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Abstract

This thesis describes the development and application of machine learning-

based methods for the prediction of alpha-helical transmembrane pro-

tein structure from sequence alone. It is divided into six chapters.

Chapter 1 provides an introduction to membrane structure and dynamics,

membrane protein classes and families, and membrane protein structure prediction.

Chapter 2 describes a topological study of the transmembrane protein

CLN3 using a consensus of bioinformatic approaches constrained by ex-

perimental data. Mutations in CLN3 can cause juvenile neuronal ceroid

lipofuscinosis, or Batten disease, an inherited neurodegenerative lysoso-

mal storage disease affecting children, therefore such studies are impor-

tant for directing further experimental work into this incurable illness.

Chapter 3 explores the possibility of using biologically meaningful signa-

tures described as regular expressions to influence the assignment of inside

and outside loop locations during transmembrane topology prediction. Using

this approach, it was possilbe to modify a recent topology prediction method

leading to an improvement of 6% prediction accuracy using a standard data set.

Chapter 4 describes the development of a novel support vector machine-based

topology predictor that integrates both signal peptide and re-entrant helix predic-

tion, benchmarked with full cross-validation on a novel data set of sequences with

known crystal structures. The method achieves state-of-the-art performance in pre-

dicting topology and discriminating between globular and transmembrane proteins.

We also present the results of applying these tools to a number of complete genomes.

Chapter 5 describes a novel approach to predict lipid exposure, residue

contacts, helix-helix interactions and finally the optimal helical packing ar-
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rangement of transmembrane proteins. It is based on two support vector

machine classifiers that predict per residue lipid exposure and residue con-

tacts, which are used to determine helix-helix interaction with up to 65%

accuracy. The method is also able to discriminate native from decoy heli-

cal packing arrangements with up to 70% accuracy. Finally, a force-directed

algorithm is employed to construct the optimal helical packing arrangement

which demonstrates success for proteins containing up to 13 transmembrane helices.

The final chapter summarises the major contributions of this thesis to biol-

ogy, before future perspectives for TM protein structure prediction are discussed.
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4.3.6 Discriminating between globular and transmembrane proteins 118

4.3.7 Application to a number of complete genomes . . . . . . . . . 118

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5 Predicting transmembrane helix packing arrangements using

residue contacts and a force-directed algorithm 124

5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.1.1 Predicting transmembrane protein folds . . . . . . . . . . . . . 125

5.1.2 Ab initio methods . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.1.3 Helix-Helix interaction motifs . . . . . . . . . . . . . . . . . . 126

5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.2.1 Data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.2.2 Predicting lipid exposure . . . . . . . . . . . . . . . . . . . . . 129

5.2.3 Contact definitions . . . . . . . . . . . . . . . . . . . . . . . . 130

5.2.4 Predicting residue contacts . . . . . . . . . . . . . . . . . . . 131

5.2.5 Using helix-helix prediction for discriminating decoy helical

packing arrangements . . . . . . . . . . . . . . . . . . . . . . . 132

5.2.6 Constructing the helical packing arrangement . . . . . . . . . 133

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.3.1 Lipid exposure prediction performance . . . . . . . . . . . . . 135

5.3.2 Residue contact prediction performance . . . . . . . . . . . . . 136

5.3.3 Helix-helix interaction prediction performance . . . . . . . . . 138

5.3.4 Helical packing arrangement decoy discrimination performance 139

5.3.5 Assessing the accuracy of helical packing arrangements . . . . 140



Contents 8

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

6 Discussion 153

6.1 Biological discoveries . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.1.1 Future perspectives for transmembrane protein structure pre-

diction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.1.2 Prediction of pore-forming regions in alpha-helical transmem-

brane proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.1.3 Modelling alpha-helical transmembrane protein quaternary

structure from sequence using oligomeric interactions . . . . . 160

Appendices 163

A List of abbreviations 164

B Data sets 165

C Evaluation metrics 171

D Publications 172

E Acknowledgements 175

Bibliography 176



List of Figures

1.1 Common phospholipids . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2 A section of the assembled lipid bilayer . . . . . . . . . . . . . . . . . 20

1.3 Bacteriorhodopsin from Halobacterium salinarium . . . . . . . . . . . 23

1.4 A canonical beta-barrel protein, the monomeric porin OmpG from

Escherichia coli, viewed from the side . . . . . . . . . . . . . . . . . . 25

1.5 Singer-Nicolson proposed the fluid mosaic model . . . . . . . . . . . . 27

1.6 An amended and updated fluid mosaic model . . . . . . . . . . . . . 28

1.7 Biogenesis of alpha-helical and beta-barrel transmembrane proteins

in Escherichia coli . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.8 Mechanism of synthesis of membrane bound or secreted proteins . . . 30

1.9 Kyte-Doolittle hydropathy plot . . . . . . . . . . . . . . . . . . . . . 32

1.10 Decision surface of an SVM classifier for a linearly separable problem

in two dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.11 Using a number of methods to form a consensus . . . . . . . . . . . . 41

1.12 Potassium channel subunit from Streptomyces lividans showing a

short re-entrant helix (PDB: 1R3J) . . . . . . . . . . . . . . . . . . . 42

2.1 Typical graphical output from the PONGO server for a TM protein

containing a single TM helix and a signal peptide . . . . . . . . . . . 59

2.2 Typical graphical output from the Phobius server . . . . . . . . . . . 60

9



List of Figures 10

2.3 Results of topology prediction for CLN3 showing models with cyto-

plasmic amino terminals and between six and eleven TM spanning he-

lices generated using six different methods, and our consensus predic-

tion that takes into account additional information discussed within

the text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.4 Sequence comparison of the potential amphipathic helix from selected

species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.5 Schematic model for human CLN3 showing the six TM helices, pro-

posed amphipathic helix and experimentally determined loop locations 63

2.6 Results of topology prediction for Schizosaccharomyces pombe Btn1p

showing models with cytoplasmic amino terminals and a consensus

of eleven TM spanning helices . . . . . . . . . . . . . . . . . . . . . . 65

2.7 Schematic model for Schizosaccharomyces pombe Btn1p showing a

ten TM spanning model, an amphipathic helix and cytoplasmic N

and C-termini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.1 Theoretical membrane placement on to the Mechanosensitive channel

protein MscS crystal structure (PDB: 2OAU) by OPM and PDB TM 77

3.2 Topology predictions corrected by altering N-terminal localisation . . 92

3.3 Topology predictions corrected by prediction of a TM helix where a

loop region was previously predicted . . . . . . . . . . . . . . . . . . 93

4.1 Correct topology prediction for Photosystem II chain C from Ther-

mosynechococcus elongatus (PDB: 2AXT:C), showing a 6 TM helix

prediction with an intracellular N-terminus . . . . . . . . . . . . . . . 110

4.2 Correct topology prediction for Particulate Methane Monooxygenase

chain A from Methylococcus capsulatus (PDB: 1YEW:A), showing a

2 TM helix prediction with an extracellular N-terminus . . . . . . . . 112

4.3 Correct topology prediction for Glycerol Uptake Facilitator chain A

from Escherichia coli (PDB: 1LDI:A), showing a 6 TM helix predic-

tion with an intracellular N-terminus . . . . . . . . . . . . . . . . . . 113



List of Figures 11

4.4 Incorrect topology prediction for ABC transporter BtuCD chain B

from Escherichia coli (PDB: 1L7V:B), showing a 96 TM helix pre-

diction with an intracellular N-terminus . . . . . . . . . . . . . . . . . 115

4.5 Topology prediction results for a number of complete genomes . . . . 121

5.1 Predicted helical packing arrangement and crystal structure of

Halorhodopsin (PDB: 1E12:A) from Halobacterium salinarum . . . . 142

5.2 Predicted helical packing arrangement and crystal structure of

Ubiquinol Oxidase (PDB: 1FFT:C) from Escherichia coli . . . . . . . 143

5.3 Predicted helical packing arrangement and crystal structure of Photo-

system I chain D (PDB: 1JB0:L) from Thermosynechococcus elongatus145

5.4 Helical packing arrangement and crystal structure of proton gluta-

mate symport protein (PDB: 1XFH:A) from Pyrococcus horikoshii,

generated using observed rather than predicted helix-helix interactions146

5.5 Helical packing arrangement and crystal structure of cytochrome C

oxidase (PDB: 1XME:A) from Thermus thermophilus, generated us-

ing observed rather than predicted helix-helix interactions . . . . . . 147

6.1 Potassium channel KcsA from Streptomyces lividans (PDB: 1R3J:A). 159

6.2 Predicting pore-lining residues and oligomeric interactions using ma-

chine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161



List of Tables

1.1 Hydrophobic and hydrophilic components of membrane lipids . . . . 19

1.2 Alpha-helical transmembrane protein superfamilies . . . . . . . . . . 24

1.3 Beta-barrel transmembrane protein superfamilies . . . . . . . . . . . 26

1.4 Machine learning-based alpha-helical TM topology predictors . . . . . 35

1.5 Machine learning-based beta-barrel TM topology predictors . . . . . 43

1.6 A selection of commonly used homology modelling programs . . . . . 50

2.1 Locations of experimentally determined regions/positions. . . . . . . 67

3.1 Crystal structure data set composition. . . . . . . . . . . . . . . . . . 78

3.2 PROSITE motifs that were identified as having a topogenic bias. . . . 84

3.3 PROSITE motif signatures . . . . . . . . . . . . . . . . . . . . . . . . 85

3.4 Weights generated using the GA used to modify the original NN scores 88

3.5 Topology prediction performance against the Möller data set, with
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Chapter 1. Introduction 15

1.1 Membrane structure and dynamics

1.1.1 Functions

The cell membrane, also referred to as the plasma membrane or phospholipid

bilayer, is an organised, sheet-like assembly composed primarily of lipids and

proteins that provides cells with individuality by separating them from their

environment. Rather than acting as impervious walls, membranes are highly

selective permeability barriers containing specific channels and pumps that allow

the ionic and molecular composition of the intracellular medium to be closely

regulated. The movement of essential substances across the membrane can be

either passive, occurring without the input of cellular energy, or active, requiring

the cell to expend energy. The size, charge and other chemical properties of the

atoms and molecules attempting to cross the membrane will determine their route

and whether they succeed. Biological membranes also have certain mechanical

properties. The cell membrane plays a role in anchoring the cytoskeleton to provide

shape to the cell, and in attaching to the extracellular matrix to help group cells

together in the formation of tissues. Eukaryotic cells contain numerous internal

membranes that allow the compartmentalisation of specific organelles such as a

nucleus, mitochondria, chloroplasts, lysosomes and endoplasmic reticulum. Such

membrane-bound organelles allow chemical or biochemical environments that differ

from the rest of the cell to be maintained. Formation of these compartments has

been closely linked to functional specialisation over the course of evolution. In

plants, fungi and bacteria, an additional membrane forms the outermost boundary.

The cell wall primarily provides structural support, but also acts as a selective

barrier as porins render it largely permeable to molecules less than about 1500

daltons.

Membranes are involved in a vast array of cellular processes that are indis-

pensable for life. Protein receptors embedded in the cell membrane can act as

molecular signals allowing cells to respond to their environment and communicate
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with each other. The movement of bacteria towards food and the response of

target cells towards hormones are processes in which the primary event is the

detection of external stimuli by membrane-bound receptors. Membranes are also

able to generate chemical or electrical signals, as in the transmission of nerve

impulses. Membranes thus control the flow of information between cells and their

environment and play a central role in biological communication. Other proteins

embedded in the cell membrane serve as markers which identify a cell to other cells.

The interaction of these markers with their respective receptors forms the basis of

cell-cell interaction in the immune system.

Two important energy conversion processes occur in membrane systems contain-

ing ordered arrays of enzymes and other proteins arranged in an electron transport

chain. Oxidative phosphorylation, in which adenosine triphosphate (ATP) is pro-

duceded via the oxidation of nutrients, occurs in the inner membranes of mitochon-

dria. In plants, algae and some bacteria, light energy is converted into chemical

energy in the thylakoid membranes of chloroplasts during photosynthesis. Mem-

branes therefore play an essential role in the cellular energy cycle.

1.1.2 Common features

While membranes are diverse in both structure and function, they share many com-

mon attributes. Membranes consist mainly of lipids held together by non-covalent

interactions, and also proteins and carbohydrate molecules. Membrane lipids are

relatively small molecules containing both a hydrophobic and hydrophilic moiety,

resulting in the spontaneous formation of a closed bimolecular sheet in aqueous

media composed of two asymmetric monolayers often called a lipid bilayer. The

thickness of the bilayer, which is is believed to vary considerably, is thought to

be between 25 Å (2.5 nm) and 100 Å (10 nm) (Lewis & Engelman, 1983; Rawicz

et al., 2000). It is also known to be electrically polarised with the cell facing side

negatively charged (typically -60 millivolts).
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Embedded proteins mediate the distinctive functions of membranes, serving as

pumps, channels, receptors, energy transducers and enzymes. Both lipid and protein

molecules are able to diffuse rapidly in the plane of the membrane (Calvert et al.,

2001), unless anchored by specific interactions, though are unable to rotate across

the membrane. Membranes can thus be thought of as fluid structures, effectively

composed of two-dimensional solutions of proteins and lipids (Singer & Nicolson,

1972).

1.1.3 Phospholipids

Lipids are water-insoluble molecules that are highly soluble in organic solvents.

They have a variety of roles in biological systems: they serve as fuels, concentrated

energy cores, signal molecules and components of membranes. There are three

major types of membrane lipid: phospholipids, glycolipids and cholesterol (Figure

1.1).

Phospholipids are abundant in all types of biological membrane. They are de-

rived from either glycerol, a three-carbon alcohol, or sphingosine, a more complex

alcohol. Phospholipids derived from glycerol are known as phosphoglycerides and

consist of a glycerol backbone, two fatty acid chains and a phosphorylated alcohol.

Typically, the fatty acid chains in phospholipids and glycolipids, which are always

unbranched in animals, contain between 14 and 24 carbon atoms (16 and 18 are

most common) and may be saturated or unsaturated, with double bonds arranged

in cis conformation (Figure 1.1A). Both the length and degree of unsaturation of

the fatty acid chains is known to have a profound effect on membrane fluidity. In

phosphoglycerides, the C-1 and C-2 of glycerol are esterified to the carboxyl groups

of the two fatty acid chains. The C-3 hydroxyl group of the glycerol is esterified

to phosphoric acid, producing the compound phosphatidate, the simplest phospho-

glyceride, from which almost all other phosphoglycerides are biosynthesised. The

exception is sphingomyelin (Figure 1.1B), which is derived from an amino alcohol

containing a long, unsaturated hydrocarbon chain called sphingosine, rather than
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Figure 1.1: Common fatty acids. (A) Palmitate, a 16-carbon phosphoglyceride (B)
Sphingomyelin, (C) Phospatidyl choline and (D) Cholesterol (Stryer, 1995).

glycerol. In sphingomyelin, the amino group of the sphingosine backbone is linked

to a fatty acid by an amide bond, and the primary hydroxyl group is esterified to

phosphoryl choline.

1.1.4 Glycolipids and cholesterol

Glycolipids are sugar-containing lipids which in animal cells are derived from

sphingosine. The amino group of the sphingosine backbone is acylated by a

fatty acid as in sphingomyelin. However the primary hydroxyl group has one or

more sugars attached, rather than phophoryl choline. The simplest glycolipid

cerebroside contains only one sugar residue, either glucose or galactose. More

complex glycolipids may contain a branched chain with up to seven sugar residues.

In eukaryotes, cholesterol is also present in membranes (Figure 1.1D). Choles-

terol contains an oxygen atom in its 3-OH group that comes from O2. Typically,

plasma membranes are rich in cholesterol whereas the membranes of organelles

contain much smaller amounts of this lipid.
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All membrane lipids share a critical common structural theme: they are all

amphipathic molecules that contain both a hydrophobic and hydrophilic moiety

(Table 1.1).

Membrane Lipid Hydrophobic Unit Hydrophilic Unit

Phosphoglycerides Fatty acid chains Phosphorylated alcohol

Sphingomyelin Fatty acid chain and
hydrocarbon chain of
sphingosine

Phophoryl choline

Glycolipid Fatty acid chain and
hydrocarbon chain of
sphingosine

Sugar residues

Cholesterol Entire molecule except
C-3 OH group

C-3 OH group

Table 1.1: Hydrophobic and hydrophilic components of membrane lipids (Stryer,
1995).

Within an aqueous medium, there are two arrangements of phospholipids and

glycolipids that satisfy both the water-loving and water-hating passions of the

amphipathic molecules. One way is to form a micelle, a globular structure in

which the polar head groups are surrounded by water and the hydrocarbon tails

are sequestered inside. However, the formation of this structure is unfavourable as

phospholipids and glycolipids have two fatty acyl chains that are too bulky to fit

into the interior of the micelle. In contrast, salts of fatty acids containing only one

chain readily form micelles. The alternative and thus favoured arrangement is the

bimolecular sheet, composed of two asymmetric monolayers with the polar head

groups on the outside facing the water while the hydrocarbon tails line up against

one another on the inside (Figure 1.2).

The formation of lipid bilayers in water is a rapid and spontaneous process

driven by hydrophobic forces. Due to the inherent amphipathic character of the

lipid molecules, the formation is a self-assembly process. As water molecules are

released by the hydrocarbon tails, these tails are sequestered in the non-polar

interior of the bilayer where they are then stabilised by van der Waals attractive

forces which favour close packing. Electrostatic and hydrogen-bonding then occurs
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Figure 1.2: A section of the assembled lipid bilayer (Stryer, 1995).

between the polar head groups and water molecules, ensuring that the lipid bilayer

is stabilised by the full repertoire of forces that mediate molecular interaction in

biological systems.

Interactions between chains are said to be reinforcing. In order to minimise the

total number of exposed hydrocarbon chains, the individual components of the lipid

bilayer behave in a cooperative fashion, analogous to the huddling of sheep in the

cold to minimise the are of exposed body surface. These energetic factors have

significant biological consequences: (1) lipid bilayers have an inherent tendency to

be extensive, (2) lipid bilayers tend to close on themselves so that no edges are

exposed, resulting in compartmentalisation, and (3) lipid bilayers are self-sealing, as

a hole in the bilayer which exposes the hydrocarbon tails to water is energetically

unfavourable.
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1.2 Membrane proteins

Membrane proteins are responsible for most of the dynamic processes carried out

by membranes. While membrane lipids form a permeability barrier and thereby

establish compartments, it is the role of specific proteins to mediate nearly all the

other membrane functions. Membrane proteins can be classified as either peripheral

or integral.

Peripheral membrane proteins do not span the membrane and are bound primar-

ily by electrostatic and hydrogen-bond interactions to integral membrane proteins or

peripheral regions of the membrane. They have relatively little interaction with the

hydrocarbon tails of membrane lipids. Such polar interactions can be disrupted by

changes in salt content or pH, unless anchored to the bilayer by a covalently attached

chain such as a fatty acid. The regulatory protein subunits of many ion channels

and transmembrane receptors are defined as peripheral membrane proteins and

have been shown to regulate cell signalling and many other cellular events through

a variety of mechanisms. For example, membrane binding may promote rear-

rangement, dissociation, or conformational changes within many protein structural

domains, resulting in activation of their biological activity (Johnson & Cornell, 1999;

Thuduppathy et al., 2006). Close association between an enzyme and a biological

membranes may also increase proximity with its lipid substrate (Ghosh et al., 2006).

In contrast, integral membrane proteins, or transmembrane (TM) proteins, span

the bilayer and interact extensively with the hydrocarbon tails of membrane lipids

via hydrophobic interactions. Such proteins can only be studied by disrupting the

membrane using an organic solvent or detergent. The TM regions of the proteins

are composed of either alpha-helical or beta-barrel structures.

1.2.1 Alpha-helical transmembrane proteins

Alpha-helical membrane proteins, the major category of TM proteins, are present

in all type of biological membranes including outer membranes and fulfill a wide
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range of functions (Table 1.2). They consist of one of more alpha-helices, containing

a stretch of hydrophobic amino acids, embedded in the membrane and linked

to subsequent TM helices by extramembranous loop regions. It is thought such

proteins may have up to 20 TM helices allowing a wide range of differing topologies.

Loop regions are known to contain various substructures including amphipathic

helices that lie parallel to the membrane plane, globular domains, and re-entrant

helices - short alpha helices that enter and exit the membrane on the same side.

Alpha-helical TM proteins can be further divided into a number of subtypes.

Type I proteins have a single TM alpha helix, with the amino terminus exposed

to the exterior side of the membrane and the carboxy terminus exposed to the

cytoplasmic side. These proteins are subdivided into two types. Type Ia - which

constitute most eukaryotic membrane proteins - contain cleavable signal sequences,

while type Ib do not. Type II membrane proteins are similar to type I in that they

span the membrane only once but their orientation is reversed; they have their

amino terminus on the cytoplasmic side of the cell and the carboxy terminus on the

exterior.

Type III membrane proteins have multiple TM helices in a single polypeptide

chain and are also subdivided into types a and b: type IIIa have cleavable signal

sequences while type IIIb have their amino termini exposed on the exterior surface

of the membrane, but do not have cleavable signal sequences. Type III membrane

proteins include the G-protein-coupled receptors (GPCR) family, members of which

consist of seven transmembrane helices (Figure 1.3). GPCRs comprise a large

protein family of receptors that sense molecules outside the cell, activate signal

transduction pathways and ultimately invoke cellular responses.

Type IV membrane proteins have multiple domains which form an assembly that

spans the membrane multiple times. Domains may reside on a single polypeptide

chain but are often composed of more than one. Examples include Photosystem I
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Figure 1.3: A) Bacteriorhodopsin from Halobacterium salinarium, a seven trans-
membrane helix G-protein coupled receptor (GPCR). It acts as a proton pump, using
captured light energy to move protons across the membrane out of the cell. PDB
code 1PY6. Other GPCRs include halorhodopsin, a light-driven chloride pump, PDB
code 1E12. B) Cartoon representation of bacteriorhodopsin topology.

which is comprised of nine unique chains (PDB: 1JB0).

1.2.2 Beta-barrel transmembrane proteins

Beta-barrel TM proteins have been found in the outer membranes of Gram-negative

bacteria, cell walls of Gram-positive bacteria, and the outer membranes of mito-

chondria and chloroplasts (Table 1.3). They consist of a series of anti-parallel beta

strands embedded in the membrane, each of which is hydrogen-bonded to the strands

immediately before and after it in the primary sequence, connected by extramembra-

nous loops. The beta strands contain alternating polar and hydrophobic amino acids
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Function Superfamily

Light-driven transporters Rhodopsin-like proteins
Photosystems
Light-harvesting complexes

Oxidoreduction-driven transporters Transmembrane cytochrome b like
Cytochrome c oxidases
Multi-heme cytochromes

Electrochemical potential-driven
transporters

Proton or Sodium translocating F/V/A-type
ATPases

Hydrolysis-driven transporters P-type ATPase (P-ATPase)
Vitamine B12transporter-like ABC transporters
Single-helix ATPase regulators
Lipid flippase-like ABC transporters
Molybdate uptake ABC transporter
General secretory pathway (Sec)

Porters Mitochondrial Carrier (MC)
Major Facilitator Superfamily (MFS)
Resistance-nodulation-cell division
Monovalent cation/proton antiporter (CPA)
Neurotransmitter sodium symporter
Ammonia transporter (Amt)
Drug/Metabolite Transporter (DMT)

Channels including ion channels Voltage-gated channel like
Large conductance mechanosensitive ion chan-
nel (MscL)
Small conductance mechanosensitive ion chan-
nel (MscS)
CorA Metal Ion Transporters (MIT)
Ligand-gated ion channel (LIC) of neurotrans-
mitter receptors
Chloride Channel (ClC)
Epithelial sodium channel (EnaC)
Magnesium ion transporter-E (MgtE)
Major Intrinsic Protein (MIP)

Enzymes Methane monooxygenase
Rhomboid proteins
Disulfide bond oxidoreductase-B (DsbB)
MAPEG (Eicosanoid and Glutathione
metabolism proteins)

Proteins with transmembrane an-
chors

T cell receptor transmembrane dimerisation do-
main
Steryl-sulfate sulfohydrolase
Glycophorin A
Inovirus (filamentous phage) major coat protein
Pulmonary surfactant-associated protein

Table 1.2: Alpha-helical transmembrane protein superfamilies (Lomize et al.,
2006b).
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Figure 1.4: A canonical beta-barrel protein, the monomeric porin OmpG from
Escherichia coli, viewed from the side. Porins are transmembrane proteins with hollow
centres through which small molecules can diffuse. PDB code 2F1C.

so that the hydrophobic residues are orientated toward the exterior where they con-

tact the surrounding lipids, and hydrophilic residues are oriented toward the interior

pore. All beta-barrel transmembrane proteins have simple up-and-down topology,

which may reflect their common evolutionary origin and similar folding mechanism.

Beta-barrel TM proteins commonly form porins, sixteen or eighteen-stranded beta-

barrels, which assemble into water-filled channels that allow the passive diffusion

of nutrients and waste products across the outer membrane (Figure 1.4). Larger,

potentially toxic compounds are prevented from entering the cell by the restrictive

size of the channel. Porin-like barrel structures are encoded by as many as 2-3% of

genes in Gram-negative bacteria (Wimley 2003).

1.2.3 The fluid mosaic model

In 1972, Singer and Nicolson proposed the ’fluid mosaic model’ for the organisation

and structure of the proteins and lipids of biological membranes (Singer & Nicolson,

1972). The major features of this model are (1) the lipid bilayer has a dual role: it

is a solvent for TM proteins and it forms a permeability barrier, (2) a proportion of
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Function Superfamily

Outer membranes of Gram-negative
bacteria

Nucleoside-specific channel-forming membrane
porin
OMPT-like
Autotransporter (AT)
Trimeric autotransporter
OM phospholipase
FadL outer membrane protein (FadL)
OmpG porin
Trimeric porins
OMPA-like
Sugar porins
Omp85-TpsB transporters
Ligand-gated protein channels
Outer Membrane Factor (OMF)

Oligomeric beta-barrels of Gram-
positive bacteria

Leukocidin-like

Table 1.3: Beta-barrel transmembrane protein superfamilies (Lomize et al., 2006b).

membrane lipids interact with TM proteins and are likely to be essential for their

function, and (3) TM proteins are free to diffuse laterally in the lipid matrix unless

restricted by special interactions. The essence of the fluid mosaic model is that

membranes are two-dimensional solutions of orientated lipids and globular proteins

(Figure 1.5).

The model suggests that proteins in a membrane are dispersed, are at low con-

centrations and match the dimensions of the unperturbed bilayer. The lipid is seen

as a sea in which proteins float, and the bilayer is exposed to the aqueous envi-

ronment. However, the findings during the last 35 years have weakened this rather

generalised view. In the Singer-Nicolson model, molecules are distributed randomly

in two dimensions. It is now believed that membranes are patchy, with segregated

regions of structure and function. Given the thousands of TM proteins in a pro-

teome and thus vast number of pairwise combinations, a wide range of interaction

energies is highly probable. It should therefore be expected that regions of biased

composition exist and that the environment in which TM proteins exist must vary,

as it is highly improbable that interaction energies will match each other across all

protein and lipid species in a membrane (Engelman, 2005). Inspection of known TM
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Figure 1.5: Singer-Nicolson proposed the ’fluid mosaic model’ (Engelman, 2005).

protein crystal structures leads us to believe that membrane thickness is not uniform

as is suggested by the Singer-Nicolson model, but varies from place to place. The

lengths of TM helices vary in their hydrophobic dimensions suggesting that either

the protein distorts to match the dimensions of the bilayer, or the lipid distorts to

match the protein, or both. The fluidity of the lipid and the relative rigidity of

proteins suggests it is the lipid that distorts to match the protein, a view supported

by experimental and modelling data (Mitra et al., 2004). Crystal structures also

indicate that, while the TM component of a TM protein may be fairly compact,

extramembranous domains often occupy much larger areas in projection on to the

membrane. Proteins anchored by single helices often have ectodomains that cover

large areas of the membrane with protein. In many proteins, such as tyrosine ki-

nase receptors, this interaction is functionally important (Binda et al., 2002; Bracey

et al., 2002; Ferguson et al., 2003). The combination of crowding and the presence of

large ectodomains is likely to limit the exposure of lipid to adjacent aqueous regions.

These new themes are illustrated in an amended and updated version of the ’fluid

mosaic model’ (Figure 1.6).
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Figure 1.6: An amended and updated ’fluid mosaic model’ (Engelman, 2005).

1.2.4 Membrane targeting and insertion

Like all other proteins, a TM protein begins its journey on a ribosome. From

this point on, alpha-helical and beta-barrels TM proteins are handled differently.

Ribosomes upon which alpha-helical TM proteins are being assembled typically

bind cotranslationally to translocons in the target membrane (the inner membrane

in bacteria or the endoplasmic reticulum (ER) in eukaryotes). They proceed to

move laterally from the translocon channel into the surrounding lipid bilayer.

Depending on the local hydrophobicity and the ability of adjacent helices to

form stable interactions with each other, this may occur one helix at a time or

in pairs. Evidence suggests that the molecular features of the TM protein that

enable the translocon to identify a region as TM or non-TM are the same as

those seen to mediate protein-lipid interaction in known TM protein structures.

This indicates that the translocon allows a translocating nascent chain to sam-

ple the surrounding bilayer (Elofsson & von Heijne, 2007; White & von Heijne, 2004).

