307 research outputs found

    Embracing corruption burstiness: Fast error recovery for ZigBee under wi-Fi interference

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.The ZigBee communication can be easily and severely interfered by Wi-Fi traffic. Error recovery, as an important means for ZigBee to survive Wi-Fi interference, has been extensively studied in recent years. The existing works add upfront redundancy to in-packet blocks for recovering a certain number of random corruptions. Therefore the bursty nature of ZigBee in-packet corruptions under Wi-Fi interference is often considered harmful, since some blocks are full of errors which cannot be recovered and some blocks have no errors but still requiring redundancy. As a result, they often use interleaving to reshape the bursty errors, before applying complex FEC codes to recover the re-shaped random distributed errors. In this paper, we take a different view that burstiness may be helpful. With burstiness, the in-packet corruptions are often consecutive and the requirement for error recovery is reduced as ”recovering any k consecutive errors” instead of ”recovering any random k errors”. This lowered requirement allows us to design far more efficient code than the existing FEC codes. Motivated by this implication, we exploit the corruption burstiness to design a simple yet effective error recovery code using XOR operations (called ZiXOR). ZiXOR uses XOR code and the delay is significantly reduced. More, ZiXOR uses RSSI-hinted approach to detect in packet corruptions without CRC, incurring almost no extra transmission overhead. The testbed evaluation results show that ZiXOR outperforms the state-of-the-art works in terms of the throughput (by 47%) and latency (by 22%)This work was supported by the National Natural Science Foundation of China (No. 61602095 and No. 61472360), the Fundamental Research Funds for the Central Universities (No. ZYGX2016KYQD098 and No. 2016FZA5010), National Key Technology R&D Program (Grant No. 2014BAK15B02), CCFIntel Young Faculty Researcher Program, CCF-Tencent Open Research Fund, China Ministry of Education—China Mobile Joint Project under Grant No. MCM20150401 and the EU FP7 CLIMBER project under Grant Agreement No. PIRSES-GA- 2012-318939. Wei Dong is the corresponding author

    Facilitating wireless coexistence research

    Get PDF

    Assessing Coexistence of IEEE 802.15.4 Networks and IEEE 802.11b/g/n Networks - A Study of Interference Effects

    Get PDF
    The study of the coexistence capabilities of networks based on the IEEE 802.11 and IEEE 802.15.4 standards has long been of interest to researchers owing to the individual success of these two technologies in various applications of Internet of Things (IoT). Operating in the same Industrial-Scientific-Medical (ISM) band, their coexistence does not always yield satisfactory results. The performance of a network based on IEEE 802.15.4 standard has been shown to be significantly lowered in the presence of a strong IEEE 802.11 based network (Wireless LAN) to the extent that communication based on the IEEE 802.15.4 standard can be rendered impossible in certain scenarios. This work is an effort towards analyzing interference caused by the three non-overlapping channels 1, 6 and 11 of IEEE 802.11b/g/n on the usable 2.4GHz spectrum of IEEE 802.15.4 standard. Recommendations of plausible scenarios for successful coexistence of these two networking technologies have been made. Assessment of the performance of an IEEE 802.15.4 standard based network through the Packet Delivery Ratio (PDR) on various channels of operation has yielded valuable insights. The experiments carried out in real-world environment stand as datapoints in predicting and understanding the interference behavior in real-life applications

    Secure Data Collection and Analysis in Smart Health Monitoring

    Get PDF
    Smart health monitoring uses real-time monitored data to support diagnosis, treatment, and health decision-making in modern smart healthcare systems and benefit our daily life. The accurate health monitoring and prompt transmission of health data are facilitated by the ever-evolving on-body sensors, wireless communication technologies, and wireless sensing techniques. Although the users have witnessed the convenience of smart health monitoring, severe privacy and security concerns on the valuable and sensitive collected data come along with the merit. The data collection, transmission, and analysis are vulnerable to various attacks, e.g., eavesdropping, due to the open nature of wireless media, the resource constraints of sensing devices, and the lack of security protocols. These deficiencies not only make conventional cryptographic methods not applicable in smart health monitoring but also put many obstacles in the path of designing privacy protection mechanisms. In this dissertation, we design dedicated schemes to achieve secure data collection and analysis in smart health monitoring. The first two works propose two robust and secure authentication schemes based on Electrocardiogram (ECG), which outperform traditional user identity authentication schemes in health monitoring, to restrict the access to collected data to legitimate users. To improve the practicality of ECG-based authentication, we address the nonuniformity and sensitivity of ECG signals, as well as the noise contamination issue. The next work investigates an extended authentication goal, denoted as wearable-user pair authentication. It simultaneously authenticates the user identity and device identity to provide further protection. We exploit the uniqueness of the interference between different wireless protocols, which is common in health monitoring due to devices\u27 varying sensing and transmission demands, and design a wearable-user pair authentication scheme based on the interference. However, the harm of this interference is also outstanding. Thus, in the fourth work, we use wireless human activity recognition in health monitoring as an example and analyze how this interference may jeopardize it. We identify a new attack that can produce false recognition result and discuss potential countermeasures against this attack. In the end, we move to a broader scenario and protect the statistics of distributed data reported in mobile crowd sensing, a common practice used in public health monitoring for data collection. We deploy differential privacy to enable the indistinguishability of workers\u27 locations and sensing data without the help of a trusted entity while meeting the accuracy demands of crowd sensing tasks

