
1

Embracing Corruption Burstiness: Fast Error
Recovery for ZigBee under Wi-Fi Interference
Zhiwei Zhao, Member, IEEE, Wei Dong, Member, IEEE, Gonglong Chen, Student Member, IEEE,

Geyong Min, Member, IEEE, Tao Gu, Senior Member, IEEE, and Jiajun Bu, Member, IEEE

Abstract—The ZigBee communication can be easily and severely interfered by Wi-Fi traffic. Error recovery, as an important means for
ZigBee to survive Wi-Fi interference, has been extensively studied in recent years. The existing works add upfront redundancy to
in-packet blocks for recovering a certain number of random corruptions. Therefore the bursty nature of ZigBee in-packet corruptions
under Wi-Fi interference is often considered harmful, since some blocks are full of errors which cannot be recovered and some blocks
have no errors but still requiring redundancy. As a result, they often use interleaving to reshape the bursty errors, before applying
complex FEC codes to recover the re-shaped random distributed errors. In this paper, we take a different view that burstiness may be
helpful. With burstiness, the in-packet corruptions are often consecutive and the requirement for error recovery is reduced as
”recovering any k consecutive errors” instead of ”recovering any random k errors”. This lowered requirement allows us to design far
more efficient code than the existing FEC codes. Motivated by this implication, we exploit the corruption burstiness to design a simple
yet effective error recovery code using XOR operations (called ZiXOR). ZiXOR uses XOR code and the delay is significantly reduced.
More, ZiXOR uses RSSI-hinted approach to detect in packet corruptions without CRC, incurring almost no extra transmission
overhead. The testbed evaluation results show that ZiXOR outperforms the state-of-the-art works in terms of the throughput (by 47%)
and latency (by 22%).

Index Terms—ZigBee, Bursty corruptions, error recovery, XOR coding

F

1 INTRODUCTION

The ZigBee technology enables low power, reliable and scal-
able wireless communications for various energy-constrained
devices. These devices further support emerging Internet-of-
Things applications including smart home [1], health monitoring
[2], emergency response [3], etc. Most of these applications
are real-time, and they have stringent requirements on both
throughput and delay. However, ZigBee operates in crowded
unlicensed ISM band (e.g., Wi-Fi, Bluetooth, microwave oven),
and the performance of ZigBee communications can be easily
and severely interfered by Cross Technology Interference. Among
these technologies, Wi-Fi is the most common interferer due to its
pervasive deployment. Further, Wi-Fi’s signal power (i.e., 20dBm
usually) is far stronger than ZigBee (i.e., 0dBm at maximum), and
hence it can easily interfere ZigBee communication even without
sensing its existence [4]–[6].

The problem of ZigBee packet error recovery under Wi-
Fi interference has recently attracted much research attention
[7]–[13]. There are basically two kinds of approaches: partial
retransmission (e.g., [7]–[9]), and forward error correction (FEC)
(e.g., [10]–[12]). In the partial retransmission approach, a data

• Z. Zhao is with the College of Computer Science, Zhejiang University and
the College of Computer Science and Engineering, University of Electronic
Science and Technology of China, China. E-mail: zzw@uestc.edu.cn

• W. Dong, G. Chen and J. Bu are with the College of Computer Science,
Zhejiang University, China. E-mail: {dongw, chengl, bjj}@zju.edu.cn
(Corresponding author: Wei Dong)

• G. Min is the College of Engineering, Mathematics and Physical Sciences,
University of Exeter, U.K. E-mail: g.min@exeter.ac.uk

• T. Gu is with School of Computer Science and IT, RMIT University,
Australia. Email: tao.gu@rmit.edu.au

payload is divided into several small blocks, which are then
transmitted in one packet. In case of errors occurred, a receiver
replies NAKs and the sender then retransmit only the erroneous
blocks, rather than the entire packet as traditional ARQ scheme.
However, the inter-packet transmission delay in this approach is
still unavoidable due to the nature of retransmission. The FEC
approach obviates retransmission by means of sending upfront
error-correcting information, along with the original data. Before
transmission, the packet payload is divided into small blocks
which are further encoded using error-correcting codes (e.g.,
Reed-Solomon code). When certain levels of bit errors occur, the
receiver can recover the original packet without retransmission.

Recent studies have observed that ZigBee corruptions under
Wi-Fi interference are highly bursty [11], [14]–[16]. The bursti-
ness leads to the case that some blocks may be full of bit errors
which cannot be recovered by the FEC, while other blocks may
have no bit errors at all but still require redundant bits. As a result,
existing works consider burstiness harmful for error recovery. To
deal with burstiness, most of these works first use interleaving
to reshape the bursty errors before applying RS/BCH codes [10],
[12]. Unfortunately, such methods may still lead to substantial
reduction in throughput due to the high decoding delay. For
example, RS(15,7) decoding consumes over 100ms on TelosB
motes, and the block-level CRCs consume tens of bytes in the
limited ZigBee packet length (127 octets). This further poses a
significant challenge for applying the FEC coding scheme in real
time ZigBee communications.

Different from the traditional point of view, we argue in this
paper that burstiness can be indeed helpful for error recovery.
Our key insight with burstiness is that the requirement for error
recovery turns out to be recovering “any k consecutive blocks”
instead of “any k blocks” since the block errors are most likely

2

consecutive. This lowered requirement motivates us to design a
far more efficient FEC coding scheme for ZigBee under Wi-Fi
interference.