Beta-barrel proteins are initially transferred from the ribosome to a soluble cyto-
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Figure 1.7: Biogenesis of alpha-helical (left) and beta-barrel (right) transmembrane
proteins in Escherichia coli (Elofsson & von Heijne, 2007).

plasmic chaperone, SecB (Elofsson & von Heijne, 2007; White & von Heijne, 2004;

Luirink et al., 2005). They are then translocated through the inner membrane

translocon with the aid of SecA ATPase, but do not become embedded in the in-

ner membrane as their short beta-strands are not sufficiently hydrophobic. They

are then chaperoned through the periplasmic space and finally insert into the outer

membrane with the aid of YaeT hetero-oligomeric outer membrane integrating com-

plex (Figure 1.7) (Luirink et al., 2005; MacIntyre et al., 1988; Ruiz et al., 2006).

1.2.5 Signal peptides and anchors

Signal peptides are short sequences that govern the transport and localisation of

a protein in a cell. They targets a protein for translocation across the plasma

membrane in prokaryotes and across the ER membrane in eukaryotes (van Vliet

et al., 2003). They are typically N-terminal peptides 15-30 amino acids long,
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Figure 1.8: Mechanism of synthesis of membrane bound or secreted proteins (King,
2009).

and are cleaved off during translocation by signal peptidase I (SPase). While

there is no consensus sequence for a signal peptide, there are three distinct

compositional zones. Firstly, an N-terminal region that usually contains charged

residues. Next follows a hydrophobic region of as least 6 residues, and finally a

C-terminal region of uncharged polar residues that directly proceeds a cleavage

site, around which there is conservation at positions -3 and -1 (Emanuelsson

et al., 2007). Signal anchors, features of type II TM proteins, are effectively un-

cleaved signal peptides which share similar composition to signal peptides but have

no SPase recognition site. Signal anchors are also known to occur at the C-terminus.

In eukaryotes, signal peptides are recognised by a recognition particle (SRP)

during synthesis on a ribosome. The SRP then binds to an SRP receptor embedded

in the ER membrane. After sufficient synthesis the signal peptide is removed by

SPase. Synthesis will continue and if the protein is secreted it will end up completely

in the lumen of the ER. TM proteins possess a stop transfer motif that prevents

the transfer of the protein through the ER membrane. The TM protein will then

become embedded in the ER membrane (Figure 1.8) (King, 2009).



Chapter 1. Introduction 31

1.3 Transmembrane protein topology prediction

1.3.1 Membrane proteins are difficult to crystallise

TM proteins, which have both hydrophobic and hydrophilic regions on their sur-

faces, are much more difficult to isolate than water-soluble proteins, as the native

membrane surrounding the protein must be disrupted and replaced with detergent

molecules without causing any denaturation. Despite considerable efforts, relatively

few TM proteins have yielded crystals that diffract to high resolution. While it is

thought that TM proteins comprise approximately 30% of a proteome, they are sig-

nificantly under-represented in structural databases such as the Protein Data Bank

(Bernstein et al., 1978) where they comprise only about 1% of total deposited struc-

tures (White, 2004). Tables 1.2 and 1.3 summarise the alpha-helical and beta-barrel

crystal structures currently available (Lomize et al., 2006b). However, with advanced

technologies such as synchrotron light sources becoming available, it is now possible

to determine X-ray structures from ever-smaller protein crystals. Combined with

novel crystallisation methods such as the use of antibodies to solubilise proteins, the

rate at which TM protein structures are being elucidated should increase over the

coming years.

1.3.2 Alpha-helical transmembrane protein topology pre-

diction

Due to their severe under-representation in structural databases, the prediction

of TM protein structure is extremely difficult. Given the biological and pharma-

cological importance of TM proteins, an understanding of their topology - the

total number of TM helices, their boundaries and in/out orientation relative to the

membrane - is therefore an important target for theoretical prediction methods. A

number of experimental methods, including glycosylation analysis, insertion tags,

antibody studies and fusion protein constructs, allow the topological location of a

region to be identified. However, such studies are time consuming, often conflicting

(Mao et al., 2003a; Kyttälä et al., 2004), and also risk upsetting the natural
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Figure 1.9: A Kyte-Doolittle hydropathy plot. The protein sequence is scanned
with a sliding window of size 19-21 residues. At each position, the mean hydrophobic
index of the amino acids within the window is calculated and that value plotted as
the midpoint of the window. This plot represents a TM protein with 4 TM helices.

topology by altering the protein sequence.

In the absence of structural data, bioinformatic strategies thus turn to sequence-

based prediction methods. Long before the arrival of the first crystal structures,

stretches of hydrophobic residues long enough to span the lipid bilayer were

identified as TM spanning helices. Early prediction methods by Kyte & Doolittle

(1982) and Engelman et al. (1986), and later by Wimley & White (1996), relied on

experimentally determined hydropathy indices to create a hydropathy plot for a

protein. This involved taking a sliding window of 19-21 residues and averaging the

score with peaks in the plots (regions of high hydrophobicity) corresponding to TM

helices (Figure 1.9).

With more structures came the discovery that aromatic Trp and Tyr residues

tend to cluster near the ends of the transmembrane segments (Wallin et al., 1997),

possibly acting as physical buffers to stabilise TM helices within the lipid bilayer.

More recent studies identified the appearance of sequence motifs, such as the GxxxG
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motif (Senes et al., 2000), within TM helices and also periodic patterns implicated

in helix-helix packing and 3D structure (Samatey et al., 1995). However, perhaps

the most important realisation was that positively-charged residues tend to cluster

on cytoplasmic loops - the ’positive-inside’ rule of von Heijne (von Heijne, 1992).

Combined with hydrophobicity-based prediction of TM helices, this led to early

topology prediction methods such as TopPred (Claros & von Heijne, 1994).

1.3.3 Machine learning-based approaches

Despite their success, these early methods based on the physicochemical princi-

ple of a sliding window of hydrophobicity combined with the ’positive-inside’ rule

have since been replaced by machine learning approaches which prevail over hy-

drophobicity methods due to their statistical formulation. A selection of machine

learning-based predictors can be found in (Table 1.4).

1.3.3.1 Hidden Markov models

A Hidden Markov model (HMM) is a statistical model in which the system is

assumed to be a Markov process - a mathematical model for the random evolution

of a system where the likelihood of a given future state, at any given moment,

depends only on its present state, and not on any past states. In regular Markov

models, the state is directly visible and therefore the state transition probabilities

are the only parameters. In HMMs, the states are not directly visible, although the

state dependent outputs are visible (Bishop, 2006).

In the context of a biological sequence, we may wish to define a number of

states for each label we wish to assign. For TM topology prediction, we might

use three states to represent TM helices, inside and outside loop regions. Each

state will has its own emission probabilities which models the composition of each

state, for example hydrophobic amino acid residues will have higher emission state

probabilities within the TM helix state, while positively charged residues will have

higher emission states within the inside loop state. Each state also has transition
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probabilities, the probabilities of moving from the current state to a different one.

The transition edges describe the linear order in which state changes are expected

to occur, and create a state path on transition from state to state. This state path

is a Markov chain, meaning that the next state only depends on the current state.

In analysing an unknown sequence, we want to infer the hidden state path

and therefore identify the topogenic labels that make up the topology. There are

potentially many state paths that could generate the same sequence so the task is

usually to find the one with the highest probability. The efficient Viterbi algorithm

is guaranteed to find the most probable state path given a sequence and an HMM.

The Viterbi algorithm is a dynamic programming algorithm similar to those used

by various sequence alignment methods. Posterior decoding, which uses forward

and backward dynamic programming algorithms that are similar to Viterbi, can

then be used to sum over all possible paths in order to calculate the confidence of

each state path.

While HMMs are frequently used within bioinformatics, one caveat is that

they do not deal with correlations between residues well as they assume that each

residue depends on only one underlying state. Long-range pairwise correlations, for

example where a salt bridge is formed between two charged residues on non-adjacent

TM helices, may be missed by a HMM when attempting to predict secondary

structure since an HMM has no way of recalling what was generated by a distant

state (Eddy, 2004).

HMMs were first applied to TM topology prediction in HMMTOP (Tusnady &

Simon, 1998) and TMHMM (Krogh et al., 2001) and have proved highly successful.

TMHMM implements a cyclic model with seven states for a TM helix, while HMM-

TOP uses HMMs to distinguish between five structural states [helix core, inside

loop, outside loop, helix caps and globular domains]. These states are connected by

transition probabilities before dynamic programming is used to match a sequence
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Method URL Algorithm Features

MEMSAT3 http://bioinf.cs.ucl.ac.uk/psipred/ NN Signal peptide,
MSA, HGA

MINNOU http://minnou.cchmc.org/ NN

PHDhtm http://www.predictprotein.org/ NN MSA

Phobius http://phobius.sbc.su.se/ HMM Signal peptide,
MSA, constrained

TMHMM http://www.cbs.dtu.dk/services/TMHMM/ HMM HGA

PRODIV-
TMHMM

http://www.pdc.kth.se/˜hakanv/prodiv-
tmhmm/

HMM Re-entrant re-
gion, HGA

HMMTOP http://www.enzim.hu/hmmtop/ HMM Constrained

ENSEMBLE http://pongo.biocomp.unibo.it/pongo/ NN +
HMM

MSA

OCTOPUS http://octopus.cbr.su.se/ NN +
HMM

Re-entrant region

SVMtop http://bio-
cluster.iis.sinica.edu.tw/˜bioapp/SVMtop/

SVM

PONGO http://pongo.biocomp.unibo.it/pongo/ Multiple Consensus

BPROMPT http://www.jenner.ac.uk/bprompt/ Multiple Consensus

Table 1.4: Machine learning-based alpha-helical TM topology predictors. HMM:
Hidden Markov model. NN: Neural network. MSA: Topology predictions made using
multiple sequence alignments. HGA: Suitable for whole genome analysis.

against a model with the most probable topology. HMMTOP also allows constrained

predictions to be made, where specific residues can be fixed to a topological location

based on experimental data.

1.3.3.2 Neural networks

Artificial neural networks (NNs) are mathematical models that attempt to simulate

the structure and function of biological neural networks. They are non-linear

statistical data modelling tools that can be used to model complex relationships

between inputs and outputs or to find patterns in data. Originally inspired by the

central nervous system and the vastly interconnected neurons which constitute it,

NN models are comprised of nodes which are connected together to form a network

that processes information. In many cases a NN is an adaptive system that changes

its structure depending on the external or internal information that flows through

the network during the learning phase.

In supervised learning, where the objective is to deduce a function from a
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training set, the NN will attempt to infer the mapping implied by the training

data. A cost function is used as a measure of how far away a particular solution is

from an optimal solution to the problem to be solved. Learning algorithms search

through the solution space to find a function that has the smallest possible cost,

which is related to the mismatch between the mapping and the data. Training the

NN means selecting one model from a set of allowed models that minimises this

cost function. There are various algorithms available for training neural network

models; most employ some form of gradient descent. This is achieved by taking the

derivative of the cost function with respect to the network parameters and then

changing those parameters in a gradient-related direction (Bishop, 2006).

Like HMMs, NNs are commonly used in bioinformatics. The first and most

simple type of artificial NN devised was the feed-forward NN. In this network, the

information moves in only one direction, forward, from the input nodes, through

any hidden nodes and to the output nodes. There are no cycles or loops in the

network.

NNs are employed by methods including PHDhtm (Rost et al., 1996) and MEM-

SAT3 (Jones, 2007). PHDhtm uses multiple sequence alignments to perform a con-

sensus prediction of TM helices by combining two feed-forward NNs. The first

creates a ’sequence-to-structure’ network which represents the structural propensity

of the central residue in a window. A ’structure-to-structure’ network then smoothes

these propensities to predict TM helices, before the positive-inside rule is applied

to produce an overall topology. MEMSAT3 uses a feed-forward neural network and

dynamic programming in order to predict not only TM helices, but also to score

the topology and to identify possible signal peptides. Additional evolutionary in-

formation provided by multiple sequence alignments led to prediction accuracies

increasing to as much as 80% using one dataset (Möller et al., 2000).
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1.3.3.3 Support Vector Machines

Support vector machines (SVMs) are a group of supervised learning methods that

can be applied to classification or regression tasks. Presented with a data set of

training examples with each marked as belonging to one of two categories, the

SVM training algorithm is able to construct a model that can accurately predict

whether novel examples fall into one category or the other. The SVM model is a

representation of the examples as points in a high dimensional space, mapped in

such a way that that the examples of the two categories can be divided by a clear

gap whose width is maximised, allowing positioning of a hyperplane. In searching

for the best hyperplane, the SVM finds a set of data points that are the most

difficult to classify. These data points are referred to as support vectors. The new

examples are then mapped into the same space and are assigned to a category

depending on which side of the hyperplane they fall. Good separation is achieved

by the hyperplane that has the largest distance to the nearest training data points

of any class, known as the functional margin, since in general the larger this margin

is, the lower the generalisation error of the classifier. This strategy allows SVM

classifiers to provide improved generalisation performance compared with other

classification algorithms (Bishop, 2006).

SVMs were first devised by Vapnik (1998) who used a linear separating

hyperplane to maximise the distance between two classes in order to create a

classifier (Figure 1.10). Data points represented as p-dimensional vectors were

separated with a p−1-dimensional hyperplane, called a linear classifier - a classifier

constructed from a linear combination of the p values contained within the feature

vector. While a number of hyperplanes might be used to separate the data classes,

the best choice is the one that separates the classes by the largest margin so that

the distance between the nearest data points from each class to the hyperplane

is maximised. Such a hyperplane is therefore known as the maximum-margin hy-

perplane and the linear classifier it defines is known as a maximum margin classifier.
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Figure 1.10: Decision surface of an SVM classifier for a linearly separable problem
in two dimensions. The decision boundary f(x) = 0 is shown by a solid line. The
circled points are the support vectors, which lie on the dashed lines representing the
geometric margin (Ward, 2005).

For data classes than cannot be linearly separated in the original Euclidean

input space, several adaptations of the maximal margin classifier are required.

Soft margin hyperplanes add a penalty function of violation of constraints to

the optimisation criterion, allowing input vectors that are corrupted by noise to

be separated by a hyperplane as cleanly as possible while still maximising the

separation distance. The method introduces slack variables which represent the

geometric distance to the margin hyperplanes for examples that fail to have a

specified margin. An extra cost term is also included to penalise margin errors by

controlling the trade-off between large margin and low empirical risk (Cristianini &

Shawe-Taylor, 2000).

Another extension is the use of the kernel trick to solve a non-linear problem by

mapping the original non-linear observations into a higher-dimensional space where

the linear classifier is subsequently used; this makes a linear classification in the

new space equivalent to non-linear classification in the original space. The kernel
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trick is based on Mercer’s theorem which states that any continuous, symmetric,

positive semi-definite kernel function can be expressed as a dot product in a high-

dimensional space. The non-linear classifier uses a non-linear kernel function in place

of the dot product, allowing the algorithm to fit the maximum-margin hyperplane

in a transformed feature space. Common kernels implemented by SVM packages

include the linear (Equation 1.1), polynomial (Equation 1.2), sigmoid (Equation

1.3) and radial basis function (Equation 1.4).

ψ(x, xi) = (x · xi) (1.1)

ψ(x, xi) = (γ · x · xi + 1)d (1.2)

ψ(x, xi) = tanh (γ · x · xi) (1.3)

ψ(x, xi) = exp
(

−γ‖x− xi‖2
)

(1.4)

y = sign
{

∑

αitiψ(x, xi)
}

(1.5)

Equations 1.1 to 1.5: Equation 1.1: linear kernel function. Equation 1.2: polynomial

kernel function. Equation 1.3: sigmoid kernel function. Equation 1.4: radial basis

function kernel. Equation 1.5: The decision equation. x is a p-dimensional vector

representing the test data point. xi is a p-dimensional vector representing the ith support

vector. ψ(x, xi) is the kernel function which quantifies the similarity between a test data

point and the support vectors. ti is the class label of the ith support vector. αi is the

positive parameter of the ith support vector determined by the SVM algorithm. d is the

degree of the polynomial function. γ is typically set to 1 divided by the number of features.

Perhaps the most difficult aspect of implementing an SVM is the choice or

design of an appropriate kernel function. Many kernels, including those described

above, are specifically designed for dealing with numerical features. However, when

dealing with a data set composed of non-numerical attributes such as protein or

DNA sequences, the kernel function must be specially designed or the features must

be numerically encoded (Yang, 2004).
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Recently, SVMs have been applied to TM protein topology prediction (Yuan

et al., 2004; Lo et al., 2008). While NNs and HMMs are capable of producing multi-

ple outputs, SVMs are binary classifiers therefore multiple SVMs must be employed

to classify the numerous residue preferences before being combined into a proba-

bilistic framework. Although multiclass ranking SVMs do exist, they are generally

considered unreliable since in many cases no single mathematical function exists

to separate all classes of data from one another (Abe, 2003). However, SVMs are

capable of learning complex relationships among the amino acids within a given

window with which they are trained, particularly when provided with evolutionary

information, and are also more resilient to the problem of over-training compared

to other machine learning methods, although numerous adjustable parameters can

result in optimisation becoming extremely time consuming.

1.3.4 Consensus approaches

A number of methods now combine multiple machine learning approaches. ENSEM-

BLE (Martelli et al., 2002) uses a NN and two HMMs, while OCTOPUS (Viklund &

Elofsson, 2008) uses two sets of four NNs and one HMM. Both groups report higher

prediction accuracies compared with methods based on only a single classification

algorithm. BPROMPT (Taylor et al., 2003), which takes a consensus approach,

combines the outputs of five different predictors to produce an overall topology us-

ing a Bayesian belief network, while Nilsson et al. (2002) used a simple majority-vote

approach to return the best topology from their five predictors. The PONGO server

(Amico et al., 2006) returns the results of 5 high scoring methods in a graphical for-

mat for direct comparison. In most cases, but particularly proteins whose topology

is not straightforward, considering a number of predictions by different methods is

highly advisable (Figure 1.11).

1.3.5 Signal peptides and re-entrant helices

One problem faced by modern topology predictors is the discrimination between TM

helices and other features composed largely of hydrophobic residues. These include
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Figure 1.11: Using a number of methods to form a consensus.

targeting motifs such as signal peptides and signal anchors, amphipathic helices,

and re-entrant helices which are common in many ion channel families (Figure 1.12).

The high similarity between such features and the hydrophobic profile of a TM helix

frequently leads to crosstalk between the different types of predictions. Should these

elements be predicted as TM helices, the ensuing topology prediction is likely to be

severely disrupted. Some prediction methods, such as SignalP (Bendtsen et al.,

2004) and TargetP (Emanuelsson et al., 2007) are effective in identifying signal

peptides, and may be used as a pre-filter prior to analysis using a TM topology

predictor. Phobius (Käll et al., 2004) used a HMM to successfully address the

problem of signal peptides in TM protein topology prediction, while PolyPhobius

(Käll et al., 2005) further increased accuracy by including homology information.

Other methods such as TOP-MOD (Viklund et al., 2006) and OCTOPUS have

attempted to incorporate identification of re-entrant regions into a TM topology

predictor but there is significant room for improvement. The problem, particularly

regarding re-entrant helices, is the lack of reliable data with which to train machine-

learning based methods.

1.3.6 Beta-barrel proteins

The relative abundance of alpha-helical TM proteins in both complete proteomes

and 3D databases, when compared to beta-barrel TM proteins has resulted in the

latter class being somewhat overshadowed in terms of efforts to predict structure
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Figure 1.12: Potassium channel subunit from Streptomyces lividans showing a short
re-entrant helix (PDB: 1R3J).

and topology. Perhaps another reason is the relative ease with which alpha-helical

TM helices can be predicted due to their enrichment of hydrophobic residues. The

anti-parallel beta-strands of beta-barrel TM proteins contain alternating polar and

hydrophobic amino acids, allowing the hydrophobic residues to orientate towards the

membrane while the polar residues are oriented toward the solvent-exposed surface.

Early methods used to predict such beta-strands relied on sliding window-based

hydrophobicity analyses in order to capture the alternating patterns (Schirmer &

Cowan, 1993), while other approaches included the construction of special empirical

rules using amino acid propensities and prior knowledge of the structural nature

of the proteins (Gromiha & Ponnuswamy, 1993). As the number of structures of

beta-barrel proteins known at atomic resolution increased, machine learning based

methods began to emerge trained on these larger datasets. These include NN,

(Jacoboni et al., 2001; Gromiha et al., 2004), HMM (Martelli et al., 2002; Liu et al.,

2003b; Bagos et al., 2004a) and SVM-based predictors (Park et al., 2005), using

single sequences and multiple sequence alignments. A selection of machine learning-

based beta-barrel predictors can be found in Table 1.5.
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Method URL Algorithm Features

B2TMR http://gpcr.biocomp.unibo.it/predictors/ NN MSA

TMBETA-NET http://psfs.cbrc.jp/tmbeta-net/ NN MSA, HGA

HMM-B2TMR http://gpcr.biocomp.unibo.it/predictors/ HMM MSA

PROFtmb http://www.rostlab.org/services/PROFtmb/ HMM HGA

PRED-TMBB http://biophysics.biol.uoa.gr/PRED-TMBB/ HMM HGA

TMBETA-SVM http://tmbeta-svm.cbrc.jp/ SVM HGA

TMB-Hunt2 http://bmbpcu36.leeds.ac.uk/ HMM +
SVM

HGA

Table 1.5: Machine learning-based beta-barrel TM topology predictors. MSA:
Topology predictions made using multiple sequence alignments. HGA: Suitable for
whole genome analysis.

1.3.7 Databases

A number of databases now exist that serve as repositories for the sequences and

structures of TM proteins. OPM (Lomize et al., 2006b), PDB TM (Tusnady et al.,

2005a), CGDB (Chetwynd et al., 2008), MPDB (Raman et al., 2006) and Stephen

White’s database (White, 2010) all contain TM proteins of known structure

determined using X-ray and electron diffraction, nuclear magnetic resonance

and cryoelectron microscopy. OPM, PDB TM and CGDB additionally contain

orientation predictions of the protein relative to the membrane based on water-lipid

transfer energy minimisation (Lomize et al., 2006a), hydrophobicity/structural

feature analysis (Tusnady et al., 2005b) and coarse grained molecular dynamic sim-

ulations (Sansom et al., 2008). For topological studies, OPM provides N-terminus

localisation information, while TOPDB (Tusnady et al., 2008) and MPtopo

(Jayasinghe et al., 2001) also include TM proteins of unknown 3D structure whose

topologies have been experimentally validated using low-resolution techniques

such as gene fusion, antibody and mutagenesis studies. A number of TM protein

databases collect information on specific families including potassium channels (Li

& Gallin, 2004) and GPCRs (Horn et al., 1998), while others such as LGICdb

(Donizelli et al., 2006) and TCDB (Saier et al., 2006) focus on particular structural

or functional classes.

The Möller dataset (Möller et al., 2000), although in need of modification based
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on recent SWISS-PROT annotations (Boeckmann et al., 2003), provides a diverse

training and validation set that suffers less from the prokaryotic bias present in 3D

structure derived sets. As with all bioinformatics databases, care should be taken to

ensure that a given resource is frequently updated. The rate at which new sequences

and structures are deposited in Genbank and the PDB (and occasionally retracted

e.g. Pornillos et al. (2005)) results in significant manual annotation for database

administrators, and much evidence suggests that this workload often exceeds the

amount of time an administrator is willing to commit.

1.3.8 Multiple sequence alignments

Multiple sequence alignments play an important role in TM protein structure

prediction. Homologous sequences identified via database searches can be used to

construct sequence profiles which can significantly enhance TM topology prediction

accuracy (Käll et al., 2005; Jones, 2007), while template structures can be used for

homology modelling.

The most commonly used methods for detecting homologous sequences are the

BLAST (Basic Local Alignment Search Tool) and PSI-BLAST (Position-Specific

Iterated BLAST) algorithms (Altschul et al., 1997). These methods work on the

premise that the greater the similarity between protein or DNA sequences, the

more recent the divergence from a common ancestor is likely to be and therefore

the more structural and functional characteristics will be shared by the related

sequences. BLAST identifies words in the query sequence with a match score above

a particular threshold, before searching a sequence database for high-scoring word

hits. On detection of a hit, the alignment is extended in both directions producing

an alignment score.

PSI-BLAST improves on BLAST by automatically constructing profiles from

BLAST alignments. PSI-BLAST first creates a list of all closely related proteins.

These proteins are then combined into a general profile sequence, or position-specific
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scoring matrix (PSSM), which summarises the significant features present in these

sequences. The frequencies of all amino acids at each position in the multiple align-

ment are used to weight the original scoring matrix to account for the residues that

are present in the proteins recovered identified by the search. The sequence database

is then searched using this profile, returning a larger number of proteins. This

larger group is then used to create another profile before the process is repeated.

By including these related proteins in the search, PSI-BLAST is much more sensi-

tive in picking up distant evolutionary relationships than a standard BLAST search.

While conventional pair-wise alignment methods such as BLAST and PSI-

BLAST return possible matches based on a scoring function that relies on amino

acid substitution matrices such as PAM (Dayhoff, 1979) or BLOSUM (Henikoff &

Henikoff, 1992), such matrices are derived from globular protein alignments, and as

amino acid composition, hydrophobicity and conservation patterns differ between

globular and TM proteins (Jones et al., 1994b) they are in principle unsuitable

for TM protein alignment. A number of TM-specific substitution matrices have

therefore been developed, which take into account such differences. For example,

the JTT TM matrix (Jones et al., 1994b) was based on the observation that polar

residues in TM proteins are highly conserved, while hydrophobic residues are more

interchangeable. Other matrices such as SLIM (Muller et al., 2001), were reported

to have the highest accuracy for detecting remote homologues in a manually curated

GPCR dataset, while PHAT (Ng et al., 2000) has been shown to outperform JTT,

especially on database searching. However, to date, no independent study has

accessed these TM-specific substitution matrices on a common dataset.

Few novel methods have been developed to improve actual TM protein alignment.

STAM (Shafrir & Guy, 2004) implemented higher penalties for insertion/deletions

in TM segments compared to loop regions, with combinations of different substitu-

tion matrices to produce alignments resulting in more accurate homology models.

PRALINETM (Pirovano et al., 2008), which incorporates membrane-specific substi-
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tution matrices, was shown to outperform standard multiple alignment techniques

such as ClustalW (Thompson et al., 1994) and MUSCLE (Edgar, 2004) when tested

on the TM alignment benchmark set within BaliBASE (Bahr et al., 2001). Recent

adjustment to BLAST and PSI-BLAST to reflect the composition of the query se-

quence should theoretically improve results for TM protein searches (Altschul et al.,

1997), though again this has not been assessed. An advanced alignment method

T-Coffee (Notredame et al., 2000), despite using a single generic scoring matrix,

performs well at high sequence identities when tested against a benchmark data set

of homologous membrane protein structures, while HMAP (Tang et al., 2003) can

improve alignment significantly using a profile-profile based approach incorporating

structural information.

1.3.9 Whole genome analysis

Large-scale genomics and proteomics projects are frequently identifying novel pro-

teins, many of which are of unknown localisation and function. While some of the

methods outlined above can accurately predict TM topology, fewer are suitable for

discriminating between globular and TM proteins. To do so requires the method to

be specially trained for this process, and that the program is available as a standalone

package as web-based predictors are unsuitable for such large-scale submissions. A

number of methods which are suitable for whole genome analysis of alpha-helical

and beta-barrel TM proteins are shown in Tables 1.4 and 1.5. In general, error

rates are minimised by prior filtering to remove signal and transit peptides using

methods such as SignalP and TargetP, since many globular proteins with such signal

sequences are frequently predicted as single spanning TM proteins. Currently, the

best methods are capable of error rates of less than 1% for alpha-helical TM proteins

(Jones, 2007) and less than 6% for beta-barrel TM proteins (Park et al., 2005).

1.3.10 Data sets, homology, accuracy and cross-validation

A key element when constructing any prediction method is the use of a high quality

data set for both training and validation purposes. Extracting a training set from
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available databases requires a large amount of work and requires a number of

critical decisions to be made. As an example in the case of TM proteins, searches

of databases such as the PDB using the keyword ’transmembrane’ will return both

genomically encoded TM proteins as well as TM proteins that are not native, such

as PDB entry 1BH1 - a bilayer disrupting peptide found in bee venom - and 1CII, a

bacterial colicin used to form pores in the outer membranes of competing bacteria.

Furthermore, errors in databases are not infrequent and add an element of noise.

While such noise is often well tolerated by machine learning methods, the problem

is more significant in smaller data sets.

Another issue that needs to be addressed is homology in the data, with most

data sets being reduced at a level of 30-40% sequence identity. Since structural TM

protein data is at a premium, this level is perhaps slightly higher than that which

would be applied to globular protein data sets. Although there is an increased

risk of overfitting, this is necessary to ensure training sets are of sufficient size.

All machine learning methods have multiple free parameters and thus have the

potential to overfit. That is, rather than identifying a pattern in a sequence, an

example may be learned ’by heart’, including any noise that the sequence may

contain. A method that has been overfitted is typically able to reproduce its

training examples accurately, but will perform poorly on examples that it has not

seen before. It is important that, when assessing the accuracy of a prediction

method, homology in both training and test data sets is reduced in order to avoid

overfitting.

In all cases, it is important that stringent cross-validation is performed. Cross-

validation is the statistical practice of partitioning a data set into subsets such that

a single subset is validated on a model trained using the remaining subsets, and the

process is continued until all subsets have been validated. Two types are common

in TM topology prediction. In K-fold cross-validation, the data set is partitioned

into K subsets. Of the K subsets, a single subset containing a number of sequences
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is retained as validation data for testing the model, while the remaining K-1 subsets

are used as training data. This process is then repeated K times (folds), with each

of the K subsets being used exactly once as the validation data. The K results from

the folds can then either be combined or averaged to produce a single estimation. A

more stringent, although computationally more intensive form of cross-validation is

leave-one-out cross-validation (LOOCV), also referred to as a jack knife test. Jack

knifing involves testing a single sequence from the data set against the remaining

sequences which make up the training set, then repeating the test such that every

sequence is validated once. This is the same as a K-fold cross-validation with K

being equal to the number of sequences in the data set.

