouge et al. 2008]. Although length, sequence and number of exposed GGA motifs

varies between these sRNA homologs they show similarity at the structural level [Valverde

et al. 2004].

2.1.3 RNAs with dual-function

Although non-coding and protein-coding RNA genes are commonly differentiated by their

coding capacity, currently a few sRNAs with a dual-function are known. They encode a

typically small sized ORF and act in addition as antisense sRNA.

One example is the Staphylococus lineage specific RNAIII. The 500 nt long transcript folds

into a complex 14-stem-loop structure and harbors the template of the δ-hemolysin protein.

Acting as an sRNA, RNAIII has at least four targets whose translation is either up- (hla) or

down-regulated (spa, rot, coa). RNAIII binds each target by one or two loop-loop interactions

in the vicinity of the Shine-Dalgarno sequence. The RNAIII regulatory network implements a

key process in virulence gene expression of Staphylococcus [Boisset et al. 2007, Toledo-Arana

et al. 2007].

The 227 nt long SgrS RNA which is also translated into the 43 amino acid (aa) long SgrT

peptide was first identified in E. coli. So far, sgrS genes have been detected in several
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enterobacteria. SgrS RNA is expressed under glucose-phosphate stress. In an Hfq and RNase

E dependent manner SgrS represses the translation of the glucose-phosphate transporter

PtsG. Base-pairing between SgrS and its target mRNA occurs downstream of the sgrT ORF.

Interestingly, expression of the SgrT protein also regulates glucose transport. Regulation of

both the SgrT peptide and the SgrS RNA are equally efficient. Although the phenotypes of

SgrS- and SgrT-only mutants are the same, different mechanisms seem to be used to promote

recovery from stress and negatively affect glucose transport [Wadler & Vanderpool 2007].

Homologs of SgrS are broadly distributed in enteric bacteria but have diverged in size and

sequence [Horler & Vanderpool 2009]. Moreover, in a few homologs the sgrT is missing or

rendered non-functional by mutation of the start codon.

The third example is SR1 originally found in B. subtilis [Licht et al. 2005]. Experiments clearly

showed a function of SR1 in the arginine catabolism pathway by RNA-RNA interaction with

the ahrC mRNA, thus confirming its nature as functional sRNA [Heidrich et al. 2006; 2007].

Only recently, Gimpel et al. [2010] evidenced that the gapA operon is regulated by a short

peptide encoded by SR1. Although intensive studies it took several years to recognize and

proof the dual-function of SR1.

2.1.4 Riboswitches and RNA Thermometers

These typically cis-acting elements, encoded in 5’ and 3’ UTRs, represent a direct link be-

tween the genetic information (mRNA) and the environmental conditions. Binding of a small

molecule (ligand; metabolite) causes an allosteric rearrangement of the riboswitch structure

and therefore the mRNA conformation changes. Known ligands are amino acids (e.g. lysine),

nuclear bases (e.g. guanine and adenine) and sugar (e.g. glucose-6-phosphate). Additionally,

Mg2+ stabilizes these interactions or is directly sensed by the riboswitch [Coppins et al. 2007,

Cochrane et al. 2007]. Depending on the genomic context a riboswitch (e.g. TPP) could act

in one case as activator and in another as repressor [Cheah et al. 2007].

Almost all known riboswitches comprise two essential elements. The first one is a conserved

binding site (aptamer) which senses the ligand. The second functional element of a riboswitch

is the so called expression platform. This element varies widely in sequence and structure

between homologs [Barrick & Breaker 2007]. Upon ligand binding structural changes of

the expression platform directly regulate the transcription and/or translation of the down-

stream ORF (Figure 2.6). In Gram-positive bacteria riboswitches regulate the formation of

(anti)terminator stems. Depending on whether the aptamer is loaded with the ligand or not,

a terminator structure is formed that prematurely terminates the mRNA transcription. Two

scenarios of riboswitch mediated translation attenuation are possible. Either the aptamer
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Figure 2.6. Riboswitch mediated gene regulation in prokaryotes. Most switches are located

in the 5’ UTR. They either regulate transcription (top) or translation (bottom). Tran-

scription is typically regulated by formation of a transcription terminator (OFF switch)

or blockade of an anti-terminator hairpin (ON switch). Translation attenuation is accom-

plished by structural sequestration of the Shine-Dalgarno (AGGAGG) sequence.

region or an additional stable hairpin structure sequesters the ribosome binding site. Struc-

ture formation inhibits ribosome binding and therefore translation of the downstream ORF

is repressed [Rodionov et al. 2002].

The gmlS riboswitch is a so far unique RNA element which is present in certain Gram-positive

bacteria. Instead of a conformational change it stimulates a self-cleaving ribozyme activity

that acts on the GmlS mRNA [Klein & Ferré-D’Amaré 2006, Cochrane et al. 2007]. Located

within the 5’ UTR of the glucoseamine-6-phosphate (GclN6P) synthetase gene the ribozyme

activity is triggered by the binding of GclN6P and Mg2+. Interestingly, in Gram-negative

bacteria glmS expression is regulated by two sRNAs GlmY and GlmZ, respectively. Both

sRNAs are highly similar in sequence and structure but they form a regulatory hierarchy

instead of simple redundancy (reviewed by Görke & Vogel [2008]).

While riboswitches sense specific molecules, so-called RNA thermometers sense temperature

as a physical stimulus [Narberhaus 2010]. This provides a simple and direct regulatory mech-

anism without the aid of an additional interaction partner. RNA thermometers are usually

located in the 5’ UTR of heat shock (e.g. E. coli ipbA) and virulence (e.g. Listeria monocy-

togenes pfrA) genes [Johansson et al. 2002, Waldminghaus et al. 2009]. These thermosensors

typically inhibit ribosome binding in the low temperature regime. An increase of temperature
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destabilizes the structure, leads to refolding of the 5’ UTR and permits translation initiation.

This refolding is enabled by non-canonical and temperature-labile base pairs around the

Shine-Dalgarno sequence. Two well-known examples are fourU and ROSE-like thermometer

(reviewed by Narberhaus [2010]).

2.1.5 An RNA chaperone and its helper

Bacterial sRNAs often act in concert with protein components as ribonucleoprotein complexes

(RNP). Many of such RNP complexes and their mediated functions are known (reviewed

by Pichon & Felden [2007]). One key player is the Sm-like protein Hfq which is present

in about a half of all Gram-positive as well as Gram-negative bacteria and at least in one

archaeon Methanococcus jannaschii [Nielsen et al. 2007]. The abundant thermostable 70-

110 amino acid long protein forms homohexamers (in E. coli ∼10.000 copies per cell) of

which 80-90% are found in association with ribosomes [Brennan & Link 2007]. Hfq has two

distinct binding sites: the proximal site binds to sRNA as well as mRNA whereas the distal

site interacts with poly(A) tails. This construction enables Hfq to act in many ways as a

pleiotropic post-transcriptional regulator. In E. coli approximately a fourth of the known

sRNAs bind to Hfq and at least 50 proteins seem to be regulated. Interestingly, existence of

a Hfq coding gene does not imply a functional role within the species.

A chaperone-like function is indicated by the fact that Hfq supports the formation of sRNA-

mRNA heteroduplexes (Figure 2.7). Although short and imperfect base pairing between

sRNAs and their mRNA targets are enhanced by the RNA chaperone the regulatory mecha-

nism of Hfq is still unclear. It is, furthermore, ambiguous if one Hfq hexamer binds both RNA

molecules simultaneously or if two Hfq molecules are necessary to bring sRNA and mRNA

together [Storz et al. 2004]. As exemplified by RNAIII Hfq binding does not necessarily imply

an effect on the sRNA-mRNA complex formation [Boisset et al. 2007]. Even in hfq-deletion

mutants both RNA molecules interact rapidly. A chaperone activity is, however, evidenced

as Hfq mediated structural changes of sRNAs (e.g. OxyS) and mRNAs (e.g. sodB) have been

reported [Moll et al. 2003, Geissmann & Touati 2004]. Furthermore, Hfq is required for the

inter-cellular stability of several sRNAs [Valentin-Hansen et al. 2004]. Interestingly, Lee &

Feig [2008] reported an interaction of Hfq and one of the most abundant RNA species in a

cell, tRNAs. The authors showed previously unrecognized phenotypes associated with mis-

translation and significantly reduced translational fidelity of hfq deletion mutants. Besides

this sRNA dependent regulation, Hfq also acts alone as translational repressor of mRNAs

[Urban & Vogel 2008]. Given all these information is it not surprising that the expression of

the hfq gene is auto-regulated by its own product [Vecerek et al. 2005].
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Figure 2.7. Mechanism of Hfq mediated RyhB-mRNA complex formation. When sufficient

iron is available (top) Fur represses RyhB expression and non-essential iron-using proteins

are expressed. When iron becomes scarce (bottom) Fur repression is repealed and RyhB

is rapidly expressed. Hfq stabilizes RyhB which subsequently pairs with an mRNA target.

The RNA degradosome recognizes the sRNA-mRNA complex and degrades both RNAs

simultaneously. Adapted from Massé et al. [2007].

Additionally, it is known that Hfq is interacting with proteins like poly(A) polymerase I

(PAP I), polynucleotide phosphorylase (PNP) and ribonucleases (RNases) which form com-

plexes that regulate mediated decay of several mRNAs [Brennan & Link 2007]. RNases are

key regulators that influence processing and turnover of many RNA molecules. In fact, es-

sential steps of tRNA maturation are processing of the 5’ and 3’ ends. The 5’ end of a tRNA

precursor is processed by RNase P enzyme which is generally composed of RNA and protein

subunits. However, catalytic function can be conducted by the RNA subunit alone. This

indicates that function of tRNA 5’ end processing resides within the RNA subunit [Guerrier-

Takada et al. 1983]. The 3’ end of tRNA precursor sequences is either cleaved by RNase Z or

RNase E (reviewed in Redko et al. [2007]). Besides its function in tRNA maturation RNase

E is one of the main enzyme components of the degradosome. This multiprotein complex is

involved in the degradation of many RNAs. Most of the mRNA decay processes in E. coli are

assumed to begin at typically single-stranded RNase E cleavage sites. Moreover, RNase E in

complex with Hfq and certain sRNA (e.g. SgrS, RyhB) leads to translational repression and

degradation of the corresponding mRNA target (e.g. ptsG and sodB), see Figure 2.7 [Viegas

& Arraiano 2008]. Another very important and highly conserved ribonuclease is RNase III.
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This RNase plays multiple roles in rRNA and mRNA processing. RNase III preferentially

binds to double-stranded RNA sequences. Thus, sRNA-mRNA duplexes form a perfect sub-

strate. One example is RNAIII based gene regulation in S. aureus which directly depends on

the action of RNase III [Boisset et al. 2007].
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2.2 Identification of (non-)coding transcripts

In recent years computational and experimental approaches have been used to identify RNA

regulators in various model organisms in all domains of life. Surveys that aim to identify novel

transcripts try to complete the so called transcriptome of an organism. Wang et al. [2009]

define the transcriptome as ”. . . the complete set of transcripts in a cell, and their quantity,

for a specific developmental stage or physiological condition”. In the following two sections

methods for RNA identification by computational and experimental means are summarized.

I will mainly focus on those approaches that have been used in projects I was involved in and

refer to detailed reviews for other methods.

2.2.1 Computational approaches

The functionality of ncRNAs is often strongly dependent on their structure. The primary

structure of an RNA molecule is simply its sequence. Most ncRNAs, however, are single-

stranded molecules that form internal interactions between their nucleotides guanine (G),

cytosine (C), adenine (A) and uracil (U). So called base pairs are typically formed between

G and C, A and U as well as G and U. These non-crossing base pairs stabilize and determine

the (pseudo-knot free) secondary structure of the ncRNA. The three dimensional structure of

an RNA molecule strongly depends on the secondary structure and especially the unbound

nucleotides therein. Thus, the secondary structure is an fairly good approximation of the

actual functional structure formed by an RNA molecule within the cell.

=
i+1

F F
iji j

F
i+1i k−1k k+1

F
j

Figure 2.8. Secondary structure prediction using base pair maximization. For each nucleotide

i of a given sequence Fi,j two alternatives are possible. If i is unpaired the problem can

be reduced to sequence Fi+1,j . If i is paired with another base k the folding problem is

divided in two sub-problems: sequence Fi+1,k−1 which is enclosed by the base pair and

the sequence Fk+1,j behind the base pair.

To understand how most ncRNA gene finders work one has to understand how the secondary

structure of a given sequence can be calculated. The first attempt by Nussinov et al. [1978]

was to maximize the number of base pairs of a given RNA sequence Fi,j . Starting with the

first nucleotide i there are only two possibilities: either it is paired or unpaired. If the latter

is the case the problem can be reduced to sequence Fi+1,j . Otherwise the nucleotide forms a
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base pair with another one. In that case the folding problem is split in two sub-problems: i)

the sequence which is enclosed by the formed base pair and ii) the sequence that is behind

the base pair (Figure 2.8). With this decomposition the structure with the maximal number

of base pairs can be computed by dynamic programming.

Secondary structure prediction

The structure with the maximum number of possible base pairs is not necessarily the one

an RNA molecule adopts in the cell. Since molecular stability is driven by the energy the

thermodynamically most stable structure might get closer to RNA behavior in nature. Actu-

ally, the so called MFE (Minimum Free Energy) structure is computed with respect to the

nearest-neighbor model. This model assumes that a local structural motif is only dependent

on the nucleotides forming the motif, the adjacent nucleotides and their interactions. The

thermodynamic parameters of these structural motifs have been experimentally estimated

since 1971 [Tinoco et al. 1971] and were further improved by Mathews et al. [1999; 2004].

Figure 2.9. Any RNA secondary structure is a composition of three loop types which are

differentiated by their degree (number of adjacent base pairs): i) hairpin loop with degree

1, ii) interior loop with special cases bulge and stacking pair and degree 2 iii) multiloop

with degree ≥ 3. Adapted from Flamm et al. [2004]

The secondary structure of any RNA molecule can be decomposed into structural motifs

for which thermodynamic parameters have been estimated, see Figure 2.9. Namely any

secondary structure can be decomposed into the following loop types which are differentiated

by the number of adjacent base pairs (i.e. degree): A hairpin is a loop with degree 1 and has

a minimum loop length of 3 nucleotides. Interior loops have degree 2 and vary in loop size.

Stacked pairs (degree 2, loop size 0) and bulges (degree 2, loop size > 0) are special cases

of interior loops. In case of bulges only one side shows unpaired bases. Multiloop structures

are enclosed by at least three base pairs (degree ≥ 3). Nussinov’s dynamic programming

approach can be extended by this loop decomposition. The corresponding recursions are

given and illustrated in Figure 2.10.
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Figure 2.10. Loop decomposition of an RNA secondary structure. Similar to the base pair

maximization approach the recursion starts with a given sequence Fi,j . The first base of

this sequence is either unpaired, the problem is reduced by one base to Fi+1,j , or it is paired

with another base k. This formed base pair splits the folding problem in two sub-problems:

one is the sequence Fk+1,j behind the base pair (i, k) and the other is a sub-structure Ci,k.

The formed base pair can enclose a hairpin H(i, j), an interior loop I(i, j; k, l) which

again covers a sub-structure Ck,l or a multiloop structure Mi+1,u M1
u+1,j−1. Mi,j is used

to compute the free energy of the substructure given the constraint that the sequence is

part of a multiloop and contains at least one component. The multiloop contribution Mi,j

can be decomposed into an unpaired stretch of nucleotides of length u− i+ 1 and a sub-

structure Cu+1,j , a multiloop Mi,u plus a sub-structure Cu+1,j or into a multiloop Mi,j−1,

which is truncated by one nucleotide, the unpaired base j. Mi,j is used to compute the free

energy of the substructure given the constraint that the sequence is part of a multiloop

and contains exactly one component. The multiloop type M1
i,j can either be reduced by

one base to M1
i,j−1 or it is equivalent to Ci,j . a, b and c contain contribution of closing,

branches and unpaired positions, respectively. Illustration (left) is adapted from Hofacker

& Stadler [2007] and corresponding recursions (right) are taken from Hofacker et al. [1994].
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Current RNA folding programs have a prediction accuracy (measured as the fraction of cor-

rectly predicted base pairs) of 50-70% on single RNA sequences [Eddy 2004]. Again, this is

not entirely correct. The point is that there are several structures in the equilibrium and the

predicted MFE structure is not necessarily the one an RNA adopts within the cell. Depending

on environmental conditions, e.g. temperature and pH, the correct structure might be among

the sub-optimal ones. Base pair probabilities can help to estimate a more accurate model of

alternative foldings that are likely to occur in the living cell. The probability of a particular

structure S is proportional to its Bolzmanfactor exp (−E(S)/RT ), where E(S) is the energy

of secondary structure S, R Bolzmann’s constant in molar units and T is the temperature in

Kelvin. The partition function defines the ensemble of structures:

Z =
∑

S

e

(

−E(S)
RT

)

(2.1)

The partition function Zi,j over all structures on a sub-sequence x[i . . . j] can be inferred

from the MFE algorithm by replacing minimum operations with sums and additions with

multiplications [McCaskill 1990]:

Zi,j = Zi+1,j +
∑

i<k≤j

ZC
i,kZk+1,j

ZC
i,j = e−βH(i,j) +

∑

i<k<l<j

ZC
k,le

−βI(i,j,k,l) +
∑

i<u<j

ZM
i+1,uZ

M1

u+1,j−1e
−βa

ZM
i,j =

∑

i<u<j

e−β(u−i+1)cZM
u+1,j +

∑

i<u<j

ZM
i,uZ

C
u+1,je

−βb + ZM
i,j−1e

−βc

ZM1

i,j = ZM1

i,j−1e
−βc + ZC

i,je
−βb

Zi,i = 1, ZC
i,i = ZM

i,i = ZM1

i,i = 0;

Here β = 1/RT denotes the inverse thermal energy. To estimate the probability that two

nucleotides form a base pair one has to calculate the fraction of all structures that contain

the base pair over all possible structures. More precisely this can be computed with:

pi,j =
Ẑi,jZi+i,j−1exp(

−βi,j

RT
)

Z
(2.2)

where Ẑi,j is the partition function of all structures outside of the base pair (i,j). Graphical

representations of secondary structures are depicted in Figure 2.11.

It is assumed that homologous RNAs have common functions and it is therefore expected

that they adopt similar structures. The underlying sequence, however, might be diverged. A
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Figure 2.11. Graphical representation of an RNA secondary structures. A) MFE structure

B) mountain plot C) dot plot D) probability representation of the MFE structure E) dot

bracket string notation. The color code in D) indicates the probability that a base is

(un)-paired. In the remaining plots the 5’ and 3’ stem loop of the RNA are highlighted in

red and green, respectively. All plots represent the structure of PtaRNA1, see Section 3.3.

G-C base pair in one sequence might be mutated to an A-U pair in another sequence. This

indicates a selective pressure that preserves the structure of the RNA molecule even though

mutations changed the underlying sequence. Structure maintaining double mutations are

termed compensatory mutations. Single nucleotide mutations that change for instance a G-C

to a G-U base pair might hold biological information as well. These structure maintaining

single base mutations are called consistent mutations. The the consensus secondary can be

calculated by searching the best structure that the set of related RNA molecules can adopt.

Predictions are necessary for co-variation analysis since the number of biologically validated

structures is small.

If the sequences are similar enough classical sequence based methods, e.g. ClustalW [Thomp-

son et al. 1994], can be applied in order to calculate the multiple sequence alignment of RNA

homologs. Given a sequence based alignment approaches, such as RNAalifold [Hofacker et al.

23



2. Background

2002, Hofacker 2007, Bernhart et al. 2008], can be used for subsequent co-variation analysis.

Briefly, the folding algorithm implemented in RNAalifold combines thermodynamic informa-

tion and co-variation of alignment columns into one scoring scheme. It counts compensatory

as well as consistent mutations between sequence pairs. RNAalifold modifies the standard

energy model by introducing a conservation score:

γ′(i, j) =
1

2

∑

α,β∈A; α 6=β







h(αi, βi) + h(αj , βj) if(αi, αj) ∈ B ∧ (βi, βj) ∈ B

0 otherwise
(2.3)

where α and β are sequences of the alignment A, B is the set of canonical base pairs

(AU,UA,GC,CG,GU,UG) and the hamming distance h(a, b) equals to 0 if a = b and 1 oth-

erwise. The full co-variation score γ(i, j) of RNAalifold includes additional penalties for

sequences in which the base pair (i,j) cannot be formed:

γ(i, j) = γ′(i, j) + δ
∑

α∈A



















0 if(αi, αj) ∈ B

0.25 ifαi ∧ αj are gaps

1 otherwise

(2.4)

The parameter δ weights the penalty value and therefore the importance of counter examples

found within the alignment. Of course RNAalifold is only one example for a great variety

of programs, e.g. Pfold [Knudsen & Hein 2003], KnetFold [Bindewald & Shapiro 2006] and

BayesFold [Knight et al. 2004], available to date.

Anyway, homologous RNAs often show poor sequence similarity. Gardner et al. [2005] proofed

that sequence alignments of structured RNAs fail if pair wise sequence identities drop below

60%. An alternative is to take the plain sequences and try to calculate the consensus sec-

ondary structure from scratch. Most popular approaches are variants of the Sankoff algo-

rithm [Sankoff 1985]. In 1985 Sankoff proposed an algorithm that aligns sequence and struc-

tural features simultaneously. The Sankoff algorithm in its complete form requires O(n6)

CPU time and O(n4) memory, where n is the length of the RNA sequences to be aligned.