Inspired by this implication, in this paper, we propose a novel
forward error recovery scheme to improve ZigBee communication
performance under Wi-Fi interference with XOR (called ZiXOR).
Different from the traditional FEC coding schemes which try
to recover “any k blocks”, ZiXOR uses a simple yet effective
approach based on XOR operations to distribute any k consecutive
erroneous blocks into k separate XORed redundant blocks. In this
way, each redundant block contains only one erroneous block, and
any k consecutive block errors can be recovered by simple XOR
operations. The coding delay can be significantly reduced.

When under non-bursty scenarios (e.g., outdoor communica-
tion), ZiXOR may not work well. To deal with this problem,
we propose an adaptive switch scheme to switch to fountain
code mode when there are multiple error bursts within one
packet. The switch is designed “seamingless”, which means
the previous transmitted ZiXOR blocks can be directly used as
fountain encoded blocks for decoding. Therefore the performance
of ZiXOR is similar with fountain code (e.g., DLT [17]) under
non-bursty scenarios.

Despite the coding delay can be greatly reduced by leveraging
the burstiness, the block-level CRC bytes could still greatly
degrade the throughput given that the maximum ZigBee packet
length is only 127 bytes, which is largely different from the 802.11
networks. Take RAT [12] as an example, when a packet payload is
divided into 12 blocks, 24 CRC bytes will be required. In order to
reduce the overhead, we sample fine-grained RSSI values during
packet reception. The correlation between RSSI samples and byte
errors allows us to detect block errors without CRCs, thus saving
room in the payload for data transmissions.

We implement ZiXOR in a testbed with 8x10 TelosB nodes.
We then incorporate it into an existing routing protocol CTP
[18] and compare its performance with the state-of-the-art works
[7], [11], [12], [17]. We conduct both trace-driven and testbed
experiments, and the results demonstrate that ZiXOR provides
real-time forward error recovery with nearly no overhead (less
than 1ms delay). Compared with the existing works, ZiXOR
greatly improves the end-to-end protocol performance in terms of
throughput (47%), transmissions (37%) and latency performance
(22%), respectively.

The major contributions of this paper are summarized as
follows:

1) We identify the opportunity to leverage the bursty nature
of ZigBee corruptions under Wi-Fi interference for error
recovery.

2) We design ZiXOR, a fast forward error correction scheme
for ZigBee communication under Wi-Fi interference.
ZiXOR is lightweight in both transmission and coding
overhead, which is highly applicable for resource-
constrained ZigBee devices.

3) We implement ZiXOR on a real sensor testbed and
conduct extensive evaluations. The results show that
ZiXOR outperforms existing works in terms of both
throughput and latency.

The remainder of this paper is organized as follows: Section 2
introduces related work and positions ZiXOR in the literature.
Section 3 presents our motivation, observation and key idea.
Section 4 presents the main design of ZiXOR. Section 5 presents

the trace-driven study and testbed evaluation of ZiXOR. Section 6
concludes this work.

2 RELATED WORKS

The problem of ZigBee error recovery under Wi-Fi interference
has been extensively studied. Basically, all existing approaches can
be classified into two categories: retransmission-based and FEC-
based. Both categories divide a packet payload into several blocks.
The difference is that the first category retransmits the erroneous
native blocks when errors occur; the second category encodes the
blocks by adding redundant bits before packet transmission and
can recover the native packet without retransmission.

Partial packet retransmission. In this category of ap-
proaches, the sender retransmits only the erroneous blocks when
errors occur. Existing works try to reduce the block CRC overhead
in order to achieve better link performance.

Seda [7] adds a 1-byte sequence number and a 1-byte CRC
to each block. Then the receiver can identify and request the
erroneous blocks. Maranello [8] is a similar approach, but the
difference is that Maranello does not transmit block CRC in the
first round transmission. When errors occur, the receiver computes
the block CRCs and reply them to the sender for retransmission.
Such design incurs no block CRC when the packet is loss free.
REPE [9] equips each low power node with a high resolution
timer (i.e., 62.5 kHz) and periodically samples the RSSI values for
each received symbol. Based on the RSSI series, the receiver then
requests the detected erroneous symbols. Our work differs from
REPE in two important ways. First, we do not require additional
hardware support. Second, instead of using a threshold to detect
errors, we use a probability-based approach, which achieves more
accurate error estimation. Third, the coding scheme significantly
reduces the retransmission rounds, resulting in higher channel
utilization.

FEC-based Approach. FEC-based approaches add upfront
redundancy to each block for forward recovery. Many works on
the spatial-temporal wireless behaviors [19]–[22] have observed
that ZigBee corruptions under Wi-Fi interference are often bursty.
The burstiness is often considered harmful for FEC, because with
bursty errors, it is most likely that some blocks are full of errors
which cannot be recovered as the redundant bits are insufficient,
while some other blocks have no errors and the redundant bits are
wasted.