While some studies have attempted to compare TM topology prediction accu-

racy between different methods (e.g. Melen et al. (2003)), significant progress has

been made since then. Currently, the best TM topology predictors claim to pre-

dict correct topologies for 80-93% of proteins, though in the absence of independent

cross-validation using a common test set it is difficult to accurately compare meth-

ods. Those which perform well when tested on a particular data set, e.g. one

containing few signal peptides, may perform poorly when tested on a data set which

contains many signal peptides. Methods optimised on a data set containing many

weakly hydrophobic TM helices may tend to over predict TM helices in other data

sets. Current gold-standard TM protein data sets with topologies derived solely

from structural data contain no more than 150 sequences when homology reduced

(Lomize et al., 2006b), but a lack of consensus amongst these combined with the

scarcity of necessary cross-validation data means that differences in accuracy be-

tween methods may thus be a result of differences in training and validation data

sets rather than significant differences in performance.

1.3.11 3D structure prediction

As with globular proteins, 3D structure prediction of TM proteins can be dealt

with via two approaches, homology modelling and ab initio modelling.
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Homology modelling, also known as comparative modelling, involves the use of

a related template structure in order to build a 3D model of a target protein. The

method is based on the observation that protein structure is conserved more highly

than amino acid sequence, hence even proteins that have diverged significantly

in sequence but still share detectable similarity (>30% sequence identity) may

also share common structural properties, particularly the overall fold. Due to the

difficulties involved in obtaining high-resolution crystal structures, particularly

with regard to TM proteins, homology modelling can provide useful structural

models for generating hypotheses about a protein’s function and directing further

experimental work. The process can be subdivided into four steps: template

selection, target-template alignment, model construction and model assessment, all

of which can be performed iteratively in order to improve the quality of the final

model (Sanchez & Sali, 1997; Marti-Renom et al., 2000). A selection of homology

modelling programs are shown in Table 1.6.

Aside from SWISS-MODEL (Peitsch, 1996) which has a 7TM/GPCR interface,

none of the methods in Table 1.6 are specifically designed to deal with TM proteins.

In particular, care must therefore be taken to ensure that models do not contain

polar side chains that protrude into the hydrophobic membrane region. Specific

side chain modelling tools such as SCWRL (Canutescu et al., 2003) may suffer from

this same problem, though the accuracy of extramembranous regions of the model

is likely to increase. Despite the lack of TM protein-specific modelling tools, recent

research has demonstrated that bioinformatics tools currently applied to soluble

proteins, from profile matching to secondary structure prediction and homology

modelling, perform at least as well on TM proteins (Forrest et al., 2006b). Indeed,

an important application of TM protein modelling lies in the identification and

validation of drug targets, as well as the identification and optimisation of lead

compounds. Homology model-based drug design has been applied to a number of

kinases including epidermal growth factor-receptor tyrosine kinase protein (Ghosh
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Method URL Description

Modeller http://www.salilab.org/modeller/ Modelling by satisfying spatial re-
straints. Includes de novo loop mod-
elling.

SegMod/ENCAD http://csb.stanford.edu/levitt/segmod/ Modelling by segment matching
combined with molecular dynamics
refinement.

SWISS-MODEL http://swissmodel.expasy.org/ Web server modelling by rigid-body
assembly.

3D-JIGSAW http://bmm.cancerresearchuk.org/ Web server modelling server
with energy minimisation using
CHARMM.

Nest http://wiki.c2b2.columbia.edu/ Multiple template-based modelling
using an artificial evolution method.

Builder On request Self Consistent Mean-Field theory
(SCMF) (Koehl and Delarue 1996)
approach for loop and side chain
modelling.

Jackal http://wiki.c2b2.columbia.edu/ Modelling using a selection of differ-
ent programs.

SCWRL3 http://dunbrack.fccc.edu/ Backbone-dependent rotamer
library-based side chain modelling.

Table 1.6: A selection of commonly used homology modelling programs, adapted
from Wallner & Elofsson (2005).

et al., 2001), Bruton’s tyrosine kinase (Mahajan et al., 1999) and Janus kinase 3

(Sudbeck et al., 1999).

Ab initio modelling, or de novo modelling, involves the construction of a 3D

model in the absence of any structural data relating to the target protein or a

homolog. Research has focused in three main areas: alternate lower-resolution

representations of proteins, accurate energy functions, and efficient sampling

methods. While most methods address globular proteins, some efforts have been

directed at TM protein structure prediction.

ROSETTA (Rohl et al., 2004) is an ab initio modelling program that uses

potential functions for computing the lowest energy structure for an amino acid

sequence. Feedback from the prediction is used continually to improve potential

functions and search algorithms. A modified version of the ROSETTA algorithm

(Barth et al., 2007) uses an energy function that describes membrane intraprotein
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interactions at atomic level and membrane protein/lipid interactions implicitly,

while treating hydrogen bonds explicitly. Results suggest that the model captures

the essential physical properties that govern the solvation and stability of membrane

proteins, allowing the structures of small TM protein domain (< 150 residues) to be

predicted successfully to a resolution of < 2.5 Å. This accuracy compares favourably

with predictions obtained on small water-soluble protein domains. The ROSETTA

membrane method has also been combined with homology modelling and domain

assembly methods to model the structures of the Kv1.2 and KvAP potassium

channels, resulting in models with good similarity to their crystal structures.

Modelling of the open and closed states of these channels has provided insight

into the mechanism of voltage-dependent gating through conformational change,

providing testable hypotheses for further experimental work (Yarov-Yarovoy et al.,

2006).

FRAGFOLD (Jones, 1997, 2001) is a fragment-based protein tertiary structure

prediction method, based on the assembly of supersecondary structural fragments

using a simulated annealing algorithm. The strategy attempts to greatly narrow the

search of conformational space by preselecting fragments from a library of highly

resolved protein structures. FILM (Pellegrini-Calace et al., 2003) adds a membrane

potential to the FRAGFOLD energy terms (pairwise, solvation, steric and hydrogen

bonding). The membrane potential has been derived by the statistical analysis of a

data set made of 640 transmembrane helices with experimentally defined topology

and belonging to 133 proteins extracted from the SWISS-PROT database. Results

obtained by applying the method to small membrane proteins of known 3D structure

show that the method is able to predict, at a reasonable accuracy level, both the

helix topology and the conformations of these proteins.

1.3.12 Future developments

Despite the good results obtained using both ROSETTA and FILM, a number of

limitations of these approaches need to be addressed in future work. The main
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limitation at present is the difficulty in handling large transmembrane structures.

The combinatorial complexity of ab initio protein folding methods means that it

is not feasible to use such method for structures with more than about 150 amino

acids. Several approaches might be used to overcome this limitation. The simplest

improvement to implement for FILM would be to construct a more restricted super-

secondary structure fragment library, perhaps based solely on TM protein structures.

This would greatly bias the fragment search to conformations likely to form part of

large transmembrane structures. A further improvement could be achieved by using

larger structure fragments than just supersecondary motifs. Future challenges to

enable ROSETTA to make predictions on larger domains include enhanced confor-

mational sampling strategies and more accurate treatment of electrostatics.

1.4 Structure of thesis

One of the greatest unsolved problems in bioinformatics is understanding how a

sequence of amino acids folds into a 3D structure. While most current research in

this area focuses on globular proteins, the paucity of structural data means that

relatively little effort has been put towards TM protein structure prediction. This

thesis will focus on novel approaches to improve alpha-helical TM protein structure

prediction.

The next chapter describes a topological study of an uncharacterised TM

protein thought to cause a fatal neurodegenerative disease, using a consensus of

bioinformatic approaches constrained by experimental data. A number of the tools

previously discussed will be applied to a sequence whose topology is not straightfor-

ward, in the hope of identifying the correct topology and any interesting structural

features. In doing so, it may become possible to direct further experimental work

and help understand the disease mechanism. Such an investigation represents the

typical use of TM topology prediction for the investigation of an unknown sequence.

The third chapter describes an attempt to increase TM topology prediction
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accuracy by modifying an existing NN-based method to enable the presence of

biologically meaningful sequence motifs to influence the assignment of topogenic

regions during topology prediction. Here we experiment with the idea of assigning

topogenic weights to motifs that can be represented as regular expressions, and

benchmark the performance of the modified approach on a standard data set. This

chapter demonstrates a generic method that could be applied to a range of topology

predictors in order to improve prediction performance.

The fourth and fifth chapters describe the development of two novel SVM-based

methods. Chapter four describes a novel SVM-based TM topology predictor that

integrates both signal peptide and re-entrant helix prediction, benchmarked with

full cross-validation on a novel data set of sequences with known crystal structures.

Topology prediction performance is compared with a number of recent methods,

as is the ability to discriminate between globular and TM proteins. The results of

applying these tools to a number of complete genomes are also presented.

The fifth chapter describes a novel approach to predict lipid exposure, residue

contacts, helix-helix interactions and finally the optimal helical packing arrange-

ment of TM proteins. It is based on two SVMs that predict per residue lipid

exposure and residue contacts, which are then used to determine helix-helix

interaction. The method is also able to discriminate native from decoy helical

packing arrangements. Finally, a force-directed algorithm is employed to construct

the optimal helical packing arrangement. In combination, these tools are likely to

assist in reducing the conformational sampling space during ab initio modelling.

The final chapter summarises the major contributions of this thesis to biology,

before future perspectives for TM protein structure prediction are discussed.
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2.1 Background

2.1.1 Neuronal Ceroid Lipofuscinoses

Neuronal Ceroid Lipofuscinoses (NCLs) are a group of at least eight genetically sep-

arate autosomal recessive inherited diseases characterised by progressive blindness,

permanent loss of motor ability, neurodegeneration and the severe accumulation

of lipopigments, composed of fats and proteins that appear green-yellow when

viewed under ultraviolet light, in the lysosomes of neurons and other cell types in

organs including the liver, spleen, myocardium, and kidneys. With a frequency of

approximately 1 in 10,000 in the United States and northern European populations

(Vesa et al., 2002), they are the most common childhood onset neurodegenerative

disorders but are currently incurable.

NCLs were historically classified according to the clinical onset of symptoms as

infantile, late-infantile, juvenile, and adult forms, although several variant forms

are now recognised. All are believed to progress at different rates. While seven

human disease gene loci have been identified, the functions of most of the encoded

proteins remain unknown. Mutations in a number of genes are however thought

to be responsible; so far CLN1, CLN2, CLN3, CLN5, CLN6, CLN7, CLN8, CTSD

and possibly CLCN6 genes are believed to be implicated (Pardo et al., 1994).

Understanding the functions of the proteins encoded by these genes will un-

doubtedly shed light on the disease mechanism which in turn may lead to the de-

velopment of novel therapies. CTSD is known to encode the proteolytic enzyme

cathepsin D. Mutations in CTSD cause disease evident at or before birth, with

very severe brain atrophy and death occurring soon afterwards. CLN1 encodes the

enzyme palmitoyl protein thioesterase 1 (PPT1) which removes palmitate residues

from proteins. Mutations in this gene cause NCL with a wide clinical spectrum;

onset is typical in infancy but can be delayed until adulthood. CLN2 encodes a

lysosomal enzyme tripeptidyl peptidase (TPP1), a member of a recently defined
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family of serine-carboxyl proteinases involved in the removal of tripeptides from

the N-terminus of small proteins; mutations cause classic late infantile NCL, and

in some instances a more protracted disease with later onset. Mutations in CLN5,

CLN6, CLN7, CLN8 and other as yet unknown genes are known to cause variant

late infantile NCL. For disease caused by mutations in CLN5, symptoms may in-

clude developmental regression, visual impairment, ataxia, myoclonus and epilepsy.

For disease caused by mutations in CLN6 and CLN7, seizures and motor difficulties

present before visual failure. Mutations in CLN8 can cause two different disease,

one mutation is associated with Northern epilepsy or Progressive epilepsy with men-

tal retardation, only recently recognised as an NCL. Other mutations cause typical

NCL with seizures and deteriorating motor skills the leading symptoms followed by

myoclonus, visual failure and loss of cognitive skills (Mole, 1998).

2.1.2 CLN3 mutations cause Batten disease

Mutations in the CLN3 gene underlie juvenile onset NCL (JNCL), also known as

Batten disease. Batten disease presents with visual failure, typically progressing

over 2-3 years to an appreciation of light and dark only. This is followed in most

cases by deterioration in cognitive skills, speech and mobility occurs in the early

teenage years together with the onset of seizures. Behaviour may also become

problematic at this time as aggressiveness, psychosis, mood disturbances and

anxiety occur. Speech becomes dysfluent and mobility becomes characteristically

slow and shuffling with a slightly stooped posture. As the disease progresses

myoclonic jerks and parkinsonian features become prominent. Communication,

mobility and self-help skills are lost.

Batten disease sufferers usually carry a 1kb intragenic deletion on at least one

disease allele although some mutations causing a mild or more protracted disease in

which visual failure occurs but further symptoms can be delayed well into adulthood.

A small group of patients assumed to have mutations in an unknown CLN9 gene also

cause juvenile onset NCL (Mole, 1998). While the CLN3 gene is known to encode a
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438 amino acid TM protein (The International Batten Disease Consortium, 1995),

its function remains elusive and currently hinders understanding of the molecular

basis of this fatal disease. Elucidating the TM topology of CLN3 may give insight

to its function and mechanism of action.

2.1.3 CLN3 topology is controversial

Despite several experimental studies using antibodies, inserted tags and glyco-

sylation mutagenesis, CLN3 topology remains controversial. Previous predicted

topological models for CLN3 have proposed between five and eight TM helices and

differ with their placement of the amino terminus on either side of the membrane

(Janes et al., 1996; Mitchison et al., 1997; Mao et al., 2003a). The bioinformatic

methods used in these predictions have relied on early hydrophobicity-based

methods to detect TM helices. As discussed in the previous chapter, such methods

have now been superseded by machine learning approaches which demonstrate

significantly improved performance when benchmarked on standard data sets,

particularly when evolutionary information is used to enhance the prediction

(Viklund & Elofsson, 2004; Jones, 2007).

In this chapter, we present a topological study of the CLN3 protein using a selec-

tion of recent machine learning-based TM protein topology predictors, constrained

by experimental data. Our results suggest that CLN3 has a six TM helix topology

with cytoplasmic N and C-termini, three large lumenal loops, one of which may

contain an amphipathic helix, and one large cytoplasmic loop, a model which is in

agreement with almost all published experimental data. While these results sup-

port the accuracy of these machine learning based topology prediction methods,

surprisingly varied topological predictions made using different subsets of ortholo-

gous sequences highlights the challenges still remaining for topology prediction and

the importance of using experimental data to confirm such predictions.
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2.2 Methods

2.2.1 CLN3 topology prediction using a selection of recent

predictors

We analysed CLN3 sequences using a selection of the highest scoring prediction

methods via the PONGO server (Amico et al., 2006). The PONGO server pro-

vides topological annotation for all alpha-helical TM proteins in the human genome

through a web interface as well as via distributed annotation systems (DAS) queries.

In order to produce a comprehensive analysis of query sequences, annotations

are carried out by four high scoring predictors: TMHMM (Krogh et al., 2001),

MEMSAT3 (Jones, 2007), PRODIV (Viklund & Elofsson, 2004) and ENSEMBLE

(Martelli et al., 2003). PRODIV is a recent method which uses a HMM similar

to TMHMM, but exploits evolutionary information derived from multiple sequence

alignments. ENSEMBLE is an combination of two HMMs and one NN. ENSEMBLE

also takes advantage of the evolutionary information derived from multiple sequence

alignments, both for the NN and HMM systems. Additionally, the signal peptide

predictor SPEP, based on combination of NNs, is used (Fariselli et al., 2003). SPEP

has performance similar to the most widely used signal peptide predictor SignalP

(Bendtsen et al., 2004) and is included since signal peptides are commonly mispre-

dicted as TM helices. Stored and pre-computed predictions for the human proteins

can be searched and displayed in a graphical view, while the web service allows the

topology prediction of any kind of putative membrane proteins (Figure 2.1).

2.2.2 Using MEMSAT3 with PSI-BLAST profiles derived

from custom databases

MEMSAT3 was used in conjunction with a database of 50 diverse multi-species

CLN3 sequences that had been manually curated (MEMSAT + CLN3), a database

of a subset of 40 microbial CLN3 sequences (MEMSAT + Microbial CLN3) and

SWISS-PROT release 54.0 (MEMSAT + SWISS-PROT) in order to produce PSI-

BLAST profiles used to enhance the prediction, while the remaining methods were
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Figure 2.1: Typical graphical output from the PONGO server for a TM protein
containing a single TM helix (shown in red) and a signal peptide (orange).

run using either human or individual microbial CLN3 sequences. By ensuring that

all sequences included in the profiles were CLN3 orthologues, we could be certain

that false positive hits were excluded.

2.2.3 Additional prediction methods and experimental data

Experimental data using antibody staining on selectively permeabilised cells

(Kyttälä et al., 2004) and susceptibility to protease digestion and N-terminal

block to Edman degradation (Ezaki et al., 2003) strongly indicated that the amino

terminus was located on the cytoplasmic side of the membrane, so for this reason

all models with predicted lumenal amino termini were excluded. This information

was also used to constrain a prediction using the Phobius server (Käll et al., 2004).

Phobius is a combined TM protein topology and signal peptide predictor. The

predictor is based on a HMM that models the different sequence regions of a signal

peptide and the different regions of a TM protein in a series of interconnected

states. Compared to TMHMM and SignalP, errors coming from cross-prediction

between TM segments and signal peptides were reduced substantially by Phobius

when benchmarked on a manually curated data set, suggesting that Phobius is well

suited for whole genome annotation of signal peptides and TM regions (Figure 2.2).

ScanPROSITE (de Castro et al., 2006) was also used to detect potential phos-

phorylation and N-glycosylation sites, PSIPRED (Jones, 1999) was used to assess
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Figure 2.2: Typical graphical output from the Phobius server.

secondary structure and the LIPS (LIPid-facing Surface) server (Adamian & Liang,

2006) was used to predict helix-lipid interfaces. LIPS is based on a canonical model

of the heptad repeat originally developed for coiled coils. Is uses an empirical scoring

function which combines lipophilicity and conservation of residues in the helix.

2.3 Results

2.3.1 A topology model for human CLN3

A range of different models were produced with between six and eleven TM

spanning helices (Figure 2.3). Despite this variation, there are four distinct regions

where there is a strong consensus between all prediction methods: amino acid

residues 36-60, 97-121, 210-231 and 276-303. A multi-species CLN3 alignment of

50 sequences shows that all four regions are enriched with hydrophobic residues yet

show distinct sequence variation - two features which are entirely consistent with
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Figure 2.3: Results of topology prediction for CLN3 showing models with cytoplas-
mic amino terminals and between six and eleven TM spanning helices generated using
six different methods, and our consensus prediction that takes into account additional
information discussed within the text. The Kyte-Doolittle plot was generated using
a 19 residue sliding window.

lipid-exposed membrane-spanning helices.

Of the remaining regions, we ruled out the presence of a TM helix in a number

of cases. We believe the region 122-209 - a highly hydrophobic stretch but with

no clear peaks of hydrophobicity - contains only one TM helix at about 129-153,

roughly in-line with the MEMSAT3 (using SWISS-PROT) prediction. A helix in

this position allows for a short loop region after the second helix, and leaves the

highly conserved residues at positions 159-195 exposed on a loop. The multi-species

alignment of CLN3 orthologues indicates this loop contains insertions in a number

of species which casts doubt over the additional TM helices predicted for this region

by Phobius and the TMHMM-based methods.

At position 319-336 there is a discrepancy in the consensus prediction, with half

the methods predicting a TM helix and half predicting a loop. The Kyte-Doolittle

plot indicates this region has relatively low hydrophobicity and it is in fact enriched

with polar residues making it an unlikely candidate for a TM helix. A PSIPRED

secondary structure prediction does however show a high helix forming propensity

for this stretch, and a bias in hydrophobic residue phasing to one side is indicated

on construction of a helical wheel (Figure 2.4). This leads us to believe that

the region may form an amphipathic helix partially buried in the membrane, a

model which is further strengthened by a high lipid exposure score (10.810) for the
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Figure 2.4: Sequence comparison of the potential amphipathic helix from selected
species. Numbers refer to amino-acid position in human CLN3. The helix is presented
as a helical wheel with hydrophobic residues shaded in light grey and polar residues
in dark grey. The area below the line illustrates the position of the membrane.

buried surface (using the LIPS Server). This orientation would result in the highly

conserved residues Tyr326, Gln327, Gy329, Val330, Ser333 and Arg334 facing into

the lumen away from the membrane and thus free to interact with potential binding

partners. The two helix surfaces that contain these residues also score lowest in

terms of lipid exposure (2.558 and 2.735).

Between residues 340 and 393 - another highly hydrophobic region with no clear

peaks of hydrophobicity - the general consensus is that there are two TM helices

connected with a very short loop region. However, we are inclined to accept the

MEMSAT3 (using SWISS-PROT) prediction of one helix spanning 353-375 which

unifies the two predicted by other methods. A single helix in this position allows

the highly conserved flanking residues to be positioned in loop regions, as is usual,

whereas the two helix predictions would place both these areas inside the membrane.

Finally, we rule out the last helix, present in four of the six models, spanning

406-433. This region contains two distinctive lysosomal sorting motifs described by

Kyttälä et al. (2004) that experimentally must reside in the cytosol.

We thus propose a six TM topology model with cytoplasmic N and C-termini,
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Figure 2.5: Schematic model for human CLN3 showing the six TM helices, proposed
amphipathic helix and experimentally determined loop locations (see Table 2.1).

three large lumenal loops, one of which may contain an amphipathic helix, and one

large cytoplasmic loop. Our model is derived by applying the latest computational

approaches for topological predictions of TM proteins using their primary sequence,

and is constrained in only two positions on the basis of reliable experimental data

(the cytoplasmic location of the N terminus and the presence of a cytoplasmic

trafficking motif at the C terminus). Importantly, this model (Figure 2.5) is

supported by almost all experimentally determined loop locations (Table 2.1).

The exception is the report in Mao et al. (2003a) that the N-terminus might be

lumenal, in contrast to data from Kyttälä et al. (2004) and (Ezaki et al., 2003).

This possible lumenal location for the N-terminus was suggested by (1) inability to

immunoprecipitate translated CLN3 from microsomes using antisera that recognised

the N-terminus of CLN3 and (2) glycosylation of CLN3 even when Asn310 was

mutated (the remaining putative glycosylation sites are Asn49, Asn71 and Asn85).

We cannot explain why the immunoprecipitation of CLN3 translated by microsomes

did not occur. However we can suggest that, provided Asn71 or Asn85 is gly-

cosylated as later shown by Storch et al. (2007), Asn 49 does not have to be lumenal.
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2.3.2 Topology models for Schizosaccharomyces pombe and

Saccharomyces cerevisiae

Additionally, we attempted to construct models of two diverse yeast CLN3 se-

quences (Sipiczki, 1995), Schizosaccharomyces pombe and Saccharomyces cerevisiae,

using 40 microbial CLN3 sequences to create PSI-BLAST profiles for MEMSAT3.

In contrast to our human CLN3 model, we found a strong consensus for up to

11 TMH between all the predictors for both species (Figure 2.6). One of these

TM helices (helix 8) corresponds to the predicted amphipathic helix (Figure 2.4),

suggesting a 10 TMH model that also contains an amphipathic helix for these

yeast species (Figure 2.7). Aligning each of the 10 TM helices against the human

CLN3 sequence using the Smith-Waterman local sequence alignment algorithm

(Smith & Waterman, 1981) resulted in scores greater than 30% sequence identity

between only the 1st, 2nd and 5th helices of our human model and the 1st, 2nd

and 7th helices of the yeast models. However, helices 4 and 5 of the yeast model

contain the most highly conserved residues between all orthologues (including

two residues mutated in disease), making it unlikely that they would be present

in a membrane in one species and projecting into the lumen in another. These

helices also contain the equivalent residues to those experimentally proven to

reside in the lumen in human CLN3 (Table 2.1). Similarly helix 10 contains a

conserved residue mutated in disease, and the loop between these helices 9 and 10

is highly conserved suggesting that it should have the same orientation in yeast

and mammalian species. Our assumption that conserved regions should have the

same topological orientation is consistent with the knowledge that human CLN3

protein can functionally substitute for Btn1p in Schizosaccharomyces pombe and

Saccharomyces cerevisiae (Gachet et al., 2005; Pearce & Sherman, 1998). CLN3 and

its orthologues, then, have a topology that is not entirely straightforward to predict

using currently available methods. In such a situation, our approach that makes use

of all available sequences to reach a consensus prediction is even more appropriate.

This also explains the discrepancy between MEMSAT3 + SWISS-PROT and

MEMSAT3 + CLN3 models which were constructed using PSI-BLAST profiles
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Figure 2.6: Results of topology prediction for Schizosaccharomyces pombe Btn1p
showing models with cytoplasmic amino terminals and a consensus of eleven TM
spanning helices. MEMSAT3 was used in conjunction with a database of 40 microbial
CLN3 sequences to construct PSI-BLAST profiles. Predicted helices marked with
a dark line are conserved in human and correspond to the 1st, 2nd, 5th and the
amphipathic helix of our model.

composed predominantly of mammalian and microbial CLN3 sequences respectively.

The human model contains sixteen positively charged residues in cytoplasmic

loops, compared with only eight in lumenal loops, which is consistent with the

general observation of a more positively charged cytoplasmic surface - the positive

inside rule (von Heijne, 1992). While this is energetically unfavourable, their spatial

distribution across four TM helices allows for the formation of ion-pairs between

Asp103 (TMH2) and His146 (TMH3), and Lys112 (TMH2) and Glu295 (TMH5)

or Asp362 (TMH6). It would also be possible to satisfy these bonding potentials

should CLN3 undergo dimerisation. While the formation of either of these salt

bridges could help stabilise the structure, they would also impose constraints on

the three-dimensional folding of the protein. Further stability could be provided

should disulphide bridges form between Cysteine residues which are present on two

lumenal loops (although these are not conserved across species), consistent with the

expectations for a correct model in which such bridges usually form post-synthesis

in the oxidative environment of the endoplasmic reticulum lumen.
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Figure 2.7: Schematic model for Schizosaccharomyces pombe Btn1p showing a ten
TM spanning model, an amphipathic helix and cytoplasmic N and C-termini. Pre-
dicted helices marked with a dark line are conserved in human and correspond to the
1st, 2nd, 5th and the amphipathic helix of our human CLN3 model. Helices 4 and 5
of this model are predicted to project into the lumen in the human CLN3 model, with
experimental evidence supporting this, and helices 9 and 10 are predicted to project
into the cytoplasm in the human CLN3 model.

2.3.3 Analysis of PROSITE matches

CLN3 has been shown to undergo phosphorylation when incubated with cAMP-

dependent protein kinase, cGMP-dependent protein kinase or Casein kinase II

(Michalewski et al., 1999), though the specific residues involved are unknown.

Using the ScanPROSITE tool, nine potential phosphorylation sites were detected,

six on cytoplasmic loops (Ser12, Ser14, Thr19, Thr232, Ser270, Thr400) and

three on lumenal loops (Ser69, Ser74, Ser86), with the cytoplasmic signatures

showing higher conservation on average than those in the lumen. While the

PROSITE phosphorylation signatures offer a large degree of freedom and are

thus known to produce high numbers of false positives, the bias in frequency

towards cytoplasmic loops can be explained by the observation that the kinases

responsible are known to localise exclusively in the cytoplasm (Forrest et al., 2006a).

Of the four potential N-glycosylation sites that were predicted (Asn49, Asn71,

Asn85, Asn310), three have had their locations validated experimentally (Asn71,

Asn85, Asn310) (Mao et al., 2003a; Storch et al., 2007) and are correctly placed

on lumenal loops by our model. This bias in frequency towards lumenal loops may

be explained by the ability of glycosylation to prevent proteolysis in the protease-

rich lysosomal lumen, thought to be the reason lysosomal membrane proteins are
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Region/residue Location Reference

N-terminal Cytoplasmic Ezaki et al. (2003)
1−33 Cytoplasmic Kyttälä et al. (2004)
1−20 Lumenal Mao et al. (2003a), Mao et al. (2003b)
71 Lumenal Storch et al. (2007)
67−91 Same as 163-215 Unpublished data cited within Mao et al.

(2003a)
85 Lumenal Storch et al. (2007)
163−215 Same as 67-91 Unpublished data cited within Mao et al.

(2003a)
199 Lumenal Mao et al. (2003a)
250−264 Cytoplasmic Mao et al. (2003a), Mao et al. (2003b)
242−258 Cytoplasmic Kyttälä et al. (2004)
310 Lumenal Mao et al. (2003a)
321 Lumenal Mao et al. (2003a)
401 Cytoplasmic Kyttälä et al. (2004)
435 Cytoplasmic Storch et al. (2007)
C-terminal Cytoplasmic Mao et al. (2003a), inferred in Kyttälä

et al. (2004)

Table 2.1: Locations of experimentally determined regions/positions.

often heavily glycosylated. Both CLN3 and the yeast orthologues traffic to the

lysosome/vacuole (Kyttälä et al., 2004; Gachet et al., 2005), although this may not

be their only functional location. The remaining potential N-glycosylation motif has

been placed within the first TM helix; however, unlike the other three, this site has

not been validated experimentally and is most likely a false positive.