Because of that many different and sparsified variants of the original algorithm have been

proposed [Mathews & Turner 2002, Hofacker et al. 2004, Havgaard et al. 2005, Will et al.

2007]. Essentially, these implementations use heuristics to reduce the search space by restrict-

ing possible consensus structures and possible alignments. LocARNA, for instance, implements

a derivative of the Sankoff algorithm that reduces CPU time and memory consumption to

O(n4) and O(n2), respectively [Will et al. 2007]. Using base pair probabilities the program

efficiently calculates pairwise sequence-structure alignments. The implemented probability

model, therefore, takes all possible structures of the sequences to be aligned into account.
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2.2. Identification of (non-)coding transcripts

Based on the LocARNA algorithm multiple sequence-structure alignments can be calculated

with the high level programs mLocarna, LocARNATE and RNAclust.pl [Will et al. 2007, Otto

et al. 2008]. Nonetheless, these sparsified implementations still have a high CPU and memory

consumption.

Other programs, such as RNA Sampler [Xu et al. 2007] and CMfinder [Yao et al. 2006] are

available as well. These methods are based on different assumptions and avoid the high time

and memory complexity of the Sankoff algorithm.

For detailed reviews about the topic of RNA folding, consensus secondary structure prediction

and a more comprehensive list and description of individual programs I refer to recent reviews

and the references therein [Hofacker & Stadler 2007, Machado-Lima et al. 2008, Bernhart &

Hofacker 2009].

Gene finding

When talking about gene finding one has to distinguish between approaches that search for

homologs of a given sequence and methods for de novo gene prediction.

The task for tools of the first kind is the detection of a query sequence within a much larger

database. Usually the database is a genome which is queried for a single sequence or a set of

already known homologs. Typically, genome annotation surveys and evolutionary analysis of

specific ncRNAs are the context of such homology searches. The first scenario aims to identify

as many known ncRNA genes within a (newly sequenced) genome as possible. Reliable and

comprehensive annotation of known ncRNA genes is essential to all subsequent studies. A

common source of already known ncRNA sequences is the Rfam database [Gardner et al.

2010]. This database stores alignments, consensus secondary structures, covariance models

(CMs) and a short description for hundreds of RNA families. Additionally, family specific

databases, such as tRNAdb [Jühling et al. 2009], tmRDB and SRPDB [Andersen et al. 2006],

build a profound data source.

On the other hand the genomes of several species are screened for a single ncRNA of interest

in evolutionary surveys. Here the research focus is to identify as many homologs of the given

sequence as possible. The set of homologs retrieved can be used to analyze their evolutionary

origin, to predict the consensus secondary structure and to define core motifs, e.g. structural

elements which are characteristic for this set of sequences.

The most prominent homology search method is NCBI-Blast [Altschul et al. 1990; 1997].

Different variants of this fast and efficient local alignment algorithm have been implemented.
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Whereas protein homologs can be searched with specific implementations, i.e. blastp,

psi-blast, phi-blast, the programs blastn and megablast are suitable to search nucleotide

sequences within a sequence database. However, Blast implements a local alignment algo-

rithm and resulting hits can be much shorter than the initial query sequence. Thus, a query

200 nucleotides long might result in several short fragmented Blast hits. These fragments are

often to short to be recognized as significant by the user. Furthermore, Freyhult et al. [2007]

noted a limited accuracy of Blast searches in their benchmark study. Especially, for ncRNAs

the identification of full length homologs that might vary on sequence level but still fold into

the same structure is an essential task. In 1982, Gotoh proposed a semi-global alignment al-

gorithm which was not implemented until recently. This was mainly caused by the high time

and memory consumption of O(n ×m), where n and m are the length of the database and

the query sequence, of the algorithms full version. A direct implementation of the proposed

algorithm would not be sufficient for long database sequences. The program GotohScan im-

plements a sparse version of the algorithm. Briefly, for each position of the database sequence

the score of the best semi-global alignment ending in k is calculated. Since only local optima

of the resulting score distribution are of interest the time and memory consumption can be

reduced to O(m2). This makes GotohScan applicable even for the analysis of large eukaryotic

genomes [Hertel et al. 2009]. Both, Blast and GotohScan, are sequence based gene finders.

If structural information is available more sophisticated methods can be used.

Several family specific ncRNA gene finders have been implemented [Lowe & Eddy 1997,

Laslett et al. 2002, Laslett & Canback 2004, Hertel & Stadler 2006, Yusuf et al. 2010].

tRNAscan-SE is a dedicated tool for tRNA gene identification. Features like the charac-

teristic clover-leaf structure and the common tRNA length between 74 and 90 nts are used.

With a sensitivity of 99-100% and very low rate of less than 0.00007 false positives per Mb

tRNAscan-SE is one of the most accurate tools. ARAGORN is an implementation of a tmRNA

gene finder. Again, characteristic features like the tRNA sub-structure formed by the 5’ and

3’ end of the 350-400 nucleotide long ncRNA and the presents of the tag peptide within a

defined structural context are applied.

The fragrep tool is a more general approach that implements a fragmented pattern search.

Basically, the program takes an alignment and conserved blocks of interest as input. These

user defined blocks are converted into position frequency matrices (PFMs), while poorly

conserved regions are treated as simple distance constraints. A matching algorithm, originally

used for transcription factor binding site detection, has been adapted to scan the resulting

abstraction of the input alignment within a given database sequence. The newest version of

fragrep extends the fragmented pattern matching tool by a structure-search approach [Mosig
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et al. 2009].

Several analysis have shown that stochastic context free grammars (SCFGs) are well suited to

combine sequence and secondary structure conservation into one scoring scheme [Sakakibara

et al. 1994, Eddy & Durbin 1994, Brown 2000]. To scan for novel members of an RNA family,

the Infernal [Nawrocki et al. 2009] package uses CMs, a specific type of SCFGs. CMs are

typically build from Stockholm formatted multiple sequence alignments. This alignment for-

mat comes with a structure annotation marking which positions of the alignment are paired

and unpaired. Within the CM position-specific log-odd scores are assigned to single-stranded

regions, base paired regions and insertions and deletions. Given a CM the program cmsearch

of the Infernal package can be applied to scan a database for putative homologs of the respec-

tive ncRNA. Due to the structural information used recent benchmarks demonstrated that

the latest Infernal 1.0 version clearly outperforms Blast in terms of sensitivity [Nawrocki

et al. 2009]. It has to be mentioned, however, that Blast is still orders of magnitude faster

than Infernal.

In order to detect structured RNA genes within a given sequence the basic concept of all

de novo prediction methods is to find descriptors that discriminate the structured element

from the genomic background. Note that all methods described below search for stable RNA

structures rather than for complete RNA genes. In particular a precise identification of gene

boundaries and the detection of unstructured RNA genes is not feasible with these approaches.

As an example, RNA regulators, such as riboswitches, which are a highly structured part of

a much larger gene, are detectable.

An old but essentially still correct assumption was introduced by Le et al. [1988]. In princi-

ple the authors proposed that structured RNAs have a lower MFE than random sequences

with the same nucleotide frequency. First the the mono-nucleotide composition of random

sequences was kept constant. Rivas & Eddy [2000] showed, however, that the difference of the

MFE of the known ncRNAs and their random mono-nucleotide background is not significant

enough. Since MFE calculation is based on base stackings the next step was to preserve

the di-nucleotide frequency while generating random sequences [Workman & Krogh 1999].

Indeed, the implementation of RANDFOLD [Bonnet et al. 2004] and subsequent analysis by

Clote et al. [2005] showed that structured RNAs have a significantly lower MFE than the

di-nucleotide preserved shuffled background sequences.

The MFE value is directly affected by the length of the given sequence. In fact additional

or missing nucleotides of a real RNA structure that are (un-)paired can have direct effect

on the estimation of the energy. Thus, approaches that use a fix-sized window to scan a

27



2. Background

complete genome might miss ncRNA structures. The program RNAplfold [Bernhart et al.

2006] circumvents this problem by calculating averaged probability values for each base pair

(i, j). Given a sequence interval of length L the implemented method estimates the probability

pLij using a modified version of the standard partition function calculation [McCaskill 1990].

Finally, the averaged probability πL
ij is calculated considering all possible structures in all

possible sequence intervals of length L that cover the bases i and j.

The G+C content of RNA structures was reported to be on average 50% [Rivas & Eddy

2000]. If all four nucleotides are equally distributed along and within a genome, 50% of G+C

bases would not be surprising. In fact that is not the case. Especially the G+C content of

prokaryotes varies between species. For instance H. pylori is a very AT-rich organism with

a G+C content of ∼40% whereas Xanthomonas species have a high G+C content of ∼65%.

Thus, analysis of GC-rich islands successfully identified ncRNAs [Klein et al. 2002, Meyer

et al. 2009]. Approaches like sRNAscanner [Sridhar et al. 2010] and sRNAPredict2 [Livny

et al. 2006] use regulatory elements for the identification of ncRNAs or scan specific genomic

regions for new candidates. As an example, the well studied bacteria E. coli was screened

using the knowledge of consensus promoter motifs and the structural features of terminator

sequences. Furthermore, the search space was restricted to intergenic regions∗[Argaman et al.

2001]. These single sequence approaches are often combined with conservation analysis of

candidate sequences [Wassarman et al. 2001, Livny et al. 2008].

The common task of comparative gene finding approaches is to classify a multiple sequence

alignment as (structured) RNA element or something else. The reasoning for this type of

approaches is similar to that of consensus structure prediction: related molecules having the

same function are thought to show similar structures. Hence, it is not surprising that tools

like RNAalifold and Dynalign, which are used for consensus structure prediction have been

extended to gene finders [Washietl & Hofacker 2004, Uzilov et al. 2006]. Alifoldz is the

extension of the RNAalifold program. Here, the RNAalifold energy Eali of the given align-

ment is compared to that of randomized alignments. For the set of randomized alignments the

mean µ and standard deviation σ of all energies are calculated. These values are subsequently

combined into a z-score:

z =
Eali − µ

σ
(2.5)

The more negative the z-score is the more significant is the difference of the given alignment

to the randomized background. However, the z-score calculation crucially depends on the

method used to generate randomized alignments. In contrast to single sequences, alignments

cannot easily be shuffled, while simultaneously preserving di-nucleotide content, gap struc-

∗intergenic regions are genomic intervals (between genes) that do not encode known genes.
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Figure 2.12. RNAz performs the classification of the multiple sequence alignment (MSA) input

by means of a support vector machine (SVM). The MSA is analyzed and four SVM de-

scriptors are calculated. The structural conservation index (SCI) and the mean pairwise

identity (MPI) are measurements for structure and sequence conservation, respectively.

Thermodynamic stability is expressed in terms of a averaged z-score. The SVM outputs,

based on the degree of thermodynamic stability and structural conservation, the prob-

ability of structured RNA elements within the alignment. Contour plot is taken from

[Washietl et al. 2005]. It shows the classification of native (green dots) and randomly

shuffled (red dots) tRNAs and 5S RNAs based on z-score and SCI by using a SVM.

ture and the local degree of conservation. Washietl & Hofacker [2004] introduced a shuffling

procedure that sorts alignment columns with the same gap structure and local conservation

pattern into individual groups. The conservation pattern of each column in the initial align-

ment column is memorized. Randomized alignments are generated by sampling each column

from the respective group. An alternative to explicit shuffling procedures is the simulation

of sequence evolution along a phylogenetic tree [Gesell & Washietl 2008, Varadarajan et al.

2008].

RNAz is another program that takes advantage of RNAalifold [Washietl et al. 2005]. This

approach uses a support vector machine (SVM) and features deduced from known and con-

served ncRNA families to classify a given alignment as structured RNA or something else.

Figure 2.12 depicts the general work-flow of RNAz. A detailed introduction and recent im-

provements of the RNAz approach are described in Section 4.1 of this thesis.

The combination of three different classification models is implemented in QRNA and its

successor eQRNA [Rivas & Eddy 2001, Rivas 2005]. A pair SCFG is used to model the

probability that the given alignment is the result of secondary structure evolution. A pair
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hidden Markov model (HMM) checks if the input data has protein-coding potential and a

different pair HMM represents the null model of an unconstrained sequence evolution. Finally,

(e)QRNA decides which of the three models describes the given alignment best.

There are many more approaches available that address the task of gene finding by computa-

tional means. Again I refer to recent reviews and the references therein [Machado-Lima et al.

2008, Bernhart & Hofacker 2009].

2.2.2 Experimental approaches

The term “experimental RNomics” has been coined for identification of transcripts on a

genome-wide scale [Hüttenhofer et al. 2002]. Three different methods of the first generation

of sequencing approaches are described here: i) direct RNA sequencing ii) parallel cloning and

iii) array techniques. Figure 2.13 depicts the general work-flow of all three approaches. In-

formation summarized for all three methods is mainly taken from reviews [Hüttenhofer et al.

2002, Vogel & Sharma 2005, Stoughton 2005, Hüttenhofer & Vogel 2006, Sorek & Cossart

2010] and the references therein.

Direct RNA sequencing uses the possibility to separate RNA molecules on a gel. In brief,

RNA molecules are sorted based on their size and charge. Total RNA is isolated from a cell

and placed into a chamber of the gel. An electric field makes the molecules move through the

gel material. Larger RNA molecules move more slowly than smaller ones and because of that

bands which correspond to different sized RNA molecule fractions are separated on the gel.

Ideally each band corresponds to one type of ncRNA molecules. Of course in diverse RNA

families such as tRNAs this is not the case. A 2D gel electrophoresis, where different RNA

molecules with similar size are separated, can address this particular issue. After visualization

and excision of the band, the extracted RNA molecules are radioactively labeled at the 5’

or 3’ end with γ-[32P]ATP and [32P]pCp, respectively. The next step is either enzymatic or

chemical sequencing. While enzymatic sequencing generates diverse fragments of an RNA

molecule by base specific RNase induced cleavage, chemical sequencing specifically modifies

each kind of RNA base and a strand scission generates labeled fragments. No matter how

fragments of the RNA were generated fractionation again is achieved on a gel. The RNA

fragments carry the radioactive label on one end and a specific nucleotide on the other. Thus,

four lanes on one gel are used to separate fragments by their terminal nucleotide and size.

Using autoradiography the labeled fragments are visualized and the RNA sequence can be

read directly from the autoradiograph. As direct RNA sequencing is the most traditional

method details of the experimental procedure have been modified and adopted over time.
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Figure 2.13. Experimental RNomics approaches to identify RNA transcripts. Identification

of RNAs by chemical or enzymatic sequencing of size selected abundant RNAs (left). Copy

numbers of isolated RNA molecules are multiplied during parallel cloning (middle). Three

alternative methods are indicated to reverse transcribe ncRNAs into cDNA. Identification

of expressed genomic regions by array analysis (right). DNA probes covering the entire

genome or specific genomic regions are spotted onto the array, to which the labeled sample

is hybridized. Adapted from [Hüttenhofer et al. 2002].

Using the direct sequencing methodology highly abundant sRNAs, such as tRNA, rRNA,

tmRNA and 6S RNA have been identified.

Parallel cloning overcomes the major limitation of direct sequencing. The underlying idea

of parallel cloning approaches and the resulting cDNA library construction is to multiply

the copy number of isolated RNA molecules. Therefore, less abundant sRNA species can be

enriched and identified. The experience of EST library preparation, which is used for mRNA

sequencing, was utilized to develop parallel cloning methods for ncRNA identification. One

major difference between mRNAs and ncRNAs is their lengths. While mRNAs are typically

longer than 500 nts the length of most ncRNAs ranges between 20 and 500 nts. Another

important feature of the majority of mRNAs is the presence of a poly(A) tail at their 3’

end. EST library preparation uses oligo(dT) primers which bind preferentially to the poly(A)

tail and initiate reverse transcription into cDNA (copy or complementary DNA). There are

several approaches to reverse transcribe and amplify ncRNAs. The underlying idea is the
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generation of RNA species with well defined 5’ and 3’ ends. The RNA sequence itself is not

known and therefore an addition of oligo(C) or oligo(A) tails is performed and/or specific 5’

and 3’ linker sequences are ligated onto the RNA molecules. After addition of these sequences

oligo(dG), oligo(dT) or primer sequences complementary to the linkers are used to reverse

transcribe the RNA into cDNA. If linker sequences are added to both ends the cDNA can

be amplified by several rounds of reverse transcription. Subsequent to the cDNA synthesis,

the fragments generated are cloned into plasmids and transfected into bacteria. By use of

antibiotic selection mechanisms bacteria containing a transfected plasmid are singled out.

Finally, plasmid DNA extracted from grown bacteria is sequenced. Thus, the initial RNA

pool is massively multiplied by amplification of cDNA fragments and the growth of selected

bacteria. The big advantage of this method, compared to direct sequencing, is that less

abundant RNA species can be detected as well.

Array techniques such as micro- and tilling-arrays have been developed to analyze expres-

sion levels of many molecules in parallel. A glass or silicon slide is used on which DNA probes

are spotted in a well defined order. Thus each position of the slide holds a specific DNA se-

quence. During amplification steps, similar to that described for parallel cloning approaches,

isolated RNA is labeled with modified nucleotides that carry fluorescence dyes. The sample

prepared is mixed with hybridization buffer and applied onto the slide. Sample molecules

now hybridize to the spotted DNA probes and the fluorescence signal is emitted. Signals are

recorded by a scanner and their intensity corresponds to the amount of transcripts present

in a cell. Sequences of the spotted probes are known and from that the sequence of the hy-

bridized RNA fragment can be derived. The essential step of all array techniques is the probe

design. Especially probe density and the avoidance of multiple probes with highly similar

sequence, which would result in cross hybridization, have to be taken into account. However,

especially tilling-arrays lead to the appealing opportunity of expression studies from a birds

eye view. Not only genomic regions of interest are spotted onto the slide. Moreover, the

complete genome with separated strands can be tilled and analyzed.

With the advent of next or second generation sequencing techniques a much higher throughput

on a single base resolution of transcription can be achieved. The idea of RNA sequencing

(RNA-seq) methods is different to that of first generation approaches. While sequences and

regions to be probed are selected at the beginning of first generation experiments, RNA-seq

methods map the generated data onto the genome and the underlying annotation at the end of

the experiment. This difference results in several intrinsic advantages [Croucher & Thomson

2010]. Gene structure and novel genomic features are easily detectable since mapping of

32



2.2. Identification of (non-)coding transcripts

sequences is more accurate than binding of sequence pairs. While expression is measured as

signal intensity in hybridization based approaches, RNA-seq determines expression in means

of (normalized) read counts. In contrast to signal intensity measurements, the read counts

have no upper bound and can not be saturated. This allows gene expression studies of highly

and very low abundant transcripts at the same time. Three platforms are mainly used: i)

454 ii) Illumina/Solexa and iii) SOLiD sequencing. These methods are summarized in the

next three paragraphs. As the platforms are constantly improved read length obtainable and

technique details may have changed since this thesis has been written.

454 sequencing∗ Specific 5’ and 3’ adapter sequences are ligated to RNA fragments. The

adapters are used for purification, fixation, amplification, and sequencing steps. First the 3’

adapter is utilized to fixate fragments onto beads. Ideally, each bead caries a single frag-

ment. Beads are separated into micro-reactors comprising a water oil mixture. All essential

reagents, e.g. nutrients and polymerase are enclosed within each micro-reactor. A process

called ”emulsion PCR” amplifies the fragment to a number of several million identical copies

on each bead. In the next step the emulsion is broken and beads with the amplified frag-

ments are separated on a PicoTiter™Plate, which basically is a slide with wells. The size of

the wells is optimized so that a single bead is isolated therein. Additionally, smaller beads

carrying immobilized sequencing enzymes are inserted. The sequencing process is initiated

by primer sequences that specifically bind to the free adapter end of the fragments. The flu-

idics subsystem of the sequencer flows individual nucleotides in a fixed order across the wells.

Whenever a nucleotide is incorporated a luciferase light signal is emitted, Figure 2.14 A). The

signal intensity is proportional to the number of simultaneously incorporated nucleotides for

up to eight bases. This chemiluminescent signal is recorded by a CCD camera which tracks

the location of bead loaded wells by their XY-coordinates on the plate. Finally a so called

flowgram, which corresponds to the sequence of the fragments on one bead, is generated.

Currently, read lengths of up to 400 bases are possible with the 454 sequencing technique.

∗Information adapted from http://454.com
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Figure 2.14 (following page). Second generation sequencing approaches overview. The

most discriminative step of each sequencing technique is shown. Ligated adapter

sequences are indicated for 5’ and 3’ end in red and green, respectively. A) Se-

quencing process of the 454 method. The bead is separated in a well of the

PicoTiterPlate™ (image taken from http://www.454.com/downloads/news-events/

how-genome-sequencing-is-done_FINAL.pdf) and carries one fragment which is already

amplified. All copies on the bead are sequenced simultaneously. For simplicity the pro-

cess is only shown for the zoomed sequence. A primer complementary to the 5’ adapter

initiates polymerase binding (indicated in gray) and the elongation process of the com-

plementary strand. Each time the polymerase adds a nucleotide (dNTP) to the growing

strand, pyrophospate (PPi) is released. Sequencing enzymes, sulfurylase and luciferase,

which are immobilized on an additional bead (indicated in red) transform the released

PPi into a light signal. Sulfurylase converts PPi to ATP which is subsequently used by

the luciferase enzyme to produce light from the luciferin substrate. B) In case of Illumina

the bridge amplification is depicted in four steps. First ligated fragments randomly bind

to spotted oligos on a slide. Next the bound fragment bridges with the free end to an

compatible oligo on the slide. Polymerase binds and the complementary strand is pro-

duced. Denaturation of the bridge separates both strands, which are now free for further

amplifications. C) Characteristic for SOLiD sequencing is that each nucleotide is queried

two times. On the left hand side one ligation cycle is illustrated. After primer binding

the ligase incorporates the oligo-nucleotide which carries the compatible di-nucleotide at

its 3’ end. The corresponding color signal is released and recorded. Finally the unspe-

cific 5’ end of the oligo-nucleotide is cleaved and the next ligation cycle starts. After a

series of these cycles the extended sequence is removed and the first sequencing round

is completed. On the right hand side the result of five sequencing rounds is shown.