To deal with burstiness, existing works first use interleaving to
spread the bursty errors, and then apply different types of codes.
Since the errors are reshaped as random distributed, the FEC
codes have to be able to recover “any random k errors”, which
further leads to complex coding designs. ZipTx [10] is originally
proposed for 802.11 networks. It selectively uses Reed-Solomon
(RS) code to recover block errors when error rate is low. TinyRS
[11] is an implementation of RS code in TinyOS/TelosB platform.
Although it can recover the errors in relatively high-error scenarios
(e.g., severely interfered links), it introduces too much coding
and transmission overhead (RS(15,7)’s decoding time is ⇠100ms
and two redundant bits are required to recover one bit error). To
reduce the high coding delay of RS code, RAT [12] is proposed to
selectively exploit BCH-code and hamming code according to the
estimated channel conditions, which consume less decoding time
than RS-code. However, considering the transmission time is 4ms,
the decoding delay is still remarkably large (e.g., RS(15,7) takes
⇠104ms for decoding in MSP430 platform, see Section 5).

3

TABLE 1
ZigBee error recovery approaches under Wi-Fi.

Forward
Correction

No ctrl
bytes

Decoding
Delay

No H/W
modification

ZiXOR X X Very low X
RAT [12] X ⇥ High X
BuzzBuzz [11] X ⇥ Very high X
ZipTx [10] X ⇥ Very high X
REPE [9] ⇥ X N/A ⇥
Maranello [8] ⇥ ⇥ N/A X
Seda [7] ⇥ ⇥ N/A X
DLT [17] X ⇥ Low X

Different from the above works, we consider the corruption
burstiness as a chance for designing lightweight and effective FEC
code. ZiXOR has two main differences from the above works.
First, it disables the interleaving, and exploits the consecutiveness
of the block errors to design highly lightweight code using only
XOR operations. Second, ZiXOR exploits fine-grained RSSI to
detect block errors, avoiding the extra bytes for block checksums.

DLT [17] is the state-of-the-art work that exploits subtly
optimized fountain code for in-packet error recovery. The sender
continuously transmits encoded blocks. The receiver recovers
the native packet when sufficient linear independent blocks are
received. While DLT is applicable for general scenarios with
random errors, ZiXOR is more suitable for bursty errors. First,
DLT decoding still requires Gaussian elimination while ZiXOR
requires only XOR operations. Second, DLT requires one byte
CRC for each block, while ZiXOR identifies block errors without
block CRCs. It is also worth noting that, we design an adaptive
switch scheme with which ZiXOR can switch to fountain codes
under random error patterns.

Table I compares ZiXOR with existing works in respect to the
following key desired features.

• Forward Error Correction. The ability to correct
errors in advance, which is important for reducing inter-
transmission delay.

• Control overhead. The extra control bytes introduced to
the packet payload (e.g., block CRC, sequence number,
etc.). It has a significant impact on the channel utilization
of resource constrained ZigBee devices.

• Decoding delay. Decoding delay has a significant impact
on link throughput.

• Incremental retransmission. When a packet transmission
fails, the already received correct data is still effective for
further decoding.

• No H/W Support. This is important for practical
applications of the approach on existing devices.

We can see that none of the existing works meet all these
features simultaneously, which motivates our work.

3 MOTIVATION AND KEY IDEA

In this section, we first describe the empirical observations and
motives, then we present the key idea using a simple example.

3.1 Empirical Observations and Motivation
Error distribution under Wi-Fi interference. Recent studies
have shown that Wi-Fi traffic is usually bursty and clustered
[14], [15], [23], implying that corruptions of ZigBee packets are

0 50 100 150 200 250 300 350 400 450

C
or

ru
pt

ed
bi

ts

Bit error positions inside a packet
(a) Packet corruption under Wi-Fi interference.

0 50 100 150 200 250 300 350 400 450

C
or

ru
pt

ed
bi

ts

Bit error positions inside a packet
(b) Packet corruption with weak link.

Fig. 1. Typical bit error patterns in packets under Wi-Fi interference and
with weak link.

1 2 3 40.5
0.6
0.7
0.8
0.9

1

Number of Error Bursts

C
D

F

PRR=0.96

(a) Wi-Fi off

1 2 3 4 5 6 7 80.5
0.6
0.7
0.8
0.9

1

Number of Error Bursts

C
D

F

PRR=0.72

(b) Video streaming

1 2 3 4 5 6 7 8 9 10 11 120.5
0.6
0.7
0.8
0.9

1

Number of Error Bursts

C
D

F

PRR=0.81

(c) Web browsing

1 2 3 4 5 60.5
0.6
0.7
0.8
0.9

1

Number of Error Bursts

C
D

F

PRR=0.71

(d) Mixed

Fig. 2. Corruption patterns under Wi-Fi interference.

also expected to be bursty and clustered. We first conduct an
experiment to study the corruption patterns of in-packet ZigBee
packets under Wi-Fi interference. We use two TelosB nodes
(one sender and one receiver) to form a link. The sender keeps
transmitting full-payload packets to the receiver. To simulate Wi-
Fi interference, a physically nearby laptop is operated to surf the
Internet (including web browsing, data downloading and video
streaming) through W-Fi connection. We turn off the CC2420
hardware checksum such that the receiver can receive corrupted
packets. By comparing the received data and the original data, we
can know the error positions in corrupted packets.

Figure 1 shows the typical error patterns with and without Wi-
Fi interference. We can see that when under Wi-Fi interference,
the errors are highly bursty. Figure 2 shows the statistical
characteristics of in-packet corruptions under different typical Wi-
Fi interferences. The blue lines denote the cumulative distribution
function (CDF) of the number of erroneous bytes bursts1. We can
see that compared with non-interference scenario, most corrupted
packets under Wi-Fi interference have only one single error burst
(consisting one or several consecutive block errors).