2.3.4 Cross-species conservation

CLN3 has orthologues identified in at last 46 diverse eukaryotic species to date.

Sequence homology extends from residue 41 of the human CLN3 protein in large

stretches to the end of the protein, with certain residues, including most disease-

causing missense mutations (Mole, 1998), identical or similar across all species. Our

model can be used to examine the topological position of the most conserved residues

and regions. Several interesting and striking observations can be made from this.

First, we note that the N-terminus, the first lumenal loop and the second cytoplasmic

loop of CLN3 are not well conserved across most species, suggesting that these do

not contribute directly to the basic function of the protein. Second, in contrast, the

second and third lumenal loops and much of the C-terminus are highly conserved
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across diverse species, as is the proposed amphipathic helix (contained within the

third lumenal loop), suggesting that these regions contribute important structural

constraints or domains important for function or, in the case of the C-terminus,

trafficking. All known disease-causing missense mutations are located either in or

immediately adjacent to a predicted TM helix (Leu101, Glu295, Gln352) or in the

conserved lumenal loops (Ala158, Leu170, Gly187) or the amphipathic helix (Val330

and Arg334 which is mutated twice) or the C-terminus (Asp416) consistent with the

importance of these regions. Of particular interest are the two conserved lumenal

loops/amphipathic helix that may interact with lumenal molecular species such as

proteins, carbohydrate moeities or the lipid bilayer, or transduce changes in the

lumenal environment (eg pH) to modulate CLN3 activity.

2.3.5 Function prediction

Helices that interact with the lipid bilayer are thought to modulate the activity of

many ion channels (Kuo et al., 2003; Enkvetchakul et al., 2007). The proposed

amphipathic helix of CLN3 may act similarly and, if so, the local composition of the

lipid membrane may influence function. Intriguingly, two methods suggest CLN3

may be involved in transport. FFPred, a protein feature based function prediction

method (Lobley et al., 2008), suggests a role in ion transport, while Pfam (Finn et al.,

2006) lists CLN3 as a member of the major facilitator superfamily (MFS) clan, again

suggesting a possible role as a transporter. Interestingly, the most recently identified

NCL gene, MFSD8/CLN7 also encodes a member of the MFS super-family (Siintola

et al., 2007). However, careful inspection of global alignments between CLN3 and

the 12 TMH members of the MFS family suggest these hits may be false positives,

and analysis of CLN3 TM helices fails to identify any which look to be involved in

pore formation. Experiments that target residues in these regions and define the

phenotypic consequences of mutations may shed light on their role. In addition,

the identification of any interacting partners with the lumenal loops will require

specialized biochemical approaches, since many commonly used methods (e.g. two-

hybrid) are only appropriate for cytoplasmic interactions.
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2.4 Discussion

In summary, we propose a six TM helix topology for CLN3, a novel predicted am-

phipathic helix previously unrecognised, with both termini located in the cytoplasm.

While no single topology prediction agrees with our final model, we have shown that

a consensus approach combined with careful analysis of evolutionary data can pro-

duce a model which agrees with all published experimental data. Previous work had

been less confident about the number of possible TM helices, although one model

proposed on the basis of experimental findings (Kyttälä et al., 2004) agrees closely

with ours. Our unexpected finding that orthologues of CLN3 might produce differ-

ent topologies may be due either to atypical membrane or hydrophobic structures.

Taking into account the location of the conserved residues may help identify the

regions critical for structure or function and this can be used to inform topological

interpretations. Our approach may have wider applicability in the prediction of the

topology of other TM proteins, particularly those containing additional hydrophobic

structures that may not be membrane spanning. Determining the correct topology

of CLN3 is critical for complete understanding the mechanism of Batten disease.

However, until a CLN3 crystal structure can reveal the true TM topology in atomic

resolution, likely to be some way beyond current capabilities, a model produced by

combining experimental data with topology prediction provides us with one that

can be further tested experimentally. Significantly, the presence of a lumenal am-

phipathic helix and conserved intralumenal domains provides new insight into the

possible mechanism of action of CLN3 and its orthologues in model organisms that

can also be investigated appropriately.
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3.1 Background

3.1.1 Topology prediction

3.1.2 Modern topology predictors

The accuracy of modern state-of-the-art predictions methods is currently in the re-

gion of 60-80% accuracy (Chen et al., 2002), though this is highly dependent on the

assessment dataset and cross-validation strategy. Recently, a novel method MEM-

SAT3 (Jones, 2007) was described that combined the original MEMSAT (Jones

et al., 1994a) approach with an artificial neural network. MEMSAT made use of

scores derived from membrane protein data and a dynamic programming algorithm,

allowing it to search through all possible topological models by a process of expecta-

tion maximisation. Amino acid propensities for each of five states topological states

- inside loop, outside loop, inside helix end, helix middle and outside helix end -

were calculated from TM proteins with experimentally determined topologies and

were expressed as a log-likelihood ratio. This approach allowed MEMSAT to cal-

culate the most probable length, location and topological orientation for each TM

helix, therefore returning a list of all possible topologies ranked by overall likelihood

and thus guaranteeing a mathematically optimal solution, rather than simply de-

ciding between a limited number of possible topologies. MEMSAT3 replaced the

log-likelihood rations with scores from a neural network trained on sequence profiles

generated using PSI-BLAST, allowing it to utilise sequence conservation informa-

tion that has proved powerful in other applications, for example the PSIPRED

secondary structure prediction method (Jones, 1999). When benchmarked with full

cross-validation on a data set of 184 transmembrane proteins, MEMSAT3 was able

to predict the correct topology for 80% of the test set, compared with accuracies of

62-72% for other recent methods on the same benchmark.
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3.1.3 Improving topology prediction using experimental

constraints

While this level of accuracy represents a significant advance over existing methods,

there is still substantial scope for improvement. A number of studies have demon-

strated that incorporating additional information into topology prediction can in-

crease accuracy. Tusndy and Simon demonstrated using their HMMTOP topology

prediction server (Tusnady & Simon, 2001), an HMM-based method, that a the-

oretical improvement in performance was possible by incorporating experimental

information into the topology prediction. Experimental information provided by

the user that showed, for example, that the N-terminus of a sequence was localised

in the extracellular space, or that certain sequence motifs were expected to be lo-

calised in the cytoplasm, was incorporated into the Baum-Welch algorithm by a

conditional probability in order to find the unknown parameters of the HMM. Kim

et al. (2003) used a similar approach to determine the topology of 37 TM proteins

from S. cerevisiae. A C-terminal fusion to a dual topology reporter was first used

to determine the location of the C-terminus of each protein relative to the endo-

plasmic reticulum membrane before this information was used in conjunction with a

topology prediction method to arrive at a final topology model. A subsequent study

used the same method to determine the C-terminal locations of a further 617 S.

cerevisiae proteins and used this information to present experimentally constrained

topology models for 546 of them. By applying this information to homologous se-

quences, the topologies of 15,000 TM proteins from 38 fully sequenced eukaryotic

genomes was reported (Kim et al., 2006). A similar study of the E. coli inner mem-

brane proteome which used green fluorescent protein to tag C-terminal locations

established the periplasmic or cytoplasmic locations of the C termini for 601 inner

membrane proteins, from which high-quality topology models were produced (Daley

et al., 2005). While such studies are valuable, the availability of experimental data

is frequently limited and results can also be conflicting (Mao et al., 2003a; Kyttälä

et al., 2004).
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3.1.4 Improving topology prediction using domain assign-

ments

Bernsel & Heijne (2005) adopted a more automated approach in improving topology

prediction. They identified a set of 367 domains in the SMART database (Letunic

et al., 2004) - a database of well-annotated protein domains represented as profile-

HMMs - that had compartment-specific localisation when found in soluble proteins,

but which were also relevant to TM proteins. Protein domains are modular,

independently evolving, and often structurally similar amino acid regions that exist

alone or in combination to form multi-domain proteins. Covalent combinations

between soluble domains and TM domains are frequently observed, therefore their

localisation in soluble proteins can in some cases be transferred to TM proteins.

By using the presence of these domains and their inside/outside locations, which

was considered to be entirely correct, topology models were produced using

PRO-TMHMM (Viklund & Elofsson, 2004) by fixing the domain containing region

to the corresponding side of the membrane. Using these constrained predictions,

they were able to provide high-quality topology models for 11% of TM proteins

extracted from 38 eukaryotic genomes, although two-thirds of these were single

spanning TM proteins.

The use of domains to constrain predictions is a powerful approach, and worthy

of incorporation into topology prediction servers, particularly for whole genome

studies. However, in most cases, the detection of a domain will indicate that protein

already has a well characterised homologue in a database and it may be possible to

transfer the topology from the well characterised protein to the unknown sequence

should sequence identity be high enough. This approach would however be unable to

enhance topology prediction accuracy if presented with a sequence without known

homologues, and therefore without matching domains. To constrain prediction of

unknown sequences we cannot rely on protein family-specific identifiers, but need

more general sequence motifs or features.
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3.1.5 The PROSITE database

In this study we explore the possibility that shorter, biologically meaningful

sequence motifs that demonstrate a topogenic preference may be used to constrain

topology predictions, resulting in an increase in prediction performance. Specif-

ically, we intend to use sequence motifs from the PROSITE database (Falquet

et al., 2002) that are not family-specific, therefore allowing the approach to be

applicable to unknown sequences without obvious homologues. PROSITE is an

annotated collection of motif descriptors, represented as either patterns or profiles,

which are derived from multiple alignments of homologous sequences. This gives

the descriptors the advantage of identifying distant relationships between sequences

that may not have been detected based on a pairwise sequence alignment (Sigrist

et al., 2002). Relationships can be revealed by the presence of a cluster of residues,

also known as a pattern, motif, signature or fingerprint, typically between 10 and

20 amino acids in length that are involved in an important biological function and

are therefore conserved in both structure and sequence during evolution. Such

biologically significant regions include enzyme catalytic sites, prosthetic group

attachment sites (heme, biotin etc.), amino acids involved in metal ion binding,

Cysteine residues involved in the formation of disulphide bonds, and regions

involved in the binding of other molecules (ADP/ATP, DNA etc.) or other proteins.

As the sequence of motifs is conserved, it is possible to reduce a multiple align-

ment of them to a consensus pattern known as a regular expression, where each

position in such a pattern can be occupied by any residue from a specified set of

acceptable residues and can be repeated a variable number of times within a speci-

fied range. Strictly conserved positions may only allow a particular residue, while at

other positions, residues with similar physicochemical properties can be acceptable,

while specific incompatible residues are excluded. Finally, conserved residues can

be separated by gaps of variable lengths. The resulting expression can then be used

to scan unknown sequences, a process that can be performed quickly on a modern

computer. However, matching a regular expression with a sequence is a qualitative
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process in that there is either a match or there is not - there is no threshold or

score associated with the presence of the motif above which a match is classed as

statistically significant. A potential caveat of this approach is thus the possibility of

high levels of false positive matches. However, the accuracy of PROSITE patterns

has been evaluated using the number of hits obtained while scanning the manually

curated SWISS-PROT database (Boeckmann et al., 2003) and other randomised

databases. Whenever a new motif descriptor is added to PROSITE, it is used to

scan SWISS-PROT in order to attribute a status match to the SWISS-PROT entry

for true positive, false positive, false negative, unknown (proteins that could belong

to the set considered by the motif) and partial (proteins belonging to the set being

considered but not detected by the motif) cases. These statistics, which are available

for each motif, allow the user to assess the sensitivity and specificity of each regular

expression, and additionally allow the motifs to be improved with each release of

SWISS-PROT.

3.1.6 Using PROSITE to guide topology prediction

In this chapter I will describe a strategy to use PROSITE motifs to guide TM topol-

ogy prediction. The method utilises PROSITE motifs that display a bias towards a

particular topogenic region in TM proteins. To identify this bias, I have assembled

a novel high quality data set of TM proteins that have crystal structures available

and have scanned the corresponding sequences for PROSITE motifs and assigned

matches to topogenic regions. Motifs were identified that occur in a specific to-

pogenic region with significantly different frequencies compared to those expected

at random. I will describe the modification of MEMSAT3 so that topology predic-

tions can be constrained or guided in such a way that the resulting topology models

are scored more highly if they satisfy the topogenic biases of the matching motifs,

and therefore increase overall topology prediction accuracy.
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3.2 Methods

3.2.1 Assembling a novel data set of transmembrane pro-

teins

The novel data set was based on crystal structure data. Additional information was

collected from MPTOPO (Jayasinghe et al., 2001), OPM (Lomize et al., 2006b),

PDB TM (Tusnady et al., 2005a), SWISS-PROT (Boeckmann et al., 2003) and from

the literature. SWISS-PROT files were parsed for entries containing the keyword

’TRANSMEM’ in feature table (FT) lines. N-terminal data was also extracted using

keyword ’TOPO DOM’ where available. To avoid partial sequences being included,

any entries containing keywords such as ’FRAGMENT’ were excluded. Sequences

were then scanned against the PDB in order to identify entries for which the TM

region had complete structural coverage. Alignments occasionally highlighted chain

breaks. In these cases, the sequence was excluded unless a visual inspection ensured

the topology could not be cast in doubt by the break. This left a redundant data set

containing 944 sequences which was then homology reduced at the 40% sequence

identity level. A number of sequences were then removed. These included colicins

(e.g. PDB: 1COL) and bee venom (2MLT) which are bilayer disrupting and thus

are not native integral membrane proteins, sequences labelled as ’secreted pro-

tein’, and sequences where the N-terminal location or topology could not be verified.

OPM was then used to define TM helix boundaries, or in the absence of an

OPM entry, PDB TM was used. OPM uses a theoretical multi-feature approach to

position proteins in a membrane which has been shown to be in good agreement

with experimental studies of 24 TM proteins. In some cases where a visual inspec-

tion appeared to indicate an incorrect placement of the membrane, PDB TM helix

boundary definitions were used instead. For example, OPM lists Mechanosensitive

channel protein MscS (2OAU) as having two TM helices, neither of which fully

cross the membrane, whereas the PDB TM definition of 3 TM helices appears more

plausible (Figure 3.1).
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Figure 3.1: Theoretical membrane placement on to the Mechanosensitive channel
protein MscS crystal structure (PDB: 2OAU) by OPM (left) and PDB TM (right).
The membrane region is between the red and blue bars. PDB TM uses hydrophobicity
and structural feature analysis to determine the position of the membrane (Tusnady
et al., 2005b)

PDB TM was also used to annotate proteins containing re-entrant helices.

A re-entrant helix was defined as a helix-containing region that enters and exits

the membrane on the same side, penetrating at least 6 Å but not more than 6

Å from the opposite membrane face. Re-entrant regions that did not contain

a helix formed by at least three contiguous amino acid residues were excluded.

Sequences containing signal peptides were then labelled according to SWISS-PROT

annotations.

The composition of the final data set containing 131 sequences, all with available

crystal structures, verifiable topology and N-terminal locations, is show in Table 3.1.

The full list of sequences and topologies can be found in Appendix B.
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Protein class Number in set

Prokaryotic 92
Eukaryotic 37
Viral 2

Single-spanning TM segment 57
Multiple-spanning TM segments 74

Contains re-entrant helix 11
Contains signal peptide 14

Total 131

Table 3.1: Crystal structure data set composition.

3.2.2 Identification of PROSITE matches and their respec-

tive topogenic biases

All sequences in the novel data set were then scanned using the ScanProsite tool

(Gattiker et al., 2002) against release 20.9 of the PROSITE database. Where a motif

was detected, the topology definition was used to assign it to inside and outside loops,

TM helices and regions containing both loop and TM helices (’multiple’). A χ2 test

for independence was then used to identify motifs which were not evenly distributed

between inside and outside loops. With one degree of freedom, a χ2 value above

0.82 indicates a bias with 95% confidence.

3.2.3 Modification of MEMSAT3 to incorporate PROSITE

motif matches

We analysed the sequences from the Möller data set (Möller et al., 2000) whose

topologies were incorrectly predicted by MEMSAT3, identifying 24/184 cases where

the placement of all TM helices was correct but the location of the N-terminus

was incorrect. Initially, we attempted to constrain the predictions in order to

satisfy the topological biases of the PROSITE motifs that were matched to each

of these sequences, therefore assuming that the biases were correct. This was

achieved by filtering the results to remove all topologies that did not satisfy these

constraints. However, this proved infeasible as there were a number of instances
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where it was impossible to satisfy the biases of all motifs simultaneously, suggesting

some matches were false positives or that our assumption that their bias towards

a topological region was incorrect. We therefore tried using each motif separately

to avoid such scenarios. For the majority of motifs, it was possible to reduce

the numbers of incorrect predictions where the helices were correctly predicted

but the N-terminus location was incorrect to below 24; however, in all cases, the

total number of correctly predicted topologies was reduced as previously correct

topologies were rendered incorrect as, presumably due to false positive matches,

TM helices were falsely constrained to inside or outside loop regions.

We therefore attempted to modify the topogenic propensities, initially generated

using a NN, that the MEMSAT3 dynamic programming algorithm uses to generate

topologies. For each residue in the target sequence, a NN score is generated reflecting

the likelihood that amino acid resides in an inside loop, outside loop, TM helix or

signal peptide region. For every PROSITE motif that expressed a topogenic bias,

we used three weights to modify the inside loop, outside loop and TM helix scores.

Where the resulting score was below 0 or above 1, the scores were set to 0 and 1

respectively. To optimise these weights, we employed a genetic algorithm (GA, see

below). In order to avoid optimising these weights specifically for the Möller data

set, we randomly split the set into two halves, then used the GA to determine the

set of weights that resulted in the highest topology prediction accuracy for each split

before averaging these to determine the final weights.

3.2.4 Genetic algorithms

Genetic algorithms are a class of adaptive heuristic search algorithm often used

to find exact or approximate solutions to optimisation problems. GAs are based

on techniques inspired by evolutionary biology including inheritance, mutation,

selection, and crossover, and therefore represent the intelligent exploitation of a

random search within a defined search space in order to solve a problem. GAs are

implemented as computer simulations in which an abstract population, typically
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chromosomes, evolves towards an optimal solution. The simulation begins with

a population of randomly generated individuals which is then evaluated, and

the fitness of each individual is assessed. Multiple individuals are stochastically

selected from the current population based on their fitness, and are modified by

recombination or random mutation to form the subsequent population. The new

population is then used in the next iteration of the algorithm, and this process

continues until a termination condition is reached (Gondro & Kinghorn, 2007).

Once the search problem has a defined genetic representation and a fitness

function - in our case this will be a function to assess topology performance using

weights to modify topogenic propensities - the GA is initialised and a population of

individual solutions - the list of weights - is generated in order to cover the entire

search space. These are usually limited to a defined type and range; our weights

were floating point values between -1 and 1. With each successive generation, a

proportion of the existing population is then selected to breed a new generation.

The fitness of each solution is determined using the fitness function, with fitter

solutions more likely to be selected. Different implementations may select only the

best solutions, while others may rate only a random sample of the population in

order to reduce computation time. Functions are usually stochastic and designed

to ensure that a small proportion of less fit solutions are selected; this keep the

diversity of the population large, preventing premature convergence towards poor

solutions.

A successive population of solutions is generated through crossover (recombi-

nation) and mutation. New solutions are produced by a pair of parent solutions

from the pool previously selected. Characteristics of each parent are passed on

to the child solution through crossover, analogous to the biological crossover

of chromosomes, and mutation, analogous to biological mutation. This process

continues until a new population of solutions of the appropriate size is generated,

and since the fitter individuals are selected for breeding, this successive population
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will usually have a higher average fitness than the previous one.

This generational process is then repeated until a termination condition has

been reached. This is typically defined by the population reaching a satisfactory

fitness level, or by a maximum number of generations, although in the latter case

the optimal fitness level may not have been reached. The highest ranking solution’s

fitness may have reached a plateau, such that successive iterations no longer produce

significantly better results, or a computational or time limit may have been reached

(Mitchell, 1996).

3.3 Results

3.3.1 PROSITE motifs that express a topogenic bias

Table 3.2 shows the nine PROSITE motifs that were identified as having a

topogenic bias with 95% confidence. Myristoylation, the most prevalent motif in

our data set, is a post-translational protein modification in which myristic acid

is covalently attached to the alpha-amino group of an N-terminal Glycine residue

via an amide bond. Myristoylation is known to influence the conformational

stability of individual proteins, as well as their ability to interact with various

membranes or the hydrophobic domains of other proteins. Myristic acid is able

to loosely tether the modified protein to the plasma membrane, endoplasmic

reticulum, mitochondrion, or other membrane system, possibly allowing interaction

with other proteins localised nearby (Podell & Gribskov, 2004). The PROSITE

N-myristoylation site is still widely used, despite the fact that the signature has

not been has not been updated since 1989, and is known to produce a large

number both false positive and false negative predictions. The main reason for the

inaccuracy is that the amino acid choices at each position are fairly broad; as a

result, only two of the five positions described are actually restrictive (Table 3.3).

More recent data also indicates that residues downstream from the initial five can

also influence myristoylation site suitability (Maurer-Stroh et al., 2002). Finally,
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only a small number of myristoylated sequences were actually used to construct

the signature. Despite these factors, the motif appears to display a significant bias

towards outside loops compared to inside loops.

Casein kinase II, protein kinase c and cAMP- and cGMP-dependent protein

kinase are all involved in the phosphorylation of a wide range of different proteins.

Phosphorylation is a ubiquitous cellular regulatory mechanism that occurs through

the reversible addition of phosphate groups from ATP to various amino acid

residues. Phosphorylation of proteins is an essential regulatory mechanism that

occurs in both prokaryotic and eukaryotic organisms. Many enzymes and receptors

are activated and deactivated by phosphorylation and dephosphorylation as a

result of the conformational change induced in the structure that occurs upon

modification. Phosphorylation usually occurs on Ser, Thr, and Tyr residues in

eukaryotic proteins, while often occurring on the basic amino acid residues His or

Arg or Lys in prokaryotic proteins (Cortay et al., 1991; Stock et al., 1989).

Again, the PROSITE phosphorylation signatures offer a large degree of free-

dom. Interestingly though, all three motifs show a significant bias towards inside

loops which can be explained by the observation that the kinases responsible for

phophorylation are known to localise exclusively in the cytoplasm (Forrest et al.,

2006a). In the case of protein kinase c and cAMP- and cGMP-dependent protein

kinase phosphorylation sites, the signature contains positively charged Arg and Lys

residues so it is possible that this observation is due to the positive-inside rule.

Glycosylation involves the addition of saccharides to proteins and lipids in

order to produce glycans, and is a principal post-translational modification in the

synthesis of membrane and secreted proteins. N-linked glycosylation is known

to be important for the folding of some eukaryotic proteins. The process occurs

in eukaryotes and widely in archaea, but very rarely in prokaryotes. It involves

the addition of a 14-sugar precursor, containing 3 glucose, 9 mannose, and 2
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N-acetylglucosamine molecules, to the Asn in the polypeptide chain of the target

protein. Since glycosylated residues are known to be involved in cellular recognition

(Rudd et al., 1999), it is interesting that the motif occurs more frequently on the

inside loops of TM proteins. Amidation sites generally function as active peptide

precursor cleavage sites, though they are also noted to have a high probability of

occurrence as all amino acids can be amidated (Kreil, 1984). Our data set indicates

a preference for an inside loops bias. The leucine zipper signature is another

unspecific pattern that is unlikely to be a true motif unless the protein has been

shown to bind DNA, a function in which TM proteins are rarely known to play a

role (Landschulz et al., 1988).

The final two motifs identified as significant are both family-specific identifiers,

so will not be included in the study as sequences that contain these motifs will easily

be identifiable using a homology search. The major intrinsic protein (MIP) signa-

ture is used to identify a family of highly related TM channel proteins (Pao et al.,

1991). These include mammalian aquaporins, water-specific channels that provide

the plasma membranes of red blood cells and kidney proximal and collecting tubules

with high permeability to water, thereby permitting water to move in the direction

of an osmotic gradient (Chrispeels & Agre, 1994). MIP family proteins seem to

contain six transmembrane segments, with the signature pattern mapping to a well

conserved region which is located in a probable cytoplasmic loop between the second

and third TM regions. Cytochrome c oxidase is an oligomeric enzymatic complex

which is a component of the respiratory chain and is involved in the transfer of elec-

trons from cytochrome c to oxygen. In eukaryotes this enzyme complex is located

in the mitochondrial inner membrane while is is found in the plasma membrane in

aerobic prokaryotes (Capaldi et al., 1980). The signature targets the copper ligands

at the centre of the complex.
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PROSITE ID Description Inside Outside Helix Multiple n χ2

PS00008 N-myristoylation site 20.23% 32.11% 44.82% 2.68% 598 16.11
PS00006 Casein kinase II phosphorylation site 53.97% 38.41% 5.96% 1.66% 302 7.92
PS00005 Protein kinase c phosphorylation site 63.08% 29.23% 7.69% 0.00% 260 32.27
PS00001 N-glycosylation site 49.51% 33.01% 13.59% 3.88% 103 3.40
PS00004 cAMP- and cGMP-dependent protein kinase phosphorylation site 67.86% 28.57% 3.57% 0.00% 28 4.48
PS00009 Amidation site 85.71% 7.14% 0.00% 7.14% 14 9.31
PS00029 Leucine Zipper 27.27% 0.00% 27.27% 45.45% 11 3.00
PS00221 MIP family signature 100.00% 0.00% 0.00% 0.00% 4 4.00
PS50857 Cytochrome c oxidase subunit II signature 0.00% 100.00% 0.00% 0.00% 4 4.00

Table 3.2: PROSITE motifs that were identified as having a topogenic bias. Column 1: PROSITE database identifier. Column 2: Motif description.
Column 3: Percentage of matching motifs assigned to inside loop regions. Column 4: Percentage of matching motifs assigned to outside loop regions. Column
5: Percentage of matching motifs assigned to TM helices. Column 6: Percentage of matching motifs that span multiple topogenic regions, e.g. TM helix and
loop regions. Column 6: Number of matches identified using crystal structure data set. Column 7: χ2 value. A threshold of 0.82 indicates significance with
95% confidence.
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PROSITE ID Signature

PS00008 G - {EDRKHPFYW} - x(2) - [STAGCN] - {P} [G is the N - myristoylation site]
PS00006 [ST] - x(2) - [DE] [S or T is the phosphorylation site]
PS00005 [ST] - x - [RK] [S or T is the phosphorylation site]
PS00001 N - {P} - [ST] - {P}[N is the glycosylation site]
PS00004 [RK](2) - x - [ST] [S or T is the phosphorylation site]
PS00009 x - G - [RK] - [RK] [x is the amidation site]
PS00029 L - x(6) - L - x(6) - L - x(6) - L
PS00221 [HNQA] - {D} - N - P - [STA] - [LIVMF] - [ST] - [LIVMF] - [GSTAFY]
PS50857 V-x-H-x(33,40)-C-x(3)-C-x(3)-H-x(2)-M [The C’s and H’s are copper ligands]

Table 3.3: PROSITE motif signatures. Square brackets [] indicate any of the enclosed amino acids are
acceptable in that position. Curly brackets {} indicate any amino acids except those enclosed are acceptable
in that position. x indicates any amino acid is acceptable. Parentheses (n) indicates the n copies of the
preceding amino acid must be present. As an example, the signature [AC]-x-V-x(4)-{ED} can be translated
as [Ala or Cys]-any-Val-any-any-any-any-{any but Glu or Asp}.
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3.3.2 Topogenic propensity weights generated using the ge-

netic algorithm

Table 3.4 shows the the weights generated using the GA that, when used to modify

the original NN scores for all residues in the sequence covered by the motif, lead

to optimum topology prediction performance on the Möller data set. The GA

detected convergence and therefore terminated after approximately 1250 iterations.

Of the seven PROSITE motifs that were identified as having a topogenic bias and

were not family-specific signatures, all of them apart from the N-myristoylation site

(PS00008) displayed a bias towards inside loop regions. In fact the N-myristoylation

appeared most frequently not on outside loops but on TM helices. The weights

generated by the GA are therefore slightly surprising since they do not tend to

reflect this inside loop bias. The N-myristoylation site weights increases both loop

scores by approximately the same amount, though only increase the TM helix

score by 0.175 therefore regions containing this signature are likely to be guided

to either inside or outside loops, but not to TM helices. Modifications to the two

phosphorylation site motifs that contain positively charged residues, protein kinase

c and cAMP- and cGMP-dependent protein kinase (PS00004 and PS00005), are

somewhat conflicting. As expected by the positive inside rule, the PS00004 weight

increase the inside loop score by approximately 1, and decrease the outside loop

by the same amount, inevitably guiding this region to the inside. For PS00005,

the inside loop score is increased only very slightly, while the outside loop score is

significantly increased by 0.658, unexpectedly guiding this region to the outside.