If the color signal and one base is known the unambiguous di-nucleotide can be deter-

mined. Since the annealed primer is shortened by one base each round the first three

color signals can directly be decoded into the underlying di-nucleotides. This color sig-

nal into di-nucleotide decoding is propagated by the overlap of always two light signals

in one base. Adapted from descriptions and images available online: http://454.com,

www.illumina.com, http://www.appliedbiosystems.com/absite/us/en/home.html.
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Illumina/Solexa sequencing∗ Well-defined 5’ and 3’ linker sequences are attached to iso-

lated RNA fragments. Ligated fragments are size selected to a range of 150-200 bp. By

complementary binding of the ligated linker sequences to single stranded oligo-nucleotides

the fragments prepared are immobilized onto a slide. This slide is put into a flow cell and

the so called ”bridge amplification” is initiated, see Figure 2.14 B). Priming starts as the

free linker of a bound fragment ”bridges” to a complementary oligo on the surface. A dou-

ble stranded bridge is generated and denaturation separates both strands. The duplicated

fragments are now available for further bridge amplification steps. Repeated bridge amplifica-

tion generates local clusters of identical sequences on the slide. Subsequently, the sequencing

process is initiated. Specific primer sequences are annealed to the amplified fragments. Flu-

orescence labeled nucleotides are flowed one after an other over the slide. Whenever a base

is incorporated local clusters emit a nucleotide specific color coded light signal and a high

resolution camera records the signal distribution. The first nucleotides are used to calibrate

the camera to cluster positions. Finally a time course of recorded images reveals the sequences

of immobilized RNA fragments. At the moment Illumina reads range from 26-200 bases.

SOLiD sequencing† Standard library preparation begins with shearing of the RNA into

small fragments and the ligation of unique adapter sequences to both 5’ and 3’ end, respec-

tively. The 5’ adapter is used for immobilization of the fragments onto beads. Each bead

carries a single fragment which is amplified by emulsion PCR (see 454 sequencing). Subse-

quently, 3’ modification of the fragments allow covalent binding of the beads onto a slide.

Each fixated bead can be considered as a separated sequencing reaction, which is monitored

in parallel with sequential digital imaging. The SOLiD sequencing technique incorporates

oligo-nucleotides instead of single nucleotides. Each oligo is an 8-mer whose first two bases

are one of 16 di-nucleotides (AC,CA, GT, TG,. . . ). Position 3 to 5 are degenerated nucleotides

(N’s). The remaining bases are degenerated as well (Z’s) and carry one of four fluorescent

labeled dyes. Thus four di-nucleotides have to share the same fluorescent color. A universal

sequence primer of length n initiates the first sequencing round. The first oligo-nucleotide

is ligated to the 3’ end of the primer. By that the di-nucleotide specific fluorescent signal is

emitted. The first five bases (specific di-nucleotide and 3× N) are kept on the sequence and

the rest is cleaved, Figure 2.14 C). This ligation process is repeated for 5-7 cycles. Then a

reset is performed which removes the complement sequence of the fixated fragment. In the

next round the universal sequence primer is shortened by one position to n − 1 and again

5-7 cycles of oligo ligation and cleavage are performed. This procedure is repeated until a

minimum length of n − 4 of the universal primer is reached. Five rounds of primer ligation

∗Information adapted from www.illumina.com
†Information adapted from http://www.appliedbiosystems.com/absite/us/en/home.html
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with seven cycles of oligo ligation each result in 35 contiguous bases. The SOLiD approach

queries each base by two different oligos. As mentioned above the recorded fluorescent signals

do not directly tell which di-nucleotide has been incorporated. The knowledge of the annealed

primer sequence which is shortened each round and the overlapping fluorescent signals are

used to convert the recorded signal from the color into the sequence space, Figure 2.14 C).

To date SOLiD sequencing achieves read lengths of 35 to 50 base pairs.

Each sequencing technique has its advantages and drawbacks. The SOLiD approach, for

instance, is the only one which queries each base two times. Therefore it achieves a high

sequencing accuracy and makes a precise identification of single nucleotide polymorphisms

possible. However, the performance and accuracy of the method might be better if 16 di-

nucleotides would not only be encoded by 4 fluorophores. Illumina and 454 techniques produce

reads up to a length of 200 and 400 bases, respectively. While, Illumina results in several

giga bases (Gb) of reads per run the 454 approach produces several million high-quality reads

per run. It depends on the research focus which method one might prefer. In addition,

different library preparation methods can be used to enrich different types of RNAs. Beside

gel extraction methods as described above, (co-)immunoprecibitation, rRNA capturing and

genomic SELEX (Systematic Evolution of Ligands by Exponential Enrichment) are commonly

applied to specifically enrich or deplete RNA molecules (see Hüttenhofer & Vogel [2006], Sorek

& Cossart [2010] and Croucher & Thomson [2010] for recent reviews, and Section 3.2).
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2.3 Pathogenic bacteria analyzed

In order to survive bacteria have to monitor their surrounding and sense the existing envi-

ronmental conditions. Fine tuning of the bacterial metabolism is especially important for

pathogenic species. These bacteria have to rapidly activate expression of essential virulence

genes if a host contact is sensed. In the next three paragraphs the pathogenic bacteria ana-

lyzed in this study are introduced.

2.3.1 Pseudomonas aeruginosa str. PAO1

Pseudomonas aeruginosa str. PAO1 (PAO1) is a Gram-negative ubiquitous microorganism

which has been found in environments such as soil, water, humans, animals, plants, sewage,

and hospitals [Hardalo & Edberg 1997]. The bacterium often infects patients whose immune

system is already compromised (e.g. patients with cystic fibrosis, cancer, or AIDS) but sel-

dom healthy individuals [Bodey et al. 1983]. PAO1 is therefore regarded as an opportunistic

human pathogen. Intrinsic resistance to various different types of chemotherapeutic reagents

and antibiotics, makes the bacteria a pathogen very hard to eliminate [Hancock 1998]. Fur-

thermore, the bacterium is able to utilize a wide range of organic compounds as nutrient

sources. This gives PAO1 an exceptional ability to colonize ecological niches where nutrients

are limited. Analysis of its 6.4 million base pairs (Mbp) large genome sequence has identified

genes involved in locomotion, attachment, transport and utilization of nutrients, antibiotic

efflux, and systems involved in sensing and responding to environmental changes [Stover et al.

2000]. These features make PAO1 an interesting and important model organism which we

analyzed in a cooperation with Udo Bläsi’s group in Vienna (see Section 3.1).

2.3.2 Helicobacter pylori str. 26695

The human pathogen H. pylori is the major cause of chronic superficial gastritis as well as

peptic ulcer disease. Approximately 50% of the worlds human population are infected with

this Gram-negative bacterium of the ǫ-proteobacter group [Cover & Blaser 2009]. However,

many people are carrier of the organism but are asymptomatic. The Helicobacter species col-

onize the stomach of their hosts and are highly adapted to this acidic environment. During

infection H. pylori has to cope with different conditions such as pH and nutrient variations.

Sequencing and annotation of the small and compact 1.67 Mbp genome of H. pylori revealed

a very restricted repertoire of transcriptional regulators [Tomb et al. 1997]. Housekeeping

RNAs such as tmRNA, RNaseP RNA and SRP RNA are known whereas a homolog of the 6S

38



2.3. Pathogenic bacteria analyzed

RNA gene is still missing. Moreover, H. pylori lacks an homolog of Hfq [Valentin-Hansen et al.

2004]. However, the life style of the bacterium in combination with its compact genome ne-

cessitates additional regulatory mechanisms. Our cooperation with Jörg Vogel’s lab revealed

an unexpectedly complex transcript organization in H. pylori. Results are summarized in

Section 3.2.

2.3.3 Xanthomonas campestris pv. vesicatoria str. 85-10

Many different pathovars of Xanthomonas campestris have been identified. These pathogens

affect a wide range of plants including crops, cabbage, pepper, rice and paprika. Xanthomonas

campestris pv. vesicatoria str. 85-10 (XCV ) is a model system to elucidate the molecular

communication between bacteria and plant. It is the causal agent of bacterial spot disease

on pepper and tomato [Jones et al. 1998]. Essential for pathogenicity of XCV is the type

III secretion (T3S) system, encoded by the hrp (hypersensitive response and pathogenicity)

gene cluster [Bonas et al. 1991]. The main function of the T3S system is the trans-location

of bacterial effector proteins into the host cell cytosol. In susceptible plants, effector proteins

lead to disease symptoms such as typical black lesions that develop on plant surface. In

resistant plants, effector proteins are recognized by plant resistant proteins which initiate the

hypersensitive response. This rapid programmed cell death coincides with arrest of bacterial

multiplication and stops infection. So far only protein-coding genes and their role during

plant infection have been analyzed. Together with the group of Ulla Bonas from Halle, we

investigated if sRNAs are involved as well. Results are shown in Section 3.3.
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3
RNomics and Deep

Sequencing

This chapter summarizes the results of three experimental surveys. First we analyzed the

sRNA repertoire of P. aeruginosa in a joint project with Udo Bläsi’s lab in Vienna. Here

we focused on the detection of Hfq bound and evolutionary conserved sRNA sequences. The

second part of this chapter describes the outcome of a cooperation with Jörg Vogel’s lab in

Berlin. Using a differential RNA sequencing approach we analyzed the primary transcriptome

of H. pylori. An outline of the results of our joint project with the lab of Ulla Bonas in Halle

is given in the third section of this chapter. Here the detection of virulence related sRNAs

in Xanthomonas campestris was in the focus of research. Details on the experimental setup

and used methods of all three studies can be found in our joint publications Sonnleitner et al.

[2008], Sharma et al. [2010], Findeiß et al. [2010] and Schmidke et al. [in preparation].
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3.1 Small RNA detection in Pseudomonas aeruginosa str.

PAO1

Besides the housekeeping RNAs (i.e. 6S RNA, tmRNA) and RNA components of larger

complexes (i.e. SRP and RNase P) the function of only a few additional PAO1 encoded

sRNAs is known. The sRNAs RsmY [Valverde et al. 2003] and RsmZ [Heurlier et al. 2004]

act by sequestration of the RsmA protein, a virulence gene regulator in PAO1 [Pessi et al.

2001]. This system seems to implement an analogon of the carbon storage regulator (csr)

network found in E. coli, where two sRNAs (CsrB and CsrC) sequester the CsrA protein.

[Babitzke & Romeo 2007, Timmermans & Melderen 2010]. Functional homologs of the E.

coli encoded sRNA RyhB are PrrF1 and PrrF2 [Wilderman et al. 2004]. These sRNAs are

> 95% identical to each other and have regulatory function in iron acquisition and storage.

The expression of the tandem prrF1 and prrF2 genes is regulated by a Fur repressor in

dependency on iron. If the essential nutrient becomes sparse (low iron concentration) the

Fur blockade is removed and both sRNAs are transcribed. The sodB (superoxide dismutase)

mRNA is a known target of PrrF1 and PrrF2.

In addition, 25 sRNAs have been computationally predicted and experimentally verified by

Livny et al. [2006] and Gonzalez et al. [2008]. RgsA is one of the few examples which were

predicted in both surveys. Expression of RgsA depends on the response regulator GacA and

the stress sigma factor RpoS [Gonzalez et al. 2008]. Besides the 25 validated sRNAs dozens

of intergenic candidates have been predicted in both studies.

In the contribution Sonnleitner et al. [2008] we used i) experimental RNomics approach and ii)

a bioinformatic RNAz screen to identify sRNA candidates in PAO1. The aim of the RNomics

approach was to identify sRNAs which interact with Hfq. The RNAz based analysis, on the

other hand, aimed on the identification of evolutionary conserved RNA genes.

3.1.1 Identification of sRNA candidates with RNomics

Using an adopted version of the preparation protocol [Hüttenhofer & Vogel 2006] two cDNA

libraries, enriched for Hfq bound RNA fragments, were generated by our collaborators (Udo

Bläsi’s lab, Vienna). Total RNA was isolated and centrifuged to deplete ribosomes. Sub-

sequently, the size-fractionated (50-300 nt) RNA pool was co-immunoprecipitated with Hfq.

Unbound RNA molecules were removed and the Hfq-bound fraction was sequenced. This

procedure was repeated with cells grown to early stationary phase and cells exposed to hu-
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Table 3.1. RNomics identified intergenic sRNA candidates. ”Annotated transcripts” mapped

to already known non-coding RNA genes and ”experimentally verified” transcripts were

independently validated either by Northern hybridization or RT-PCR experiments.

sRNA Strand† Growth‡ 5’-end§ 3’-end‖ Length Identified sequence

annotated transcripts

RsmY ←→← S 586,867 586,990 124 586,867-586,690

tmRNA ←←← LB 901,536-901,640

amiE leader ←←→ LB 3,778,134 3,778,034 100 3,778,054-3,778,098

RNase P ←←← LB 4,956,348-4,956,591

experimentally verified

PhrDNorthern →→→ S/LB 758,497 785,570 72 785,498-785,547

PhrSNorthern ←←← LB 3,705,522 3,705,309 212 3,705,342-3,705,515

PhrXRT-PCR →←→ S 5,836,429 5,836,579 151 5,836,450-5,836,479

PhrYRT-PCR ←→→ LB 5,859,480 5,859,674 195 5,859,471-5,859,615

remaining candidates

PhrC ←→→ LB 720,082-720,136

PhrR →←→ LB 3,394,727-3,394,805

PhrU →←→ S 4,332,627-4,332,676

†arrows indicate the genomicaly orientation of the sRNA candidate (middle arrow) and the

adjacent genes

‡sRNA fragments were detected either in early stationary phase in LB medium (LB) and/or

after human serum exposure (S)

§determined by primer extension

‖estimated from Northern blot experiments and rho-independent terminator

man serum. Using blastn the resulting sequencing clones were mapped onto the PAO1

genome. Details on the experimental setup and procedure can be found in our joint publica-

tion [Sonnleitner et al. 2008].

Although ribosomes were depleted from the RNA pool, 15% of both libraries mapped to rRNA

genes. Additional 40% and 20% of the sequences originated from the sense or antisense strand

of protein-coding genes of stationary phase and serum treated cells, respectively. Eleven sRNA

candidates were predicted to have a closely located rho-independent terminator signal and

are localized in intergenic regions (Table 3.1).

Three of the eleven candidate sRNAs show sequence similarity to sRNA genes already known.

The presence of RsmY in the human serum exposed cDNA library verified the observed

interaction of RsmY and Hfq [Sonnleitner et al. 2006]. Interestingly, a fragment at the 5’-
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a) b)

Figure 3.1. The Hfq hexamer protein (Hfq6) binds PhrD and PhrS. The positions of free

and Hfq-bound RNA are indicated by F and B1/B2, respectively. Labeled RNA (5 nM)

was incubated in the absence (lane 1) or in the presence of 5 nM (lane 2), 10 nM (lane

3), 25 nM (lane 4) and 50 nM (lane 5) Hfq. The ratio of Hfq to RNA is indicated on top.

Unlabeled PhrD and PhrS RNA (lane 6 and lane 7), PAO1 RsmY RNA (b, lane 8 and 9)

and tRNA (a, lane 8 and 9; b, lane 10 and 11) were added as competitors.

end of tmRNA was found to co-immunoprecipitate with Hfq. The third Hfq-bound RNA

overlapped with the annotated RNase P gene. Since tmRNA and RNase P were already

annotated in PAO1 and experiments in E. coli showed that Hfq does not bind to these

transcripts [Wassarman et al. 2001, Zhang et al. 2003] further analysis of these genes was

postponed. Another transcript mapped to the upstream region of the amidase operon. This

Hfq-binding RNA fragment corresponds to the already validated leader RNA of the amiE

gene [Wilson & Drew 1995]. Like the other known RNAs, this locus was not further studied.

Among the remaining seven candidates, four Pseudomonas Hfq-binding RNA (Phr) tran-

scripts could be validated by Northern hybridization or RT-PCR experiments (Table 3.1).

Sequence length of these Phr transcripts varies between 72 and 212 nt. While transcripts of

PhrS and PhrY were expressed in stationary phase only, PhrX was only detected after human

serum exposure. PhrD was found to be expressed under both tested conditions. Blast anal-

ysis of all four Phr transcripts revealed that PhrD is only present in PAO1 and PhrS, PhrX

as well as PhrY homologs were found in different Pseudomonas species (data not shown).

Interestingly, the PhrS locus was already detected as candidate P20/1887 in the studies of

Livny et al. [2006] and Gonzalez et al. [2008]. This together with the fact that PhrD as well

as PhrS were abundant RNA species shifted the focus of all further experiments on these two

transcripts.

First the binding of PhrS and PhrD to Hfq was verified by band-shift assays (Figure 3.1).

Here the purified Hfq hexamer protein (Hfq6) [Sonnleitner et al. 2006] was added in increasing
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PFO MFFDNVVFAGVLTVGLMVLFFAGFGFFIWKDANKRKKP

 PF5 MFFDNVVIAGVLTVGLMVLFFAGFGFFIWKDANKRKKP

 PFS MFIDNVVFAGVLTVSLMVMFFVGFGIFIWKDANKRKKP

 PPK MFFDNVVIAGVVTVGLMVAFFAGLGIFIWKDSNKRKPR

 PEL MFFDNVVIAGVVTVGLMLAFFAGLGIFIWKDSNKRKQR

 PAP MFIDEVVLAGILTVGLMVAFFGGVGYFIWKDSHSRK-G

 PAU MFIDEVVLAGILTVGLMVAFFGGVGYFIWKDSHSRK-G

 PAO MFIDEVVLAGILTVGLMVAFFGGVGYFIWKDSHSRK-G

  1.......10........20........30........

Figure 3.2. PhrS (black arrow) is genomicaly encoded between the genes PA3305 and PA3306

(white arrows). Terminator sequences are indicated by stem loop structures. The phrS -

ORF is represented as gray arrow. Below, the multiple alignment of the amino acid

sequences of pseudomonas homologs. Expression of the phrS -ORF was evidenced by the

synthesis of the PhrSΦLacZ fusion protein (right hand side). The β-galactosidase activities

were determined for the constructs phrS -ORF-lacZ (�) and phrS -ORFAUG→CUG-lacZ (N)

by triplicated experiments as described in [Miller 1972].

molar ratios to the 5’-end labeled RNA. A PhrD-Hfq complex has already been observed with

a molar ratio of 1:1 (Figure 3.1a, lane 2 B1). An additional shift (B2) was only marginal and

did not increase with high Hfq concentrations. The competition experiment (Figure 3.1a,

lane 6-9) suggested that Hfq specifically binds to PhrD. Upon twofold molar excess of Hfq

unlabeled PhrD RNA competed with the labeled RNA. As expected, no competition has

been observed when E. coli tRNA was added. With an increasing molar excess of Hfq two

bands were observed for PhrS (Figure 3.1b, lane 2-5). The additional shift (B2) indicates a

2:1 stoichiometry of Hfq and PhrS molecules. This is consistent with the observation that

the second band was more prominent at higher molar excess of Hfq (Figure 3.1b, lane 5).

Unlabeled PhrS RNA and RsmY RNA competed with the Hfq-PhrS complex (Figure 3.1b,

lane 6-9), whereas the non-specific competitor E. coli tRNA did not (Figure 3.1b, lane 10

and 11).

Subsequent Northern blot experiments comparing wild-type PAO1 and a hfq deletion mutant

revealed a 50% reduction of the steady state levels of both PhrS and PhrD. Half-lives of PhrD

and PhrS were comparable in PAO1 and the hfq mutant strain. Hence, Hfq appears to regulate

the expression of both sRNAs rather than to stabilize them. In order to identify possible

target genes in proteome studies we attempted to transform both sRNA genes into a plasmid

system. Unfortunately, several efforts to transform phrD into the plasmid failed. Plasmid-
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directed over-expression of phrS followed by proteomics identified three possible targets: the

heat-shock chaperon GroEL, the outer membrane porin OprD and the putative periplasmic

binding protein PA51353. The proteome analysis of PhrS suggest that the sRNA could

function as a riboregulator.

Inspection of the phrS gene revealed a coding capacity of a 37 amino acid long peptide. This

short ORF was found to be conserved in all PhrS homologs (Figure 3.2). To test if the

phrS -ORF is expressed a phrS -ORF-lacZ construct was engineered. In another construct

(phrS -ORFAUG→CUG-lacZ ) the canonical start codon was mutated to CUG. As expected

expression of the phrS -ORF was evidenced by synthesis of the fusion protein PhrSΦLacZ. In

contrast the phrS -ORFAUG→CUG-lacZ construct did not synthesize the fusion protein, see

Figure 3.2. These experiments conducted by our collaborators indicate that PhrS is a new

candidate for a dual-functional sRNA, acting on RNA and protein level.