Existing FEC coding designs often consider burstiness harmful
[10]–[12] and use interleaving to spread the errors. The coding
approaches are often designed to recover any k random errors.

1. Similar with [16], [24], we allow up to one correct byte inside a corruption
burst

4

Due to this requirement, existing works choose to use RS/BCH
codes instead of XOR code, despite XOR code is much more
lightweight.

However, different from the traditional views, we take
the burstiness as a chance to reduce the coding requirement.
With burstiness, the coding requirement could be reduced as
“recovering any k consecutive errors” due to the block error
consecutiveness. This offers a chance for reducing the coding
complexity.

3.2 Challenges
XOR is promising for designing such code due to its fast operation
and 1⇥ recovery overhead (one redundant block recovers one
erroneous block). For each packet transmission, XORed redundant
blocks can be added, such that the receiver can recover the native
packet by XORing the correct native blocks and redundant blocks.
However, there are two significant challenges for the XOR-based
framework.

Stringent coding requirement. One redundant block com-
bines multiple native blocks. The key to successful recovery
is to ensure that no more than one combined native block is
corrupted in the transmission. Otherwise, the packet may not
be recovered or the recovery will require Gaussian elimination
(like fountain code). However, the above requirement is very
challenging because we can never know which blocks will be
corrupted before the actual transmission. This is the main reason
why the existing approaches gave up the XOR-based framework,
despite XOR is lightweight in both coding delay and transmission.

Block-level checksum and limited packet length. Like many
existing works, ZiXOR divides the packet payload into several
blocks. In order to help receivers identify which blocks are
erroneous, two kinds of information are essential for decoding:
1) block level CRC bytes. 2) block length and number of blocks
information. Considering that the maximum ZigBee packet length
is only 127 bytes, the above two additional fields will still greatly
degrade the channel utilization.

3.3 The Key Idea
Modulo-k XOR coding. The key idea is to exploit the burstiness
to isolate the erroneous blocks. Although it is impossible to
know which blocks are erroneous before the actual transmission,
however, based on the bursty nature of ZigBee packet corruptions
under Wi-Fi interference, we can know that the erroneous blocks
are most likely consecutive. This allows us to effectively distribute
any k consecutive erroneous blocks into k redundant blocks
without knowing the exact block errors, ensuring that each
redundant block covers only one block error.

The idea works as follows: Suppose there are k erroneous
blocks, we encode each redundant block by combining one native
block in every k native blocks. As the k blocks are consecutively
distributed, these erroneous blocks can be encoded into different
redundant blocks. Then each redundant block combines only one
corrupted block, and the corrupted block can thus be decoded. In
this way, we can recover any k consecutive erroneous blocks by
simple XOR operations.

Figure 3 shows an illustrative example in which 7 native
blocks are to be transmitted. The gray rectangle denotes the
Wi-Fi interfered interval. Three redundant blocks are needed
for recovering the three corrupted blocks. We pick one block
every three blocks for encoding redundant blocks, as shown in

N1 N2 N3 N4 N5 N6 R1 R2 R3

N1 N2 N3 N4 N5 N6 N7

N7

=

Y1 Y2 Y3 Y4 Y5 Y6 Y8 Y9 Y10Y7

Input
blocks

Output blocks

(a) (b)
Corrupted
blocks

Redundant
blocks

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
1 0 0 1 0 0 1
0 1 0 0 1 0 0
0 0 1 0 0 1 0

Y1
Y2
Y3
Y4
Y5
Y6
Y7
Y8
Y9
Y10

N1
N2
N3
N4
N5
N6
N7

Fig. 3. ZiXOR encoding: an example.

20 40 60 80 100−72

−70

−68

−66

−64

Byte Position

R
SS

I (
dB

m
)

byte errors
RSSI

RSSI for correct bytes

Fig. 4. Typical RSSI and block error patterns.

Figure 3(a) (R1=N1�N4�N7, R2=N2�N5, R3=N3�N6). Figure
3(b) shows the coefficient matrix for encoding. We can see that,
every three consecutive blocks are encoded to different redundant
blocks, such that the receiver can decode any error burst within
three erroneous blocks.

Exploiting RSSI for block error identification. Recent study
[16] shows that the in-packet RSSI values are highly correlated
with byte errors. We record the in-packet RSSI values and the
corrupted positions to study the correlation. Figure 4 shows a
typical packet transmission and the received byte-level RSSI. We
can see that at the corrupted positions, the measured RSSI samples
are higher than those of correct bytes.

This phenomenon can be explained as follows. Generally, the
bit error rate is determined by SNR (signal-to-noise ratio). It could
be assumed that the transmission signal during one packet will not
severely change. Therefore, the sudden RSSI variation is more
likely to be caused by noise and interference, and SINR will
decrease in this case. This explains why byte errors are along
with RSSI rises.

This observation allows us to exploit RSSI readings for block
error detection, thus reducing the block-level CRC overhead.
When RSSI rises are detected, we can know that it is likely that
the corresponding bytes are corrupted.

4 ZIXOR DESIGN

We incorporate the above ideas into a novel XOR coding
framework, ZiXOR. With corruption burstiness, ZiXOR can
efficiently distribute the errors into different redundant XORed
blocks. Using the RSSI patterns, ZiXOR can detect block errors
without CRCs.