The remaining Casein kinase II phosphorylation site (PS00006) is guided towards

a TM helix since both loop region scores are significantly reduced, the inside loop

more so, while the TM helix score is reduced only very slightly. The N-glycosylation

and leucine zipper motifs (PS00001 and PS00029) weights do favour inside loops as

expected, although they do both increase the TM helix score slightly. Finally, the

amidation site (PS00009) increases the outside loop score by 1 while reducing the

inside loop and TM helix scores, therefore guiding the region to the outside.
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In summary, the weights of three motifs corresponded with their topogenic biases

(PS00001, PS00004, PS00029) and four do not - two of these guide topology towards

the outside rather than the inside as expected (PS00005, PS00009); one guides

topology towards a TM helix (PS00006, although a slight preference towards an

outside loop compared to an inside loop) while the remaining motif guides topology

towards either loop region rather than a TM helix (PS00008).
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PROSITE ID Inside modification Outside modification TM helix modification

PS00008 0.518 0.533 0.175
PS00006 -1.000 -0.669 -0.026
PS00005 0.069 0.658 0.031
PS00001 1.000 0.135 0.702
PS00004 0.956 -1.000 -0.172
PS00009 -0.288 1.000 -0.396
PS00029 0.870 0.572 0.298

Table 3.4: Weights generated using the GA used to modify the original NN scores. These weight are
added to all residues covered by the matching signature. Where the modified score was below 0 or above
1, the score was set to 0 and 1 respectively.
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3.3.3 Topology prediction performance against the Möller

data set using PROSITE motif weights

Table 3.5 shows the topology prediction performance against the Möller data set,

updated using recent SWISS-PROT annotations, with and without the modifica-

tion of topogenic propensities using PROSITE motif weights. Results are fully

cross-validated, with all proteins homologous to the target being removed from the

respective training set. For an overall correct topology prediction (column 7), the

correct number of TM helices needed to be predicted (column 2), their locations

needed to overlap their observed positions by at least 5 residues (column 3) and

the N-terminal had to be localised to the correct side of the membrane (column 4).

By modifying the topogenic propensities, overall topology prediction performance

was increased from 77.2% to 83.2%, an increase of 6% corresponding to the correct

prediction of 11 additional sequences.

In 3 of these 11 cases, the number and locations of TM helices is correct but the

original MEMSAT3 prediction places the N-terminal on the wrong side of the mem-

brane. In each case, the PROSITE weights cause the alternate N-terminal location

topology to score higher, largely due to the cAMP- and cGMP-dependent protein

kinase motif (PS00005) guiding topology towards the outside (CVAA ECOLI,

GEF ECOLI), while in one case the N-glycosylation site motif (PS00001) guides

topology towards the inside (EBR STAAU) (Figure 3.2).

In a number of cases, the occurrence of motifs on regions where TM helices

were incorrectly predicted guides prediction of the matching region to a loop.

This accounts for the 4.3% increase in the number of sequences with the correct

helix count (88.0% compared to 83.7%) and the reduction in the number of falsely

predicted TM helices (0.0% compared to 3.8%). Unfortunately, many of these

topologies are still incorrect due to inaccurate locations of TM helices or the

N-terminal.
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The largest category of sequences whose topologies are corrected using

PROSITE motifs is that where MEMSAT3 falsely predicts helices as loop

regions, affecting 7 sequences (ADT2 YEAST, FTSH ECOLI, HLYB ECOLI,

KDPD ECOLI, PMA1 NEUCR, STE6 YEAST and UPKB BOVIN). In doing

so, the loop region that immediately follows the position of the mis-predicted

helix is inevitably correct. In these cases, the modification of topogenic propen-

sities by PROSITE motif weights is sufficient to correct the topology of this loop

region, and therefore induce prediction of the missing TM helix/helices (Figure 3.3).

In one case, the N-terminal localisation and TM helix count were correct but

the single TM helix was incorrectly positioned (VG1 BPFD). A number of loop

inducing motifs that matched the incorrect TM helix reduced this topology’s

score, resulting in an alternative topology which did have the TM helix correctly

positioned being the highest scoring.
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Method Correct TMH count Correct TMH locations Correct N-terminus FP helix FN helix Correct topology

MEMSAT3 83.7% 82.1% 87.0% 3.8% 12.5% 142/184
MEMSAT3 + PROSITE 88.0% 87.0% 89.7% 0.0% 12.0% 153/184

Table 3.5: Topology prediction performance against the Möller data set, with and without modification of topogenic propensities using PROSITE motif weights.
Column 1: Prediction method. Column 2: Correct TMH count - Fraction of sequences with the correct number of TM helices predicted. Column 3: Correct TMH
locations - Fraction of sequences with the correct number and locations of TM helices predicted. Column 4: Correct N-terminus - Fraction of sequences with the correct
N-terminal location predicted. Column 5: FP helix - Fraction of sequences with at least one over predicted TM helix. Column 6: FN helix - Fraction of sequences with
at least one under predicted TM helix. Column 7: Correct topology: Fraction of sequences that have correct overall topology predicted, requiring the correct number
and location of TM helices and correct location of the N-terminal. TM helices must overlap their defined positions by at least 5 residues.
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Figure 3.2: Topology predictions corrected by altering N-terminal localisation. cAMP- and cGMP-dependent protein kinase motif (PS00005) guides topology towards
the outside (CVAA ECOLI, GEF ECOLI), while an N-glycosylation site motif (PS00001) guides topology towards the inside (EBR STAAU) . PROSITE: PROSITE
motif identifier (PS0000X). TOPOLOGY: known topology. MEMSAT3: original MEMSAT3 topology prediction. MEMSAT3+PROSITE: PROSITE motif modified
MEMSAT3 topology prediction.
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Figure 3.3: Topology predictions corrected by prediction of a TM helix where a loop region was previously predicted. N-glycosylation site motifs (PS00001) guide
topology towards the inside therefore inducing prediction of a TM helix at residues 85-103 (ADT2 YEAST) and at residues 226-250 (UPKB BOVIN). PROSITE:
PROSITE motif identifier (PS0000X). TOPOLOGY: known topology. MEMSAT3: original MEMSAT3 topology prediction. MEMSAT3+PROSITE: PROSITE motif
modified MEMSAT3 topology prediction.
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3.4 Discussion

Previous work has shown that TM protein topology prediction can be improved if

constraints are used to fix specific regions to a particular side of the membrane,

prior to running a predictor (Kim et al., 2003; Bernsel & Heijne, 2005; Daley

et al., 2005). While existing approaches have made use of experimental data or

family-specific domain assignments, here we present a method that uses biologically

meaningful sequence motifs that are not family-specific in order to guide topology

prediction. We have identified seven PROSITE motifs which display a significant

topogenic bias, and have used a GA to generate weights for each such that the

topogenic propensities for each residue guide the MEMSAT3 prediction towards the

correct topology. Using the standard Möller data set we have demonstrated that

this approach can lead to an improvement of 6% prediction accuracy compared

to standard MEMSAT3 performance, corresponding the correct prediction of an

additional 11 sequences.

While this level of improvement is significant, there are a number of peculiarities

affecting the method, principally the lack of correlation between the direction

of the topogenic biases designated by the χ2 significance test, and the sign and

magnitude of the corresponding weights determined using the GA. The χ2 test

indicated an inside loop bias for six motifs and an outside bias for one. The

weightings correspond to this bias for three motifs - the N-glycosylation site motif,

the protein kinase c phosphorylation motif and the leucine zipper motif. However,

the remaining four motifs weights do not correspond with the bias that was

indicated. The cAMP- and cGMP-dependent protein kinase phosphorylation site

and amidation site weights strongly favour outside loops as opposed to inside loops,

the Casein kinase II phosphorylation site weights favour a TM helix as opposed

to an inside loop, and the N-myristoylation site weights favour either loop region

rather than a TM helix, when a preference for an outside loop was indicated. The

most likely reason for this discrepancy is that these four motifs have matched a

large number of false positive hits which have affected the χ2 test, resulting in
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incorrect topogenic biases.

Looking at the weights associated with these four motifs, the N-myristoylation

site does not appear to favour either loop region in particular, and also has a very

broad signature in which only two of the five positions described are actually restric-

tive, increasing the likelihood of false positive matches. Interestingly, the Casein

kinase II phosphorylation site motif signature contains negatively charged residues

which the weights direct topology towards TM helices. While charged residues

within the TM region are usually energetically unfavourable unless involved in salt

bridge formation, a number of studies have observed that negatively charges in the

TM domain are conserved in various proteins including potassium channels, where

they may contribute to voltage-sensing during the activation process (Liu et al.,

2003a), the neuronal alpha 7 acetylcholine receptor where they increase permeability

to divalent cations (Ferrer-Montiel & Montal, 1993) and ubiquinone oxidoreductase

where they determine its dependence on YidC for membrane insertion (Price &

Driessen, 2010). The relatively broad signature may therefore be matching such

conserved residues as false positive phosphorylation sites. Surprisingly, both the

cAMP- and cGMP-dependent protein kinase phosphorylation and amidation site

motif weights direct topology towards outside loops while the signatures contains

positively charged residues, which the positive inside rule dictates should enrich

inside loops. While this is unexpected, it is the overall ratio of charged residues

on inside loops compared to outside loops that is significant, so as long as there

are a greater number of positively charged residues on inside loops the positive

inside rule will still hold. Additionally, only a small number of matches were found

(28 and 14 respectively) using the crystal structure data set and the χ2 values

is relatively small (4.48) in the phosphorylation site. Again, both signatures are

broad indicating a high likelihood of false positive hits.

Despite the discrepancy between the χ2 test and the generated weightings, and

thus the likely high false positive rate of PROSITE matches, a significant improve-
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ment in topology prediction is still possible. With hindsight, an alternative approach

may have been to include all non family-specific PROSITE motif in the GA optimi-

sation stage without testing for χ2 significance. While the optimisation time would

have been significantly extended, the inconsistency would have been avoided while

the sign and magnitude of the weightings would have reflected the likelihood of false

positive matches. Another approach would be to use machine learning-based ap-

proaches to detect motifs. A number of tools now exist that use HMMs and NNs

to identify specific motifs (Julenius et al., 2005; Huang et al., 2005), with improved

performance over regular expression based methods. While applying these tools in-

stead of using PROSITE motifs may have resulted in lower false positive rates, they

are currently limited to the detection of mammalian mucin-type O-glycosylation

sites and protein kinase-specific phosphorylation sites. Should gold standard data

sets of a broader range of motifs emerge in future, it may be possible to develop

tools that can detect a wider range of PROSITE-like motifs using machine learning

approaches rather than regular expressions - the incorporation of such methods into

future topology predictors is likely to yield increased performance. In conclusion,

the use of PROSITE motifs to guide topology prediction results in improved accu-

racy by providing additional information not fully captured by the NN employed

by MEMSAT3. However, the motifs’ broad signatures and high false positive rates

suggest that caution should be used when interpreting these PROSITE matches as

they may be identifying conserved residues that are accounted for by the positive

inside rule or play a role in alternative biological functions.



Chapter 4

Transmembrane protein topology

prediction using support vector

machines

97



Chapter 4. Transmembrane topology prediction using support vector machines 98

4.1 Background

4.1.1 Machine learning approaches for topology prediction

Machine learning techniques are increasingly being used to address problems

in bioinformatics. Novel computational techniques based on machine learning

that have been used to analyse data derived from DNA and protein sequences,

microarray experiments, pathways, and images are now vital for understanding

diseases and the development of novel therapies. Alogrithms including Hidden

Markov models (HMMs) (Krogh et al., 2001), neural networks (NNs) (Jacoboni

et al., 2001) and support vector machines (SVMs) (Park et al., 2005) have shown

great success in analysing data generated by the life sciences because of their ability

to generalise while handling both noise and randomness (Zhang & Rajapakse,

2008). Early topology prediction methods, based on the physicochemical principle

of a sliding window of hydrophobicity combined with the ’positive-inside’ rule

(von Heijne, 1992), have therfore been superseded by machine learning approaches

include HMMs, NNs and more recently, SVMs.

Perhaps due to their ability to produce multiple outputs, NN and HMM-based

approaches for topology prediction have proved both popular and successful over

recent years. SVMs however are predominantly binary classifiers therefore multi-

ple SVMs must be employed to classify the numerous residue preferences before

being combined into a probabilistic framework. Like NNs and HMMs, SVMs are

capable of learning complex relationships among the amino acids within a given

window with which they are trained, particularly when provided with evolutionary

information. SVMs also have a number of advantages over other machine learning

methods; while NNs can encounter multiple local minima, the solution to an SVM

is global and unique. They are also considered more resilient to the problem of over-

training compared to other approaches. These benefits may be in part due to the

way in which SVMs were developed. Rather than following a heuristic path, from

application and extensive experimentation to theory, as in the case of NNs, SVMs
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were developed in the reverse order, having evolved from sound theory through to

implementation and experiments (Wang, 2005).

4.1.2 Signal peptides, amphipathic helices, and re-entrant

helices

One problem faced by modern topology predictors is the discrimination between

TM helices and other features composed largely of hydrophobic residues. These

include targeting motifs such as signal peptides and signal anchors, amphipathic

helices, and re-entrant helices - membrane penetrating helices that enter and exit

the membrane on the same side - common in many ion channel families. The

high similarity between such features and the hydrophobic profile of a TM helix

frequently leads to crosstalk between the different types of predictions. Should

these elements be predicted as TM helices, the ensuing topology prediction is

likely to be corrupted. Some prediction methods, such as SignalP (Bendtsen et al.,

2004) and TargetP (Emanuelsson et al., 2007), are effective in identifying signal

peptides, and may be used as a pre-filter prior to analysis using a TM topology

predictor. Phobius (Käll et al., 2004) uses a HMM to successfully address the

problem of signal peptides in TM protein topology prediction, while PolyPhobius

(Käll et al., 2005) further increases accuracy by including homology information.

Other methods such as TMLOOP (Lasso et al., 2006), TOP-MOD (Viklund et al.,

2006) and OCTOPUS (Viklund & Elofsson, 2008) have attempted to identify

re-entrant regions, the latter two in combination with a TM topology predictor,

but there is significant room for improvement.

TM topology predictors also exist that are able to use experimentally derived

information in order to guide topology prediction. With reliable experimental data,

prediction accuracy is likely to benefit substantially. Methods include HMM-TM

(Bagos et al., 2006), HMMTOP (Tusnady & Simon, 2001) and TMHMMfix (Me-

len et al., 2003). Tools such as SOSUI (Hirokawa et al., 1998) and PRED-CLASS

(Pasquier et al., 2001) are designed to discriminate between globular and TM pro-
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teins, while others such as PRED-TMBB (Bagos et al., 2004b) specialise in the

discrimination and prediction of beta-barrel TM proteins.

4.1.3 The importance of using high quality data

A key element when constructing any prediction method is the use of a high

quality data set for both training and validation purposes. Previously described

TM data sets such as the Möller set (Möller et al., 2000) have contained relatively

few sequences with structures available, but substantially more with TM region

annotation based on varying types of biochemical characterisation. A number of

experimental methods, including glycosylation analysis, insertion tags, antibody

studies and fusion protein constructs, allow the topological location of a region to

be identified. However, such studies are often conflicting (Kyttälä et al., 2004; Mao

et al., 2003a) and also risk upsetting the natural topology by altering the protein

sequence. As a result, orientation and helix boundary errors in databases are not

infrequent and add an element of noise. While such noise is often well tolerated by

machine learning methods, the problem is more significant in smaller data sets.

This chapter describes the development of a new TM topology predictor trained

and benchmarked with full cross-validation on a novel data set of 131 sequences

with crystal structures. The method uses evolutionary information and four SVMs,

combining the outputs using a dynamic programming algorithm, to return a list of

predicted topologies ranked by overall likelihood, and incorporates signal peptide

and re-entrant helix prediction. Overall, the method predicted the correct topology

and location of TM helices for 89% of the test set, a significant improvement on our

previous NN-based method MEMSAT3 (Jones, 2007). An additional SVM has been

trained to discriminate between TM and globular proteins with zero false positives

and a low false negative rate of 0.4%, making this method highly suitable for whole

genome analysis.
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4.2 Methods

4.2.1 Support vector machine training

As SVMs are binary classifiers, we chose to combine multiple SVMs to classify each

of the residue preferences found in TM proteins. Although multiclass ranking SVMs

do exist, they are generally considered unreliable since in many cases no single

mathematical function exists to separate all classes of data from one another (Abe,

1998). We therefore trained four SVMs to classify TM helix/¬TM helix, inside

loop/outside loop, re-entrant helix/¬re-entrant helix and signal peptide/¬signal

peptide. Residue labelling was performed according to our data set definitions.

For SVM training and cross-validation, we used the crystal structure data set

described in Chapter 3. PSI-BLAST (Altschul et al., 1997) was used to generate

position-specific scoring matrices for each of the proteins in the data set using the

UniRef 90 database (Boutet et al., 2007). Two iterations were performed with a

profile-inclusion E-value threshold of 0.001 in order to reduce false positive hits, to

which TM proteins are more prone than globular proteins (Hedman et al., 2002).

The E-value, or expectation value, is a parameter that describes the number of hits

one can expect to see by chance when searching a database of a particular size. It

decreases exponentially with the S-score, the raw alignment score calculated as the

sum of substitution and gap scores using matrices such as PAM and BLOSUM that

is assigned to a match between two sequences. Essentially, the E-value describes the

random background noise that exists for matches between sequences and is used as

a convenient way to create a significance threshold for reporting results. When the

E-value is increased, a larger list with more low-scoring hits will be reported, while

a lower E-value will result in a shorter list containing more quality hits. For each

residue in a sequence, a sliding window approach was used to create a feature vector

of length 20 x W, where W is the size of the window centred on the target residue.

Where the window extended beyond the protein termini, empty feature values were

set to zero. All values for each feature position where then normalised by Z-score
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(Equation 4.1) to enable faster SVM convergence. Initial attempts at scaling values

between 0 and 1 had resulted in lower overall prediction accuracy.

z =
(x− µ)

σ
(4.1)

Equation 4.1: x is the raw score to be normalised. µ and σ are the mean and standard

deviation PSI-BLAST scores for each of the 20 amino acid, generated using profiles for

all 131 sequences.

In order to accentuate the contribution of re-entrant helices for which data is

particularly sparse, the sequences of 64 proteins, all homologous to the 11 re-entrant

helix-containing sequences in our initial data set, were also used to train the TM

helix/¬TM helix and re-entrant helix/¬re-entrant helix SVMs. Helix, loop and

re-entrant helix boundaries were determined by PDB TM definitions.

We also attempted to train the TM helix/¬TM helix SVM using unlabelled data

via transduction. In transduction, the learning task is to assign labels to unlabelled

data as accurately as possible (Chen et al., 2003). SVMs can perform transduction

by finding the hyperplane that maximises the margin relative to both the labelled

and unlabelled data, in order to improve the generalisation performance. We

selected sequences from SWISS-PROT identified by the MEMSAT3 TM/globular

protein discriminator as TM proteins. Sequences with greater than 40% sequence

identity to sequences in the labelled data set were removed, as were those with

signal peptides predicted by SignalP. Of those remaining, 135 sequences were used

as unlabelled training data.

For training the signal peptide/¬signal peptide SVM, we included data from

the Phobius training set which contains 2654 well annotated examples of TM

and globular proteins, with and without signal peptides. This was supplemented

by a search of SWISS-PROT for sequences labelled with the keyword ’SIGNAL’

(but excluding entries labelled ’POTENTIAL’ or ’BY SIMILARITY’) to add to

the signal peptide set, and sequences without keyword ’SIGNAL’ to add to the
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non-signal peptide set. The combined set was then homology reduced at the 40%

sequence identity level, leaving 3205 (1222 with signal peptides, 1983 without signal

peptides) sequences for which PSI-BLAST profiles were then generated as outlined

above.

Stringent cross validation was performed using a jack knife test (leave-one-out

cross validation) for the TM helix/¬TM helix, inside loop/outside loop and

re-entrant helix/¬re-entrant helix SVMs. In training, the target sequence, along

with any other sequences with greater than 25% sequence identity, were excluded.

For the signal peptide/¬signal peptide SVM we used 10-fold cross validation,

again excluding sequences from the training set with greater than 25% sequence

identity to any sequence in the test set. For training and classification, SVM-Light

(Joachims, 1998) was used. The performance of several kernels was investigated in

combination with a comprehensive grid search of SVM parameters.

Parameters which had the greatest influence on performance were the C-

parameter, the γ parameter of the radial basis function (RBF) kernel and the

degree of the polynomial kernel (d-parameter). The C-parameter controls the

trade-off between the margin and the size of the slack variables; a low value gives a

soft margin while a higher value leads to a hard margin. Adjusting the value of the

C-parameter between 0 and 106 typically resulted in best performance. In the case of

the RBF kernel, γ determines the RBF width; typically a value close to 0.1 was used.

To determine optimal windows sizes, the data set was split randomly into two

and the highest scoring window which ranked equally in each split was selected,

therefore demonstrating consistency between data sets and reducing the risk of

overfitting. We used the MCC to optimise these values which is a more robust

measure than using recall or precision alone (Matthews, 1975).

To calculate a list of topologies ranked by overall likelihood, the TM helix/¬TM
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helix, inside loop/outside loop and signal peptide/¬signal peptide raw SVM outputs

were combined in a modified version of the dynamic programming algorithm used

in the original MEMSAT method (Jones et al., 1994a). Dynamic programming is

a method of solving complex problems by breaking them down into simpler steps,

applicable to cases that consist of overlapping subproblems. MEMSAT3 replaced

the log liklihood ratios used by MEMSAT with NN scores for each residue to

generate a score for TM helices and the preceding loop segment at each position

in the sequence. By defining the minimum and maximum lengths of loops and

TM helices, a matrix could be filled with scores for TM helix and loop segments

at all possible positions. By traversing the matrix, viable topologies and their

corresponding scores could be generated, which were then ranked according to

the score generated by summing the individual helix-loop segment scores. The

MEMSAT3 algorithm was simplified slightly by treating TM helices as discrete

units, rather than separating them into inside, outside and middle components,

though a signal peptide state was added. Loop regions between predicted TM

helices were scanned for re-entrant helices using the re-entrant helix/¬re-entrant

helix raw SVM output and a simple scoring function. For evaluating signal peptide

preference, residues with positive signal peptide scores up to position 40 in a target

sequence were added to the outside loop score and subtracted from the inside

loops score where positive, in order to direct prediction towards a non-cytoplasmic

amino-terminus. The value was also scaled by a factor of 10 and subtracted from

the TM helix SVM score to prevent TM helix prediction. Residues were therefore

predicted to lie in one of five different topological regions: inside loop, outside loop,

TM helix, re-entrant helix and signal peptide.

To evaluate performance, four metrics were used. Firstly, correct location of the

amino terminus; secondly, correct number of TM helices; thirdly, correct number

and location of TM helices (based on an overlap of at least five residues with

the helix boundaries in our data set) and fourthly, correct overall topology. For

comparison, we also evaluated a number of other leading topology predictors. For
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this method and MEMSAT3, the appropriate cross-validated training data was

used in assessing performance. Where equivalent data was unavailable for the

other methods, performance is likely to be overestimated as it is likely that there is

significant overlap between test and training sets. We also assessed performance of

the method against proteins containing signal peptides and re-entrant helices.

We also trained an additional SVM to discriminate between TM and globular

proteins, to be used as a pre-filter prior to TM topology prediction. For SVM

training, we used the data set of 131 TM proteins and 416 globular proteins from

non-redundant PDB chains as used by MEMSAT3. To accurately compare with

MEMSAT3 we used exactly the same test set consisting of 184 TM proteins from

the Möller data set and a separate set of 2269 non-redundant globular protein

chains, giving a total of 2453 test cases. PSI-BLAST profiles were generated for

all sequences and 10-fold cross validation was used to assess performance, again

removing sequences from the training fold with greater than 25% sequence identity

to any sequence in the test fold.

For whole genome analysis, ten genomes - nine eukaryotic and one prokaryotic -

were downloaded from the Ensembl (Flicek et al., 2008) and NCBI (Benson et al.,

2008) websites. Protein sequences were extracted and PSI-BLAST profiles were

generated using the SWISS-PROT database. The TM/globular predictor was used

to identify TM proteins, which were then subject to full topology prediction.

4.3 Results

4.3.1 Support vector machine performance

Table 4.1 shows the per residue performance of each of the five SVMs used by

the method. The TM helix/¬TM helix SVM performs significantly better than

the re-entrant helix/¬re-entrant helix and inside loop/outside loop SVMs, and

slightly better than the signal peptide/¬signal peptide and TM protein/globular
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SVM Window size Kernel MCC

TM Helix/¬TM Helix 33 RBF 0.80
Inside Loop/Outside Loop 35 Polynomial* 0.63
Re-entrant Helix/¬Re-entrant Helix 27 RBF 0.34
Signal Peptide/¬Signal Peptide 27 RBF 0.76
TM Protein/Globular Protein 33 RBF 0.78

Table 4.1: Per residue SVM performance. Column 1: SVM type. Column 2:
Window size - the size of the sliding window in residues. Column 3: Kernel - SVM
kernel type. RBF = radial basis function. Column 4: MCC - Matthews correlation
coefficient. * The Inside Loop/Outside Loop SVM was trained using a third-order
polynomial kernel.

protein SVMs, reflecting the relative ease with which the hydrophobic signal of a

TM helix is detected compared to sequence features within the other topological

regions. The Matthews correlation coefficient (MCC, see Appendix C) value of

0.80 compares favourably with the equivalent value of 0.76 achieved by MEMSAT3

using a NN when cross-validated against the same test set. We found that the

inclusion of unlabelled data for transductive learning led to a slightly lower MCC of

0.77, in addition to increasing training time, and thus parameter optimisation time,

substantially. As a result we excluded unlabelled data when training the final model.

The inside loop/outside loop SVM was the only SVM to perform optimally

using a polynomial kernel, which justifies our use of multiple SVMs to classify

each of the residue preferences rather than a single multiclass ranking SVM. The

highest MCC value we could achieve using a radial basis function (RBF) kernel

for this SVM was 0.35, significantly lower than the value of 0.63 achieved using

a third-order polynomial kernel, therefore demonstrating that no single kernel

function is capable of optimally separating all the data classes and suggesting the

structure of loop data is strongly favoured by this kernel.

Detection of re-entrant helices remains challenging compared to other regions,

with lack of training data a significant issue. Despite the addition of 64 proteins

to the training set, all were homologous to one of the original 11 re-entrant

helix-containing proteins and were therefore removed from the respective training

files. Their contribution was therefore reflected by a low false positive rate of 0.008,
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but a low true positive rate of 0.478 owing to the lack of positive training examples.

In contrast, the signal peptide/¬signal peptide and TM protein/globular protein

SVM performance was close to that of the TM helix/¬TM helix SVM, aided by suf-

ficient quantities of training data. While largely driven by hydrophobicity, the signal

peptide/¬signal peptide SVM must accurately discriminate between signal peptides,

which contain a 7-15 residue long hydrophobic helix, and an equally hydrophobic

but slightly longer TM helix. For all signal peptide-containing proteins, the residues

ranked highest by the SVM appear to be close to the C-terminal end of the signal

peptide region, suggesting the SVM is efficiently detecting the polar and uncharged

3-8 amino acid residue long C-region and the neutral residues that lie adjacent to

the cleavage point (von Heijne, 1983). Similarly, the TM protein/globular protein

SVM must discriminate between hydrophobic residues that compose TM helices and

those that form the core of globular proteins, a challenge reflected by the difference

in MCC compared to the TM helix/¬TM helix SVM.

4.3.2 Overall topology prediction accuracy

Table 4.2 shows the overall topology prediction accuracy when applying the

method to the test set of 131 TM proteins, alongside results for a number of

other recent topology predictors. MEMSAT-SVM and MEMSAT3 results are fully

cross-validated as described above, with all proteins homologous to the target

being removed from training sets, while results for the remaining methods were

obtained from their respective web servers and consequently are not cross-validated.