3.1.2 PAO1 sRNAs predicted with RNAz

In addition to the RNomic approach, we made use of RNAz to scan PAO1 for additional

sRNA candidates. Since the results of a RNAz screen depend on the quality of the analyzed

multiple sequence alignments we used two approaches. Based on the less restrictive multiz

[Blanchette et al. 2004] alignments 221 loci were predicted, of which 85 correspond to already

annotated ncRNAs. Using NcDNAlign [Rose et al. 2008a] alignments as input we found

115 structured candidates, of which 101 correspond to known sRNA loci and 14 are novel

candidates. Compared to NcDNAlign- the multiz-based screen resulted in significantly more

RNAz hits. However, the NcDNAlign based screen identified more annotated hits at the cost

of only a few novel candidates (Table 3.2∗).

Besides tRNAs and rRNAs, housekeeping RNAs (6S, tmRNA) and RNA components of larger

complexes (SRP and RNase P) were recovered in both screens. The FMN riboswitch is highly

conserved structural element typically found within 5’ UTRs of riboflavon biosynthesis (rib)

genes. In PAO1 we found a homolog of this regulatory element upstream of ribC. The expres-

sion of a 180 nt long leader transcript has been verified by Gonzalez et al. [2008] (candidate

2315). Only 57 genomic loci were predicted in both RNAz screens, seven of which were novel.

Indeed, expression in stationary phase of two of these seven loci has been demonstrated by

RT-PCR. The remaining candidates may be expressed in different conditions.

Eight Hfq-binding sRNAs detected with the RNomics approach were neither detected in our

∗Details of the RNAz screens of booth multiz- and NcDNAlign-generated alignments are provided at http:

//www.bioinf.uni-leipzig.de/publications/supplements/07-023
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Table 3.2. Counts of RNAz loci for the NcDNAlign and multiz approaches. Hits are parti-

tioned in two groups according to the prediction confidence (p− value ≥ 0.5 and ≥ 0.9).

Information from public databases (NCBI, Rfam, Noncode, tmRDB and ncRNAdb) was

used to annotated RNAz loci. Additionally, RNAz loci were overlapped with our RNomics

candidates and novel sRNAs identified by Livny et al. [2006] and Gonzalez et al. [2008].

The last row indicates all remaining RNAz loci of unknown function.

NcDNAlign multiz

p ≥ 0.5 p ≥ 0.9 p ≥ 0.5 p ≥ 0.9

RNAz loci 115 98 221 166

Annotated 101 89 85 74

Livny et al. [2006] 4 3 10 9

Gonzalez et al. [2008] 4 4 3 3

RNomics candidates 2 1 3 3

Unknown 14 9 136 92

RNAz screens nor by Livny et al. [2006] and Gonzalez et al. [2008]. Similar to PhrD, these

candidates are likely to be PAO1 specific sRNAs. Among the remaining three candidates PhrS

is the only novel and experimentally verified RNA. Since PhrS emerged from four different

screens (P20 in Livny et al. [2006], 1887 in Gonzalez et al. [2008], Table 3.1 and Table 3.2)

and phrS over-expression resulted in changes of protein patterns, it appears to be a prime

candidate for a novel sRNA in Pseudomonas.
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3.2 The primary transcriptome of Helicobacter pylori

The small and compact genome (1.67 Mbp) of Helicopacter pylori strain 26695 contains

1,576 ORFs, but relatively few genes encoding transcriptional regulators such as σ factors

and two-component systems [Tomb et al. 1997, Alm et al. 1999]. Previous annotations of

the H. pylori genome identified tRNAs, rRNAs, tmRNA, RNase P RNA and SRP RNA.

Surprisingly, various attempts to identify 6S RNA homologs in H. pylori and the complete

ǫ-proteobacteria subdivision failed [Weinberg et al. 2007, Barrick et al. 2005, Wassarman &

Storz 2000]. Perhaps in accordance with the absence of Hfq in all ǫ-proteobacteria [Valentin-

Hansen et al. 2004] no additional sRNAs have been identified in H. pylori.

In the cooperation with Jörg Vogel’s lab a novel differential RNA sequencing (dRNA-seq)

approach was established and used to identify the native 5’ end of transcripts. This gave us

the opportunity to analyze transcription initiation (the primary transcriptome) on a genome-

wide scale and to unravel the unexpected complexity of transcript organization and RNA

output of H. pylori [Sharma et al. 2010].

3.2.1 Differential RNA sequencing (dRNA-seq)

In order to cover the complete H. pylori transcriptome, RNA was extracted from standard

growth, acid stress and infection samples (Figure 3.3). Primary bacterial transcripts (most

mRNAs and sRNAs) have 5’ characteristic tri-phosphate (5’PPP) ends. In contrast, processed

RNA species (e.g. rRNA and tRNA) have 5’ mono-phosphate (5’P) ends. To distinguish

between primary and processed transcripts, two differential cDNA libraries of each sample

were prepared by our collaborators: one library (−) from H. pylori total RNA containing

both types of transcripts, and the other (+) following enrichment for primary transcripts

by treatment with terminator exonuclease (TEX), which degrades 5’P but not 5’PPP RNA.

Following 454 sequencing, a total of∼217 million bases of sequenced cDNA reads were mapped

to the H. pylori chromosome.

The combined cDNA reads of (−) or (+) libraries were observed to be distributed over the

entire chromosome. Inspection of individual genomic loci such as the urease operon and

the cag pathogenicity island, two key loci of H. pylori virulence, confirmed the expected

expression of annotated ORFs. The TEX treatment revealed TSS by causing a characteristic

change in the cDNA distribution over individual genes, resulting in a sawtooth-like profile

with an elevated sharp 5’ flank (Figure 3.4). In contrast, expression of processed transcripts

peaks in the untreated library (Figure 3.4). As an example, the expression pattern matched

the known TSS of cagA [Spohn et al. 1997] and discriminated the primary and processed 5’
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then 30’ pH 5.2

2) acid stress (AS):
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Figure 3.3. Total RNA extracted from five conditions: 1) culture in BHI media grown to

mid-log phase (ML), and 2) following 30 min acid stress at pH 5.2 (AS), growth in cell

culture medium in the 3) absence (PL), or 4) presence of responsive AGS human gastric

epithelia cells (AG) and 5) non-responsive Huh-7 liver fibroblasts (HU). For each condition

one library without (−) and one with terminator exonuclease (TEX) treatment (+) were

prepared and sequenced on a Roche (454) FLX sequencer. After clipping of linker and

3’ poly(A) sequences, reads were mapped to the H. pylori genome using the short read

aligner segemehl [Hoffmann et al. 2009].
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Figure 3.4. Schematic drawing of cDNA enrichment patterns. Annotated genes are indicated

as gray bars and green arrows correspond to annotated TSS. Depletion of processed RNAs

by TEX treatment leads to a characteristic change in the read distribution over transcripts,

as shown for cagA and tRNA-Phe (expression profile from acid stress cDNA libraries).

Exonuclease treatment (red) shifts the cagA cDNAs towards the nuclease-protected 5’-

end, yielding a sawtooth-like profile with an elevated sharp 5’ flank that matches the

published TSS [Spohn et al. 1997]. In contrast, the mature (RNase P-cleaved) 5’ end of

tRNA-Phe is predominant in the untreated library (black curve) and the characteristic

profile is missing.

ends of tRNA-Phe transcripts (Figure 3.4). For verification, 74 H. pylori TSS determined by

independent experimental approaches were compared to TSS positions deduced from cDNA

expression patterns. In fact 87% of the dRNA-seq determined TSS matched within a ±2 nt

tolerance, demonstrating the high accuracy of our approach.

To build a genome-wide TSS map for H. pylori 5’ ends that were enriched in the (+) versus

(−) library in at least 2 of the 5 conditions and satisfied additional criteria such a plausible

position relative to adjoining genes were manually annotated as TSS. This identified a total

of 1,907 TSS which were grouped into five categories: 812 primary TSS (most cDNAs ≤ 500

bp upstream of annotated start codons or mature 5’ ends of small RNAs), 119 secondary

TSS (with fewer cDNA reads in the same gene), 439 internal TSS (internal to annotation on

sense strand), 969 antisense TSS (antisense inside or within 100 bp of an annotation on the

opposite strand) and 38 orphan TSS (no annotation in close proximity). Note that one TSS

can be assigned to several categories.

3.2.2 Promoter and 5’ UTR analysis

To identify promoter motifs of the housekeeping σ-factor of H. pylori, we used MEME [Bailey

& Elkan 1995, Bailey & Gribskov 1996] to scan all 1,907 TSS for conserved upstream mo-

tifs. MEME searches for similarities among a given set of sequences and calculates descriptors
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Figure 3.5. Regulatory motifs detected in promoter region (A) and 5’ UTRs (B). Motif

searches upstream of H. pylori TSS reveal extended Pribnow boxes (-10 signal: tgn-

TAtaAT) about 86% of which lie -11, -10 or -9 bp relative to TSS (top, histogram of

distribution; bottom, logo of upstream TSS sequences). Frequency of individual 5’ UTR

length based on 825 TSS (primary and secondary) of mRNAs. 5’ UTR lengths ≤ 10 nt

(red bars) reveal 34 leaderless mRNAs. The inset shows the Shine-Dalgarno sequence

motif of H. pylori.

for these motifs. Using 50 nt upstream sequence we discovered an extended Pribnow box,

tgnTAtaAT, infront of all TSS (Figure 3.5). Instead of a -35 motif, we observed a periodic

AT-rich signal upstream of -14 (position relative to TSS +1). This resembles the in silico

predicted structure of σ80-type promoters in H. pylori and the related Campylobacter jejuni

bacteria [Vanet et al. 2000, Petersen et al. 2003]. Interestingly, promoter motifs of H. pylori ’s

alternative σ-factors (σ28 and σ54) were not detected by the analysis of the complete TSS

set. This indicates that the majority of transcriptional initiation in ǫ-subdivision bacteria

is determined by the extended Pribnow box, relying on upstream periodic AT-rich stretches

instead of a distinctive -35 motif.

The annotation of primary TSS for 825 mRNAs revealed the lengths of the 5’ UTRs, i.e. the

distance from TSS to the start codon. Approximately half of the 5’ UTRs are 20-40 nt in

length which is in accordance with the structurally determined mRNA contacts of initiating

ribosomes [Ramakrishnan 2002]. Motif discovery in the 789 5’ UTRs (≥ 10 nt) and compar-

ison against the entire genome confirmed the AAGGag motif [Vanet et al. 2000, Yada et al.

2001] as the consensus Shine-Dalgarno sequence of H. pylori mRNAs (Figure 3.5). The motif

occurs with a median distance of 6 nt to the annotated start codons.
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In Gram-negative species, leaderless mRNAs (UTR of <10 nt) are considered rare and pri-

marily phage-associated. Our data indicates, however, that > 2% of all H. pylori proteins are

synthesized from leaderless mRNAs (Figure 3.5). In case of 26 genes, including the important

dnaA, soj, recR, and hemH housekeeping genes, transcription initiates exactly at the start

codon, and all of these leaderless mRNAs possess an AUG start codon which is critical for

stable ribosome binding [Brock et al. 2008].

Comparison of the mapped TSS with the position of the cognate ORFs revealed cases where

the TSS was located downstream of the annotated start codon. We propose re-annotation

of 18 additional H. pylori genes, and in most of these cases our experimental data support

previous re-annotation of ORFs by genome comparison [Boneca et al. 2003].

3.2.3 An unexpected wealth of RNA regulators

Long 5’ UTRs might contain post-transcriptional control elements such as riboswitches [Wein-

berg et al. 2007]. Comparison of the H. pylori 5’ UTRs with the RNA families database Rfam

confirmed the predicted thiamine pyrophosphate (TPP) riboswitch upstream of pnuC [Rodi-

onov et al. 2002]. Both dRNA-seq and Northern blot analysis detected a ∼100 nt transcript

from the 5’ UTR of this gene, which likely results from transcriptional attenuation by the

TPP riboswitch. Although no other known riboswitches were found there are 337 UTRs long

enough (> 60 nt) to harbor regulatory RNA elements, see Figure 3.5.

All TSS that were not found in vicinity upstream of mRNAs represented sRNA candidates.

We observed hundreds of sRNA candidates in intergenic regions, antisense to annotated ORFs,

and less frequently, from the sense strand of ORFs. Northern blot experiments conducted by

our collaborators validated the expression of about 60 new sRNAs. The sRNAs expressed from

intergenic regions include a five-member family of ∼200 nt RNAs, whose apparent redundancy

is reminiscent of the Qrr sRNA family acting in the control of quorum sensing and virulence

in Vibrio species [Lenz et al. 2004].

The candidates also included the elusive 6S RNA (∼180 nt) which had notoriously failed to

be identified in the ǫ-subdivision [Wassarman & Storz 2000, Barrick et al. 2005, Weinberg

et al. 2007]. H. pylori ’s 6S RNA accumulates throughout growth and is located opposite

to a non-conserved hypothetical ORF. Structural probing of in vitro synthesized H. pylori

6S RNA confirmed the characteristic long hairpin structure with a central asymmetric bulge

that mimics DNA in an open promoter complex of RNAP (Figure 3.6). Interestingly we

detected two distinct classes of pRNAs: one pRNA expressed from a similar region as in E.

coli [Wassarman & Saecker 2006] and the other, pRNA∗, originating from the opposite strand
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Figure 3.6. Structural probing confirmed the characteristic 6S RNA secondary structure

[Barrick et al. 2005]. Rectangles indicate cleavage sites detected by in vitro probing (per-

formed by our collaborators, Jörg Vogel’s lab, Berlin) using RNase T1 (single stranded

RNA; preferentially unpaired G), RNase T1 (single stranded RNA; preferentially unpaired

A) and lead(II) (single stranded RNA). The template nucleotides of detected pRNA and

pRNA∗ sequences are highlighted in blue and green, respectively. Secondary structure

predicted by RNAfold according to the structural constraints.

(Figure 3.6).

According to cDNA coverage, some of the newly discovered H. pylori sRNAs are as abundant

as the high-copy 6S RNA. Structural comparison of sRNA candidates and known E. coli as

well as Salmonella sRNAs revealed only a few H. pylori transcripts that showed similarities

to the repertoire of enterobacteria. In their majority, the new sRNAs are conserved in the

Helicobacter species but rarely outside the ǫ-subdivision. Thus, except for 6S RNA and

housekeeping RNAs, ǫ-proteobacteria including H. pylori might have evolved a unique sRNA

repertoire.

3.2.4 New genes coding for short peptides

We constructed a pipeline to systematically analyze the coding capacity of all H. pylori sRNA

candidates. An ORF was deemed valid if it started with the canonical start codon AUG, ended

in frame with one of the three stop codons UAA, UAG or UGA and encoded at least 10 amino

acids. Additionally, we enforced a 60% match including the sub-sequence AGG[A|G] of the

SD-pattern within a distance of eleven nucleotides upstream of the ORF. Furthermore, this

set of short peptides was reduced by a restrictive conservation filtering step. Using Blast

homologs of the sRNAs (e-value 10; initial hit has to cover ≤ 50% of the H. pylori query)

as well as the corresponding ORFs were searched within all fully sequenced ǫ-proteobacteria.

Both truncated sRNAs and ORFs are maximally extended to the length of the initial H.

pylori query sequence. Finally, valid ORF conserved in at least three ǫ-proteobacteria species

passes our pipeline. In total 67 conserved short peptides were predicted.
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We identified a family of six structurally related, 80 nt sRNAs expressed antisense to small

ORFs of homologous 22-30 amino acid peptides, henceforth referred to as IsoA1-6 (RNA

inhibitor of small ORF family A) and aapA1-6 (antisense RNA-associated peptide family

A), respectively (Figure 3.7). Five of the aapA genes produced stable mRNAs in vivo. In

vitro translation assays yielded the expected small peptides, except for aapA2 mRNA whose

Shine-Dalgarno sequence is mutated in strain 26695. Furthermore, translation of aapA1 or

aapA3 was strongly and specifically inhibited in the presence of the cognate IsoA1 or IsoA3

sRNAs, thus revealing candidates of antisense regulation in H. pylori. The AapA peptides

are conserved in other H. pylori strains and might interact with membranes, as suggested by

their predicted high hydrophobicity, see Figure 3.7. Therefore, the aapA-isoA loci might be

toxin-antitoxin systems that slow down growth of H. pylori or other organisms in the gastric

mucosa.

We identified four additional antisense RNA/small ORF (asRNA/sORF) cassettes, see Fig-

ure 3.7. The aapB (antisense RNA associated peptide B) locus includes two experimen-

tally validated sRNAs: one is a ∼100 nt long antisense RNA whereas the other encodes

a 42 aa ORF conserved in many other Helicobacter strains. For the remaining three as-

RNA/sORF cassettes only the sRNAs are expressed. All three sRNAs, of which two are

probably the result of a duplication event, contain a nearly perfect anti-Shine-Dalgarno se-

quence (TCTCCT). Thus, we termed these loci aapC1/2 and aapD. Conservation analysis

showed that the ShineDalgarno sequences, start codons and peptides are highly conserved in

other Helicobacter strains. Moreover, the asRNA/sORF pairs are present in different copy

numbers at the same genomic locations in different strains. Additional cassettes that are

similar in sequence to both aapC1/2 and aapD were identified in the other strains. Given the

sequence similarity between the peptides of aapD and aapC1/2, these could constitute one

large family. Furthermore, they have similar sequences to the short hydrophobic peptides of

the Ibs family which has recently been identified in E. coli [Fozo et al. 2008a; b]. Overall,

besides the AapA1-6 family, four additional small ORF/antisense RNA cassettes in the H.

pylori genome were identified.

In order to estimate the hydrophobicity of the predicted short peptides, the Kyte-Doolittle

scale [Kyte & Doolittle 1982] was used. A sliding window approach was applied to scan each

peptide for the most hydrophobic sub-sequence of 11 amino acids. For each peptide scored one

thousand random sequences out of the annotated and translated CDS were sampled and scored

as well. This sample represents a normal distributed background. Thus the data-set could be

normalized using the mean and the standard deviation of the background distribution. Using

a confidence interval of 95% a normalized hydrophobicity value is significant if it is > 2.
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Figure 3.7 depicts the results for three independent data sets: i) experimentally verified short

peptides from E. coli [Hemm et al. 2008]; ii) 53 annotated short ORFs ≤ 50 aa from the

H. pylori NCBI annotation; iii) short peptides predicted in this study. Some of the E. coli

peptides had already been predicted by others to be hydrophobic [Fozo et al. 2008a]. These

molecules also have high hydrophobicity values as determined by the method described above.

We note that the sets of previously annotated and predicted short peptides from our H. py-

lori study showed no general enrichment hydrophobicity values above the selected confidence

interval of 95%, but that the majority of the newly predicted peptides from this study show

positive hydrophobicity values.

Figure 3.7 (following page). The top left panel depicts the genomic locations of IsoA1-6

RNA (black boxes) and associated peptide-encoding aapA mRNAs (gray). IsoA2 overlaps

with hypothetical ORF HP1176. In strain 26695, aapA2 lacks a conserved ORF. IsoA5

and IsoA6 lie opposite to hypothetical ORFs, HP0024 (aapA5 ) and HP1515 (aapA6 ),

respectively. Sequence alignment of AapA1 and AapA3-AapA6 is shown below (standard

ClustalX color code).

The right panel shows additional short peptide coding RNAs and their associated anti-

sense RNAs. Conservation of the short peptide is depicted below each genomic location

(alignment of homologous peptides). Note that the peptides AapC1 and AapC2 are iden-

tical in sequence.

Hydrophobicity plot (bottom left) of known short peptides of E. coli (left column), of pre-

viously annotated small ORFs ≤ 50 amino acids in H. pylori (middle), and of small ORFs

predicted in this study (right). The y-axis indicates a normalized hydrophobicity value for

each protein. Positive values indicate increased hydrophobicity. The hydrophobicity of a

protein is significantly higher than expected by chance if its value is above two standard

deviations (normalized hydrophobicity ≥ 2). In the E. coli data set [Hemm et al. 2008]

the Ibs (red squares), Hok (green diamonds) and Ldr (blue rectangles) clusters as well as

the TisB peptide (yellow hexagon) are highlighted. In the right column, light blue crosses

denote the Helicobacter AapA peptides, and orange crosses the AapC/D peptides.
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* : * * * . : * * * :
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The single nucleotide resolution TSS map compiled during our analysis constitutes the third

global reference data set for H. pylori, complementing its genome sequence [Tomb et al. 1997,

Alm et al. 1999] and global protein-protein interaction map [Rain et al. 2001]. Because our

experimental conditions mimic the most prevalent environmental conditions encountered by

H. pylori during infection, we are likely to have captured the vast majority of TSS. Our

data provides new insight into H. pylori gene expression, and indicates that RNA-mediated

control has been underestimated in the important ǫ-proteobacterial group of pathogens. The

unexpectedly high numbers of antisense transcripts (969 antisense TSS) and sRNAs (∼60

validated) can be assumed to have regulatory roles in this organism, because artificial antisense

RNAs are functional in H. pylori [Croxen et al. 2007]. Altogether, ∼100 sRNAs are known in

the primary model organism of sRNA research, E. coli [Waters & Storz 2009]. Corrected for

its much smaller genome size (∼33%), H. pylori expresses at least as many sRNAs, arguing

for wide-spread riboregulation despite the lack of a conserved Hfq protein.
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3.3 Genome-wide transcript analysis of

Xanthomonas campestris pv. vesicatoria str. 85-10

One of the model systems to elucidate the molecular communication between plant pathogens

and their hosts and to characterize bacterial virulence strategies is the Gram-negative γ-

proteobacterium Xanthomonas campestris pv. vesicatoria str. 85-10 (XCV ). Essential for

pathogenicity of XCV is the type III secretion (T3S) system, encoded by the hrp (hypersen-

sitive response and pathogenicity) gene cluster [Bonas et al. 1991]. The main function of the

T3S is the trans-location of effector proteins into the plant cell where they manipulate host

cellular processes to the benefit of the pathogen, e. g. by suppression of basal plant defense

responses [Thieme et al. 2005, White et al. 2009, Szczesny et al. 2010, Büttner & Bonas 2010].