    Enhanced collision avoidance mechanisms for wireless sensor networks through high accuracy collision modeling

    Get PDF
    Wireless channel and multi-hop communications cause a significant number of packet collisions in Wireless Sensor Networks (WSNs). Although a collision may cause packet loss and reduce network performance, low-power wireless transceivers allow packet reception in the presence of collisions if at least one signal can provide a sufficiently high power compared with other signals. Therefore, with respect to the large number of nodes used in WSNs, which necessitates the use of simulation for protocol development, collisions should be addressed at two layers: First, collisions should be modeled at the physical layer through a high-accuracy packet reception algorithm that decides about packet reception in the presence of collisions. Second, collision avoidance mechanisms should be employed at the Medium Access Control (MAC) layer to reduce packet losses caused by collisions. Unfortunately, the existing packet reception algorithms exhibit low accuracy and impede the development of efficient collision avoidance mechanisms. From the collision avoidance perspective, existing contention-based MAC protocols do not provide reliable packet broadcasting, thereby affecting the initialization performance of WSNs. In addition, despite the benefits of schedule-based MAC protocols during the data-gathering phase, the existing mechanisms rely on unrealistic assumptions. The first major contribution of this work is CApture Modeling Algorithm (CAMA), which enables collision modeling with high accuracy and efficiency at the physical layer. The higher accuracy of CAMA against existing approaches is validated through extensive comparisons with empirical experiments. The second major contribution includes mechanisms that improve the reliability of packet broadcasting. In particular, adaptive contention window adjustment mechanisms and the Geowindow algorithm are proposed for collision avoidance during the initialization phases. These mechanisms considerably improve the accuracy of the initialization phases, without violating duration and energy efficiency requirements. As the third major contribution, a distributed and concurrent link-scheduling algorithm (called DICSA) is proposed for collision avoidance during the data-gathering phase. DICSA provides faster slot assignment, higher spatial reuse and lower energy consumption, compared with existing algorithms. Furthermore, evaluating DICSA within a MAC protocol confirms its higher throughput, higher delivery ratio, and lower end-to-end delay

    Decoding the `Nature Encoded\u27 Messages for Wireless Networked Control Systems

    Get PDF
    Because of low installation and reconfiguration cost wireless communication has been widely applied in networked control system (NCS). NCS is a control system which uses multi-purpose shared network as communication medium to connect spatially distributed components of control system including sensors, actuator, and controller. The integration of wireless communication in NCS is challenging due to channel unreliability such as fading, shadowing, interference, mobility and receiver thermal noise leading to packet corruption, packet dropout and packet transmission delay. In this dissertation, the study is focused on the design of wireless receiver in order to exploit the redundancy in the system state, which can be considered as a `nature encoding\u27 for the messages. Firstly, for systems with or without explicit channel coding, a decoding procedures based on Pearl\u27s Belief Propagation (BP), in a similar manner to Turbo processing in traditional data communication systems, is proposed to exploit the redundancy in the system state. Numerical simulations have demonstrated the validity of the proposed schemes, using a linear model of electric generator dynamic system. Secondly, we propose a quickest detection based scheme to detect error propagation, which may happen in the proposed decoding scheme when channel condition is bad. Then we combine this proposed error propagation detection scheme with the proposed BP based channel decoding and state estimation algorithm. The validity of the proposed schemes has been shown by numerical simulations. Finally, we propose to use MSE-based transfer chart to evaluate the performance of the proposed BP based channel decoding and state estimation scheme. We focus on two models to evaluate the performance of BP based sequential and iterative channel decoding and state estimation. The numerical results show that MSE-based transfer chart can provide much insight about the performance of the proposed channel decoding and state estimation scheme. In this dissertation, the study is focused on the design of wireless receiver in order to exploit the redundancy in the system state, which can be considered as a `nature encoding\u27 for the messages. Firstly, for systems with or without explicit channel coding, a decoding procedures based on Pearl\u27s Belief Propagation (BP), in a similar manner to Turbo processing in traditional data communication systems, is proposed to exploit the redundancy in the system state. Numerical simulations have demonstrated the validity of the proposed schemes, using a linear model of electric generator dynamic system. Secondly, we propose a quickest detection based scheme to detect error propagation, which may happen in the proposed decoding scheme when channel condition is bad. Then we combine this proposed error propagation detection scheme with the proposed BP based channel decoding and state estimation algorithm. The validity of the proposed schemes has been shown by numerical simulations. Finally, we propose to use MSE-based transfer chart to evaluate the performance of the proposed BP based channel decoding and state estimation scheme. We focus on two models to evaluate the performance of BP based sequential and iterative channel decoding and state estimation. The numerical results show that MSE-based transfer chart can provide much insight about the performance of the proposed channel decoding and state estimation scheme