OCTOPUS was also trained exclusively using proteins with crystal structures

available, of which 121 sequences (92%) are present in the test set, therefore results

are likely to be significantly overestimated.
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Method Algorithm Correct
HC

Correct
locations

Correct
N-terminal

FP helix FN helix Correct
SP

Correct
RE

Correct
Topology

MEMSAT-SVM SVM 95% 91% 91% 4% 5% 93% 64% 89%
OCTOPUS NN + HMM 86% 83% 84% 14% 2% 21% 73% 79%
MEMSAT3 NN 84% 76% 84% 8% 8% 57% 64% 76%
ENSEMBLE NN + HMM 77% 76% 79% 18% 5% 7% 55% 67%
PHOBIUS HMM 75% 76% 79% 9% 16% 93% 36% 63%
HMMTOP HMM 77% 76% 78% 18% 6% 29% 64% 63%
PRODIV HMM 79% 64% 76% 19% 8% 0% 18% 57%
SVMTOP SVM 66% 64% 66% 22% 22% 0% 55% 53%
TMHMM HMM 75% 68% 72% 14% 20% 29% 55% 53%
PHDhtm NN 75% 54% 55% 23% 30% 29% 18% 45%

Table 4.2: Benchmark results for the SVM-based method (’MEMSAT-SVM’) against a selection of leading topology predictors. Column 1: Method -
Prediction method. Column 2: Algorithm - Underlying machine-learning algorithm. Column 3: Correct HC - Fraction of sequences with the correct number
of TM helices predicted. Column 4: Correct locations - Fraction of sequences with the correct number and locations of TM helices predicted. Column 5:
Correct N-terminal - Fraction of sequences with the correct N-terminal location predicted. Column 6: FP helix - Fraction of sequences with at least one over
predicted TM helix. Column 7: FN helix - Fraction of sequences with at least one under predicted TM helix. Column 8: Correct SP: Fraction of sequences
that contain signal peptides that have correct overall topology predicted. Column 9: Correct RE: Fraction of sequences that contain re-entrant helices that
have correct overall topology predicted. Column 10: Correct topology: Fraction of sequences that have correct overall topology predicted, requiring the
correct number and location of TM helices and correct location of the N-terminal. TM helices must overlap their defined positions by at least 5 residues.
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To assess overall topology prediction accuracy, correct prediction of 3 components

were required: the N-terminal location, number of TM helices and TM helix loca-

tions, based on an overlap of at least 5 residues with boundary definitions. Correct

signal peptide and re-entrant helix predictions were not required for a correct overall

topology prediction, though failure to predict these features was likely to result in

an incorrect topology. Based on this definition, MEMSAT-SVM correctly predicts

topology in 89% (116 out of 131) of cases, a 10% improvement on OCTOPUS which

predicted 79% (103) of cases correctly (column 10). Using a more stringent criterion

of a 10-residue helix overlap, the margin increases to 11% (MEMSAT-SVM 87%,

OCTOPUS 76%), suggesting good segment end point prediction. In terms of the 3

individual components, MEMSAT-SVM is consistently better than all other meth-

ods (columns 3-5), and in particular performs well at predicting the correct number

of TM helices (95% accuracy). MEMSAT-SVM also had a balanced number of over-

and under predictions (columns 6-7) which is favourable to avoid bias towards either

type of prediction, and suggests good sensitivity while avoiding over predicting he-

lices. Since this work was completed, an extension to the OCTOPUS method which

incorporates signal peptide prediction, SPOCTOPUS (Viklund et al., 2008), has

been released. This method achieved 87% accuracy on the test set, largely address-

ing the poor performance of OCTOPUS on sequences containing signal peptides

(column 8). An example of the graphical output for a correct prediction is shown

in Figure 4.1.
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Figure 4.1: Correct topology prediction for Photosystem II chain C from Thermosynechococcus elongatus (PDB: 2AXT:C),
showing a 6 TM helix prediction with an intracellular N-terminus. The known topology is shown in the track labelled ’Topology’
while the prediction is shown in the track labelled ’MEMSAT-SVM’. Beneath this is a Kyte-Doolittle hydropathy plot generated
using a window size of 19 residues. The four SVM tracks show the raw SVM score with the dotted line indicating a score of zero.
H/L: TM helix/¬TM helix SVM. iL/oL: Inside loop/Outside loop SVM. RE/H: Re-entrant helix/¬Re-entrant helix SVM. SP/H:
Signal peptide/¬Signal peptide SVM
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4.3.3 Signal peptide and re-entrant helix prediction

MEMSAT-SVM correctly predicts the topology of 93% (13 out of 14) of proteins

which contain signal peptides, a substantial improvement on the limited signal pep-

tide prediction capability of our previous method MEMSAT3 (Figure 4.2). In all 13

cases, signal peptides were also predicted. This accuracy is matched by PHOBIUS,

the only other method that is specially trained to identify signal peptides in TM

proteins. Amongst proteins that did not contain signal peptides, no false positive

signal peptides were predicted. Proteins containing re-entrant helices proved much

harder to predict, with only 64% (7 out of 11) correctly predicted (Figure 4.3). This

is matched by MEMSAT3 and HMMTOP, though is slightly lower than the 73%

(8) accuracy achieved by OCTOPUS. However, this additional correct prediction

could well be attributed to the overlap between the test and training sets, as, in

the absence of cross-validation, MEMSAT-SVM is able to predict 82% (9) topolo-

gies correctly. In terms of predicting re-entrant helices, MEMSAT-SVM identifies

44% (8 out of 18) with 2 false positive predictions, which compares favourably with

OCTOPUS results of 22% (4) with 4 false positives. Since the numbers of proteins

containing re-entrant helices and signal peptides are relatively small (14 and 11 re-

spectively), care should be taken when interpreting these results as a relatively large

percentage difference in performance may only reflect the correct prediction of one

additional sequence.
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Figure 4.2: Correct topology prediction for Particulate Methane Monooxygenase chain A from Methylococcus capsulatus (PDB:
1YEW:A), showing a 2 TM helix prediction with an extracellular N-terminus. In addition to the topology, a signal peptide (shown
in pink) was also correctly predicted.
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Figure 4.3: Correct topology prediction for Glycerol Uptake Facilitator chain A from Escherichia coli (PDB: 1LDI:A), showing a
6 TM helix prediction with an intracellular N-terminus. In addition to the topology, two re-entrant helices (shown in green) were
also correctly predicted.
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4.3.4 Erroneous predictions

MEMSAT-SVM incorrectly predicts topologies in 15 cases. Four of these correspond

to proteins containing re-entrant helices that are erroneously predicted as TM

helices - ABC transporter BtuCD (Figure 4.4), Proton Glutamate Symport protein,

Aquaporin Z and Clc chloride channel (PDB: 1L7V:B, 1XFH:A, 2ABM:H and

2FEE:B) - accounting for the majority of over predicted TM helices. The remaining

over prediction is due to a highly hydrophobic N-terminal region within a chain

from Cytochrome bc1 (PDB: 1SQX:D).

In seven cases, incorrect topologies are a result of under predicted TM helices

- Photosystem I (chains A, L and K), Steryl-sulfatase, Light-Harvesting Complex

II, Particulate Methane Monooxygenase and Sodium/proton antiporter 1 (1JB0:A,

1JB0:L, 1JB0:K, 1P49:A, 1VCR:A, 1YEW:B and 1ZCD:B). These under predic-

tions fall into two categories; weakly predicted helices (1JB0:A, 1JB0:L, 1JB0:K,

1P49:A and 1VCR:A) or prediction of one helix rather than two shorter ones

(1YEW:B and 1ZCD:B). Of the weakly predicted helix errors, sequence analysis

indicates low hydrophobicity for many of these helices, often due to a large fraction

of charged residues. Such helices are therefore extremely difficult to predict and

suggest a novel membrane insertion mechanism. Other helices appear sufficiently

hydrophobic to be detected; errors are possibly the results of PSI-BLAST alignment

which reduce their detectability.

The remaining three incorrect predictions are all single TM helix proteins that

are inverted - Photosystem I, Cytochrome bc1 and Cytochrome b6f (1JB0:I, 1P84:I

and 1Q90:N). In all three cases, the confidence of the prediction compared to the

correct topology (measured by the difference between the two scores) is extremely

small. With no clear signal to differentiate between either orientation, interplay

with other chains from the same protein may influence the final conformation.
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Figure 4.4: Incorrect topology prediction for ABC transporter BtuCD chain B from Escherichia coli (PDB: 1L7V:B), showing
a 96 TM helix prediction with an intracellular N-terminus. The actual topology consists of 8 TM helices and 2 re-entrant helices;
one of the re-entrant helices has been incorrectly predicted as a TM helix (predicted TM helix 7).
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Method Möller TOPDB

MEMSAT-SVM 78% 67%
OCTOPUS 69% 64%
MEMSAT3 77% 66%
ENSEMBLE 61% 51%
PHOBIUS 67% 62%
HMMTOP 64% 57%
PRODIV 46% 37%
SVMTOP 70% 42%
TMHMM 60% 56%
PHDhtm 45% 49%

Table 4.3: Prediction performance using the Möller and TOPDB data sets. Column
1: Prediction method. Column 2: Results using the Möller data set. Column 3:
Results using the TOPDB data set.

4.3.5 Prediction accuracy using the Möller and TOPDB

data sets

We additionally tested prediction performance using a subset of 184 sequences

from the Möller set (described in (Bagos et al., 2006; Hirokawa et al., 1998),

composed of sequences annotated using both crystal structures and biochemical

characterisation (Table 4.3). The Möller set consists of a significantly higher

fraction of eukaryotic sequences compared to the data set described above. TM

protein crystallisation techniques usually involve over expression hosts, such as

Escherichia coli, which to date have worked mainly for prokaryotic TM proteins

since eukaryotic TM proteins are still very difficult to over express (Granseth

et al., 2007). Crystal structure-based sets, while providing more accurate TM helix

boundary definitions, thus suffer from this bias towards prokaryotic sequences, so

methods trained exclusively using such data sets run the risk of performing poorly

when predicting the topologies of eukaryotic sequences. Based on recent updates

to SWISS-PROT annotations and under full cross-validation, MEMSAT-SVM

achieved 78% accuracy and MEMSAT3 achieved 77%. In the absence of cross-

validation, SPOCTOPUS also achieved 77% accuracy, with OCTOPUS the next

best method scoring 69%. This performance suggests MEMSAT-SVM offers ro-

bust prediction accuracy on proteins from both eukaryotic and prokaryotic domains.
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We then tested performance using the TOPDB (Tusnady et al., 2008) data set, a

comprehensive collection of TM protein containing experimentally derived topology

information (Table 4.3). It currently contains records for 1452 alpha-helical TM

proteins. Using this data set, MEMSAT-SVM achieved 67% accuracy, MEMSAT3

66%, OCTOPUS 64% and PHOBIUS 62%. The data set also contains 317

sequences containing signal peptides. Of these, MEMSAT-SVM correctly predicted

the topologies for 77% of cases. This value was lower than that of PHOBIUS which

achieved 85% accuracy. However, the MEMSAT-SVM false positive rate for signal

peptide prediction is 7%, half the PHOBIUS value of 14%. These results show

that on this data set, MEMSAT-SVM signal peptide performance is below that of

PHOBIUS, though MEMSAT-SVM overall prediction accuracy is 5% higher due

to the relatively poor performance of PHOBIUS on sequences that do not contain

signal peptides (a substantially larger fraction) - 54% accuracy compared to 63%

for MEMSAT-SVM. These results should again be treated with caution as they

were not cross-validated.

These results are clearly lower than those attained using the crystal structure-

based data set, and we believe this is likely due to errors in TOPDB. We analysed

sequences from the original, uncorrected Möller set that at the time did not have

crystal structures. 55 of these sequences now have a homologous PDB structure

(E-value < 0.001), and of these only 38 (69%) of the original Möller topologies are

correct based on current OPM definitions (taking into account only the N-terminal

location and TM helix count). There is no reason to believe that the error rate

in other data sets such as TOPDB, composed predominantly of sequences whose

topologies were determined by biochemical means, should be significantly different.

Perfect prediction methods are therefore unlikely to be able to achieve results higher

than this, while older methods trained on erroneous topologies have the potential

to achieve higher scores but may in reality be poorer predictors, a fact likely to be

highlighted when tested against a crystal structure-based set.
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4.3.6 Discriminating between globular and transmembrane

proteins

Using the combined set of 2453 test cases, we assessed performance in discriminating

between globular and TM proteins (Table 4.4). As a discrimination threshold, a

number of residues were required to be predicted as part of a TM helix by the

SVM in order to classify the protein as TM. This threshold was adjusted in order to

minimise the margin between the false positive (FP) and false negative (FN) rates,

therefore avoiding bias towards either type of prediction. A 0% FP rate and 0.4%

FN rate was achieved using only a single residue as the threshold, an improvement

on the MEMSAT3 neural network-based approach (0.5% FP, 0.5% FN) and SOSUI

(0.3% FP, 1.1% FN). OCTOPUS matched the FP rate but achieved a higher FN

rate, while PHOBIUS matched the FN rate but achieved a higher FP rate. These low

error rates suggest that MEMSAT-SVM is extremely well suited to whole genome

analysis. An analysis of a selection of known beta-barrel proteins suggested that

these are also identified effectively by this method.

Method Algorithm False positive
rate

False negative
rate

MEMSAT-SVM SVM 0.00% 0.44%
MEMSAT3 NN 0.50% 0.50%
SOSUI Hydrophobicity analysis 0.33% 1.10%
OCTOPUS NN + HMM 0.00% 2.51%
PHOBIUS HMM 2.72% 0.44%

Table 4.4: Results for TM/globular protein discrimination rates.

4.3.7 Application to a number of complete genomes

Table 4.5 shows the results of applying the TM/globular predictor to a number

of complete genomes. We estimate that a typical genome contains between

24% and 33% TM proteins, which is slightly higher than previous estimates of

between 20% and 30% (Wallin & von Heijne, 1998). Two organisms that have a

noticeably higher fraction of TM proteins are Caenorhabditis elegans and Takifugu

rubripes. Takifugu rubripes is known to have extensive channel heterogeneity
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compared to Homo sapiens, with 10 Homo sapiens voltage-gated calcium channel

α1-subunit genes revealing 21 orthologous genes in Takifugu rubripes. Phyloge-

netic analysis reveals that this is due to fish lineage specific α1-subunit subtype

duplication (Wong et al., 2006). Similar increased subtype diversity has also

been detected in the appetite receptor neuropeptide Y GPCR family that may

have arisen as a result of ray-finned fish tetraploidization (Larsson et al., 2005).

Caenorhabditis elegans is known to have an exceptionally large number of 7 TM

receptors and rhodopsin-like membrane proteins (Liu et al., 2002), thought to have

been arisen through duplication events, that possibly imply functional relations

between homologous 7 TM domains (Liu et al., 2004). Escherichia coli has

the lowest fraction of TM proteins of all the species we analysed, which may be

a consequence of the lack of internal membrane systems in prokaryotes (Petty, 1993).
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Species Fraction of genome
predicted as TM

proteins

Fraction of TM
proteins predicted to

contain re-entrant
helices

Fraction of TM
proteins predicted to

contain signal peptides

Caenorhabditis elegans 33% 2% 33%
Canis familiaris 31% 2% 27%
Danio rerio 29% 2% 26%
Drosophila melanogaster 27% 2% 33%
Escherichia coli 24% 2% 28%
Homo sapiens 26% 2% 35%
Mus musculus 29% 2% 30%
Pan troglodytes 26% 2% 33%
Takifugu rubripes 33% 3% 26%
Xenopus tropicalis 31% 2% 23%

Table 4.5: The fraction of proteins predicted as transmembrane, and to contain re-entrant helices and signal peptides, in a number
of complete genomes.
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Figure 4.5: Topology prediction results for a number of complete genomes. X-axis: Number of predicted TM helices. Y-axis:
Fraction of all predicted TM proteins. Z-axis: Species.
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We then carried out full topology prediction on sequences predicted to be

TM proteins and analysed these for the presence of re-entrant helices and signal

peptides. In most species, re-entrant helices were detected in at least 2% of TM

proteins, with more than 3% detected in Takifugu rubripes which can be explained

by the extensive channel heterogeneity discussed above. However, given the low

true positive rate of 44%, this figure is likely to be an underestimate. A positive

predictive value (PPV) of 0.8 suggests a value in the range 3-4.5% is more realistic.

This range is close to one previous estimate of 5% (Cuthbertson et al., 2005) but

below another of 10% (Lasso et al., 2006), although the latter was based on a

broader definition of re-entrant regions that did not necessarily contain helical

secondary structure.

Topology prediction results illustrate consistent trends across all species, with

significant peaks at 7 TM helices representing GPCRs (in eukaryotes) and 12 TM

helices representing transporters proteins (Figure 4.5). A slight preference for even-

numbered topologies (excluding GPCRs) can be explained by the formation of 2

helix hairpins as independent units during protein assembly, therefore favouring

topologies with even numbers of TM helices (Gafvelin et al., 1997). In all species,

the most dominant topology is a single TM helix. These results are consistent with

previous studies (Krogh et al., 2001).

4.4 Discussion

In this chapter we have implemented a novel SVM-based TM protein topology pre-

dictor, an area previously dominated by HMM and NN-based machine learning

approaches, and have shown that it outperforms a selection of the best performing

prediction methods when fully cross-validated on a novel high resolution data set of

131 protein sequences. This data set includes proteins containing both re-entrant

helices and signal peptides, features that this method is also able to predict. The

method has also been benchmarked on the Möller data set, which contains a higher

fraction of eukaryotic sequences, improving on the best current methods. And we
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have achieved extremely low false positive and false negative rates for TM/globular

protein discrimination. Using these tools, we have estimated the fraction of TM

proteins, re-entrant helices and signal peptides in a number of complete genomes.

Overall, our results suggest that MEMSAT-SVM is ideally suited to whole genome

annotation of alpha-helical TM proteins.
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5.1 Background

As discussed in previous chapters, significant effort has been invested in attempting

to predict TM protein topology (Jones, 2007; Viklund & Elofsson, 2008; Nugent &

Jones, 2009). In contrast, comparatively little attention has been directed toward

developing a method to pack the helices together; since the membrane-spanning

region is predominantly composed of alpha-helices with a common alignment, this

task should in principle be easier than predicting the fold of globular proteins as

the longitudinal constraints of helix packing mostly reduces the solution space from

three dimensions to two. However, topologies consisting of large numbers of TM

helices as well as structural features including re-entrant, tilted and kinked helices

render simple approaches that may work for regularly packed proteins unable to

predict the diverse packing arrangements now present in structural databases.

5.1.1 Predicting transmembrane protein folds

Early attempts to predict TM protein folds were based on sequence similarity to

proteins with a known three-dimensional structure, using statistically derived envi-

ronmental preference parameters combined with experimentally determined features

(Cronet et al., 1993). Another method calculated amino acid substitution tables for

residues in membrane proteins where the side chain was accessible to lipid. By

comparing observed substitutions obtained from sequence alignments of TM re-

gions, accessibility of residues to the lipid could be predicted. In combination with

a Fourier transform method to detect alpha-helices, the buried and exposed faces

could then be discriminated and the presence of charged residues used to construct

a three-dimensional model (Donnelly et al., 1993). Other methods also made use of

exposed surface prediction to allocate helix positions, in combination with an exist-

ing framework for globular protein structure prediction involving the combinatorial

enumeration of windings over a predefined architecture followed by the selection of

preferred folds (Taylor et al., 1994). However, many of these methods were only

suitable for 7 TM helix bundles such as rhodopsin and were unsuitable for other

topologies.
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5.1.2 Ab initio methods

More recently, the fragment-based protein tertiary structure prediction method

FRAGFOLD (Jones, 2001) was modified to model TM proteins. FRAGFOLD is

based on the assembly of super-secondary structural fragments using a simulated

annealing algorithm in order to narrow the search of conformational space by pre-

selecting fragments from a library of highly resolved protein structures. FILM

(Pellegrini-Calace et al., 2003) added a membrane potential to the FRAGFOLD

energy terms which was derived from the statistical analysis of a data set of TM

proteins with experimentally defined topologies. Results obtained by applying the

method to small membrane proteins of known three-dimensional structure showed it

could predict both helix topology and conformation at a reasonable accuracy level.

Despite these good results, the combinatorial complexity of such ab initio protein

folding methods means that it is unfeasible to use such approaches for large TM

structures, many of which are longer than 150 residues. Modification of another

globular protein ab initio modelling program, ROSETTA (Rohl et al., 2004), added

an energy function that described membrane intra-protein interactions at atomic

level and membrane protein/lipid interactions implicitly, while treating hydrogen

bonds explicitly (Barth et al., 2007). Results suggest that the model captures the

essential physical properties that govern the solvation and stability of TM proteins,

allowing the structures of small protein domains, up to 150 residues, to be predicted

successfully to a resolution of less than 2.5Å. A recent enhancement of the algorithm

demonstrated that by constraining helix-helix packing arrangements at particular

positions based on local sequence-structure correlations for each helix of the inter-

face independently, TM proteins with more complex topologies could be modelled

to within 4Å of the native structure (Barth et al., 2009).

5.1.3 Helix-Helix interaction motifs

The prediction of helix-helix interactions, derived from residue contacts and

topology, has only recently been investigated in TM proteins due to the relative

paucity of TM protein crystal structures. In contrast, a number of globular
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protein contact predictors exist based on a variety of machine learning algorithms

(Punta & Rost, 2005; Cheng & Baldi, 2007), and contact prediction has also

been used to assess globular protein models submitted to the Critical Assessment

of Structure Prediction (CASP) experiment (Izarzugaza et al., 2007). However,

analysis has shown that such globular proteins contact predictors perform poorly

when applied to TM proteins, most likely due to differences between TM and

globular interaction motifs (Fuchs et al., 2009). A number of studies have identified

structural and sequence motifs recurring frequently during helix-helix interaction

in TM proteins. One investigation analysed interacting helical pairs according to

their three-dimensional similarity, allowing three quarters of pairs to be grouped

into one of five tightly clustered motifs (Walters & DeGrado, 2006). The largest of

these consisted of an anti-parallel motif with left-handed packing angles, stabilised

by the packing of small side chains every seven residues, while right-handed

parallel and anti-parallel structures showed a similar tendency though spaced

at four-residue intervals. Another study identified a specific aromatic pattern,

aromatic-XX-aromatic, which was demonstrated to stabilise helix-helix interactions

during assembly (Sal-Man et al., 2007), while others include the GXXXG motif

found in glycophorin A (Lemmon et al., 1992), heptad motifs of leucine residues

(Gurezka et al., 1999), and polar residues through formation of hydrogen bonds

(Zhou et al., 2001).

The discovery of these recurring motifs, and the likelihood that there are

more as yet undiscovered, suggests predictability by a generalised pattern search

strategy. Recently, two methods have been developed that attempt to predict

residue contacts and helix-helix interaction. TMHcon (Fuchs et al., 2009) uses a

neural network in combination with profile data, residue co-evolution information,

predicted lipid exposure using the LIPS method (Adamian & Liang, 2006), and a

number of TM protein specific features, such as residue position within the TM

helix, in order to predict helix-helix interaction. TMhit (Lo et al., 2009) uses

a two-level hierarchical approach in combination with a support vector machine
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(SVM) classifier. The first level discriminates between contacts and non-contacts on

a per residue basis, before the second level determines the structure of the contact

map from all possible pairs of predicted contact residues therefore avoiding the

high computational cost incurred by the quadratic growth of residue pair prediction.

In this chapter, I will describe the development of a novel method to predict

lipid exposure, residue contacts, helix-helix interactions and finally the optimal he-

lical packing arrangements of TM proteins. Using molecular dynamics data to label

residues potentially exposed to lipid, I have trained and cross-validated a SVM clas-

sifier to predict per residue lipid exposure with 69% accuracy. This information is

combined with PSI-BLAST profile data and a variety of sequence-based features to

train an additional SVM to predict residue contacts. Combining these results with

a priori topology information, I was able to predict helix-helix interaction with up

to 65% accuracy under stringent cross-validation on a non-redundant test set of 74

protein chains. I then tested the ability of the method to discriminate native from

decoy helical packing arrangement using a decoy set of 2811 structures. By com-

paring our predictions with the test set, I was able to identify the native packing

arrangement with up to 70% accuracy. All these performance metrics represents sig-

nificant improvements over existing methods. In order to visualise the global packing

arrangement, I adopted a graph-based approach. By employing a force-directed al-

gorithm, the method attempts to minimise edge crossing while maintaining uniform

edge length, attributes common in native structures. Finally, a genetic algorithm

is used to rotate helices in order to prevent residue contacts occurring across the

longitudinal helix axis.

5.2 Methods

5.2.1 Data sets

For SVM training and cross-validation, we used the crystal structure data set de-

scribed in Chapter 3 which contained 74 sequences with at least two TM helices.
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For 53 of these multi-spanning sequences, and a further 24 single-spanning proteins,

we were able to obtain molecular dynamics data from the Coarse Grained Database

(CGDB) (Chetwynd et al., 2008) which was used for lipid exposure prediction. We

chose not to predict interactions between TM helices and re-entrant helices, found in

many channels such as aquaporin, as they are thought to be involved in channel gat-

ing and thus move into and out of the membrane region depending on physiological

conditions. Including re-entrant helices would therefore be likely to introduce noise

into the data set as contacts could be both positive and negative training examples.

5.2.2 Predicting lipid exposure

During TM protein crystallisation, detergents are used extensively for protein

solubilisation and then act as mimics of the lipid bilayer due to their self-assembly

properties. As a result, crystallographic data rarely contains information regarding

the positions of lipid molecules, therefore hindering the study, and prediction, of

lipid exposed regions of TM protein. For investigating TM topology, a number

of automated methods exist that attempt to position the protein within the

membrane (Lomize et al., 2006b; Tusnady et al., 2005a). However, these methods

are inappropriate for accurate studies of lipid exposure as they do not take into

account the solvent-filled cavities and channels found in many TM proteins. To

address this, we used the CGDB, a resource of coarse-grained simulation data,

which contains analysis of lipid-protein interactions following 200ns of molecular

dynamics using GROMACS (Spoel et al., 2005) to randomly surround TM proteins

in dipalmitoylphosphatidylcholine lipids and solvent. A snapshot of each protein

in its optimum position within the bilayer and residue statistics throughout the

simulation are available. While difficult to validate, the approach has proved

successful in reproducing the behaviour of equivalent atomistic simulations of

model proteins, as well as allowing the insertion of various test peptides whose

final configurations were in agreement with experimental data (Sansom et al.,

2008). Additionally, channel-containing proteins such as aquaporin and potassium

channels are solvent rather than lipid filled at the end of simulation.
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To train the SVM classifier, we used CGDB data to label residues that were lipid

exposed. For the 77 proteins within our data set where CGDB data was available,

each residue within the membrane was labelled as lipid exposed where the fraction of

simulation time exposed to DPPC lipid was greater than 0.5. PSI-BLAST (Altschul

et al., 1997) was used to generate position-specific scoring matrices for each of the 77

proteins in the data set using the UniRef 90 database. Two iterations were performed

with a profile-inclusion E-value threshold of 0.001. For each residue in a sequence, a

sliding window approach was used with a window size of 7, creating a feature vector

of length 140 centred on the target residue. To determine this windows size, the

data set was split randomly into two and the highest scoring window which ranked

equally in each split was selected, therefore demonstrating consistency between data

sets and reducing the risk of overfitting. Where the window extended beyond the

protein termini, empty feature values were set to zero. All values for each feature

position where then normalised by Z-score to enable faster SVM convergence. In

training, the target sequence, along with any other sequences with an E-value less

than 1e-4, were excluded. We used SVM-Light (Joachims, 1998, chapter 11) and a

radial basis function kernel, in combination with a grid search of SVM parameters.

Matthews Correlation Coefficient (MCC) was used to optimise these values as it

has been shown to be a more robust measure than using recall or precision alone

(Matthews, 1975).

5.2.3 Contact definitions

In order to make direct comparisons with other methods, we used three thresholds

to consider a pair of residues to be in contact. Firstly, a maximal distance of 8Å

between their C-beta atoms (C-alpha for glycine) (Punta & Rost, 2005; Cheng &

Baldi, 2007) (contact definition 1). Secondly, the distance between any two atoms

from an interacting pair is less than the sum of their van der Waals radii plus a

threshold of 0.6Å (Lo et al., 2009) (contact definition 2). Thirdly, the minimal

distance between side chain or backbone heavy atoms in an interacting pair is less
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than 5.5Å (Fuchs et al., 2009) (contact definition 3). We defined TM helices as

interacting if one residue from each helix was observed to be in contact.

5.2.4 Predicting residue contacts

Using the three contact definitions, all residue pairs from different TM helices

were labelled as contacting or non-contacting, resulting in a substantial bias of

approximately 1:50. In order to balance training sets and reduce learning time,

non-contacting examples were selected randomly in order to achieve approximately

equal numbers of positive and negative examples, before fine adjustment of the

SVM cost-factor parameter achieved a 1:1 ratio.

SVM input features were based largely on PSI-BLAST profile data, generated

as described above. We used a sliding window of 7 residues, centred on each residue

in the pair to produce a feature vector of length 280. Again, this window size was

determined by randomly splitting the data set. In addition to profile data, the raw

SVM scores for predicted lipid exposure were added to the feature vector for each

residue. We then added a number of sequence derived statistics. To define the se-

quence separation between the two residues, a binary vector was used corresponding

to distances of 50, 75, 100, 125, 150, 175, 200 and greater than 200 residues. We

also added a value which corresponded to the relative position of each residue within

the two TM helices, generated by dividing the residue position in the TM helix by

the helix length, and subtracting the value from one where the two residues were

on adjacent TM helices or are separated by an even number. This value effectively

represented a relative Z-coordinate for each residue, the rationale being that residues

separated by a large degree on the Z-axis were unlikely to contact. We tried adding

a number of additional values including the lengths of each TM helix, average lipid

exposure scores for each TM helix, total number of TM helices, sequence length, and

a number of residue co-evolution scores (Olmea & Valencia, 1997; Fodor & Aldrich,

2004). However, none of these values increased classification performance so were

removed in the final model. Again, each feature position was normalised by Z-score,
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before the target sequence and any other sequences with an E-value less than 1e-4

were excluded from training sets. A radial basis function kernel was used and the

MCC was used to optimise SVM parameters.

5.2.5 Using helix-helix prediction for discriminating decoy

helical packing arrangements

We then tested the ability of the method to discriminate native from decoy helical

packing arrangement using the predicted helix-helix interactions. For each of the 74

multi-spanning proteins in our data set, decoys were generated using the REVCAS

program (Taylor, 2006). Each chain was expanded into a larger set of structures by

making it circular and introducing cyclically permuted breaks. The method involves

a triple-point chain reconnection that avoids the restoration of native segments al-

lowing the generation of a set of decoy structures. The method was successfully

applied to the pore-forming colicin domain, an all alpha-helical structure that is

typical of many TM proteins in that the amino and carboxy termini, which are

joined when the structure is circularised, are at opposite ends of the protein, much

like TM proteins whose termini are on opposite sides of the membrane (Taylor,

2006). By generating decoys in both forward and reverse directions, 24-48 decoys

were generated for each protein resulting in a total set of 2811 structures. Decoys

only contained C-alpha atoms, therefore the remaining backbone and side chain

atoms were added and the structure was refined and energy minimised using the

Jackal package (Petrey et al., 2003). Additionally, homology models of the native

structures were constructed using MODELLER (Eswar et al., 2007). Native topolo-

gies were then used to define TM helix boundaries allowing observed helix-helix

interactions to be extracted which were then compared to the helix-helix interac-

tions predicted from sequence. Decoys and native structures were then scored by

the number of interacting/non-interacting helices that matched the predictions and

ranked accordingly. We measured the frequency at which the native structure, or a

model of the native structure, was ranked first.
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5.2.6 Constructing the helical packing arrangement

Once helix-helix interactions had been predicted, the helical packing arrangement

was treated as an undirected graph where the helices form vertices and their

interactions form edges. A force-directed algorithm is then applied which treats the

graph as a virtual physical system. The system is simulated resulting in attractive

and repulsive forces being applied to vertices, a process which is repeated iteratively

until the system comes to an equilibrium state at which point the final graph layout

is constructed.