4.1 Overview

Figure 5 shows the system framework of ZiXOR. A sender node
first estimates the number of redundant blocks (Section 4.2),
and then encodes the redundant blocks with the ZiXOR.encode
procedure (Section 4.3). After that, the native payload (with

5

Network Layer Network Layer

MAC Layer MAC Layer

Redundancy Estimation

ZiXOR.encode()

ZiXOR.decode()NAK

Redundancy
Insufficient

NAK
RX

ACK
RX

Sender side Receiver side

ZiXOR

Block error
estimation

C
R

C
 check passed

CRC check fail

Fig. 5. ZiXOR overview.

N1 N2 N3 N4 N5 N6
... Nn R1 R2

... Rk

Native packet payload
Redundant

blocks

Header C

C
R
C

ZiXOR packet payload

Fig. 6. ZiXOR packet format.

CRC) and the redundant blocks are combined into one packet for
transmission, as depicted in Figure 6. The block size is stored in
the 5 reserved bits in the header, and the number of redundant
blocks is calculated at both sender and receiver side (Section
4.2). The CRC is the checksum calculated with the original data
payload, with which the receiver is able to check whether the
decoded packet is correct. It is worth noting that the native packet
payload is divided as blocks but not encoded.

When receiving the packet and the CRC check is not passed,
the receiver first estimates the block errors (described in Section
4.4). If the receiver finds that the received blocks cannot be
decoded, the receiver directly transmits an NAK indicating the
erroneous blocks. After that, the receiver still puts the received
blocks into ZiXOR.decode in case that there may be false negative
(FN) estimation results. Otherwise, if the blocks are identified
decodable, the receiver directly decodes the received blocks. When
decoding fails, retransmission starts (Section 4.5). The sender
extracts the block error information when receiving the NAK, and
encodes the new blocks for the retransmission. The receiver then
decodes for the native packet when receiving the retransmissions.

4.2 Redundancy Estimation

When a sender prepares to transmit a packet, it should first decide
how many redundant blocks should be added. We estimate the
number of redundant blocks according to the block error rate
collected in previously transmitted packets.

At the end of each transmission (either success or failure), the
receiver replies an ACK/NAK to the sender (as depicted in Figure
5) which contains a bitmap indicating the block errors of the
last packet transmission. For example, a bitmap of “0011000000”
means that the third and fourth blocks are erroneous in the last
packet. With this bitmap, the sender can calculate the fraction of
“1”s as block error rate, pe. Like many link estimation approaches
[25], we apply moving average using multiple history packets to
calculate pe. Suppose there are n native blocks and we add x
redundant blocks to ensure the receiver correctly receives n blocks,

we can get the following equation.

(n+ x)(1� pe) = n (1)

Solving the above equation, we can obtain the number of
redundant blocks as:

x =
npe

1� pe
(2)

Discussion on redundancy estimation errors. The issue
of how to add appropriate redundancy is critical to all FEC
approaches. When redundancy is over-estimated (i.e., excessive
redundancy), both ZiXOR and other approaches will have unnec-
essary redundancy transmission overhead. Fortunately, ZiXOR’s
coding delay remains much smaller than other approaches since
only several extra XOR operations are added. When redundancy
is under-estimated, however, the FEC based approach will have
to reassemble a new packet because the previous transmissions
have no enough redundancy for decoding. Although in ZiXOR,
previously transmitted redundant blocks are still useful for future
decoding, the inter-packet interval may increase the overall
transmission delay. At least ⇠4.9ms will be incurred into
the overall delay. Therefore we consider over-estimation less
harmful than under-estimation, and deliberately over-estimate the
redundancy by one. We can also employ various machine learning
algorithms [25]–[28] for redundancy estimation if they can be
optimized lightweight for low power devices. The redundancy
estimation is evaluated in Section 5.

4.3 ZiXOR Coding

Encoding. For an estimated error burst of k blocks, we encode the
redundant blocks as follows. We select 1 block in every k blocks,
say m, m+ k, m+ 2k, ... Then, we tune the starting offset m to
obtain k different redundant blocks. With such encoding, any k (or
 k) consecutive block errors can be separately covered by the
redundant blocks. The ZiXOR encoding is formulated as follows.

Ri =
M

k%Se=i
bk,k 2 [0,Nb �1] (3)

where Ri denotes the ith redundant block, � denotes the XOR
operation, Se denotes the size of error burst (i.e., the number of
consecutive erroneous blocks) and Nb denotes the total number
of native blocks. By such design, any k (or k) consecutive block
errors can be recovered because each redundant block would cover
one different erroneous block. Moreover, different from fountain
codes and random linear codes, the encoding rule is shared by both
senders and receivers, and does not rely on any random seed or
explicit coefficients. When receiving a ZiXOR packet, a receiver
can identify which blocks are combined by each redundant block,
using only the number of redundant blocks. For example, if a
receiver receives a packet containing k redundant blocks, it can
infer the coefficients using Eq. (3) with k and further decode the
native packet.

Compared with the retransmission based approaches, ZiXOR
adds k redundant blocks in advance to recover k consecutive
erroneous blocks. This greatly reduces retransmission delay.
Compared with the FEC based approach, ZiXOR 1) is quite
lightweight in decoding, and 2) requires 1⇥ redundancy to
recover 1⇥ errors while most FEC based approaches require 2⇥
redundancy.