Expression of the hrp gene cluster, type III effector and putative virulence genes is mainly

regulated by HrpG and HrpX proteins. HrpG is activated by a so far unknown plant signal

and induces the expression of HrpX. The latter protein binds to a conserved motif (plant-

inducible promoter; PIP box) in the promoters of target genes [Koebnik et al. 2006]. Genome

analysis predicted 4,726 protein-coding genes [Thieme et al. 2005]. However the overall gene

structure and especially the ncRNA output of this pathogen are poorly understood.

We used the dRNA-seq approach (see Section 3.2) to identify transcription start sites and

sRNAs in XCV. With our analyses we provide a first insight into the transcriptional landscape

of XCV and the involvement of sRNAs in virulence. For details on the experiments performed

by our collaborators and used methods I refer to our joint publications Findeiß et al. [2010]

and Schmidtke et al. [submitted].

3.3.1 Transcription start site annotation

Focusing on the expression of virulence and especially sRNA genes total RNA of the XCV

wild type strain 85-10 and a mutant strain 85* (a point mutation in HrpG renders the protein

constitutively active) expressing the Hrp-regulon were mixed. cDNAs were synthesized from

untreated total bacterial RNA (TEX− library) and terminator exonuclease treated RNA

(TEX+ library). The terminator exonuclease treatment specifically depletes transcripts with

5’ monophosphate (5’P) ends which are characteristic for processed RNA molecules. The

TEX+ library is, therefore, enriched with primary transcripts which have a 5’ tri-phosphate

end (5’PPP). Sequencing on a 454 platform resulted in 149,596 reads for the TEX+ library

and 160,349 reads for the TEX− library. A total of 84% of the reads were mapped to the

XCV genome. As previously described, XCV contains two identical copies of the 5S, 23S and

16S rRNA clusters, respectively, and 56 tRNA loci [Thieme et al. 2005]. 68% of the reads
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of the TEX+ library and 63% of the TEX− library mapped to these genes. The remaining

40,385 and 49,845 cDNA reads were analyzed in more detail.

While cDNA reads of the untreated TEX− library cover entire genes, the read starts of

the TEX+ library are shifted towards the 5’ end of primary transcripts (Figure 3.9, e.g.,

XCV0520 ). As described in Section 3.2 in means of dRNA-seq a TSS is (conservatively)

defined as a position at which the observed number of read starts in the TEX+ library

significantly exceeds the expected number of read starts inferred from the TEX− library.

So far, most of the published TSS maps are derived by tedious manual inspection of the

sequencing data [Albrecht et al. 2009, Jäger et al. 2009, Sharma et al. 2010]. This is a time

consuming, biased and not fully reproducible procedure. Furthermore, for larger eukaryotic

genomes manual TSS map creation is infeasible. In the following I present how the problem

of automated TSS annotation based on dRNA-seq data can be addressed using the Skellam

distribution model.

In different fields of application the Poisson distribution and furthermore the Skellam distri-

bution has been successfully applied [Hwang et al. 2007, Karlis & Ntzoufras 2009]. Moreover,

enrichment patterns in ChiP-Seq data have already been analyzed using these statistical

models [Kim et al. 2010].

General Skellam distribution model: Consider two discrete random variables X and

Y and their difference D = X − Y . The resulting probability function of D is a discrete

distribution defined for signed integers only. If X and Y are Poissonian distributed their

differenceD follows the Skellam distribution [Skellam 1946] which is defined by the probability

mass function:

f(d, λ1, λ2) = e−(λ1+λ2)

(

λ1

λ2

)
d
2

J|d|(2
√

λ1λ2); (3.1)

for all d ∈ Z and average arrival rates λ1, λ2 > 0. J|d| denotes the modified Bessel function

of the first kind and order |d|. The expected value of the Skellam distribution is given by

E(D) = λ1 − λ2 while the variance is defined as V ar(D) = λ1 + λ2, see Figure 3.8. As

the Skellam distribution is a discrete probability function its probability mass function is of

course normalized:
∞
∑

d=−∞

f(d, λ1, λ2) = 1 (3.2)
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Figure 3.8. Examples of skellam probability mass functions. The x-axis shows difference d

and the y-axis indicates the corresponding probability. The expected value of the skellam

distribution is shifted in dependency on the difference of λ1 and λ2. Note that the Skellam

distribution is a discrete probability distribution and is defined for signed integers only

(connecting lines are drawn for visualization only).

65



3. RNomics and Deep Sequencing

The practical problem is that the expression (measured by the number of dRNA-seq reads)

is not uniform across the genome but depends on the regional expression level of individual

genes or operons (Figure 3.9). Depending on the sequencing depth and local expression levels

an observation of a TSS is more or less likely.

The discrete Poisson distribution measures the significance of a number of events that occur

within a fixed interval and a known average rate λ. For TSS annotation the fixed interval is

a genomic region r of specified length and the observed event is the number of read starts

within this region. Thus λreg can be estimated as the average rate of read starts sr within r.

λreg =
sr

length(r)
(3.3)

This rate represents only the local expression of r. In order to normalize this rate with respect

to the overall expression across the genome λreg is corrected by the average read start rate:

λave =
1

n

n
∑

i=1

λi (3.4)

where n is the number of possible regions of length r along the genome. Using equation (3.3)

and (3.4) a normalized read start rate is define as λ =
λreg

λave
. With this normalized read start

rate the cumulative Poisson distribution function is defined as:

F (k, λ) = e−λ
k

∑

i=0

λi

i!
(3.5)

This function describes the probability that less than or equal to k read starts are observed at

a genomic position. From that the significance of observed read starts at genomic positions

can be estimated for both TEX+ and TEX− library.

The next challenge is to determine which of the genomic positions, supported by a number of

read starts in the TEX+ library, are statistically significant TSS and which are explainable

by the transcriptional background. The transcriptional background is given by the TEX−

library.

For each genomic position the difference D = P −M can be calculated. P and M are the

number of locally observed read starts in the TEX+ and the TEX− library, respectively. As

described above, the difference of two Poissonian distributed variables follows the Skellam

distribution. Using equation 3.1 the cumulative distribution function of D is defined as:
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F (D,λp, λm) =
D
∑

d=−∞

e−(λp+λm)

(

λp

λm

)
d
2

J|d|(2
√

λpλm); d ∈ Z (3.6)

where λp and λm are the normalized read start rates of TEX+ and the TEX− library, re-

spectively. Furthermore, 1−F (D,λp, λm) represents the probability that a difference of more

than D read starts is observed given the normalized read start rates λp and λm. Using the

derived statistical model a probability value (p-value) can be assigned to any observed read

start difference along the genome.

A sliding window approach can be used to measure the significance of one genomic position

t times. In other words a sliding window of size x is shifted by an offset of y nucleotides

along the genome and each position is scored t = x
y
times. Multiple testing of each position

is corrected by:

p = t

√

√

√

√

t
∏

i=1

pi (3.7)

The sliding window approach stabilizes the determined p-values and ensures that the signifi-

cance of a TSS is not directly dependent on the chosen window size.

For the analyzed XCV data set a TSS is defined as a genomic region of five nucleotides where

at least three sequencing reads start. Furthermore, a gradient like behavior of the read end-

ings is enforced so that not all reads stop at the same position. Using a window size of 500

nt, an offset of 50 nt all TSS with a p-value equal or less than 0.05 are reported.

In total, 1,372 chromosomal TSSs and 49 TSSs on the large plasmid pXCV183 of XCV were

identified. The data confirm TSSs determined previously for selected pathogenicity genes,

e.g., hrcU and hrpB1 [Fenselau & Bonas 1995, Koebnik et al. 2006]. TSSs were classified into

four categories including i) primary TSSs that are located up to 300 bp 5’ of an annotated

translation start, ii) internal TSSs within an annotated CDS, iii) antisense TSSs that map to

the opposite strand of CDSs ± 100 bp and iv) orphan TSSs that do not belong to the first

three categories. The majority of the TSSs are primary TSSs (831) and probably correspond

to the 5’ end of mRNAs. As illustrated in Figure 3.9 B, TSSs can belong to more than one

category, e.g., the primary TSS of XCV0523 is also antisense to XCV0522. Interestingly,

10% (86/831) of all primary TSSs are also classified as internal. Thus, some neighboring

CDSs previously assumed to be co-transcribed as part of a polycistronic mRNA can also

be transcribed from alternative promoters. As illustrated for XCV0522 (Figure 3.9A), we

identified 71 TSSs which are located within the first 50 bp of annotated CDSs suggesting

that previously annotated translation starts have to be revisited. Furthermore, 345 TSSs
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Figure 3.9. Identification of TSSs, promoter elements and analysis of 5’ UTRs. A) Distribu-

tion of dRNA-seq reads at a chromosomal locus of XCV. Annotated CDSs and RNAcode

high-scoring segments are highlighted in green and blue, respectively. Sequencing reads of

TEX− (black) and TEX+ (red) are shown on top for the forward strand and below for

the reverse strand. TSSs and corresponding classes are indicated in red. B) Venn diagram

illustrating TSS classes. TSSs found upstream (max. 300 bp) of coding sequences are

classified as primary. Internal TSSs are found within and antisense TSSs on the opposite

strand of genes (± 100 bp). Orphan TSS do not belong to one of the other classes. C) TSS

mapping identified a T/A-rich promoter element for 1,205 of 1421 TSSs. The histogram

depicts the position of the conserved sequence pattern relative to the annotated TSSs at

position +1. D) 5’ UTR length distribution. The x-axis is split into linear (0-50) and

logarithmic (51-300) scales. The top of the histogram gives the percentage of leaderless

(≤ 10 bp), short (≤ 50 bp) and longer UTRs (between 50 and 300 bp).
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are located antisense to annotated genes. Interestingly, 41% of these TSSs are also classified

as primary TSSs, including 16 TSSs that correspond to overlapping mRNAs in an antisense

orientation. 49 antisense TSSs are positioned in the 3’ region (± 100 bp) of annotated sense

genes.

3.3.2 Promoter and 5’ UTR analysis

Promoter regions (50 nt upstream of all annotated TSS) and 5’ UTRs (sequence between

primary TSS and the corresponding CDS), were scanned with MEME for regulatory motifs.

We found only a weakly conserved T/A-rich motif in the -10 region, see Figure 3.9. Surpris-

ingly, other conserved promoter elements and a Shine-Dalgarno motif are missing. The later

observation is consistent with a recent study by Nakagawa et al. [2010]. They analyzed the

evolutionary process of translation initiation in prokaryotes and found that a SD-initiated

translation in xanthomonads is rather unlikely.

Further analysis of 5’ UTRs revealed an unexpected size diversity (Figure 3.9D). In XCV,

the majority of 5’ UTRs appears to be smaller than 50 bp which is characteristic for bacte-

ria [Sorek & Cossart 2010]. Surprisingly, 14% of the mRNAs (118 of 831) are leaderless, their

5’ UTR consisting less than 10 bp. Transcription of 82% of the leaderless mRNAs starts with

AUG which was shown to be essential for stable ribosome binding to leaderless transcripts

in E. coli [Brock et al. 2008]. This is in good agreement with the missing SD sequence and

further supports the assumption of alternative mechanisms of ribosome guidance.

3.3.3 XCV encoded sRNAs

The XCV genome was scanned for known RNA regulators using the Rfam Database and

the provided Perl script rfam scan.pl. Seven riboswitches (FMN, SAH, Glycine, SAM,

Cobalamin, TPP, yybP-ykoY) and ubiquitous RNAs (e.g. RNaseP, SRP, tmRNA, 6S-RNA)

were identified. Based on the dRNA-seq data, the majority of these RNAs were strongly

expressed. Opposite to the 6S RNA gene we found a highly expressed short region presumably

corresponding to pRNA transcripts [Wassarman & Saecker 2006].

For experimental validation of sRNA candidates, our collaborators (Ulla Bonas’s lab, Halle)

performed Northern blot analysis. Using hrpG and hrpX (deletion) mutant strains the po-

tential co-regulation of sRNAs with the T3S system was evaluated. Northern hybridiza-

tions confirmed 24 sRNAs, eight of which correspond to antisense RNAs, termed asX1-7 and

PtaRNA1. The remaining 16 sRNAs mapped to intergenic regions and were termed sX1-15

and 6S. Intriguingly, three sRNAs (sX15, asX6, asX7) are encoded on the large plasmid, two
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of which (asX7 and sX15) are in antisense orientation to each other. Interestingly, expression

of eight sRNAs was affected by the key regulators of hrp gene expression, HrpG and HrpX,

suggesting a role of these sRNAs or their targets in the interaction of XCV with the plant.

HrpX-dependent induction of sRNA expression was observed for asX4, sX5, sX8 and sX12,

whereas sX11 appeared to be HrpG/HrpX-dependently repressed.

In general, the dRNA-seq data and Northern blots suggest that XCV sRNAs do not ac-

cumulate as primary species but undergo growth-phase dependent processing. However, in

most cases the apparent sizes of full-length and processed sRNAs in Northern blots were

in agreement with the dRNA-seq data. In addition to full-length and processing products,

Northern blots detected unexpectedly long signals, up to 900 nt, for the antisense RNAs asX1,

asX2, asX3, asX6 and asX7. These signals may be caused by alternative termination of tran-

scription. The sequencing data also suggest that sX7, sX13 and sX14 represent processing

products of longer transcripts since reads mapping to these loci are predominantly found in

the TEX− library, and no TSS was identified.

Phylogenetic distribution of sRNAs

While sX3 and asX5 are unique for XCV, homology searches revealed that 10 sRNA genes are

exclusively found in sequenced Xanthomonas species that encode a hrp-T3S system. Four of

the latter sRNAs and asX5 were co-regulated with the T3S system. Two intergenic sRNAs,

sX1 and sX10, are highly similar in sequence and structure. Three additional homologous

genes are present in the XCV genome, expressed and might therefore be considered as an

sRNA family. As three to six copies of members of this gene family are found in other

Xanthomonas species, we propose a functional redundancy of the respective sRNAs. A rather

erratic phylogenetic distribution was observed for sX8 and PtaRNA1 since homologs are found

in β- and γ-proteobacteria. Interestingly, this holds true also for the genes adjacent to both

RNAs which suggests a common evolutionary origin of this region.

Plasmid transferred antisense RNA (PtaRNA1)

XCV encodes a constitutively expressed small RNA, which we designate PtaRNA1, “Plasmid

transferred antisense RNA”. The superposition of the individual reads revealed a small RNA

encoded adjacent to the trbL (XCV2162) gene. Expression analysis revealed a constitutive

expression with respect to the tested growth phases. Interestingly, two bands which indicate

procession of the full length PtaRNA1 are detected in the exponential but not in the stationary

growth.
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Figure 3.10. A) Consensus secondary structure model of PtaRNA1 based on the depicted

seed alignment. The structure is highly stable (MFE −37.06 kcal/mol) and supported by

various compensatory mutations within the stem on the right-hand side. B) Amino acid

alignment of XCV2162 homologs. The alignment shows various totally (indicated by ‘∗‘)

and by substitutions (indicated by ‘:‘ and ‘.‘) supported and therefore conserved columns.

The protein topology of a trans-membrane domain, predicted by MEMSAT3 [Nugent &

Jones 2009] is indicated as well. ‘+‘ marks inside loop, ‘∼‘ outside loop, ‘O‘ outside

helix cap, ‘X‘ central trans-membrane helix segment and ‘I‘ inside cap. The truncated

Verminephrobacter sequence was not used for the calculation of the conservation track.

C) Phylogenetic tree based on PtaRNA1 alignment (similar for XCV2162 alignment, data

not shown). Class of the “host” species is shown by the symbols on the right hand side.

Numbers indicate bootstrap values of the inner nodes.
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PtaRNA1 shows an erratic phylogenetic distribution with occurrences on chromosomes in a

few individual strains distributed across both β- and γ-proteobacteria, (Figure 3.10). Con-

spicuously, ptaRNA1 was not found in other closely related genomes, e.g. other strains of

Burkholderia, Pseudomonas, or Xanthomonas. The phylogeny of the PtaRNA1 sequences

is not congruent with the phylogeny of their “host” species (Figure 3.10). This distin-

guishes PtaRNA1 from most other sRNAs. Moreover, a homologous gene located on plasmid

pMATVIM-7 of P. aeruginosa is found.

PtaRNA1, therefore, exhibits all hallmarks of a novel RNA antitoxin that proliferates by

frequent horizontal gene transfer. Although distinct toxin-antitoxin systems have been found

in widely separated bacterial groups (e.g. hok/sok in E. coli and txpA/ratA in B. subtilis

[Silvaggi et al. 2005]), each of the known examples exhibits a very narrow phylogenetic dis-

tribution. All ptaRNA1 homologs are located antisense to a putative toxin, which in turn is

never encountered without the small RNA, see Figure 3.10.

Possible targets of sX13

Expression of sX13 as investigated by means of cDNA reads is similar to that of housekeeping

RNAs (e.g. tmRNA). Further analysis of the HrpG-dependently repressed sX13 RNA revealed

a highly conserved and thermodynamically stable (MFE −56.09 kcal/mol; z-score -6.52)

secondary structure, see Figure 3.11. sX13 exposes three highly conserved C-rich loops, that

are likely to bind possible targets. The Staphylococus encoded RNAIII as well as E. coli ’s

OxyS are known examples that form multiple contacts with their mRNA targets. Multiple

interaction sites increase specificity of both binding partners and might have stabilizing effects

for the sRNA-mRNA complex. Therefore we suggest a zipper-like interaction of sX13 with

its mRNA targets, see Figure 3.11.

Target prediction approaches, which are applicable on a genome-wide scale (e.g. RNAup

[Mückstein et al. 2006], targetRNA [Tjaden et al. 2006]) focus on the most stable interaction

between ncRNA and the mRNA target. We, therefore implemented an iterative approach

based on the thermodynamics of RNA-RNA interaction calculated by RNAup.

Among the high scoring (by means of binding energy) targets with three interaction sites

we found: putative membrane binding proteins, transcriptional regulators (e.g. FurR),

NAD/FAD binding protein and the algR mRNA, part of a two component system. Interest-

ingly, the transcriptional regulator AlgR controls a variety of processes, including hydrogen

cyanide production [Carterson et al. 2004], twitching motility [Whitchurch et al. 1996; 2002],

biofilm formation and quorum sensing [Morici et al. 2007] in P. aeruginosa. The multiple
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Figure 3.11. Structural conservation and a zipper-like interaction model of sRNA sX13.

A) Multiple sequence alignment (top) and the resulting consensus secondary structure

(bottom) of sX13. sX13 exposes three highly conserved C-rich loops. B) Proposed zipper-

like interaction model of sX13 and its mRNA targets. Upon the first contact between

sRNA and mRNA additional interactions stabilize the complex.

interaction model of sX13 and the predicted mRNA-targets need, of course, experimental

validation. Furthermore it cannot be excluded that sX13 interacts with a protein instead of

mRNAs.

3.3.4 Short peptides

To identify conserved short protein-coding genes in XCV, a multiple sequence alignment of

closely related species was calculated with the multiz package. The alignments were analyzed

for potential coding segments using RNAcode (see Section 4.2 for details). In total 24 potential

short ORFs were predicted, twelve of which are further supported by dRNA-seq reads. One

example is sX6 which has a predicted coding capacity of 80 amino acids. A protein of the

predicted molecular mass (∼12 kDa) was detected in protein extracts of XCV. Besides sX6,

TSSs for two of the predicted ORFs with a coding capacity of 36 and 67 amino acids were

found. Interestingly, homologs of genes for the three small proteins are exclusively found in

xanthomonads encoding a hrp-T3S system.
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The dRNA-seq based analysis of XCV summarized here led to remarkable insights into the

transcriptional landscape of this important model plant pathogen. In contrast to earlier

dRNA-seq approaches, which were mostly based on laborious manual inspection of sequenc-

ing data [Jäger et al. 2009, Albrecht et al. 2009, Sharma et al. 2010], we established a fully-

automated computational approach for the identification of TSSs that is based on the sta-

tistical differences of read starts in both sequenced cDNA libraries. Besides facilitating the

analysis of TSSs, this approach provides a meaningful measure of statistical confidence and

ensures that predictions are comparable between different studies. Globally fixing certain

parameters, such as window size, minimum coverage, and a p-value, may lead to differences

between the computational annotation and manual inspection of individual TSSs. Further-

more, TSSs that are inactive under the conditions interrogated will of course remain invisible.

However, the analysis of the TSS map and the result of all subsequent analysis (e.g. massive

antisense transcription, 24 validated sRNAs, detection of previously missed short peptides)

revealed an unexpected complexity of XCV transcript organization.

74



3.3. Genome-wide transcript analysis of
Xanthomonas campestris pv. vesicatoria str. 85-10

75



3. RNomics and Deep Sequencing

76



3.4. Summary

3.4 Summary

All three studies recovered highly expressed housekeeping RNAs (e.g. tmRNA, RNase P

RNA). Additional sRNA candidates were identified by the applied sequencing approach and

validated by independent experiments. Most of the detected sRNAs show a rather narrow

phylogenetic distribution and are group or species specific. Albeit H. pylori lacks a Hfq

homolog we found ∼60 novel sRNAs. Inspection of sRNA candidates revealed the existence

of short protein-coding genes in all three studies. These loci are likely to be small toxic

proteins or could represent novel dual-functional RNAs.