Using the Boost C++ programming library (http://www.boost.org) we em-

ployed a modified version of the Kamada-Kawai force-directed algorithm (Kamada

& Kawai, 1989) which generates two-dimensional layouts for connected, undirected

graphs. It accomplishes this by treating the graph as a dynamic spring system,

where the strength of a spring between two vertices is inversely proportional to

the square of the shortest distance between those two vertices, and attempting to

minimise the energy within the system. In order to avoid producing a layout with

only a local minima, the vertices are first arranged along the vertices of a regular

n-sided polygon, where n is the number of TM helices, via a circular layout function.

In their paper, Kamada and Kawai suggested that in many scenarios, the reduc-

tion of the number of edge crossings that a graph possesses is not necessarily a good

aesthetic criterion for a layout algorithm to implement. They suggested that the

total balance of the layout, which is related to the individual characteristics of the

graph, can be considered more important than the reduction of edge crossings in

the graph. They calculated the total balance of the graph as the square summation

of the differences between the ideal distance and the actual distance for all vertices

(Equation 5.1). By approximating and minimising the stress in a given system, the

Kamada-Kawai method preserves the total balance of a graph, producing layouts
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with small numbers of edge crossings.

stress(X) =
∑

i<j

wij(‖ Xi −Xj ‖ −dij)2 (5.1)

Equation 5.1: For a pair of nodes i and j, dij is the ideal distance between vertices

corresponding to the shortest path between those vertices. X is the set of 2D or

3D coordinates and wij is dij
−α. Kamada and Kawai chose α = 2 which seems to

produce the best layouts (Kamada & Kawai, 1989). Kamada and Kawai used the

Newton-Raphson method to optimise with respect to a single vertex. By iteratively

solving for each vertex the overall stress is reduced.

Given that the number of TM helices in a protein is expected to be less than

30, energy minimisation occurs in a number of seconds on a modern computer,

avoiding the high running time typically associated with force-directed algorithms

and graphs containing a larger number of vertices. Resulting layouts demonstrate

uniform edge length, uniform vertex distribution often showing symmetry, and

minimisation of edge crossing - attributes that are common to the arrangement of

TM helices and their interactions in native TM protein structures.

In a number of cases, multiple helices share the same interactions resulting

in numerous possible arrangements. In all cases where this occurs, a recursive

function is used to score each arrangement according to the number of observed

same-side loop crossovers. The score is determined by drawing a line between

a pair of helices adjacent in sequence, before incrementing the helix position

by two so that comparisons are between lines on the same side. Each line is

compared to every other line on the same side and their intersection is established

by determining the cross product. This is repeated for each side, before the total

number of intersections per side is compared. Particularly when loops are short,

it is unusual for loops to cross each other as this may result in side chain clashes.

All arrangements are then returned, with those containing the least number of

same-side loop crossovers scored highest.
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Finally, the constituent residues are superimposed onto their respective TM he-

lices, before a genetic algorithm is used to rotate all helices around their respective

Z-axes such that the sum of all predicted residue-residue contact distances is min-

imised, therefore preventing residues contacts occurring across the longitudinal helix

axis. For each TM helix, a value in the range 0-359 is optimised to an accuracy of

one degree.

5.3 Results

5.3.1 Lipid exposure prediction performance

We compared the per residue performance of our lipid exposure predictor to the

LIPS method using all TM helix residues from our data set of 77 sequences. The

data set contained 336 TM helices composed of 7016 residues, of which 3687 were

labelled as lipid exposed and 3329 were not, according to CGDB data. Optimal

performance was achieved using a radial basis function kernel, a gamma value of 0.6

and a trade-off value of 1.5. The LIPS method produces a per residue score generated

by multiplying lipophilicity by positional entropy. The LIPS score that resulted in

the optimal per residue performance was found to be 1.56. Using leave-one-out cross-

validation, our method achieved a MCC of 0.38 and accuracy of 69.3%, a significant

improvement over the LIPS method which scored 0.23 and 61.7% respectively (Table

5.1). Furthermore, the LIPS method is calculated using sequence profiles from

18 TM protein structures, the majority of which are included in the test set of

77, therefore in the absence of cross-validation these results are likely to be an

overestimate. However, as the LIPS method is based on an alternative definition

of lipid exposure, we repeated the benchmarking of the two methods using the

LIPS definition by labelling residues with a 1.9Å probe. Under this definition both

methods perform slightly worse although our method still outperforms LIPS, with

an MCC value of 0.27 compared to 0.18. This indicates that there is reasonably good

correlation between the two definitions although the LIPS definition is slightly harder

to predict, most likely because the 1.9Å spherical probe is a poor approximation to
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Method Lipid
exposure
definition

Precision Recall FPR FNR MCC Accuracy

MEMPACK CGDB 0.69 0.56 0.36 0.26 0.38 69.3%
MEMPACK 1.9Å probe 0.71 0.61 0.39 0.33 0.27 64.3%
LIPS CGDB 0.61 0.59 0.48 0.29 0.23 61.7%
LIPS 1.9Å probe 0.65 0.65 0.50 0.32 0.18 60.3%

Table 5.1: Per residue lipid exposure prediction performance using a data set of
77 sequences. Lipid exposure definition = test set labelled according to the CGDB
definition or using a 1.9 probe. FPR = false positive rate. FNR = false negative rate.
MCC = Matthews Correlation Coefficient. Accuracy = (TP + TN)/(TP + TN +
FP + FN).

the non-spherical nature of a membrane phospholipid, unlike, for example, a 1.4Å

spherical probe is to a water molecule.

5.3.2 Residue contact prediction performance

Residue pair contact prediction performance compared with two TM protein

contact predictors (TMHcon (Fuchs et al., 2009) and TMhit (Lo et al., 2009))

and two globular protein contact predictors (PROFcon (Punta & Rost, 2005) and

SVMcon (Cheng & Baldi, 2007)) using the data set of 74 sequences and three

contact definitions is shown in (Table 5.2). Existing methods all had the option

of a L5 mode, where only the top L/5 positive results are returned where L is the

sequence length, or for TM protein-specific methods, the total length of all TM

helices. This generally has the effect of reducing the false positive rate though

usually at the expense of increasing the false negative rate; however our method did

not benefit from the use of this scoring method, suggesting the SVM hyperplane is

already optimally positioned.

Performance at all three contact definitions was consistent, with a MCC value

of approximately 0.28 although a slightly lower false positive rate using contact

definition 2. All three SVMs achieved optimal performance using radial basis

function kernels with gamma and trade-off values of 24 and 1 respectively. Addition

of the predicted lipid exposure scores to profile data in the SVM feature vector

resulted in an improvement of approximately 0.05 MCC, while the additional
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Method Contact
Definition

Precision Recall FPR FNR MCC

MEMPACK 1 0.69 0.0023 0.0010 0.88 0.28
SVMcon 1 0.06 0.00050 0.0083 0.97 0.03
SVMcon L5 1 0.09 0.00 0.00030 0.99 0.01
PROFcon 1 0.03 0.021 0.46 0.41 0.04
PROFcon L5 1 0.06 0.00010 0.0018 0.99 0.01
MEMPACK 2 0.69 0.0015 0.00070 0.88 0.28
TMhit L5 2 0.57 0.0015 0.0012 0.88 0.26
MEMPACK 3 0.70 0.0022 0.0010 0.89 0.27
TMHcon L5 3 0.09 0.00020 0.0021 0.99 0.02

Table 5.2: Per residue pair contact prediction performance using a data set of 74
sequences. Contact definition 1 = A maximal distance of 8 between their C-beta
atoms (C-alpha for glycine). 2 = The distance between any two atoms from an
interacting pair is less than the sum of their van der Waals radii plus a threshold of
0.6. 3 = The minimal distance between side chain or backbone heavy atoms in an
interacting pair is less than 5.5. Results for contact definition 3 used 58 sequences
that had more than 2 TM helices as TMHcon is unable to make predictions for 2 TM
helix sequences.

sequence derived statistics contributed approximately 0.03 MCC. Although a com-

bination of residue co-evolution scores did improve performance slightly compared

with using profile data alone (0.02 MCC), this increment was lost when scores

were added after predicted lipid exposure suggesting the two overlap in feature space.

Compared to existing predictors, our method performed well, with MCC scores

substantially higher than both SVMcon and PROFcon (contact definition 1) using

either standard or L5 scoring schemes. SVMcon L5 was able to produce a lower

false positive rate (FPR) but at the expense of a false negative rate (FNR) of 0.99.

Similarly, PROFcon produced a lower FNR of 0.41 but at the expense of a higher

FPR of 0.46, compared to 0.001 for our method. On this evidence, globular protein

contact predictors appear to perform relatively poorly when applied to TM proteins.

In comparison to TMhit, a recent SVM-based TM protein contact predictor, results

were more comparable. While our method scores higher on all assessment metrics,

the margin of improvement is narrower with a MCC of 0.28 compared to the TMhit

value of 0.26. This is not unexpected given that both methods use SVM classifiers,

though more significantly there is a considerable overlap of 42 sequences in train-

ing sets. Given that we assessed our method using leave-one-out cross-validation
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whereas TMhit results were not cross-validated, TMhit results are likely to be over-

estimated therefore the actual margin of improvement may be larger. Compared

to TMHcon, a recent neural network based approach, our method again performed

well, with TMHcon results comparable to the globular protein contact predictors.

5.3.3 Helix-helix interaction prediction performance

We assessed performance of helix-helix interaction prediction requiring one residue

from each helix to be in contact. Based on observed interactions there were compa-

rable numbers of interacting and non-interacting helices for all contact definitions,

with 668 and 733 respectively using contact definition 1. Results using the data set

of 74 sequences and three contact definitions is shown in Table 5.3.

Method Contact
Definition

Precision Recall FPR FNR MCC Accuracy

MEMPACK 1 0.93 0.10 0.0087 0.84 0.29 64.7%
SVMcon 1 0.57 0.11 0.090 0.84 0.11 59.3%
SVMcon L5 1 0.82 0.034 0.0074 0.95 0.13 59.5%
PROFcon 1 0.43 0.16 0.83 0.16 0.02 45.4%
PROFcon L5 1 0.72 0.11 0.043 0.84 0.19 62.0%
MEMPACK 2 0.95 0.11 0.0062 0.84 0.29 63.6%
TMhit L5 2 0.77 0.31 0.12 0.47 0.45 73.2%
MEMPACK 3 0.94 0.11 0.008 0.85 0.27 60.6%
TMHcon L5 3 0.49 0.32 0.37 0.63 0.02 52.3%

Table 5.3: Helix-helix interaction prediction performance using a data set of 74
sequences. Successful prediction of interacting helices requires one residue from each
helix to be in contact. Results for contact definition 3 used 58 sequences that had
more than 2 TM helices as TMHcon is unable to make predictions for 2 TM helix
sequences.

Our method achieved similar scores using contact definitions 1 and 2, with a

MCC of 0.29 and accuracies of 64.7% and 63.6%. Using contact definition 3, re-

sults were slightly lower with a MCC of 0.27 and accuracy of 60.6%. The FNR was

consistent across all definitions at approximately 0.84. Compared to SVMcon and

PROFcon, our method performed well with only PROFcon L5 approaching sim-

ilar performance (MCC 0.19, accuracy 62.0%), suffering only from a higher FPR

compared to our method. Other than PROFcon L5 which performed better than

expected for a globular protein predictor, results were generally low with MCC val-

ues in the range 0.02-0.13. The performance of TMhit surpasses that of our method
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with MCC 0.45 and accuracy 72.3%. However, as described above, the TMhit re-

sults were not cross-validated and are likely to be substantially overestimated given

the overlap of 42 sequences in training sets. To give an estimate of the level of im-

provement this is likely to have resulted in, we scored our method in the absence of

cross-validation for the 42 overlapping sequences and achieved scores of MCC 0.65

and accuracy 82.6%. We additionally compared the two methods using a smaller

data set of 14 sequences for which both our method and TMhit results were fully

cross-validated (Lo et al., 2009). Requiring a single contacting pair of residues, our

method achieved 66.3% accuracy (MCC 0.36) compared to 39.1% for TMhit (stan-

dard error 5%). TMHcon achieved MCC 0.02 and accuracy of 52.3%, which reflected

the relatively poor performance in residue contact prediction, caused largely by a

high FPR of 0.37.

5.3.4 Helical packing arrangement decoy discrimination

performance

Using our decoy set, we were able to derive between 1 and 53 (average 18.5) unique

helical packing arrangements for 71 sequences in our data set. By combining these

with unique helical packing arrangements derived from the native crystal structure

and homology models of the native crystal structure, we assessed performance of

our and existing methods at discriminating the native or native model arrangements

from decoy arrangements. Each arrangement was scored according to the number of

interacting/non-interacting helices that matched the prediction from sequence, with

interacting/non-interacting helices scored equally. Accuracy was determined by

counting the frequency at which the native or native model arrangement achieved

the highest score. As discriminating 2 TM helix arrangements, where helices are

either interacting or not, is somewhat trivial, Table 5.4 shows results including and

excluding 2 TM helix arrangements, where there are a total of 57 sequences with

more than one unique packing arrangement.

Consistent with prediction of helix-helix interactions, our method performed
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Method Contact
Definition

Accuracy (n=57) Accuracy (n=71)

MEMPACK 1 68.4% 69.0%
SVMcon L5 1 52.6% 56.3%
PROFcon L5 1 45.6% 52.1%
MEMPACK 2 66.6% 67.6%
TMhit L5 2 59.6% 66.2%
MEMPACK 3 70.2% 70.4%
TMHcon L5 3 40.4% -

Table 5.4: Helical packing arrangement decoy discrimination using a data set of 71
sequences with 2 or more TM helices (n=71) and a data set of 57 sequences with 3
or more helices (n=57). Accuracy reflects the frequency at which the native or native
model helical packing arrangement achieved the highest score compared to the decoy
set.

similarly using contact definitions 1 and 2, although unexpectedly performed best

using contact definition 3 (70.4% accuracy). Excluding 2 TM helix proteins, using

all contact definitions, performance decreased slightly suggesting that, on average,

discriminating 2 TM helix arrangements is slightly easier than for other topologies.

SVMcon and PROFcon both performed best when evaluated using their L5 modes

although both achieved accuracies over 10% lower than our method. TMhit achieved

a slightly lower score than our method (66.2%) though again in the absence of

cross-validation. Excluding 2 TM helix proteins performance was almost 7% lower.

TMHcon was not assessed using the complete set of 71 as it is unable to make

predictions on 2 TM helix proteins, and performed below all other methods (40.4%

accuracy) on the set of 57.

5.3.5 Assessing the accuracy of helical packing arrange-

ments

Given that the generation of helical packing arrangements is based on the inter-

connection of vertices within a graph, accuracy is ultimately dependent on the

detection of edges via prediction of helix-helix interactions. Out of the data set

of 74 sequences, 17 (23%) had all interactions successfully predicted although in

3 of these cases there were no observed interactions between helices. Predicted

arrangements were then compared by visual inspection of a two-dimensional slice
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taken from the crystal structure approximately normal to the likely plane of the

lipid bilayer, and assessed based on the overlap of helices from the predicted

arrangement and the slice. Of these 17 cases, 9 arrangements produce overlaps

for all TM helices and therefore can be considered as closely resembling the helix

packing arrangement observed in the crystal structure.

Among these 9 correct cases, three 7 TM helix proteins (PDB: 1E12:A, 1XIO:A,

2F95:A) produced helical packing arrangements that clearly resembled their respec-

tive crystal structures (Figure 5.1). Additionally, for each of these cases the correct

arrangement was successfully determined from alternatives by scoring arrangements

based on the number of same-side loop crossovers. Overall, this function successfully

identified the correct arrangement in 4 out of 6 cases where multiple arrangements

were generated when tested using observed helix-helix interaction information; in

the remaining 3 cases, 2 had an equal number of crossovers for each of the alternative

arrangements (2HYD:A, 1XFH:A) - in these instances, the highest scoring arrange-

ment was the one with the lowest total residue-residue contact distance resulting in

one correct and one incorrect prediction, while in the remaining case the correct ar-

rangement contained one more crossover than the incorrect arrangement (1XME:A).

Other cases where all helix-helix interactions were successfully predicted and

packing arrangements closely resembled crystal structures included the 5 TM helix

ubiquinol oxidase (1FFT:C, Figure 5.2) and 6 TM helix Aquaporin-4 (2D57:A).

Below 4 TM helices, arrangements generally resembled crystal structures well

although the task becomes more straightforward as the number of TM helices

decreases. Where all helix-helix interactions were successfully predicted and packing

arrangement resembled the crystal structure, application of a genetic algorithm to

rotate helices around their respective Z-axes usually resulted in helix orientations

that aligned significantly better with native structures compared to arbitrary

degrees of rotation (Figure 5.3).
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Figure 5.1: Predicted helical packing arrangement and crystal structure of Halorhodopsin (PDB: 1E12:A) from Halobacterium

salinarum. In this example the two left-most helices share the same interactions. The correct arrangement has been identified
as having no same-side loop crossovers, compared to one for the incorrect arrangement. Predicted residue-residue contacts are
annotated on the packing arrangement while observed helix-helix interactions are annotated on the crystal structure.
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Figure 5.2: Predicted helical packing arrangement and crystal structure of Ubiquinol Oxidase (PDB: 1FFT:C) from Escherichia

coli. Predicted residue-residue contacts are annotated on the packing arrangement while observed helix-helix interactions are
annotated on the crystal structure.
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When helices were connected consecutively, for example where a 3 helix protein

has interactions between helices 1-2 and 2-3, the program was unable to determine

the correct arrangement despite predicting all helix-helix interactions correctly.

Under these circumstances, the algorithm defaults to a circular layout, which is

frequently closest to the crystal structure as in the case of aquaporin (2D57:A)

where helices are arranged around a central pore. In a number of cases though,

the correct arrangement is much closer to linear as in the case of Photosystem

II (2AXT:A) where there is significant interaction with additional chains in the

complex. In such situations, the helix-helix interactions alone do not provide

enough information to determine the correct arrangement.

Where prediction of helix-helix interactions falls below 100%, packing arrange-

ments generally fail to accurately resemble crystal structures. In some cases, such

as the ammonium transporter (2B2F:A), well connected sub-components of 3-5 TM

helices were often correctly formed, but their arrangement in relation to each other

was incorrect due to a number of missing helix-helix interactions. In three cases

where there was substantial interconnection between TM helices, the arrangement

does not succeed, most likely due to the algorithm encountering a local minimum.

It is also impossible to generate an arrangement from a disconnected graph, where

all helix-helix interactions are incorrectly predicted, which occurs in 12 sequences

(16.2%). A summary of results where all interactions were correctly predicted is

shown in Table 5.5.

While the successful packing arrangements were achieved with topologies of less

than 8 TM helices, we additionally tested the algorithm using observed data to val-

idate its effectiveness at generating arrangements for topologies with large numbers

of TM helices using observed helix-helix interaction data rather than predicted con-

tacts. In a number of cases, complex packing arrangements were generated with up

to 13 TM helices that clearly resembled the respective crystal structure. Examples

include the 8 TM helix proton glutamate symport protein (1XFH:A, Figure 5.4) 10
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Figure 5.3: Predicted helical packing arrangement and crystal structure of Photo-
system I chain D (PDB: 1JB0:L) from Thermosynechococcus elongatus. Application
of a genetic algorithm to rotate helices about their Z-axes results in the correct posi-
tioning of residues Val64, Ala135 and Phe137.

TM helix proton ATPase (1MHS), 12 TM helix multidrug transporter (2GFP:A)

and 13 TM helix cytochrome C oxidase (1XME:A, Figure 5.5), although in this case

two helices that share the same helix-helix interactions are incorrectly replaced.

Helical packing arrangement prediction Count

Resembles two-dimensional slice from crystal structure 9
No observed helix-helix interactions 3
Incorrect due to linear configuration 3
Incorrect helix placement 2

Table 5.5: Assessment of predicted helical packing arrangements for the 17 se-
quences where all interactions were successfully predicted. Arrangements were com-
pared to a two-dimensional slice taken from the respective crystal structures and
assessed based on the alignment between the helices in the predicted arrangement
and in the slice; in 9 cases there was overlap for all helices (PDB: 2F95:A, 1E12:A,
1XIO:A, 2D57:A, 1FFT:C, 1JB0:L, 1C17:A, 1R3J:C, 2AHY:A). In 3 cases, there
were no observed helix-helix interactions therefore no arrangement could be predicted
(PDB: 1VCR:A, 1YQ3:D, 1ZOY:C). In 3 cases, the arrangement predicted a circular
configuration whereas the correct arrangement was approximately linear (1DXR:M,
2AXT:D, 2AXT:A).
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Figure 5.4: Helical packing arrangement and crystal structure of proton glutamate symport protein (PDB: 1XFH:A) from
Pyrococcus horikoshii, generated using observed rather than predicted helix-helix interactions. Observed residue-residue contacts
are annotated on the packing arrangement while observed helix-helix interactions are annotated on the crystal structure.



C
h
a
p
ter

5
.
P
red

ictin
g
tra

n
sm

em
b
ra
n
e
h
elix

p
a
ck
in
g
a
rra

n
g
em

en
ts

147

Figure 5.5: Helical packing arrangement and crystal structure of cytochrome C oxidase (PDB: 1XME:A) from Thermus ther-

mophilus, generated using observed rather than predicted helix-helix interactions. Observed residue-residue contacts are annotated
on the packing arrangement while observed helix-helix interactions are annotated on the crystal structure. In this example, the two
helices at the bottom left of the arrangement are incorrectly placed; they share the same helix-helix interactions but the correct
arrangement has one same-side loop crossover whereas the incorrect arrangement has none. The alternative correct arrangement
where the placement of these two helices is reversed is returned as the second highest scoring arrangement.
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5.4 Discussion

In this chapter we have implemented a novel tool capable of predicting lipid

exposure, residue contacts and helix-helix interactions using SVM classifiers. These

predictions are then combined to produce the optimal helical packing arrangement

using a force-directed algorithm. Firstly, lipid exposure is predicted using evolution-

ary information labelled by data derived from coarse-grained molecular dynamics

simulations. Solvent-exposed residues in both globular and TM proteins are known

to be less conserved than buried residues, therefore non-conserved residues are

more likely to identify lipid-exposed surfaces of TM helices (Wallin et al., 1997;

Stevens & Arkin, 2001). But in contrast to globular proteins, TM proteins do not

show large differences in hydrophobicity between lipid-exposed and buried residues,

making lipid exposure prediction a harder task (Elofsson & von Heijne, 2007).

Using machine learning tools that have been successfully applied to TM protein

topology prediction (Nugent & Jones, 2009), we were able to achieve per residue

accuracy that compares favourably with a recent existing method suggesting the

SVM is efficiently capturing the major distinguishing features of lipid exposure, the

periodicity of conserved residues and the polarity of their side chains, from sequence

profile data. Predictions may be useful for a number of additional applications

including the modification of a TM protein-specific energy functions for ab initio

modelling (Pellegrini-Calace et al., 2003) where they could be incorporated into the

potential, as for example ROSETTA (Rohl et al., 2004) includes the LIPS score in

its energy function, or added as an additional term with a separate weighting.

By combining predicted lipid exposure with sequence derived statistics and

profile data centred on each residue in a pair, we were able to train an additional

SVM to predict residue contacts. Recent methods specifically designed to predict

residue contacts in TM proteins have used a variety of features including residue

co-evolution scores, contact propensities and a range of global sequence-derived

values. By experimenting with different combinations we attained optimal perfor-

mance using a minimal set of features without the need for a consensus approach,
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resulting in significant improvement compared to all existing methods. Our results

demonstrate that globular protein contact predictors perform poorly when applied

to TM proteins due to extremely high levels of false negative predictions. This is

not especially surprising since the amino acid composition of hydrophobic globular

protein alpha-helices has recently been shown to contrast from that of TM helices,

therefore contact propensities are likely to differ. Generally, hydrophobic globular

protein alpha-helices that are long enough to span the bilayer contain three or more

charged residues with a relatively even distribution along their lengths, as well as

a decreased frequency of occurrence of Ile and Val residues, while charged residues

in TM helices tend to be concentrated towards helix termini (Cunningham et al.,

2009). Additionally, in the case of PROFcon, all TM proteins were removed from

the data set so the neural network had received no training with TM protein data.

Compared to the top performing TM protein contact predictor, our method achieves

higher performance on all assessment metrics despite the lack of cross-validation

of TMhit which was trained on a data set which included 42 sequences that are

present in our test set. While our method produces a consistently low FPR,

the FNR achieved a maximum score of 0.89. This result may suggest that our

SVM is not sampling feature space effectively, although it is reasonable to suggest

that many of these contacts are brought together as a consequence of strongly

interacting residues that are correctly predicted. Studies of globular proteins have

found that folds could be reconstructed using ab initio techniques and distance

constraints to obtain native-like structures using between N/4 and N/8 restraints,

where N is sequence length (Li et al., 2004; Aszodi et al., 1995), which supports

the notion that the majority of contacts may be consequential. Ranked by average

raw SVM score, the top five predicted contacts include Ala-Ser, Gly-Ile, Ile-Phe,

Ala-Trp and Ala-Leu, which is broadly in line with previous observations of a

relative enrichment of small and aromatic residues in packing interactions (Walters

& DeGrado, 2006; Sal-Man et al., 2007; Gimpelev et al., 2004). Residue contacts

involving a pair of charged residues occur in between 16 and 20 of the 74 proteins

(depending on the contact definition), with most containing only a single charged
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pair. Therefore they are relatively under-represented in the current data set. Out

of 53 contacting charged pairs across all contact definitions, only 10 are correct,

so compared to uncharged contacts they are poorly predicted by the SVM. Aside

from a relative lack of training data, it is difficult to speculate on exactly why this

is although most are side-chain to backbone interactions. Additional input features

may therefore be required to improve prediction of charged residue pairs. However,

contacts between some Arg-Asp and Arg-Glu pairs are predicted relatively strongly

and are amongst the top 25 scoring predictions.

Helix-helix interaction results generally mirrored contact prediction perfor-

mance, though globular protein contact predictors faired slightly better due to

the relative ease of only having to predict a single residue contact for a successful

helix-helix interaction, particularly when the FPR is reduced using the L5 mode,

with PROFcon achieving 62.0% compared with 64.7% compared to our method.

While difficult to compare accuracy using the entire test set of 74 sequences, the

significant improvement of our method over TMhit when fully cross-validated

on a smaller set of 14 sequences suggests state-of-the-art performance. While

it is often difficult to successfully predict all helix-helix interactions correctly,

the discrimination of decoy helical packing arrangements provides a measure of

how well a method predicts enough interactions correctly to identify the native

arrangement, a value which is usually below 100%. Results indicate that our

method performs well, achieving up to 70.4% accuracy, aided by the fact that 50%

of sequences have over 60% of their helix-helix interactions correctly predicted

(contact definition 3). PROFcon, achieving only 52.1%, performs much worse than

its helix-helix interaction prediction score would suggest, indicating that these

successful interaction predictions are limited to a smaller number of sequences, and

that prediction generalises poorly across a larger test set, while conversely SVMcon

performs better than its interaction prediction score would suggest indicating better

generalisation. Again it is difficult to accurately compare TMhit which achieves

identical performance.
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Using the helix-helix interaction results, helical packing arrangements were

constructed using a force-directed algorithm. This task, which was ultimately

dependent on the accuracy of predicted interactions, was successful for proteins

with up to 7 TM helices, although errors occurred where helices were connected

consecutively and even correct interaction data was insufficient to identify the

correct arrangement. In these circumstances, interactions with additional chains

are likely to play a role. For proteins where helix-helix interactions were not

all correctly predicted, testing using observed interaction data showed that the

algorithm is capable of constructing packing arrangements for proteins with up to

13 TM helices. These results suggest that where predicted helix-helix interactions

can be supplemented with interaction data from experimental sources, for example

mutagenesis studies, it may be possible to generate accurate packing arrangements

for complex proteins containing large numbers of TM helices. This process would

be assisted by the fast run time of the algorithm that will also allow alternative

packing arrangements to be explored iteratively. Predictions can be used to

generate pseudo three dimensional-structures with which loop regions can be

built using programs such as SuperLooper (Hildebrand et al., 2009). Models

could then be used to pre-position residues prior to ab initio modelling there-

fore reducing conformational search space and reducing computational requirements.

While our results are encouraging, the paucity of structural data available for

training purposes is likely to have limited residue contact and helix-helix interaction

prediction performance, particularly as small data sets reduce tolerance to errors

and the ability of SVMs to develop large generalisation bounds. Paradoxically,

another problem may be the use of crystal structures to derive contact data,

which provide only a snapshot of a protein at a given time therefore neglecting

the inherent dynamic nature of TM proteins. TM proteins are known to exhibit

significant conformational flexibility for a range of functions including modulation

of catalytic activity and control of ionic flow, therefore labelling contacts according
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to a single crystal structure will inevitably lead to training errors. Should enough

data become available, it may be preferable to use ensembles of nuclear magnetic

resonance structures in place of crystal structures, though due to the experimental

difficulties in obtaining membrane protein structures this is unlikely to be an option

in the near future. Another issue is the interaction between chains in multimeric

complexes, which the majority of TM proteins in structural databases form. It is

reasonable to expect that the interplay between chains in complexes has a degree

of influence on the folding of individual chains, therefore satisfying these oligomeric

interactions may lead to an improvement in the fold prediction of individual

chains. Predicting oligomeric interactions would also allow TM protein quaternary

structure to be predicted from sequence for the first time, while revealing the

stoichiometry and symmetry of the complex.