Decoding. In this section, we formally give the algorithm for
ZiXOR decoding, as described in Algorithm 1. Decoding is called

6

Algorithm 1: ZiXOR.decode
Input : received blocks (rxBlocks) and the number of

redundant blocks (rbn)
Output: native blocks

1 decodable = TRUE;
2 buffer[][],err[][];
3 blks = sizeof(rxBlocks);
4 for i : 0 i < blks do
5 if !est(rxBlocks[i] then
6 push rxBlocks[i].blockNumber,err[i % rbn];
7 if sizeof(err[i % rbn]) >1 then
8 decodable = FALSE;

9 else
10 push rxBlocks[i].blockNumber,buffer[i % rbn];

11 if decodable then
12 temp = {0x00} ;
13 for i : 0 i < sizeo f (err) do
14 for j : 0 j < sizeo f (bu f f er[i%rbn]) do
15 temp �= buffer[i % rbn][j];
16 rxBlocks[err[i][0]] = temp;
17 if CRC check(rxBlocks) then
18 flash.write(rxBlocks);
19 composeACK();
20 else
21 composeNAK(blockCrc(rxBlocks));

22 else
23 composeNAK(blockCrc(rxBlock));

when the packet CRC is not passed. The receiver first identifies the
decodability of the received packet. If one redundant block covers
more than one block errors, the packet will not be decodable.
When decodable, the receiver can just recover the erroneous block
by XORing its corresponding redundant block and other native
blocks (with the same MOD k remainder). When decoding is
done, we compare the payload CRC to check whether the decoded
packet is correct. Since each encoded block can be identified by its
position and redundant block number, our decoding does not need
Gaussian elimination and is thus highly computation efficient.

4.4 Block Error Estimation

In order to save the space for block transmission, we use the
fine-grained in-packet RSSI sampling (IRS) [9] to identify the
block errors. The estimation results further give block error rate
and block error bitmaps, which are of significance for coding
efficiency.

In-packet RSSI sampling. In order to exploit the correlation
between RSSI and byte errors, we should first measure RSSI
samples while receiving a packet. By using a 32.5kHz timer in
IRS (supported by most low power platforms), we are able to
obtain one RSSI value in per byte granularity [9], [16], enabling
the identification of byte-level errors. We implement such a high-
resolution sampling procedure (i.e., at least one sample per byte)
without extra hardware. We modify the existing radio driver in
TinyOS 2.1.2 to support sampling at a rate of one sample per
byte. This is different from REPE [9], which requires additional
62.5kHz timer hardware.

Error detection. With byte level RSSIs, the next step is to
identify block errors using these values. We use the smallest RSSI

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.2

0.4

0.6

0.8

1

RSSI Distance

B
yt

e
E

rr
or

 R
at

e

Fig. 7. The relationship between byte error rate and RSSI distance.

value as the RSSI base, and study the relationship between byte
error rate and the RSSI distance from the RSSI base. Figure
7 shows the empirical results of byte error probabilities with
different RSSI distances. We can see that the error rate increases
when RSSI distance becomes larger. Using this table, we are able
to estimate the byte error rate using the RSSI distances.

To estimate whether a block is erroneous or not, we sum up all
the expected byte error rates within the block. If the sum exceeds
1, the block is expected to contain at least one byte error and
is judged erroneous. We can see that compared with byte error
detection, block error detection is more accurate. The reason is that
a block error can be dismissed only when all byte errors are not
detected, of which the probability is much less. The relationship
between RSSI distance and BER could be learned from the several
pilot packets, of which the data payload is shared by the sender
and receiver, such that the receiver is able to measure the real
BER.

REPE [9] also uses IRS for block error detection. In REPE, a
byte is considered corrupted when the RSSI exceeds a certain
threshold. Our scheme has two major differences with REPE.
First, our goal is to identify block errors. We do not require
strict position correspondence between the RSSI values and byte
positions, thus is more tolerant to the RSSI and byte positions
offset. Second, we use the corresponding error rates of certain
RSSI values, instead of the threshold-based detection. This is
expected to achieve the better block error detection accuracy.

Some works also exploit error correction codes for error
detection and correction [29]–[31]. We compare error detection
using RSSI samples and error correction codes, e.g., Hamming
codes as follows.

1) Both error detection codes and byte-level RSSI samples
can be used to detect in-packet errors.

2) Error detection codes are more reliable than the RSSI-
based detection since it is based on the probabilistic
relationship between RSSI and the byte errors.

3) RSSI-based detection can identify the positions of the
byte errors while error detection codes can only detect the
number of byte errors. This additional information allows
us to design far more efficient error recovery codes such
as ZiXOR.

We will evaluate the detection scheme in Section 5.
Discussion. False negatives (FNs). An FN indicates that a

correct block is estimated erroneous. Obviously, our estimation
scheme is more prone to FNs. When FNs happen, a receiver
may find there are more block errors than redundant blocks, and
a decodable packet may be judged undecodable, incurring an
unnecessary retransmission. To deal with this problem, we need to

7

1 2 3 4 5 6 7 8 9 10 R1 R2 R3 R4 C

(a) Insufficient redundant blocks

(b) Inconsecutive Erroneous blocks

1 2 3 4 5 6 7 8 9 10 R1 R2 R3 R4 C

Fig. 8. Illustration of decoding failure at the receiver.

ignore the FNs and proceed to decode. When a receiver identifies
that a packet is not decodable, it replies an NAK and proceeds to
decode in case that FNs occur. If the packet CRC check is passed
after the decoding, it can be inferred that the ignored blocks are
FNs. Otherwise, the node waits for the sender’s retransmission
(Sec. 4.5).