Especially the two presented dRNA-seq analysis revealed an unexpected complexity of tran-

script organization in XCV and H. pylori. We found massive antisense transcription in both

species. Northern blot analysis detected extremely long signals (up to 900 nt) of antisense

transcripts in XCV. However, the regulatory function of these (long) antisense transcripts

remains to be analyzed. Bacterial promoter elements usually contain specific sequences for

binding of RNAP. Thus, we expected to detect similar sequence motifs (-35 TTGACA and -10

TATAAT boxes) as those known from E. coli. Intriguingly, neither in H. pylori nor XCV the

expected promoter elements were detected. Furthermore, leaderless mRNAs are considered

rare we found dozens of these transcripts in both studies.

Taken together, the results presented clearly indicate the necessity to revise our current

understanding of prokaryotic transcriptional and translational processes.
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4
How to assess

(non-)coding potential

As shown in Chapter 3, experimental approaches are power full tools to detect and verify new

RNA transcripts. Typical experimental settings are, however, not able to cover the complete

transcriptome of the species under investigation. This is mainly caused by the expenditure

of time and costs of experiments. Furthermore, RNAs which are only expressed in specific

developmental stages or under certain stress conditions, are likely to be missed. Computa-

tional approaches represent an alternative. Once a method is developed and implemented it

is (in principle) applicable to any organism. Our recent update of RNAz and the implementa-

tion of RNAcode represent good examples and their underlying methods are described in the

following.
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4.1 RNAz 2.0: improved non-coding RNA detection

RNAz is a widely used software package for de novo detection of structured RNA regulators in

comparative genomic data. RNAz 1.0 has been used successfully to map structural ncRNAs

in a wide variety of genomes [Washietl et al. 2005, Missal et al. 2005; 2006, Rose et al. 2007;

2008b, McGuire & Galagan 2008]. A large number of these predictions have also been verified

experimentally [Weile et al. 2007, del Val et al. 2007, Sonnleitner et al. 2008, Mourier et al.

2008, Schilling et al. 2010]. Moreover, the generic approach and many algorithmic details

developed for RNAz 1.0 have been re-used, extended, and adapted to other problems in the

field of RNA gene-finding [Gardner et al. 2005, Hertel & Stadler 2006, Uzilov et al. 2006,

Reiche & Stadler 2007, Sandmann & Cohen 2007, Hertel et al. 2008, Xu et al. 2009].

Four years of experience have not only demonstrated the applicability of the approach, but also

helped us to identify limitations of the current implementation. In our contribution [Gruber

et al. 2010], we described a major update of the RNAz program. It is based on the results of

two follow-up studies [Gruber et al. 2008, Gesell & Washietl 2008], on our experiences gained

during many real-life applications, and last but not least, on the received user feedback.

4.1.1 Methods

Overview of the RNAz algorithm

RNAz predicts functional RNA structures on two independent criteria: (i) thermodynamic

stability and (ii) structural conservation.

A common way to express thermodynamic stability is in terms of a z-score. This is simply

the number of standard deviations by which the minimum free energy (MFE) deviates from

the mean MFE of a set of randomized sequences with the same length and base composition.

A negative z-score thus indicates that a sequence is more stable than expected by chance.

As this procedure involves energy evaluation of a large set of random sequences it is not

applicable for large-scale genomic screens. RNAz instead uses support vector regression (SVR)

to estimate the mean and the standard deviation based on the nucleotide composition of a

sequence.

RNAz evaluates evolutionary conservation of RNA structures in terms of the structure con-

servation index (SCI). RNAz measures structural conservation by calculating the ratio of the

consensus folding energy to the unconstrained folding energies of the single sequences. Since

the postulation of the SCI, it has been a major point of criticism that this measurement evalu-

ates structural conservation on the energy level rather than on the RNA structures themselves.
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However, it has been shown that the SCI is on average the most powerful method and that it

is only outperformed by other approaches in the high sequence identity range [Gruber et al.

2008].

Both criteria are combined by a support vector machine model that classifies the input align-

ment as structural RNA or other. A graphical overview of the RNAz algorithm is depicted in

Figure 4.1. In the following, independent refinements that significantly improved the overall

prediction accuracy of the RNAz approach are described.

Figure 4.1 (following page). Outline of the RNAz 2.0 work-flow and algorithm. Large ge-

nomic multiple alignments are processed into smaller alignments. This filtering procedure

involves several steps: (i) overlapping windows given a fixed window and step size are cre-

ated, (ii) sequences that contain too many gaps are removed and (iii) from the remaining

sequences only those are kept that meet a predefined average pairwise identity thresh-

old. The resulting alignments are then separately processed by RNAz. First, structure

and energy predictions are performed for both the single sequences and the alignment.

These results can be immediately combined to calculate the SCI as the measure of the

evolutionary conservation of the RNA sequences in the alignment. In a second step, the

mean free energy and the standard deviation used for the calculation of the z-score are es-

timated. For this purpose descriptors based on the nucleotide composition (G+C content,

A/U ratio, C/G ratio, all 16 di-nucleotide frequencies and the length of the sequence) are

calculated for each sequence. If descriptors are within the training boundaries they are

passed to the corresponding support vector regression (SVR). Numbers in the SVR boxes

indicate the G+C content the particular SVR is trained on. Otherwise, the mean and

the standard deviation are evaluated explicitly by folding of 1,000 randomized sequences

with the same di-nucleotide composition. In a final step the average z-score of the se-

quences, the SCI and the normalized Shannon entropy of the alignment are passed to

the classification SVM, which returns a probability estimate that the given alignment har-

bors thermodynamically stable and/or evolutionary conserved RNA secondary structures.

Parts that are highlighted in dashed boxes are new or modified components of RNAz 2.0

implementation. RNAfold and RNAalifold are part of the Vienna RNA Package [Hofacker

2009]. See text for a detailed explanation of the formulas.
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z-score regression for di-nucleotide shuffled sequences

As in RNAz 1.0, we use support vector regression (SVR) to compute z-scores for folding en-

ergies because the direct approach via repeated shuffling and folding is too costly for genome-

wide applications. The critical step is, of course, the adequate training of the SVR. Hence, the

complete sequence range in means of nucleotide composition and lengths should be covered

by the training data.

To estimate the mean and standard deviation of folding energies for mono-nucleotide shuffled

sequences it is feasible to sample uniformly the four mono-nucleotide frequencies and to vary

the length of the sequences. This method cannot be extended that easily for di-nucleotide

shuffled sequences. One has to consider the much larger space of di-nucleotide compositions

that is occupied by sequences of practical interest. In order to efficiently train the regression

engine of RNAz 2.0 we first apply uniform sampling to cover the mono-nucleotide space. Syn-

thetic sequences of length 50 with G+C content, A/U ratio, and C/G ratio ranging from 0.20

to 0.80 in steps of 0.05 were generated. For each of these start sequences we then generated

500,000 mono-nucleotide shuffled sequence. This initial set can be generated very quickly and

served as the basis for the selection of a much smaller, approximately evenly spaced, training

set with representative di-nucleotide frequencies. Sequences of different lengths where then

generated by concatenating the initial set. Additional filtering and the generation of repre-

sentative sets resulted in a total of 1,155,737 training instances. For each of these instances,

we generated 1,000 randomized sequences by the Altschul-Erikson algorithm [Altschul & Er-

ickson 1985] with the same di-nucleotide composition and used RNAfold [Hofacker et al. 1994]

to evaluate their folding free energy.

More than one million training instances are by far too many to be used in SVM training

procedures in reasonable time. For this reason the training data was split into different ranges

of the G+C content (see Figure 4.1) to guarantee efficient training and fast prediction. This

comes at the price of increased memory consumption but keeps the number of support vectors

comparable to the approach used in RNAz 1.0. The SVM library LIBSVM was used to train

regression models for the mean and the standard deviation for each subsets. As input features

we used the G+C content, the A/U ratio, the C/G ratio, all 16 di-nucleotide frequencies and

the length of the sequence scaled to the interval [0,1]. The regression for estimating the mean

free energy was trained to learn energy per nucleotide, while the standard deviation was not

scaled. The standard grid search approach was used to find optimal combinations for SVM

parameters.
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Training data generation and training of the SVM classifier

At the time RNAz 1.0 was implemented only a few RNA families were known and well suited

for the SVM training. This, of course, limits the predictive power of the approach. For the

training and test sets of the new RNAz version 93 RNA families, available in the Rfam 9.1

database [Gardner et al. 2009], were selected based on their signals for thermodynamic stabil-

ity and structural conservation. The RNAz 2.0 training set covers a broad range of different

RNA families including major classes such as tRNAs, snoRNAs, microRNAs, riboswitches,

and bacterial regulatory RNAs.

For each RNA family, a set of alignments with varying numbers of sequences and average

pairwise identities was generated. Rfam full alignments were used if they contained less than

300 sequences, otherwise we used the seed alignments. For our purpose the use of at most

300 sequences proofed well to generate a set of alignments over the desired range of average

pairwise identities. Rfam alignments were utilized as a source to retrieve family members

of a particular ncRNA class and only extracted, ungapped RNA sequences were used for

subsequent analysis.

First, Rfam alignments were filtered to remove nearly identical sequences, so that the training

alignments contained sequences with at most 98% identity. The sequences were then re-

aligned using ClustalW. For each of these ncRNA family alignments we then proceeded as

follows: for each number of sequences from 2 to 15 we generated at most 10 alignments

with a randomly chosen average pairwise identity between 50 and 98% and with a maximum

relative difference in sequence lengths of 65% utilizing rnazWindow.pl which is part of the

RNAz analysis pipeline [Washietl 2007].

To ensure that this set of positive training examples contained only instances with good

structural conservation signals we filtered alignments by using tree editing distances between

the structures of the sequences in the alignment. Ordered, rooted trees can be deduced

from the dot-bracket notation of RNA secondary structures. Tree editing defines a metric

in the space of trees by a set of operations (deletions, insertion and relabeling of nodes) and

hence can be used to calculate distances between RNA secondary structures [Gruber et al.

2008]. For each alignment we extracted sequences, removed gaps and calculated the aver-

aged pairwise tree editing distance using RNAdistance. We repeated this for a set of 100

randomized alignments and calculated an empirical p-value as a measure of structural con-

servation. Alignments with a p-value higher than 0.05 were removed from the training set.

Alignments retained after this filtering procedure were re-aligned with ClustalW for appli-

cation to sequence-based alignments. It is a well known fact that sequence-based alignment

85



4. How to assess (non-)coding potential

methods fail to give high quality alignments regarding RNA secondary structures in low av-

erage pairwise identity ranges [Uzilov et al. 2006]. We therefore re-aligned the training set

with LocARNATE to generate an additional set of sequence/structure-based alignments.

Negative instances of the training set were generated by shuffling using multiperm [Anandam

et al. 2009] v. 0.9.3 if the normalized Shannon entropy of the alignment [Gruber et al. 2008]

was less than 0.50. Otherwise, alignments were simulated using SISSIz [Gesell & Washietl

2008] to ensure full randomization for the more diverse alignments where shuffling can become

inefficient. The final training set was composed of 10,538 alignments for each the positive and

the negative class.

The RNAz 2.0 SVM classifier uses three features to detect structured non-coding RNAs: (i)

the average minimum free energy z-score (z̄) estimated from a di-nucleotide shuffled back-

ground, (ii) the structure conservation index (SCI) and (iii) the normalized Shannon entropy

(H) of the alignment as a measure for the content of evolutionary information.

Consider an alignment A consisting of N sequences. Let Ex denote the minimum free energy

of sequence x, and let µx and σx be the mean and standard deviation, respectively, of the

folding energies of a large number of random sequences of the same length and same di-

nucleotide composition as x. The averaged z-score of the alignment A is defined as

z̄ =
1

N

∑

x∈A

Ex − µx

σx

The SCI of alignmentA is given as the fraction of the consensus folding free energy (Econsensus)

to the average of the folding free energies of the single sequences:

SCI =
Econsensus

1
N

∑

x∈A

Ex

The normalized Shannon entropy H of an alignment A of RNA sequences over the alphabet

Σ = {A, C, G, U, -} is defined as the sum of the Shannon entropy of the individual columns

divided by the length of the alignment denoted by L:

H = −
1

L

L
∑

i

∑

α∈Σ

piα log2 piα

The probability piα is approximated by the observed frequency of character α in alignment

column i (normalized by the number N of sequences in the alignment). All features were

scaled to a range of [-1,1]. Standard grid search combined with a 10-fold cross validation was

applied to find optimized SVM parameters. Among the models with the best cross-validation

accuracy (top 20) we chose the model that showed best performance on an independent test
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set created the same way as the training set. The output of the final classification SVM is

a probability estimate that the input alignment contains thermodynamically stable and/or

structurally conserved RNA sequences.

4.1.2 Results

Di-nucleotide based z-scores
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Figure 4.2. z-scores calculated by support vector regression in comparison with z-scores

determined from 1,000 random samples preserving di-nucleotide frequencies for 10,000

sequences from the human ENCODE regions. Correlation of z-scores is 0.996 and the

mean absolute error is 0.076.

Accuracy of the z-score regression for di-nucleotide shuffled sequences was evaluated on 10,000

randomly chosen sequences of variable length from 50 to 200 nt of the human ENCODE re-

gions [ENCODE Consortium 2007] (Figure 4.2) and genomic sequences of D. melanogaster

and E. coli. The mean absolute error (MAE) and the correlation (R) of z-scores calculated

by SVR compared to z-scores determined from 1,000 random samples is 0.075 and 0.996, re-

spectively. Comparisons of z-scores determined from 1,000 di-nucleotide shuffled sequences to

100 di-nucleotide shuffled sequences (MAE= 0.107, R = 0.992) and to 1,000 mono-nucleotide
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shuffled samples (MAE= 0.420, R = 0.916) clearly demonstrate that our method is a suitable

approach for fast and efficient estimation of di-nucleotide controlled z-scores. RNAz 1.0 also

showed restrictions on the base composition because of the limited training range of the SVR.

This limitation is now overcome by explicit generation of shuffled sequences once the base

composition of a sequence is out of the training range. Since boundaries have been chosen

broadly (e.g. G+C content from 20 to 80%) this will only apply in a small minority of cases.

New training sets and improved classification model

The new RNAz 2.0 algorithm now uses the average z-score of the sequences in the alignment

based on a di-nucleotide background model, the SCI and the normalized Shannon entropy

as features in the final classification model. Moreover, a much bigger training set covering a

broader range of RNA families has been used for the revised version of RNAz.

To evaluate the predictive power of RNAz 2.0 we chose a test set of 4,303 alignments of

structural RNA families used in a previous study [Gesell & Washietl 2008]. This test set is

especially well suited as it contains randomly chosen genomic regions from vertebrate align-

ments as negative controls. Although both versions perform well on this test set, RNAz 2.0

clearly outperforms version 1.0 in the high specificity range (Figure 4.3). For example, at

the generally used 0.01 false-positive cutoff, RNAz 2.0 shows 0.899 sensitivity compared to

0.688 in the old version.

By using structural alignments one can expect an improvement in discrimination capability

of the SCI for alignments with low sequence similarity [Uzilov et al. 2006]. We used a test set

is composed of 2,455 alignments of various ncRNA families with an average pairwise identity

between 30 and 70%, as well as a negative set consisting of 2,455 alignments derived by

randomization of reference alignments with multiperm or SISSIz. As depicted in Figure 4.3

structural alignments improve the overall predictive power of RNAz especially in the high

confidence interval.

Recent studies (e.g. Washietl et al. [2007]) have shown that RNAz suffers from a high false

discovery rate (FDR). We therefore evaluated the performance of both versions on 193,634

alignments retrieved from the human ENCODE regions. A di-nucleotide background model

was generated with SISSIz [Gesell & Washietl 2008] and all hits detected by RNAz on this

data set were considered to be false positives. While RNAz 1.0 shows a very high FDR of

around 80%, the FDR of RNAz 2.0 is much lower being around 54% for high confident hits,

see Table 4.1.
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Figure 4.3. ROC curves for the RNAz prediction accuracy. A) Comparison of RNAz 2.0

classification (black) vs. RNAz 1.0 classification (orange) on a previously published data

set for the evaluation of non-coding RNA gene finders [Gesell & Washietl 2008]. B) RNAz

2.0 prediction accuracy on sequence-based alignments (black) vs. structural alignments

(red). A significant improve of the overall predictive power of RNAz 2.0 is achieved by

use of structural alignments. Sequence-based alignments were generated with ClustalW,

while structural alignments were generated with LocARNATE. Insets highlight the main

differences within the high specificity regions.
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Table 4.1. Comparison of the false discovery rate (FDR) based on ENCODE regions and a di-

nucleotide background model for low (p-value > 0.5) and high (p-value > 0.9) confidence

hits. A hit corresponds to a single alignment.

RNAz 1.0 RNAz 2.0

# low conf. # high conf. # low conf. # high conf.

ENCODE regions 17,814 6,854 6,880 2,259

background 14,489 5,596 4,090 1,219

estimated FDR 81% 82% 59% 54%

Computational speed

The performance of RNAz 2.0 in comparison to RNAz 1.0 was tested on 50,000 randomly

chosen alignments from the ENCODE data set. Alignment length was 120 nucleotides and

alignments contained at most six sequences. Experiments were conducted on an Intel Xeon

2.40GHz CPU. For each alignment both reading directions were examined, resulting in a

total of 100,000 alignments that had to be scored. The execution time required by RNAz 1.0

was 202 min, RNAz 2.0 without explicit shuffling was 252 min and RNAz 2.0 using explicit

shuffling was 1,230 min. Although explicit shuffling had to be used for only 1% of the sequences

(5,524/549,210), it comes with an tremendous overhead increasing the run time of RNAz 2.0

almost 5-fold. We extracted those alignments where explicit shuffling was used and compared

the classification probability to the one derived from calling RNAz without explicit shuffling.

For 96% of the cases the change in classification probability was less than 1%. For this data

set the maximal observed difference was 0.21. In general, we observed larger differences in

the probability range from 0.2 to 0.8 than in the regions close to 0 or 1.

4.1.3 Conclusion

The presented major updates of the RNAz algorithm clearly improved the prediction accuracy

of this widely used approach. Evaluation of thermodynamic stability has been changed from a

mono- to a di-nucleotide background model. This directly translates into a significantly lower

false discovery rate. In addition to the di-nucleotide z-score, the overall prediction accuracy

is improved by a combination of the use of a new training set and the normalized Shannon

entropy as a measure of sequence variation. Furthermore, the updated version is not any

more restricted to limitations concerning the base composition or number of sequences in the

input alignment.
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The generation of structural alignments is computationally expensive but we showed that

they can improve the RNAz classification power. This is true in particular for alignments of

low average pairwise identity. Given that the overall computational complexity of LocARNATE

is O(n4), the routine use of structural alignments on a genome-wide scale is still out of reach,

at least when off-the shelf hardware is used. The re-scoring of positively classified hits of

a sequence-based RNAz screen after re-aligning them with a structural aligner may help to

increase the overall accuracy, in particular for relatively poorly conserved alignment slices.

One could also use RNALfold [Hofacker et al. 2004] or the alignment version RNALalifold

[Athanasius F Bompfünewerer Consortium et al. 2007] to preselect genomic loci that show

signature of increased thermodynamic stability. This would significantly reduce the number of

alignments to be screened by RNAz and therefore makes sequence/structure based classification

possible.
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4.2 RNAcode: robust discrimination of coding and non-coding

RNAs

Distinguishing protein-coding from non-coding sequence is the first and most crucial step in

genome annotation. While the coding regions are subsequently investigated for properties of

their protein products, a completely different toolkit is applied to the nucleic acid sequences

of the non-coding regions. The quality of the analysis of coding potential therefore also affects

the annotation of putative ncRNA genes.

The detection of protein-coding genes in genomic DNA data is a well studied problem in

computational biology [Burge & Karlin 1998]. Using machine learning techniques, sophisti-

cated models of genes have been built that can be used to annotate whole genomes [Brent

2008] and that have been constantly improved over the years [Brent 2008, Flicek 2007]. How-

ever, the repeated detection of unannotated short peptides in our transcriptome studies (see

Chapter 3) and the fact that classical gene finders suffer from the lack of training data of

verified short peptides, pointed us to new challenges beyond classical gene finding. A reliable

analysis of the coding potential of (expressed) genomic regions is an essential step preceding

any downstream analysis.

In this section we introduce RNAcode, a program to detect local protein-coding segments

in multiple sequence alignments [Washietl et al. 2011]. In a cooperation with Martin von

Bergens group at the UFZ Leipzig we showed how RNAcode in combination with a newly

developed protocol for mass spectrometry experiments [Müller et al. 2010] can improve protein

annotation even in model organisms like E. coli.