    Effective Scheduling Algorithms for Cross-Interference Mitigation in Heterogeneous Wireless Networks

    Get PDF
    Wireless networks are making life easier, smarter and more convenient. However, the well-known Carrier-sense multiple access with collision avoidance (CSMA/CA) mechanism is powerless when dealing with Cross-Technology Interference (CTI) between Wi-Fi and Low-Rate Wireless Personal Area Network (LR-WPAN), because of asymmetric transmission power, incompatible Clear Channel Assessment (CCA) and different timing parameters. Plenty of studies have shown that WiFi always has a higher priority to access the wireless medium and even block LR-WPAN transmission in the worst case. Our experiments confirm this point and conclude that Wi-Fi can interrupt LR-WPAN severely even block LR-WPAN traffic, while the interference from LR-WPAN to Wi-Fi is negligible. Different from other studies, this thesis presents a novel centralized scheduling mechanism in the time domain to harmonize coexistence of Wi-Fi and LR-WPAN, also refer to as time-slot based scheduling mechanism. The mechanism is achieved by introducing a new command frame, named Access Notification (AN), into the IEEE802.15.4 Medium Access Control (MAC) layer. Based on this mechanism, a static time-slot based scheduling algorithm is designed and evaluated on both real hardware-based system and NS-3 simulator. The result shows the algorithm improves LR-WPAN Packet Loss Rate (PLR) significantly but at the cost of reducing Wi-Fi throughput. In order to maximize performance, based on slot-based congestion indicator (CI) that is proposed and defined to tell whether an allocated time slot is adequate for data transmission or not, we further design an adaptive time-slot based scheduling algorithm. The evaluation shows that the adaptive algorithm covers the shortage of the static algorithm and offers a distinct improvement on LR-WPAN Packet Transmission Rate (PTR)

    Mitigating interference coexistence issues in wireless sensor networks

    Get PDF
    Wireless Sensor Networks (WSNs) comprise a collection of portable, wireless, interconnected sensors deployed over an area to monitor and report a variable of interest; example applications include wildlife monitoring and home automation systems. In order to cater for long network lifetimes without the need for regular maintenance, energy efficiency is paramount, alongside link reliability. To minimise energy consumption, WSN MAC protocols employ Clear Channel Assessment (CCA), to transmit and receive packets. For transmitting, CCA is used beforehand to determine if the channel is clear. For receiving, CCA is used to decide if the radio should wake up to receive an incoming transmission, or be left in a power efficient sleep state. Current CCA implementations cannot determine the device type occupying the media, leaving nodes unable to differentiate between WSN traffic and arbitrary interference from other devices, such as WiFi. This affects link performance as packet loss increases, and energy efficiency as the radio is idly kept in receive mode. To permit WSN deployments in these environments, it is necessary to be able to gauge the effect of interference. While tools exist to model and predict packet loss in these conditions, it is currently not possible to do the same for energy consumption. This would be beneficial, as parameters of the network could be tuned to meet lifetime and energy requirements. In this thesis, methods to predict energy consumption of WSN MAC protocols are presented. These are shown to accurately estimate the idle listening from environmental interference measurements. Further, in order to mitigate the effects of interference, it would be beneficial for a CCA check to determine the device type occupying the media. For example, transmitters may select back-off strategies depending on the observed channel occupier. Receivers could be made more efficient by ignoring all non-WSN traffic, staying awake only after detecting an incoming WSN transmission. P-DCCA is a novel method presented in this thesis to achieve this. Transmitters vary the output power of the radio while the packet is being sent. Receivers are able to identify signals with this characteristic power variation, enabling a P-DCCA check to reveal if the medium is currently occupied by WSN traffic or other interference. P-DCCA is implemented in a common WSN MAC protocol, and is shown to achieve high detection accuracy, and to improve energy efficiency and packet delivery in interference environments

    Supervisory Wireless Control for Critical Industrial Applications

    Get PDF
    • …
    corecore