False positives (FPs). An FP indicates that an erroneous block
is estimated correct. FPs are harmful because the receiver cannot
identify which blocks are incorrect when the packet CRC check is
not passed. In case that FPs occur, retransmission is required (Sec.
4.5).

From the above analysis, we can see that FNs incur much less
extra overhead than FPs. Fortunately, as we sum up all byte error
probabilities for block error detection, most detection errors are
FNs. We will empirically study the accuracy of IRS based block
error estimation in Section 5.

4.5 Retransmission
ZiXOR adds redundant blocks based on the burst length estimation
using historical data. Although the accuracy is high under Wi-
Fi interference, there are still two cases in which the first round
transmission fails, where retransmission is needed. First, the
number of erroneous blocks is under-estimated2 (as shown in
Figure 8(a)). R1 covers 1/5/9, R2 covers 2/6/10, R3 covers 3/7, R4
covers 4/8. We can see that blocks 5 and 6 can be recovered while
3/4/7/8 cannot be recovered. Second, the erroneous blocks are not
consecutive. We observe in Figure 2 that there are small portions
of inconsecutive errors. As shown in Figure 8(b), although there
are 4 block errors, they are not consecutive. R1 covers 1/5/9, R2
covers 2/6/10, R3 covers 3/7 and R4 covers 4/8. In this case, R1
is useless for error recovery.

When retransmission is required, it is likely that FPs or FNs of
block error detection happen. Therefore, we should first confirm
the real erroneous blocks. Then we find out which blocks are
essential for retransmission recovery. Finally, we retransmit the
necessary blocks using ZiXOR code.

Identifying erroneous blocks. We adopt a mechanism similar
to [8]. When a receiver estimates all blocks are correct but the
CRC does not match, it calculates the CRCs for each block, and
replies the CRCs to the sender in an NAK message. The sender
compares the block level CRCs to identify incorrect blocks at the
receiver side. Then, the sender composes a retransmission packet
by combining all incorrect blocks and redundant blocks.

Identify bottleneck blocks. Now that we obtain the erroneous
blocks. However, not every erroneous block is required to be
retransmitted, since some of them may already be covered by
the redundant blocks in the last round transmission. Hence we
should identify which erroneous blocks cannot be decoded and
are necessary for further decoding, denoted as bottleneck blocks.

2. The decoding will be successful when over-estimated

Algorithm 2: ZiXOR.retransmit
Input : ErroneousBlocks(errorneousBlocks) and redundant

block number(rbn) for current round transmission
Output: Packet payload for retransmission

1 blks = sizeof(rxBlocks);
2 for i : 0 i < blks do
3 blkNo = erroneousBlocks[i].blockNumber;
4 push blkNo , arrary[blkNo % n];
5 for i : 0 i < n do

/

*

identify and record the encoding

offset of k erroneous blocks

*

/

6 if sizeof(array[i]>1 then
/

*

bottle-neck blocks detected

*

/

7 for j : 0 j < sizeo f (array[i])�1 do
/

*

prepare the blocks to

retransmit natively

*

/

8 push barray[i][j] , retransmitBlocks ;

9 RSSIbase=min0i<L RSSI[i];
10 if rbn>1 then
11 ZiXOR.encode(retransmitBlocks , rbn);

The key insight is that with ZiXOR encoding, each block is
supposed to be used for encoding only once. Therefore, to find
bottleneck blocks, we can simply calculate how many erroneous
blocks are used for encoding each redundant block. If k erroneous
blocks (k >1) are encoded into one redundant block, the first k-
1 blocks are identified as bottleneck blocks. The reason is that
each block is encoded only once and other blocks contain no
information about these k blocks.

After obtaining bottleneck blocks, we treat these blocks as
new blocks to send, i.e., transmit these native blocks and encoded
redundant blocks using ZiXOR encoding (if redundant blocks are
required by the redundancy estimation module).

We now revisit the examples shown in Figure 8. For the
example in Figure 8(a): Though decoding fails, we still have the
information of 3�7 and 4�8. Consequently, if 3 or 4 is obtained,
7 or 8 can be recovered and vice versa. To this end, we retransmit
blocks 3 and 4. Considering the block error rate is 0.6, we expect
one block error in the two retransmission blocks and add one more
redundant block. This block is encoded by 3�4. For the example
in Figure 8(b), there are multiple bursts and ZiXOR redundant
blocks carries less information. We solve the problem of multiple
bursts with the coding switch scheme as in the next sub-section.

4.6 Seamingless code switching for non-bursty error
patterns

From Figure 2, we can see that there can be multiple bursts
within one packet. In such scenario, ZiXOR may no longer be
effective. To deal with this problem, we adaptively switch ZiXOR
to fountain code when there are multiple bursts, in a “seamingless”
manner as follows.