4.2.1 Methods

Algorithm

Evolutionary changes in the nucleotide sequence of coding genes typically preserve the en-

coded protein. This type of negative (stabilizing) selection leads to frequent synonymous and

conservative amino acid mutations, insertions/deletions preserving the reading frame, and

the absence of premature stop codons. Our algorithm integrates this information in a unified

scoring scheme. It takes as input a multiple nucleotide sequence alignment including a refer-

ence sequence, which is the one we wish to search for potential coding regions and predicts

local segments that show statistically significant protein-coding potential. Figure 4.4 shows

an overview of the algorithm that is described in more detail in the following sections.
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   A  R  N  D  C  Q  E  

A  4 -1 -2 -2  0 -1 -1  

R -1  5  0 -2 -3  1  0 

N -2  0  6  1 -3  0  0 

D -2 -2  1  6 -3  0  2 

C  0 -3 -3 -3  9 -3 -4 

Q -1  1  0  0 -3  5  2 

E -1  0  0  2 -4  2  5 

G  0 -2  0 -1 -3 -2 -2 

Multiple nucleotide 

sequence alignment
Neutral nucleotide 

background model (HKY85)

Protein similiarity 

matrix (BLOSUM)

High scoring segments

Empirical score 

distribution

Normalized substitution score

+

p-values

Simulation

Gap scoring scheme

DP algorithm

Figure 4.4. Overview of the RNAcode algorithm. First, a phylogenetic tree is estimated

from the input alignment including a reference sequence (darker line) under a non-coding

(neutral) nucleotide model. From this background model and a protein similarity matrix,

a normalized substitution score is derived to evaluate observed mutations for evidence

of negative selection. This substitution score and a gap scoring scheme is the basis for

a dynamic programming (DP) algorithm to find local high scoring coding segments. To

estimate the statistical significance of these segments a background score distribution is

estimated from randomized alignments that are simulated along the same phylogenetic

tree. The parameters of the extreme value distributed random scores are estimated and

used to assign p-values to the observed segments in the native alignment.

Amino acid substitutions

Consider two aligned nucleotide triplets a and b that correspond to two potential codons.

To see if they encode synonymous or biochemically similar amino acids, we can translate

the triplets and use amino acid similarity matrices such as the widely used BLOSUM series

of matrices [Henikoff & Henikoff 1992]. Let Aa and Ab be the translated amino acids of the

triplets a and b, respectively, and s(Aa, Ab) their BLOSUM score. In absolute terms this score

is of little value: highly conserved nucleotide sequences will get high amino acid similarity

scores upon translation even when they are non-coding.

We need to ask, therefore, what is the expected amino acid similarity score assuming that the
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two triplets evolve under some non-coding (neutral) model. Deviations from this expectation

will be evidence of coding potential. To this end, we estimate a phylogenetic tree for the

input alignment using a maximum-likelihood method under the well-known HKY85 nucleotide

substitution model [Hasegawa et al. 1985]. Further, we note that two aligned triplets can

have zero, one, two or three differing positions, i.e., they can have a Hamming distance

h(a, b) ∈ {0, 1, 2, 3}. It is straightforward to calculate the expected score for a given protein

matrix, a parametrized HKY85 background model and a given Hamming distance x:

〈s〉h=x =
∑

a,b
h(a,b)=x

s(Aa, Ab)πa1πa2πa3Prob(a→ b|t) (4.1)

Here a1, a2, and a3 denote the first, second, and third nucleotide in triplet a, π is the stationary

frequency in the HKY85 model, and Prob(a→ b|t) is the probability that triplet a changes to

b after some time t. The analytic expression for this probability is given by Hasegawa et al.

[1985]. The pairwise evolutionary distance t between two sequences is calculated as the sum

of all branch lengths separating the two sequences in the estimated phylogenetic tree.

Put in simple terms, the score 〈s〉 is the average score over all possible pairs weighted by

the probability to observe such a pair under our background assumption. We condition on

the observed Hamming distance h(a, b) as this reduces the effect of implicit information on

average amino acid frequencies contained in the BLOSUM matrix, and was found to give

better results. We can use this expected score 〈s〉 to normalize our observed scores s arriving

at the final protein-coding score σ for an aligned triplet:

σ = s− 〈s〉 . (4.2)

To illustrate this with an example, consider the aligned triplets GAA and GAT. The triplets

encode glutamic acid and aspartic acid, respectively, and score s = +3 in the BLOSUM62

matrix. Further, assume that under some background model the expected score for pairs with

one difference is 〈s〉h=1 = −1. The overall score is thus σ = 3 − (−1) = +4. The positive

score reflects the conservative mutation between the biochemically similar amino acids. A

synonymous mutation usually gives the strongest support for negative selection. Since it

also gives the highest scores in any protein matrix there is no need to treat it differently from

conservative mutations and we can score both types of mutations using the same rules. Under

this simple scoring scheme, the average triplet score in a coding alignment under negative

selection will be positive, while in non-coding alignments it will be 0 on average. We found

that the HKY85 substitution model accurately models non-coding regions for this particular

purpose.
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A

∆
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Figure 4.5. Examples of typical gap patterns and scoring paths in a pairwise alignment

assumed to be coding. Nucleotides are shown as blocks, codons as three consecutive

blocks of the same shading. A) A gap of length three does not change the reading frame

and in frame-aligned codons are scored with the normalized substitution score σ. B) A

single gap destroys the reading frame but gets corrected downstream by another gap. The

triplets that are out of phase because of this obvious alignment error are penalized by

the two frame-shift penalties Ω and ω. C) A single gap that, in principle, destroys the

reading frame, is interpreted as a sequence error. Penalized by a high negative score ∆,

this frame-shift is ignored and downstream codons are considered to be in phase.

Reading frames and gaps

It is straightforward to score an alignment that does not contain gaps. The alignment can

simply be translated in all reading frames and the resulting triplets assigned a substitution

score σ as described above. Real alignments, however, usually contain gaps. For the purpose

of finding coding regions, gap patterns contribute valuable information [Kellis et al. 2004].

Negative selection not only acts on the type of amino acid but also on the reading frame which

is generally preserved when insertions/deletions occur. The RNAcode algorithm incorporates

this information into the scoring scheme and, in addition, also deals with practical problems

that occur in real-life data such as alignment and sequencing errors.

The basic idea is that insertions or deletions in coding regions affect complete triplets and,

therefore, result in gap patterns with a multiple of three that do not break the coding frame

(Figure 4.5 A). We treat this kind of gap neutrally and give it a score 0. The aligned triplets

before and after the gap are in the same phase and thus can be assigned a score σ.

In real data frameshifts can also be observed in coding regions because of alignment errors.

Any gap not a multiple of three will result in a frameshift and the sequences are out of

phase. We assign a penalty score Ω < 0 for the frameshift event and each subsequent aligned

triple that is out of phase receives an additional smaller penalty ω < 0. However, in real
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Figure 4.6. Finite state automaton representing the scoring of pairwise alignments. The three

states correspond to the relative phases of the sequences. The gap pattern of each triplet

along the pairwise alignment is analyzed. If both sequences stay in the same phase (z = 0;

both triplets have the same number of gaps or one of the triplets completely consists of

gaps while the other has no gap) the state remains constant. Insertions and deletions

with z 6= 0 lead to local changes in phase that are penalized by Ω. While extensions in

the “in-frame” state S0 is scored with the normalized protein-coding score σ, extension in

each of the two “out-of-frame” states S+ and S− is penalized by ω. In/dels interpreted

as sequencing errors or true frameshifts are penalized by ∆.

coding regions such frameshifts usually get reverted soon by another gap. Consequently, only

relatively short regions are out of frame. Changing the frame back is also penalized, again by

Ω (Figure 4.5 B).

Gaps in coding regions that are not a multiple of three can also be the result of sequence errors.

This is particularly problematic for low coverage sequencing. In order not to miss substantial

parts of true coding regions that appear to be out of frame because of a single sequence error,

we allow change of the phase and penalize this event with a negative score ∆ (Figure 4.5

C). Clearly, this event should be rare and hence the penalty must be high; the condition

∆ < 2Ω must be met at least, or otherwise a sequence error event would always be chosen

as a more favorable explanation than the frameshifting gaps in the optimization algorithm.

The finite state automaton depicted in Figure 4.6 summarizes all possible transitions and the

corresponding penalties for two sequences.
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Stop codons

Under normal conditions a reading frame cannot go beyond a stop codon. To reflect this in

our algorithm stop codons in the reference sequence get a score of −∞. We allow relaxation

of this for stop codons in the other sequences because if they are of low quality erroneous

stop codons might be observed. These should not automatically destroy a potentially valid

coding region but rather be penalized with a relatively large negative score.

Calculating the optimal score for a pairwise alignment

Using the scoring scheme introduced above, we need to find the interpretation of a given

alignment as aligned codons in a particular reading frame, out-of-frame codons, and sequence

errors that maximizes the score. This is achieved by a dynamic programming algorithm which

is described in full detail in the Appendix.

Finding maximum scoring segments in a multiple alignment

To find regions of high coding potential in a multiple sequence alignment we first consider the

pairwise combinations of the reference sequence with each other sequence. In these pairwise

alignments, we calculate the optimal score of each alignment block delimited by two columns i

and j using the dynamic programming algorithm. Once the maximum scores have been found

for each pairwise alignment, we take the average of all pairs and store the optimal scores for

the blocks between any two columns i and j of the multiple alignment in a matrix Sij (see

Appendix for details). In this matrix we identify maximal scoring segments, i.e., segments

with a positive score that cannot be improved by elongating the segment in any direction.

Statistical evaluation

To assess the statistical significance of high scoring segments we empirically estimate the score

distribution of neutral alignments conditional on the phylogeny derived from the alignment

under consideration. Again, we use the phylogenetic tree estimated under the HKY85 model

as our null model. We simulate neutral alignments along this tree and calculate high scoring

segments in exactly the same way as for the native alignment. The score distribution follows

an extreme value distribution and we found that it is well approximated by the Gumbel variant

with two free parameters (Figure 4.7). Fitting this distribution allows us to calculate a p-value

for every high scoring segment actually observed. This p-value expresses the probability that

a segment with equal or higher score would be found in the given alignment by chance.
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4.2.2 Results

Classification accuracy

RNAcode’s algorithm is built on a direct statistical model that deliberately ignores any species-

specific information and does not need any training. RNAcode is thus not optimized for

the genome-wide annotation of protein-coding genes in well known model organisms. We

tested RNAcode on six different comparative test sets. These test sets were created from

genome-wide alignments [Blanchette et al. 2004, Schneider et al. 2006, Kuhn et al. 2009]. The

set consisted of alignments of E. coli with 9 enterobacteria, Methanocaldococcus jannaschii

with 10 methanogen Archaea, Saccharomyces cerevisae with 6 other Saccharomyces strains,

Drosophila melanogaster with 11 drosophilid species and three other insects, Caenorhabditis

elegans with 5 other nematode species and Homo sapiens aligned to 16 vertebrate genomes.

From these alignments, we extracted both annotated coding regions/exons and randomly

chosen regions without coding annotation. We then calculated the maximum coding potential

score and its associated p-value for each alignment. We did not include explicit information

on the reading direction, i.e., the coding regions were randomly either in forward or reverse

complement direction and both directions were scored.

A typical score distribution (Figure 4.7 A) shows that random non-coding regions generally

do not contain maximal scoring segments with scores higher than 15, whereas coding regions

show a wide range of maximal scoring segments of much higher scores. The score efficiently

discriminates coding and non-coding regions. Receiver operating curves (ROC) show the

sensitivity and specificity of the classification at different score cutoffs (Figure 4.7 B). In

general, we observe the area under the curves (AUC) of the ROCs to be close to 1, i.e.

close to perfect discrimination. Usually, the high specificity range (Figure 4.7 B, insets) is of

particular interest for large scale analysis. At a false positive rate of 0.05%, for example, we

can detect approximately 90% of coding regions in all six test sets.

Accuracy of p-value estimates

The fact that the amino acid similarity scores used in our scoring scheme are adjusted by

the expected score under a neutral null model ensures that the RNAcode score is properly

normalized with respect to base composition and sequence diversity (phylogeny). In other

words, the RNAcode score is independent of sequence conservation and G+C content. Unlike

other abstract classifiers, it is therefore possible to interpret and compare scores in absolute

terms. However, even more important is an accurate estimate of the statistical significance
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Figure 4.7. RNAcode results on comparative test sets from various species. A) Score dis-

tributions of annotated coding regions and randomly chosen non-coding regions in the

Drosophila test set. B) ROC curves for six test sets. The full curve for all ranges of

sensitivity/specificity from 0 to 1 is shown in the main diagrams. The inset depicts the

high specificity range with false positive rates from 0 to 0.1. C) Score distribution of

non-coding alignments. The same distribution of the Drosophila test set as shown in A)

is shown in more detail. The fitted Gumbel distribution is indicated in red. The upper

right diagram compares the calculated p-values (via simulation and fitting of the Gumbel

distribution) to the empirical p-values, i.e. the actual observed frequencies in the test set.

of a prediction. RNAcode scores follow an extreme value distribution (Figure 4.7 C) which

allows the calculation of p-values.

To test the accuracy of this approach, we compared p-values calculated by this procedure to

empirically determined p-values on a set of non-coding Drosophila alignments. To this end,
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we calculated the p-value for each alignment in the set and compared each to the proportion

of alignments with better scores than the given one (Figure 4.7 C, inset). The excellent

agreement of the p-values calculated by RNAcode and the actual observed frequencies confirms

that the Gumbel distribution is an accurate approximation of the background scores. In

addition, it also confirms that the HKY85 nucleotide substitution model and our simulation

procedure accurately model real non-coding data.

Novel peptides in Escherichia coli

The main purpose of RNAcode is to classify conserved regions of unknown function, to discrim-

inate coding from non-coding transcripts and to analyze the coding potential in non-standard

genes (e.g. short ORFs or dual-function RNAs).

The E. coli genome was one of the first completely sequenced genomes and is generally

well annotated. However, even in this compact and extensively studied genome the protein

annotation is far from perfect. Protein gene annotation is largely based on compositional

analysis and homology to known protein domains. The statistical power of these criteria is

limited for small proteins. Standard gene finding software is usually run with an arbitrary

cutoff of 40–50 amino acids to avoid an excess of false positives and suffers from the lack of

training data of verified short peptides.

We attempted to produce a set of predictions based on evolutionary signatures only. We

created alignments of the E. coli reference strain K12 MG1655 to 53 other completely se-

quenced enterobacteria strains including Erwinia, Enterobacter and Yersinia. A screen of

these alignments with RNAcode and a p-value cutoff of 0.05 resulted in 6,542 high scoring

coding segments. We discarded all predictions that overlapped annotated proteins. For the

remaining RNAcode predictions, we tried to identify a complete ORF (starting with AUG and

ending in a stop codon) in the E. coli reference sequence. This step is necessary because the

boundaries of high scoring segments usually do not correspond exactly to the ORF (a main

problem here is the relatively short alignment blocks produced by multiz, which do not al-

ways cover an ORF over its full length). This procedure gave 35 potential new protein-coding

genes with a coding capacity between 11 and 73 amino acids.

To assess the quality of these predictions we first looked at the overall sensitivity of our screen

on already annotated proteins. Of the 4,267 RefSeq proteins, 3,987 overlapped with a RNAcode

prediction (sensitivity 93.4%). Hemm et al. [2008] revisited the annotation of small proteins

in E. coli and found 18 novel examples using a combination of different bioinformatics and

experimental methods. In a set of 18 new and 42 literature-curated proteins between 16–50
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Table 4.2. Protein counts of the LMW (low molecular weight) proteome registered in Swis-

sProt database and the proteins recovered by the developed MS (mass spectrometry) pro-

tocol, which is specifically optimized for small proteins, are summarized by their SwissProt

evidence and RNAcode support. A detailed description of the MS protocol is published

in [Müller et al. 2010]

SwissProt LWM Optimized LWM MS protocol

RNAcode RNAcode

total found missed total found missed

Total Number 1605 1401 204 455 449 6

Evidence on protein level 843 805 38 359 359 0

Evidence on transcript level 34 28 6 6 6 0

Inferred from homology 272 245 27 36 34 2

Predicted 378 288 90 54 50 4

Uncertain 78 35 43 0 0 0

amino acids compiled by Hemm et al., 30 (50.0%) overlap with RNAcode predictions.

We furthermore compared the RNAcode predictions with the low molecular weight (LWM < 25

kDa) E. coli proteome registered in the SwissProt database [UniProt Consortium 2010]. For

each protein the type of evidence and the amino acid sequence was extracted and mapped

to the E. coli genome. Eighty percent of the 1605 mapped LMW SwissProt protein loci

overlapped with RNAcode predicted high scoring segments. Interestingly, 95% (833/868) of

the proteins with either proteome or transcriptome evidence listed in the SwissProt database

are positively classified by RNAcode (Table 4.2). This indicates a strong enrichment of

experimentally supported proteins in RNAcode predictions. On the other hand, of the proteins

which are not validated experimentally or inferred by sequence homology, only 70% (323/456)

were supported by RNAcode predictions (Table 4.2). This difference suggests that many but

probably not all of the as-yet unverified reading frames in the SwissProt database are real

protein-coding segments.

These results show that our screen not only gives almost perfect results on typical E. coli

proteins, but also recovers a substantial fraction of small proteins which are particularly

difficult to detect. Moreover, our final list of 35 candidates for novel proteins is rather short

and shows the high specificity in this screen.

For additional support, we compared our list of predicted candidates with publicly available

transcriptome data [Tjaden et al. 2002, Cho et al. 2009]. These data sets cover a broad range

of experimental conditions and therefore reflect a comprehensive genome-wide transcription
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map of E. coli. Eight candidates (23%) overlap with regions that show clear evidence for

transcription.

To further substantiate our predictions, we used mass spectrometry (MS) as a direct ex-

perimental test for the existence of the novel peptides in E. coli cells. MS is particularly

well suited to screen simultaneously for a large set of proteins without resorting to cloning

or recombinant expression [Aebersold & Mann 2003]. Many, but by no means all, proteins

of an organism are expressed and detectable under the actual applied conditions by current

MS-based proteomics. Detecting small peptides in complex protein mixtures is particularly

challenging for various reasons. Compared to the overall protein expression level, short pep-

tides often show low abundance, they are easily lost using standard proteomic protocols, and

only a limited number of proteolytic peptides can be obtained [Klein et al. 2007]. To meet

these challenges, our collaborators (Martin von Bergen’s lab, Leipzig) developed a protocol

which is specifically optimized for small proteins by avoiding sample loss by a simple ex-

traction method and a combined purification and enrichment step using filtration [Müller

et al. 2010]. In order to improve the reliability of our results two different buffer systems are

applied for extractions and for an improved coverage of peptides two different proteases are

used. This strategy led to an increased detection rate as well as to higher confidence in the

hits by confirmation in independent experiments.

Using this protocol, we were able to identify 455 LWM proteins representing 27% of the

1672 known E. coli proteins below this size listed in the SwissProt protein database. Among

the 455 proteins 449 (99%) show a clear evolutionary signal for conservation at the nucleic

acid level, as measured by RNAcode (Table 4.2). Proteome or transcriptome evidence is also

reported in the SwissProt database for 81% (365/449) of these. Thus, the proteins identified

with the LMW optimized MS protocol and the RNAcode predictions are highly correlated.

In a search against the list of 35 newly predicted proteins, we obtained evidence for the

expression of 7 candidates (20%). For the rest of the candidates we cannot distinguish whether

they are false positive RNAcode predictions or false negatives in the MS experiment. However,

considering that the success rate of the MS experiments is roughly the same on known and

predicted proteins (27% and 20%, respectively), we would expect a good fraction of our

candidates to be true proteins not detectable by this particular growth conditions and MS

approach.

Although it is not possible to give a conclusive statement on all predictions without addi-

tional experiments, compelling evidence from evolutionary analysis, transcriptomics data, and

the MS experiments strongly suggest that several of the candidates are bona fide proteins.

Figure 4.8 shows two examples in more detail. In both cases RNAcode reported short but
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Figure 4.8. Examples of novel short proteins in E. coli. Sequence, genomic context, the high

scoring RNAcode segment and fragment ion mass spectra are shown. Genome browser

screen-shots were made at http://archaea.ucsc.edu [Schneider et al. 2006]. Arrows

within annotated elements indicate their reading direction. The shading of mutational

patterns was directly produced by the RNAcode program. The mass spectra are shown

for two selected proteolytic peptides which were scored with 80% probability and used

in combination with the detection of additional peptides to confirm the expression of the

candidates.
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statistically highly significant (p ≈ 10−8 and p ≈ 10−6, respectively) signals between two

well-annotated proteins. The loci overlap with transcribed regions as determined by Cho

et al. [2009]. In addition, our MS experiments detected several proteolytic fragments that can

be assigned to these proteins.

The coding potential of “non-coding” RNAs

In addition to assisting and complementing classical protein gene annotation strategies, a

major area of application of RNAcode is the functional classification of individual conserved

or transcribed regions. As an illustrative example we analyzed the bacterial RNA C0343

which is listed in the Rfam database [Gardner et al. 2009] as non-coding RNA (ncRNA) of

unknown function. The RNA originally detected by Tjaden et al. [2002] is also detected as

transcript in the study of Cho et al. [2009]. In our screen of the E. coli genome, we found

a high scoring coding segment with p ≈ 10−9 overlapping the C0343 ncRNA. The prediction

corresponds to a potential ORF encoding 57 amino acids (Figure 4.9 A). Analysis of the

secondary structure using RNAz does not give any evidence for a functional RNA. Given

the strong coding signal, we conclude that the “non-coding RNA” C0343 is in fact a small

protein. This is also confirmed by our MS experiments that detected proteolytic fragments

of this protein in E. coli cells.