Overall, our results demonstrate that residue contacts and helix-helix interac-

tions can be used to accurately predict the helical packing arrangement of TM

proteins, and discriminate native from decoy arrangements. This method can be

used to gain insights into TM protein folding, while providing testable hypotheses

for a variety of studies including protein design, mutagenesis and thermostability

experiments, in addition to reducing conformational search space prior to ab initio

modelling.
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This chapter is divided into two parts. Firstly, the major contributions of this thesis

to biology will be summarised, before future perspectives for TM protein structure

prediction are discussed.

6.1 Biological discoveries

In Chapter 2, a six TM helix topology was proposed for the uncharacterised Batten

disease protein, CLN3. It was demonstrated that adopting a consensus approach,

in combination with the careful analysis of evolutionary data, allowed a topology

model to be produced that agreed with all published experimental data. The model

suggested CLN3 may contain a previously unrecognised amphipathic helix, with

both termini located in the cytoplasm. Additionally, our findings suggested that

orthologues of CLN3 might produce different topologies, possibly due either to

atypical membrane or hydrophobic structures. Our strategy demonstrated a generic

approach suitable for the analysis of TM proteins whose topologies are controversial

- those where experimental data, as well as topology predictions by different

algorithms, are conflicting. It may also have wider application to the prediction

of topology for other TM proteins which may contain additional hydrophobic

structures that do not span the membrane. This study serves to validate previous

research that has demonstrated that structure prediction accuracy can be increased

by using a consensus of prediction tools (Nilsson et al., 2002; Ward, 2005). While

the CLN3 model provides a basis for designing further experiments which may

help validate the topology, the true function and mechanism of action may not

be revealed until a CLN3 crystal structure becomes available. This highlights the

challenges that remain for structural genomics initiatives, particularly with regard

to TM proteins.

Chapter 3 described a strategy to use PROSITE motifs to guide TM protein

topology prediction by modifying the MEMSAT3 algorithm. The method used

PROSITE motifs that displayed a bias towards a particular topogenic region in

TM proteins, identified by a chi-squared significance test. Motifs that occurred
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in a specific topogenic region with significantly different frequencies compared to

those expected at random were used to guide topology prediction in order to satisfy

the topogenic biases of the matching motifs using weights determined using a GA,

therefore increasing overall topology prediction accuracy. Using this strategy, an

improvement of 6% prediction accuracy was possible using the Möller data set,

corresponding to the correct prediction of an additional 11 sequences. Despite this

improvement in prediction performance, there was a lack of correlation between the

direction of the topogenic biases designated by the chi-squared significance test,

and the sign and magnitude of the corresponding weights determined using the GA.

The most likely reason for this discrepancy was that PROSITE motifs had matched

a large number of false positive hits which had affected the chi-squared test,

therefore resulting in incorrect topogenic biases. Despite this discrepancy, the use

of PROSITE motifs to guide topology prediction did result in improved accuracy

by providing additional information not fully captured by the NN employed by

MEMSAT3. However, the high false positive rates of PROSITE motifs suggest

that caution should be used when interpreting these PROSITE matches. While it

is likely they may be identifying conserved residues that are already accounted for

by the positive inside rule, they may also play a role in alternative undetermined

biological functions.

In Chapter 4 we implemented a novel SVM-based TM protein topology predictor

and showed that it could outperform a selection of the best performing prediction

methods when fully cross-validated on a novel high resolution data set of 131

protein sequences. The method can also detect both signal peptides and re-entrant

helices, while an additional program was able to achieved extremely low false

positive and false negative rates for TM/globular protein discrimination. These

tools demonstrate for the first time that SVM are well suited to TM protein

topology prediction, an area previously dominated by HMM and NN-based machine

learning approaches. Despite the strong performance of the method, it is impossible

to determine whether SVMs outperform either HMMs or NNs without training and
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cross-validating each algorithm using the same protocol on exactly the same data

set. The recent SPOCTOPUS method (Viklund et al., 2008) which uses HMMs and

NNs achieved comparable prediction performance on a highly similar data set. This

indicates that separation of the classes by the layer of hidden units used to solve

non-linear problems by NNs achieves comparable performance to the separation

by the SVM kernel function achieved by projecting the data into high dimensional

feature space. Additionally, the learning bias used by SVMs to select a model of

the training data may achieve equal generalisation to the learning bias used to

train NNs. However, our method provides another machine learning algorithm

which will undoubtedly supplement existing approaches, particularly when used

in a consensus as was demonstrated in Chapter 2. Using MEMSAT-SVM, we

estimated the fraction of TM proteins, re-entrant helices and signal peptides in

a number of complete genomes. We determined that a typical genome contains

between 24% and 33% TM proteins with Caenorhabditis elegans and Takifugu

rubripes having a noticeably higher fraction. In all species we analysed, re-entrant

helices were detected in between 2% and 3% of TM proteins, although prediction of

these features remains a difficult task and will likely remain so until further training

examples become available. Signal peptides prediction was more successful, with

these features detected in between 23% and 25% of sequences. Topology prediction

results illustrated consistent trends across all species, with significant peaks in

eukaryotes at 7 TM helices representing GPCRs and 12 TM helices representing

transporters proteins. In all species, the most dominant topology is a single TM

helix. Overall, our results suggest that this new method, MEMSAT-SVM, is ideally

suited to whole genome annotation of alpha-helical TM proteins.

In Chapter 5 we described a novel method capable of predicting lipid expo-

sure, residue contacts and helix-helix interactions, again using SVM classifiers.

By combining these predictions, we were able to generate the optimal helical

packing arrangement using a force-directed algorithm. The successful prediction

of lipid exposure using evolutionary information labelled by data derived from
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coarse-grained molecular dynamics simulations provides a tool which may be

useful for purposes such as ab initio modelling, while validating the effectiveness

of SVMs at capturing the major distinguishing features of lipid exposure and

demonstrating the potential of molecular dynamics simulations. Our analysis of

contact prediction methods demonstrated that globular protein contact predictors

perform poorly when applied to TM proteins, most likely due to the differing

amino acid composition of hydrophobic globular protein alpha-helices and TM

helices. Our tool was able to achieve higher performance on all assessment metrics

compared to these methods as well as the top performing TM contact predictors,

despite their lack of cross-validation. However, the relatively low sensitivity of our

method suggests that our SVM may not be sampling feature space effectively, or

that many contacts are brought together as a consequence of strongly interacting

residues that are correctly predicted. Raw SVM scores suggested that small and

aromatic residues are primarily involved in packing interactions, broadly in line

with previous observations, while interactions involving charged residue pairs were

relatively rare. Performance of helix-helix interaction generally mirrored contact

prediction performance, with prediction accuracy on a small test set demonstrating

state-of-the-art performance compared to all existing methods. Using this informa-

tion and a force-directed algorithm, we were then able to predict the helical packing

arrangement for proteins with up to 7 TM helices, or 13 TM helices using observed

data. This task remains difficult and the limited success in many cases indicates

that interactions with additional chains are likely to play a role in packing, while

highlighting the paucity of structural data available for training purpose. The

success using observed data suggests that, where predicted helix-helix interactions

can be supplemented with interaction data from experimental sources, it may be

possible to generate accurate packing arrangements for complex proteins containing

large numbers of TM helices.
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6.1.1 Future perspectives for transmembrane protein struc-

ture prediction

While this thesis has demonstrated that machine learning can be successfully ap-

plied to TM protein structure prediction, a number of other predictive tasks remain

which may further enhance our ability to predict three-dimensional structure from

sequence alone. In combination with the prediction of topology, residue contacts,

helix-helix interactions and features such as signal peptides and re-entrant helices,

realising these challenges may help to improve TM protein structure prediction

to the point where it becomes useful for the application of medicinal chemistry.

Among these challenges are the prediction of pore-forming regions and oligomeric

interactions in alpha-helical TM proteins.

6.1.2 Prediction of pore-forming regions in alpha-helical

transmembrane proteins

Ion channels are TM proteins that regulate the movement of specific ions across

the membrane by facilitating ionic flow down electrochemical gradients (Figure

6.1). They play an important role in a number of cell types and occur as large

families of related genes with cell and tissue specific expression patterns. Many

common diseases including diabetes, hypertension, cardiac arrhythmias, angina

pectoris and epilepsy have been related to ion channel dysfunction, therefore ion

channels represent one of the most important classes of protein for pharmaceutical

intervention. Frequently, pore-lining TM helices are enriched with charged residues,

thus facilitating passage of the cognate ion through the channel. However, many

TM proteins that are not ion channels contain charged residues within the TM

region that are used to stabilise helix-helix interaction, for example via formation

of salt bridges, thus the presence of charged residues alone cannot be used to

discriminate pore-forming regions.
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Figure 6.1: Potassium channel KcsA from Streptomyces lividans (PDB: 1R3J:A).

By taking advantage of a number of recent methods that allow the identification

of pore-lining residues in TM protein crystal structures, it may be possible to

use a machine learning approach to predict pore-lining residues within a TM

protein. Methods such as HOLLOW (Ho & Gruswitz, 2008) and Pore-Walker

(Pellegrini-Calace et al., 2009) allow the identification of the pore centre and pore

axis using geometric criteria, allowing the biggest and longest cavity through the

channel to be detected. Pore features, including diameter profiles, pore-lining

residues, size, shape and regularity can then be calculated.

By labelling pore-lining residues using such methods, training and test sets

could be assembled before a supervised learning approach is employed to predict
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the likelihood of a TM protein being involved in pore formation (Figure 6.2A).

Using the same data set, further classifiers could be developed to predict additional

features including the pore size and specific ion type the channel is capable of

transporting. Given the success of the SVM-based approaches used in Chapters 4

and 5, this learning algorithm may again prove successful, although HMMs, NNs,

and possibly consensus approaches may also perform well. Alternative machine

learning algorithms including Adaptive Boosting have recently demonstrated state

of the art performance in other areas of computer science, so an assessment of the

performance of such methods may also be useful.

When used in conjunction with a whole genome scan for TM proteins and

subsequent topology prediction, such a predictive tool has the potential to identify

novel ion channels, the discovery of which may be of substantial biochemical and

pharmacological significance. From a structural modelling perspective, identi-

fication of pore-forming regions may provide insight into quaternary structure

geometry and provide information for ab initio methods to model such regions

so that they are solvent accessible rather than lipid embedded. Furthermore,

site-directed mutagenesis of predicted pore-lining residues may allow modification

of ionic specificity, providing valuable insight into protein design.

6.1.3 Modelling alpha-helical transmembrane protein qua-

ternary structure from sequence using oligomeric in-

teractions

As discussed in Chapter 5, despite significant efforts to predict TM protein topol-

ogy, relatively little attention has been directed toward predicting the fold of TM

proteins. While methods such as that described now exist to predict interactions

within a single protein chain, none are able to model the interaction between

chains in multimeric complexes, which the majority of TM proteins in the PDB

form. It is reasonable to expect that interplay between chains in complexes has a
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Figure 6.2: (A) Residues defined as pore-lining by programs such as HOLLOW and
Pore-Walker (orange) are used to train a machine learning algorithm. Transmembrane
protein sequences predicted to contain pore-lining regions can then be detected. (B)
Residues within transmembrane protein complexes that form oligomeric interactions
are used to train a machine learning algorithm (red and green). Transmembrane
protein sequences likely to form complexes can then be predicted, and the interacting
protein(s) identified.

degree of influence on the folding of individual chains, therefore satisfying these

oligomeric interactions may lead to an improvement in single chain fold prediction

by constraining conformational search space. It may therefore be possible to

model alpha-helical TM protein quaternary structure from sequence by predicting

oligomeric interactions (Figure 6.2B).

The prediction of oligomeric interactions is a natural progression of the work

to predict the fold of single TM protein chains using residue-residue contacts.

By assembling a data set to include all non-redundant TM protein complexes,

a machine learning approach could be used to predict residue-residue contacts

involved in oligomeric interactions, before using these predictions to assemble

a model of TM protein quaternary structure. It might also be possible include

interactions between TM and peripheral membrane proteins.

In combination with topology and single chain fold prediction, this method

would allow TM protein quaternary structure to be predicted from sequence for

the first time, while revealing the key residues required for oligomeric interaction
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and the stoichiometry and symmetry of the complex. Further information used to

construct the complex could be provided should a pore-forming region be detected.

Should the complex bind a ligand, residues composing a binding site created at

the interface of multiple subunits could be revealed possibly identifying sites for

pharmaceutical intervention. Such models could also provide testable hypotheses

for a variety of studies including protein design, mutagenesis and thermostability

experiments.

In summary, while the most successful bioinformatic methods for protein struc-

ture prediction will continue to be founded on a solid understanding of the under-

lying biology, machine learning provides powerful tools with which to supplement

experimental techniques. As new algorithms are developed and crystal structure

databases expand, advances in this field will help to push TM protein structure

prediction to ever increasing resolutions, to the point where such methods begin to

have a significant impact on human health and disease.
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Appendix A

List of abbreviations

Abbreviation Details

ATP Adenosine Triphosphate
BLAST Basic Local Alignment Search Tool
BLOSUM Blocks Substitution Matrices
CASP Critical Assessment of Methods of Protein Structure Prediction
CATH Class, Architecture, Topology, Homologous Superfamily
DNA Deoxyribonucleic Acid
ER Endoplasmic Reticulum
FN False Negative
FP False Positive
GA Genetic Algorithm
GPCR G-Protein-Coupled Receptor
HMM Hidden Markov Model
JNCL Juvenile Onset NCL
LOOCV Leave-One-Out Cross-Validation
MCC Matthews Correlation Coefficient
MFS Major Facilitator Superfamily
MIP Major Intrinsic Protein
NCBI National Center for Biotechnology Information
NCL Neuronal Ceroid Lipofuscinose
NN Neural Network
NMR Nuclear Magnetic Resonance
PDB Protein Data Bank
PSI-BLAST Position Specific Iterated-BLAST
PSSM Position-Specific Scoring Matrix
RMSD Root Mean Squared Deviations
SMART Simple Modular Architecture Research Tool
SRP Signal Recognition Particle
SVM Support Vector Machine
TM Transmembrane

Table A.1: List of Abbreviations.
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PDB SWISS-PROT N-terminus Helices Topology

1AFO:A GLPA HUMAN out 1 92,112
2OCC:X COX7B BOVIN in 1 38,56
1RZH:H RCEH RHOSH out 1 12,32
1NKZ:A LHA4 RHOAC in 1 18,37
1NYJ:D M2 IAFOW out 1 23,43
2OCC:Z COX81 BOVIN in 1 40,59
2OCC:Y COX7C BOVIN in 1 38,55
2OCC:Q COX41 BOVIN in 1 100,121
2OCC:V COX6C BOVIN in 1 16,33
2OCC:W CX7A1 BOVIN in 1 55,75
2OCC:T CX6A2 BOVIN in 1 30,48
1QLE:D COX4 PARDE in 1 25,46
1Q90:R UCRIA CHLRE in 1 43,66
1P84:I UCR9 YEAST in 1 17,31
1SQX:K UCR11 BOVIN in 1 18,37
1RHZ:C SECG METJA in 1 32,50
1RHZ:B SECE METJA in 1 37,63
2AXT:H PSBH SYNEL in 1 27,48
2AXT:F PSBF SYNEL in 1 18,41
2AXT:E PSBE SYNVU in 1 18,38
1ZLL:E PPLA RAT in 1 28,51
1WRG:A LHB RHORU in 1 21,40
1XRD:A LHA RHORU in 1 13,33
1LGH:J LHA RHOMO in 1 22,40
1KQG:B FDNH SHIFL out 1 256,277
1Q90:A CYF CHLRE out 1 283,305
1SQX:D CY1 BOVIN out 1 291,308

Table B.1: Crystal structure data set. Column 1: PDB chain ID. Column 2: SWISS-PROT ID. Column
3: Location of N-terminus. Column 4: Number of transmembrane helices. Column 5: Transmembrane helix
boundaries, in relation to SWISS-PROT sequence.
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PDB SWISS-PROT N-terminus Helices Topology

1XME:B COX2 THET8 in 1 15,34
1PJE:A VPU HV1LW out 1 9,23
1JB0:F PSAF SYNEN out 1 83,106
1KB9:H UCRQ YEAST in 1 55,72
1L0L:E UCRI BOVIN in 1 112,134
1L0L:G UCRQ BOVIN in 1 47,60
1ZZA:A SNN HUMAN out 1 8,28
2AXT:K PSBK SYNEL out 1 17,41
1IFI:A COATB BPFD out 1 38,59
2E74:G PETG MASLA out 1 5,26
1EHK:C COXA THET8 in 1 7,28
2HAC:A CD3Z HUMAN out 1 31,51
2J58:A out 1 325,353
1Q90:L PETL CHLRE out 1 16,36
1JB0:I PSAI SYNEL out 1 9,32
1JB0:M PSAM SYNEL out 1 7,27
1JB0:X in 1 5,25
1B9U:A ATPF ECOLI out 1 6,30
1BA4:A A4 HUMAN out 1 688,708
2AXT:J PSBJ SYNEL in 1 10,30
2AXT:L PSBL SYNEL in 1 14,35
2AXT:M PSBM SYNEL out 1 7,27
2AXT:T PSBT SYNEL out 1 4,22
2FYN:B out 1 229,248
2FYN:C UCRI RHOSH in 1 14,35
2AXT:I PSBI SYNEL out 1 3,25
1Q90:N PETN CHLRE out 1 13,34
1RKL:A OST4 YEAST out 1 8,29

Table B.2: Crystal structure data set. Column 1: PDB chain ID. Column 2: SWISS-PROT ID. Column
3: Location of N-terminus. Column 4: Number of transmembrane helices. Column 5: Transmembrane helix
boundaries, in relation to SWISS-PROT sequence.
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PDB SWISS-PROT N-terminus Helices Topology

1IIJ:A ERBB2 RAT out 1 653,677
1S5L:X out 1 9,23,
2OAR:A MSCL MYCTU in 2 19,39,70,89
1FFT:B CYOA ECOLI out 2 45,66,89,108
1C17:A ATPL YERPE out 2 7,31,53,77
1R3J:C KCSA STRLI in 2 25,47,86,111
2OCC:O COX2 BOVIN out 2 29,46,59,76
1P49:A STS HUMAN out 2 182,206,213,236
2AXT:Z PSBZ SYNEL out 2 3,27,38,58
1M57:H COX2 RHOSH out 2 59,81,98,118
2F95:B HTR2 NATPH in 2 24,40,62,81
2IUB:G CORA THEMA in 2 296,313,326,344
1JB0:K PSAK SYNEN out 2 21,32,57,76
1XL6:A Q2W6R1 MAGMM in 2 71,96,133,156
1YCE:L ATPL PROMO out 2 16,39,54,80
1YEW:A Q49104 METCA out 2 190,207,234,250
2AHY:A Q81HW2 BACCR in 2 24,45,74,95
1LNQ:A MTHK METTH in 2 22,38,72,95
1KF6:D FRDD SHIFL in 3 13,42,62,87,95,117
1KF6:C FRDC ECOLI in 3 27,48,67,88,110,130
1VCR:A CB22 PEA in 3 101,122,161,179,216,237
1JB0:L PSAL SYNEL in 3 45,66,76,97,118,140
1Q90:D PETD CHLRE in 3 32,57,95,117,127,146
2OAU:A MSCS SHIFL out 3 32,58,70,89,91,104
1NEK:C DHSC ECOLI in 3 25,51,68,93,109,128
1NEK:D DHSD SHIFL in 3 17,40,55,77,88,113
1YQ3:D DHSD HUMAN in 3 67,85,89,111,122,145
1ZOY:C C560 HUMAN in 3 70,91,110,136,151,168

Table B.3: Crystal structure data set. Column 1: PDB chain ID. Column 2: SWISS-PROT ID. Column
3: Location of N-terminus. Column 4: Number of transmembrane helices. Column 5: Transmembrane helix
boundaries, in relation to SWISS-PROT sequence.
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PDB SWISS-PROT N-terminus Helices Topology

2CYD:J NTPK ENTHR out 4 16,41,55,78,93,117,129,154
1KQG:C FDNI SHIFL in 4 13,36,52,75,112,134,150,174
2D2C:N CYB6 MASLA in 4 33,53,88,109,115,134,185,205
2BG9:A ACHA TORMA out 4 236,258,268,289,300,321,433,457
2BG9:E ACHG TORCA out 4 239,260,270,291,303,326,467,491
2HI7:B DSBB ECOLI in 4 15,35,48,63,72,85,145,161,
1RZH:L RCEL RHOSH in 5 31,53,85,106,116,138,171,192,231,251
1FFT:C CYOC SHIFL in 5 28,48,65,84,99,117,141,162,179,200
1DXR:M RCEM RHOVI in 5 53,74,111,132,144,165,199,219,265,284
2AXT:A PSBA1 SYNEN in 5 32,53,114,134,142,160,196,218,271,292
2BS4:F FRDC WOLSU in 5 31,49,77,95,128,149,169,187,211,232
1Q16:C NARI ECOLI out 5 3,26,50,71,85,110,127,147,182,200
2AXT:D PSBD PROHO in 5 31,52,109,130,140,158,195,216,265,287
1LDI:A GLPF ECOLI in 6 11,31,41,59,86,107,145,166,179,195,233,251
2ABM:H AQPZ SHIFL in 6 4,26,34,55,81,102,131,152,161,178,201,223
2F2B:A AQPM METTM in 6 8,25,56,73,100,118,146,162,175,191,222,240
2D57:A AQP4 RAT in 6 34,56,70,88,112,136,156,178,189,203,231,252
2C3E:A ADT1 BOVIN out 6 14,37,73,87,116,142,169,193,215,238,266,287
2AXT:B PSBB ANASP in 6 19,39,95,115,138,159,197,218,234,255,451,472
2AXT:C PSBC SYNY3 in 6 48,69,111,132,155,176,234,252,267,288,425,445
2HYD:A Q1Y946 STAAU in 6 13,37,60,85,136,159,161,182,243,266,282,304
2IC8:A GLPG ECOLI in 6 95,114,148,163,171,192,201,213,228,242,251,268
2ONK:C in 6 3,33,47,77,83,97,128,151,182,198,230,251,
2BRD:A BACR HALSA out 7 22,43,57,75,93,110,121,140,145,166,187,209,214,235
1GZM:A OPSD BOVIN out 7 38,63,72,96,109,133,153,172,202,224,253,274,286,309
1QLE:C COX3 PARDE in 7 15,35,49,67,88,107,138,159,172,193,211,232,246,271
2F95:A BACS2 NATPH out 7 3,24,38,56,70,87,98,117,122,142,163,180,190,211
1E12:A BACH HALSA out 7 27,50,63,82,106,122,134,153,159,179,201,221,227,248

Table B.4: Crystal structure data set. Column 1: PDB chain ID. Column 2: SWISS-PROT ID. Column
3: Location of N-terminus. Column 4: Number of transmembrane helices. Column 5: Transmembrane helix
boundaries, in relation to SWISS-PROT sequence.
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PDB SWISS-PROT N-terminus Helices Topology

1XIO:A Q8YSC4 ANASP out 7 3,26,35,56,70,89,99,121,127,148,168,185,195,218
1YEW:B Q607G3 METCA in 7 23,45,63,79,88,103,125,137,141,156,200,211,225,239
2FEE:B CLCA ECOLI in 8 36,61,80,97,215,232,252,277,289,306,334,350,357,368,422,438
1L7V:B BTUC ECOLI in 8 15,32,56,76,92,107,114,132,146,164,191,206,276,296,305,321
1XFH:A O59010 PYRHO in 8 13,30,38,63,82,106,128,160,200,218,232,251,300,320,390,409
2FYN:A CYB RHOSH in 8 42,63,95,117,126,144,195,215,248,266,329,348,362,380,390,409
2C8L:A AT2A1 RABIT in 10 60,77,89,104,259,274,291,306,763,780,789,807,834,854,896,915,932,949,966,986
1RHZ:A SECY METJA in 10 30,43,76,88,110,129,138,158,169,187,210,227,256,276,313,333,382,397,399,411
1MHS:A PMA1 NEUCR in 10 113,134,144,164,294,313,320,341,690,713,717,737,760,783,795,813,827,843,854,875,
1JB0:A PSAA SYNEN in 11 72,93,159,179,193,216,298,314,352,374,392,413,439,461,536,558,591,612,674,691,725,745
1XQF:A AMTB ECOLI out 11 34,54,66,90,123,141,147,170,186,200,222,241,249,270,282,300,303,321,335,355,373,399
2B2F:A O29285 ARCFU out 11 8,27,39,57,90,106,114,137,153,167,189,208,219,237,246,263,269,287,301,319,338,363
1QLE:A COX1B PARDE in 12 31,55,89,113,129,151,178,201,220,247,269,291,307,326,338,360,371,394,406,429,443,465,487,509
1PW4:A GLPT ECOLI in 12 31,52,65,87,93,112,121,141,159,179,189,207,253,277,290,313,321,341,348,369,385,407,415,437
1ZCD:B NHAA ECOLI in 12 12,30,59,80,98,116,122,140,156,174,181,200,206,219,223,236,254,271,291,310,329,350,358,379
1T9Y:A ACRB ECOLI in 12 10,27,340,358,363,386,395,413,440,457,470,492,539,556,873,892,896,918,927,945,974,991,1003,1022
2A65:A O67854 AQUAE in 12 15,32,43,63,92,124,166,184,194,211,243,265,278,298,339,364,378,395,399,422,448,469,483,501
2CFP:A LACY ECOLI in 12 10,34,45,66,75,99,105,127,143,162,167,186,221,244,257,280,288,307,313,334,349,370,381,399
2GFP:A EMRD ECOLI in 12 10,35,43,63,72,92,97,118,133,154,158,176,207,229,236,260,267,284,290,310,326,348,356,378
1XME:A COX1 THET8 in 13 22,44,67,90,104,125,143,162,186,210,224,248,267,280,293,314,347,367,379,402,420,441,465,490,527,547

Table B.5: Crystal structure data set. Column 1: PDB chain ID. Column 2: SWISS-PROT ID. Column
3: Location of N-terminus. Column 4: Number of transmembrane helices. Column 5: Transmembrane helix
boundaries, in relation to SWISS-PROT sequence.
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Evaluation metrics

The following table summarises the evaluation metrics used in this thesis.

Metric Formula

Sensitivity or True Positive Rate (TPR) TPR = TP/P = TP/(TP + FN)
False Positive Rate (FPR) FPR = FP/N = FP/(FP + TN)
Accuracy (ACC) ACC = (TP + TN)/(P +N)
Specificity or True Negative Rate (TNR) TNR = TN/N = TN/(FP + TN) = 1− FPR
Precision or Positive Predictive Value (PPV) PPV = TP/(TP + FN)
Negative Predictive Value (NPV) NPV = TN/(TN + FN)
False Discovery Rate (FDR) FDR = FP/(FP + TP )

Matthews Correlation Coefficient (MCC) MCC = (TP ·TN−FP ·FN)√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

Table C.1: Evaluation metrics. T = True. F = False. P = Positive. N= Negative.
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Publications

The following chronological list contains peer-reviewed publications that I have

authored during the course of my doctoral studies. In the papers where I am listed

as first author, the contributions of the other authors are described. All other work

was carried out by myself. The papers where I am listed as a secondary author

include a summary of my contribution to the work.

Nugent, T., Ward, S. & Jones, D.T. (2010). The MEMSAT alpha-helical

transmembrane protein structure prediction server. Bioinformatics, Submitted.

Web server implementation by SW. Manuscript was prepared by TN and was read

and approved by DTJ.

Buchan, D.W., Ward, S.M., Lobley, A.E., Nugent, T., Bryson, K. & Jones, D.T.

(2010). Protein annotation and modelling servers at University College London.

Nucleic Acids Res, 38, W563-W568. (Buchan et al., 2010)

Web server implementation by DWB and SW. TN developed MEMSAT-SVM for

transmembrane protein topology prediction.

Nugent, T. & Jones, D.T. (2010). Predicting transmembrane helix packing

arrangements using residue contacts and a force-directed algorithm. Plos Comp
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Bio, 10, 159. (Nugent & Jones, 2010)

DTJ provided direction for computational aspects of the algorithm and biologi-

cal/biophysical insight into aspects of membrane protein structure. Manuscript was

prepared by TN and was read and approved by DTJ.

Nugent, T. & Jones, D.T. (2009). Transmembrane Protein Topology Prediction

using Support Vector Machines. BMC Bioinformatics, 6, e1000714. (Nugent &

Jones, 2009)

Original source code was developed by DTJ. This was re-written and extended by

TN. DTJ provided direction for computational aspects of the algorithm and biologi-

cal/biophysical insight into aspects of membrane protein structure. Manuscript was

prepared by TN and was read and approved by DTJ.

Rigden, D., ed. (2009). From Protein Structure to Function with Bioinformatics.

Springer. (Rigden, 2009)

Chapter entitled ’Membrane Protein Structure Prediction’ was prepared by TN and

was read and approved by DTJ.

Lobley, A.E., Nugent, T., Orengo, C.A. & Jones, D.T. (2008). FFPred: an

integrated feature-based function prediction server for vertebrate proteomes.

Nucleic Acids Res, 36, W297-W302.

Source code for rendering of transmembrane protein topology predictions written by

TN.

Nugent, T., Mole, S.E., Jones, D.T. (2008). The transmembrane topology of

Batten disease protein CLN3 determined by consensus computational prediction
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constrained by experimental data. FEBS Lett, 582, 1019-24. (Nugent et al., 2008)

DTJ provided direction for computational aspects and biological/biophysical insight

into aspects of membrane protein structure. SM provided direction for biological

insight. Manuscript was prepared by TN and SM and was read and approved by

DTJ.
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