To test RNAcode on another example from Rfam, we analyzed RNAIII, a ncRNA known to

regulate the expression of many genes in S. aureus [Boisset et al. 2007]. In addition to its role

as regulatory RNA, the RNAIII transcript also contains an ORF coding for the 26 amino acid

long delta-haemolysin gene (hld). We ran RNAcode with standard parameters on the Rfam

seed alignment. It reports one high scoring segment below a p-value cutoff of 0.05 which

corresponds to the hld gene (Figure 4.9 B). The annotated alignment shows that the ORF is

highly conserved with only few mutations. Nevertheless, these few mutations are sufficient to

yield a statistically significant signal that allows RNAcode to locate the correct ORF. Again,

we also ran RNAz on the alignment, which reports a conserved RNA secondary structure with

a probability of 0.99. The combination of RNAcode and RNAz clearly shows the dual function

of RNAIII. This example demonstrates how RNAcode can assist the classification of ncRNAs

in particular for non-standard and ambiguous cases [Dinger et al. 2008].

As another example, we analyzed the SR1 RNA of B. subtilis that was originally found by

Licht et al. [2005] (Figure 4.9 C). Although the authors noticed a potential short ORF in the

transcript, the corresponding peptide could not be detected. Further experiments [Heidrich

et al. 2006; 2007] clearly showed a function of SR1 in the arginine catabolism pathway by

RNA/RNA interaction with the ahrC mRNA, thus confirming its nature as functional non-
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coding RNA. Using RNAcode, we found clear evolutionary evidence for a well-conserved small

peptide deriving from the SR1 (p ≈ 10−12), arguing for a role as dual function RNA. Only

recently, Gimpel et al. [2010] showed that gapA operon is regulated by a short peptide encoded

in SR1, which exactly corresponds to the high scoring coding segment found by RNAcode

(Figure 4.9 C).

4.2.3 Conclusion

RNAcode was designed to fill a specific gap in the current repertoire of comparative sequence

analysis software. The classification of RNAcode relies on evolutionary signatures only and is

based on a direct statistical model. No machine learning or training is involved and it can

thus be applied in a generic way to data from all species. The presented consistency of current

protein-coding gene annotation and RNAcode predictions clearly shows that the implemented

algorithm gives almost perfect results on data of all domains of life. We furthermore identified

new small protein-coding genes in E. coli and gave convincing evidence that several of these

genes are indeed expressed. In addition we showed that the combined usage of RNAcode and

RNAz discriminates coding from non-coding RNAs and identifies the known dual-function of

RNAIII and SR1.

Figure 4.9 (following page). Examples of ambiguities between coding and non-coding nature

of three RNAs. A) The RNA C0343 from E. coli is listed as non-coding RNA in Rfam.

However, it overlaps with an RNAcode predicted coding segment. While there is no

evidence for an RNA secondary structure according to the RNAz classification value, the

highly significant RNAcode prediction and MS experiments suggest that C0343 is a mRNA

and not a ncRNA. B) RNAIII of S. aureus (Rfam RF00503) contains a short ORF of

a heamolysin gene. RNAcode predicts the open reading frame at the correct position,

while RNAz clearly detects a structural signal. These results are consistent with the well

established dual nature of this molecule. C) The B. subtilis RNA SR1 is known to be

functional on the RNA level by targeting a mRNA. RNAcode detects a short ORF that

was shown by Gimpel et al. [2010] to produce a small peptide and is thus another example

of a dual-function RNA.
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RNA sequencing methods are powerful to identify and analyze RNA transcripts on a genome-

wide scale. We found dozens of small RNA candidates and their validation by independent

methods is only a first step towards the functional characterization of these transcripts. The

high amount of putative RNA transcripts resulting from RNA sequencing experiments de-

mands the development of new bioinformatic methods. Starting from the single sequence of a

transcribed region the assignment of orthologs in other species is an essential first task. If an

ORF is found within a single sequence the abstraction of the translated amino acid sequence

is typically used to infer orthologous genomic regions by Blast. In case of non-coding regions

classical sequence based methods often fail. Since ncRNAs typically vary in sequence but still

fold into the same secondary structure, sophisticated methods (e.g. RNAmotif and Infernal)

are used to identify structured sequences. Anyway, these methods result in long candidate

lists that encompass predictions of different size and quality. Measurements are needed to

estimate how well a new candidate fits to an established set of sequences. The similarity be-

tween protein-coding sequences is typically assigned using variation patterns of synonymous

and non-synonymous substitutions. For structured non-coding RNA genes the base pair dif-

ference between a candidate structure and the established set or the ratio of the consensus

energy with and without the new candidate might help to distinguish true from false predic-

tions. The co-occurrence of candidate sequences with adjacent genes can be used to filter the

initial list. This so called synteny information can be inferred by manual inspection of the

given genome annotation. Recently, we implemented Proteinortho [Lechner et al., submit-

ted] an efficient reciprocal best blast approach that reliably detects orthologous proteins in a

given set of sequences. Thus, synteny of adjacent genes can be inferred from Proteinortho re-
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sults and subsequent visualization of genomic regions surrounding the predicted candidates.

Furthermore, the structural clustering approach implemented in RNAclust.pl can help to

identify related RNA sequences (of different RNA sequencing analysis) that share structural

motifs even if common homology search tools like Blast fail.

As indicated for the sX13 sRNA of Xanthomonas campestris pv. vesicatoria (XCV ) structural

models and interaction prediction methods like RNAup can help to identify plausible mRNA

targets. Obviously, such predictions can direct experimental setups for extensive validations.

Only a few sRNA examples are currently known that directly mediate protein activity. How

these sRNA-protein complexes are formed is mainly unknown. These examples might be

exceptions to the rule, but if more sRNA-protein complexes are identified the uncharted

territory of protein-target prediction will be moved into the focus of research.

The presented dRNA-seq approach enabled us to generate genome-wide TSS maps of H. pylori

and XCV. Other research groups already applied this technique to analyze the primary tran-

scriptome of different bacteria [Albrecht et al. 2009, Mitschke et al. 2011] and archaea [Jäger

et al. 2009]. This clearly indicates the general applicability of the dRNA-seq method. Most

studies that apply dRNA-seq in prokaryotes generate the TSS map by manual inspection. To

get in touch with data such pilot studies are essential. Nevertheless, this is a time consum-

ing biased and not fully reproducible procedure. Furthermore, for larger eukaryotic genomes

manual TSS map creation is not feasible. I presented a novel approach that addresses the

problem of automated TSS annotation based on dRNA-seq data and subsequent statistical

analysis. This method gave convincing results for the analyzed XCV data set. The applica-

tion of the approach to examine other data sets is one next step that remains to be done in

the future. Used parameters (e.g. window size, p-value cutoff) were selected upon inspection

of the XCV data and are therefore specific. Systematic analysis of parameter dependen-

cies to the sequencing depth of the library are compulsory. Issues such as the correction for

multiple testing have to be taken into account as well. The predictive power of the statisti-

cal approach will be analyzed based on independently validated transcription start sites and

manually curated TSS maps of other studies.

The above mentioned and many other transcriptome studies (e.g. Wurtzel et al. [2009],

Toledo-Arana et al. [2009], Güell et al. [2009]) revealed a far more complex transcript orga-

nization than previously appreciated. An unexpected high number of transcript was found

to originate from the opposite strand of annotated protein-coding genes. Its likely that these

antisense transcripts directly regulate the expression of the protein-coding gene on the op-

posite strand. It remains to be seen if the formation of antisense RNA-mRNA complexes

or transcriptional interference is the common regulatory mode of these antisense configura-
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tions. The high amount of transcribed leaderless mRNAs and the lack of an SD sequence

in XCV supports the assumption of alternative mechanisms of ribosome guidance. These

and other findings indicate the necessity to revise our current understanding of prokaryotic

transcriptional and translational processes.

With the availability of genome-wide transcription data and massive comparative sequencing

the discrimination of coding from non-coding RNAs in evolutionarily conserved regions arose

as a core analysis task. Thus I addressed the question “How to assess protein-coding and

non-protein-coding potential of genomic regions?” in the second part of my thesis. We

significantly improved the predictive power of the widely used ncRNA gene finding tool RNAz.

Limitations of the old version have been eliminated by the usage of a di-nucleotide background

model, a much larger training set and the introduction of the normalized Shannon entropy as

a measure of sequence variation. We furthermore trained an additional classification model

for structural alignments which provides an additional possibility to increase the prediction

accuracy of RNAz.

With the implementation of RNAcode we filled a specific gap in the current repertoire of

protein-coding gene finding software. RNAcode makes use of all evolutionary signatures that

are known to be relevant rather than focusing on one particular feature. The statistical model

of RNAcode relies on evolutionary signals only and no training on known protein-coding genes

is involved. Thus, RNAcode is applicable to identify protein-coding regions in any species. Our

analysis of the E. coli genome showed that RNAcode predictions are in good agreement with

the current annotation. We furthermore detected novel small protein-coding gene candidates

in this exhaustively studied species. Comparison with transcriptomic and proteomic data

provide ample evidence that a considerable amount of these genes is indeed functional.

Outlook

High-throughput RNA sequencing is still in its infancy and further improvements are nec-

essary. Ideally transcriptome analysis would capture full length RNAs of an individual cell.

However, current technologies are limited to read lengths of a few hundred nucleotides which

is far from full length mRNA or operon spanning transcripts. The presented dRNA-seq ap-

proach enriches the 5’-end of primary transcripts but the analysis of transcription units suffers

from the limited read lengths and therefore correct 3’-ends of individual transcripts are miss-

ing. Technical problems during library construction (e.g. premature stops of the RT-PCR in

the cDNA conversion step) and the nature of RNA molecules (e.g. stable secondary struc-

ture) cannot be addressed by increased read lengths only. The implementation of an RNA

sequencing protocol that specifically enriches the 3’-end of transcripts in combination with
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the presented dRNA-seq approach could help to generate complete transcription unit maps.

To produce sufficient starting material for RNA sequencing analysis the RNA output of a

bacterial culture is required instead of a single cell. Thus, a mixture of species which might

be in different developmental stages is sequenced simultaneously. Only recently Tang et al.

[2010] presented an RNA sequencing strategy to capture the transcriptome landscape of an

individual cell. Their current approach is limited to mRNAs with a poly(A) tail and a

maximum length of 3 kb. Obviously, this method has to be improved and adapted to be

applicable for prokaryotes, where mRNAs typically lack a poly(A) tail.

Due to cost reasons no replicates of individual experiments are available. Thus, the repro-

ducibility of observations and the error rate of RNA sequencing experiments has not been

examined in detail. Many potential biases may be introduced during cDNA construction,

adapter ligation, amplification and sequencing that have to be analyzed in the future. With

the emergence of novel sequencing technologies such as FRT-seq [Mamanova et al. 2010],

Nanopore [Clarke et al. 2009] and direct RNA sequencing [Ozsolak et al. 2009] prices of

current technologies will drop and replicates become affordable.

Transcription-profiling in diverse growth conditions also suffers from the lack of replicated

RNA sequencing experiments. To overcome this limitation statistical tools have been im-

plemented to model the expected distribution of sequencing reads that map to a genomic

locus in different samples [Wang et al. 2010, Robinson & Oshlack 2010]. In contrast the

quantification of differential gene expression has been reported using the less expensive array

techniques [Toledo-Arana et al. 2009, Cho et al. 2009]. It has been observed that biological

replicates often reflect non-trivial differences in molecular binding activity and that averaging

can abolish strong enrichment signals or indicate binding events that are not supported by

any individual replicate. Hence, even if replicates of individual experiments are available the

evaluation and correction of these data sets is a non-trivial task.

Comparative genomic methods can be used as an alternative to detect novel protein-coding

and non-protein-coding genes. Approaches like RNAz and RNAcode predict conserved sequences

based on (genome-wide) multiple sequence alignments. In contrast to experimental surveys

these methods miss species specific genes and their results strongly depend on the alignment

quality and the selected set of species.

Even the updated version of RNAz has an estimated false discovery rate of ∼50%. Since, RNA

secondary structure prediction is sensitive to the length of the given sequence alignment the

used fixed window approach is still a major source of prediction errors. Alignment slices

of a fixed length are classified as structural RNA or other. Hence, boundaries of known
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ncRNAs which are shorter than the selected window size are overestimated. The LocARNA-P

approach, overcomes this limitation [Will et al. 2011]. The implemented method is based on

efficiently computed reliability profiles that take structure and sequence information of the

given alignment into account. In a case study LocARNA-P has been successfully applied to

refine RNAz predictions. The detected boundaries of known ncRNAs were in good agreement

with the given annotation and the false discovery rate of RNAz has been significantly reduced.

The pre-selection of locally structured regions from the typically large set of genome-wide

alignments with RNALalifold could replace the currently used sliding window approach.

To filter genomic regions that already show signatures of increased thermodynamic stability

would also reduce the number of alignments to be screened by RNAz and therefore makes

sequence/structure based classification more feasible.

RNAcode predicts local high-scoring coding segments within multiple sequence alignments. In

the analyzed pro- and eukaryotic data sets we found that RNAcode predictions are in good

agreement with the given annotation of protein-coding genes. However, the implemented

method does not recover the complete gene structure. Hence, adjacent high scoring segments

(typically the result of fragmented genome-wide alignment blocks) have to be merged. In

prokaryotes the detection of a complete ORF covering merged RNAcode predictions enabled

us to detect new short protein-coding genes that have evaded previous annotation. The

protein-coding gene structure in eukaryotes comprises additional intronic sequences that have

to be spliced out before translation. Since, RNAcode recovers only the coding regions (exons)

additional information (e.g. conservation of splice sites) has to be used to reveal the typical

exon-intron structure of eukaryotic protein-coding genes. Using a few post-processing steps to

refine the initial RNAcode predictions will help to identify novel short (spliced) protein-coding

RNAs in eukaryotes as well.

The recently published NAPP (Nucleic acid phylogenetic profiling) approach represents an

alternative to the usage of standard genome-wide alignments [Marchais et al. 2009]. NAPP

systematically infers the distribution of intergenic regions of a reference species across all fully

sequenced bacterial genomes. An empirical conservation index is assigned to each intergenic

position of the reference genome. Subsequently, conserved non-coding elements (CNEs) are

defined as segments with a continuous conservation index above a certain threshold. The

detected CNEs covered ∼80% of all known E. coli and B. subtilis sRNAs. The authors

introduced a very elegant way to further investigate those CNEs which do not belong to known

RNA genes. They used phylogenetic profiling to cluster vector representations of CNEs and

CDSs. Some of the resulting clusters clearly showed an enrichment of known ncRNA genes

with novel CNEs. Furthermore, CDS with a similar phylogenetic distribution are found within
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these clusters and represent potential targets of sRNAs and CNEs. Compared to RNAz the

NAPP approach neither requires extensive training data nor involves the analysis of sequence

composition. While RNAz is designed to detect structured ncRNAs only NAPP is able to detect

both structured and unstructured RNAs. However, the huge amount of predicted CNEs needs

further investigations. At this point RNAz and RNAcode could help to classify CNEs according

to their thermodynamic stability and protein-coding potential. Since, the complete set of

sequenced bacterial genomes is used as input for the NAPP analysis sRNAs with an erratic

distribution (e.g. PtaRNA1 described in Section 3.3) are detectable as well. The current

NAPP implementation uses Blast to search for intergenic regions of the reference species in

all other bacterial genomes. Novel short read aligner (e.g. segemehl) which are initially

designed to map RNA sequencing data to a reference sequence could replace Blast. These

novel methods are designed to efficiently map huge amounts of short sequences even if they

have mismatches, insertions or deletions with respect to the reference genome. These short

read aligner not only allow an error tolerant comparison of the intergenic regions but also

could be used to flip database and query of the analysis. In other words genomic sequences

of all bacteria could be fractionated into shorter sequences and used as “read library” that is

mapped against the reference genome. Consequently, the conservation index could be assigned

to each genomic position and the analysis could be extended to all conserved elements (CEs)

of the reference genome.

The initial motivation of RNAcode and RNAz was the functional classification of conserved

and transcribed genomic regions. As shown in our studies each tool can assist individually

to detect novel protein-coding and non-protein-coding genes. As exemplified on a few known

dual-functional RNAs (e.g. RNAIII and SR1) both tools in combination can help to analyze

ambiguities between the coding and non-coding nature of RNA transcripts. This particular

issue has only been addressed by the RNA-DECODER approach [Pedersen et al. 2004, Meyer &

Miklós 2005]. This tool explicitly models RNA structures that overlap protein-coding regions,

as are frequently observed in RNA viruses. The implemented method employs a stochastic

context-free grammar in combination with a set of carefully devised phylogenetic substitution

models that reflect both the coding and non-coding property of functional RNA structures

within protein-coding regions. The development of RNA-DECODER was challenged by a limited

set of well curated coding RNA structures. Although RNAz was specifically trained on known

ncRNAs its application to identify structured RNA elements within protein-coding regions is

possible. We are currently investigating the combined usage of RNAz and RNAcode in order to

analyze structured RNA elements within protein-coding regions and to detect dual-functional

RNAs on a genome-wide scale.
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Taken together, this thesis demonstrates the power of combining experimental approaches

with computational predictions. The huge amount of data generated during RNA sequenc-

ing experiments requires the development of new algorithms and tools. On the other hand

comparative methods, like RNAz and RNAcode, predict large numbers of novel protein-coding

and non-coding RNA candidates, that need to be experimentally analyzed on genome-wide

scale. Only if we use the combination of experimental and computational approaches we will

be able to explore the fascinating world of RNA.
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Detailed RNAcode dynamic programming algorithm

The core algorithm of RNAcode is a dynamic programming algorithm to find the optimal

score for a pairwise alignment from all possible interpretations of the aligned sites as in-frame

codons, codons, out-of-frame codons or sequence errors. The scores from pairwise alignments

are then combined to find optimal scoring segments in a multiple alignment.

We start from a fixed multiple sequence alignment A and assume that the first row is the

reference sequence. The projected pairwise alignment of the reference sequence with sequence

k is denoted by A
k. Now consider a position i in the reference sequence. It corresponds to a

uniquely determined alignment column α(i), which in turn determines ik, the last position of

sequence k that occurs in or before alignment column α(i).

Suppose i is a third codon position. Then the alignment block A[α(i−3)+1, α(i)] corresponds

to the (potential) codon ending in i. We define a score

σk
i = score

(

A
k[α(i− 3) + 1, α(i)]

)

(A.1)

.

In the ungapped case σk
i is the normalized BLOSUM score that was introduced in the main

text. Let gki denote the number of gaps in sequence k in this block. We observe that sequences

1 (reference) and k stay in frame if and only if gki − g1i ≡ 0 mod 3. Otherwise, the two

sequences change their phase within this interval. The local shift in frame between sequence

k and the reference sequence is therefore

zki =



















0 if gki − g1i ≡ 0 mod 3

+1 if gki − g1i ≡ 1 mod 3

−1 if gki − g1i ≡ 2 mod 3

(A.2)

As discussed in the main text, alignment errors or sequence errors may destroy coherence

between aligned codons and give zki 6= 0. Therefore, we introduce the penalties (negative

scores) Ω for switching from in-frame to out-frame or back, as well as ω for every out-of frame

codon in between, and ∆ for silently changing the phase and assuming subsequent codons are

still in frame (sequencing error). All penalties are negative; in particular 1
2∆ < Ω < ω < 0 .

Furthermore, we set σk
i = −∞ if zki 6= 0 to mark the fact that we lose coherence of the frame

and force the algorithm to select a frameshift or sequence error penalty and not a substitution

score that would be meaningless for out-of-frame triples.

Having defined all possible states and the associated scores, we now describe a dynamic

programming algorithm to calculate the optimal score for a pairwise alignment. Let S0,k
b,i be
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the optimal score of the pairwise alignment A
k[α(b), α(i)] subject to the condition that i is

a third codon position and sequence k ends in frame, i.e., also with a third codon position.

Analogously, we define S+,k
b,i and S−,k

b,i for those alignments where sequence k ends in the 1st

and 2nd codon position, respectively. Clearly we initialize Sχ,k
b,b = 0 for χ ∈ {0,+,−}.

The entries in these matrices satisfy the following recursions:

S0,k
b,i =























































S0,k
b,i−3 + σk

i if zki = 0

max







S0,k
b,i−3 +∆,

S−,k
b,i−3 +Ω

if zki = +1

max







S0,k
b,i−3 +∆,

S+,k
b,i−3 +Ω

if zki = −1

(A.3)

The expressions for the two out-of-frame scores are analogous. We show only one of them

explicitly:

S+,k
b,i =























































S+,k
b,i−3 + ω if zki = 0

max







S0,k
b,i−3 +Ω

S+,k
b,i−3 +∆

if zki = +1

max







S+,k
b,i−3 +∆

S−,k
b,i−3 +Ω

if zki = −1

(A.4)

As presented here, the algorithm assumes that any sequence errors (penalized by ∆) occur in

sequence k, not in the reference.

Now we determine the optimal score Sbi of the multiple alignment A[α(b), α(i)], subject to

the condition that b is a 1st codon position and i is a third codon position.

Sbi = max



























∑

k>1

max
χ∈{0,+,−}

Sχ,k
b,i

Sb,i−1 +∆

Sb,i−2 +∆

(A.5)

The second and third terms here correspond to frameshifts in the reference sequence.

It is easy now to determine the best scoring segment(s) of A from the maximal entries in

the matrix (Sbi). If we were to score only pairwise alignments it would be possible to use a

local alignment-like algorithm that does not keep track of the beginning of the segment, b. In

the multiple alignment, however, the individual pairwise alignments are constrained by the
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requirement that a coding segment starts in the same column for all sequences, forcing us to

keep track of b explicitly. The algorithm scales as O(N · n2) in time and space, where n is

the length of the reference sequence and N the number of rows in the alignment.
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Hilfe angefertigt zu haben. Ich habe keine anderen als die angeführten Quellen und Hilfs-
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