Burstiness estimation. We first use the short-term statistics
to estimate the burstiness in the transmissions and then switch
coding strategy between ZiXOR and fountain code accordingly.
Specifically, we estimate whether the packets contain single
bursts or multiple bursts. We first obtain a series of single burst
probability using the windowed history packet trace (with window

8

,
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ac
cu
ra
cy

0.5

0.6

0.7

0.8

0.9

1

k=1
k=2
k=4
k=6

Fig. 9. Estimation accuracy with moving average.

size, k). Then we can obtain the probability that the next packet
contain single-burst as:

pnew = a plast +(1�a)phistory (4)

where plast denotes the single burst probability of the last window
and phistory denotes the long-term single-burst probability.

We study the estimation accuracy by tuning the window size k
and the weighting factor a . Figure 9 shows the results. We can see
that in our experimental settings, k = 4 and a = 0.8 achieves the
highest accuracy (92%). For practical use in different scenarios,
we can periodically tune a and k and find the values that achieve
the highest accuracy using the continuously collected data trace.

It is also worth noting that even the bursts are incorrectly
estimated, ZiXOR is still able to switch to fountain code in time
when it detects there are multiple bursts in the receiving packet.

Switching. While receiving a packet, a receiver accounts
the number of error bursts using the fine-grained RSSI samples
(similar with Sec. 4.4) and estimate the burstiness using the above
moving average scheme. If there are multiple bursts which means
ZiXOR.decode might fail, it turns into fountain decoding mode
and invokes the Accumulative Gaussian Elimination [17] module.
Then it notifies the sender to switch to fountain encoding. We call
it “seamingless switch” because the received ZiXOR blocks can
be directly fed into fountain decoders. This is practical because
ZiXOR encoded blocks are specialized combinations of native
blocks, which is essentially compatible with fountain code. When
the receiver detects there are long single bursts in the received
packets, it notifies the sender to switch back to ZiXOR mode for
more efficient transmission.

4.7 System optimization

Block Size. Intuitively when block size increases, (1) for block
error estimation, the number of FPs decreases and the number of
FNs increases. (2) the redundant bits are likely to increase. (3)
decoding delay is likely to decrease. Therefore, deciding the block
size is to find a good tradeoff between the redundancy and coding
efficiency. We use the expected goodput as the end-to-end metric
for block size optimization.

We denote block size as sb, then the probability of FPs can be
denoted as E f p(sb), redundant bits can be denoted as R(sb), and
decoding delay can be calculated as Ddecode(sb).

Then we can model the throughput using the variable sb as
follows. The throughput is calculated as:

T =
S
D

(5)

where S denotes the useful transmission bits (without redundancy)
and D denotes the transmission time. S is calculated as:

S = Nheader +Npkt +Ncrc (6)

where Nheader is the packet header (12 bytes) and Ncrc is the packet
footer (2 bytes checksum).

D is calculated as:

D = (Dbacko f f +
S+R(sb)

Rb
+Ddecode(sb))(1+E f p(sb)) (7)

where Dbacko f f is the backoff time (random between 0⇠9.8ms,
4.9ms expected), R is the redundancy, Rb denotes the transmission
bitrate, and E f p(sb) is the false positive rate with sb. Then, we
can obtain the optimal block size by maximizing the throughput
T according to Eq. (5)⇠(7).

Coding information. In the design of ZiXOR, although the
receiver does not need the random seed for decoding, it should
be aware of the number of redundant blocks and block size, such
that it can obtain the encoding vectors. The number of redundant
blocks can be simultaneously calculated at both sender and
receiver sides (Section 4.2). Therefore, only block size is required
to be transmitted to the receiver. To avoid extra transmission
overhead, we use the 5 reserve bits in the Frame Control Field
(FCF) in the packet header to store the block size. With the block
size and redundant block number, the receiver can figure out which
blocks are used for encoding certain redundant blocks, and further
decode the native packet.

Overall, ZiXOR does not introduce any extra bits as compared
with original ARQ.

Link selection. Since ZiXOR adds upfront redundant blocks
in packet transmissions, the metrics such as packet reception
rate (PRR) and expected number of transmissions (ETX) may no
longer accurately represent the transmission efficiency.

1) Link selection metrics. Similar with PRR, we can
evaluate the link efficiency using the data delivery rate
(DDR). DDR is calculated as DDR = D

T = n/n+ k,
where D is the effective data delivery, T is the amount
of transmitted data, n is the number of native blocks
and k is the number of redundant blocks. Similar with
ETX, we can evaluate the transmission overhead using
the expected transmission for one byte data delivery
(ETD) as ET D = T

D = n/n+ k. The metric ETD can be
accumulated along multi-hop paths.

2) ZiXOR nodes reaction to the link selection process. Since
beacons are too short for burstiness measurement, the
nodes are unaware of the burstiness on corresponding
links when they are not selected and activated by
upper layer protocols. Therefore, when a link is newly
selected, ZiXOR needs to determine two parameters for
efficient transmission: the block size and the number of
redundant blocks. These two parameters are determined
according to Section 4.2 and Section 4.7, which requires
an initial measurement on the error bursts. As a result,
the parameters are first randomly set after the selection
and then adjusted according to the measurement results.
We discuss the impact as follows. a) When the random
redundancy is insufficient for error recovery, more
retransmissions will be incurred. b) When the redundancy
is more than enough, extra redundancy will be added to
the packets. In either case, the throughput will be low in

9

Fig. 10. The 8x10 TelosB motes testbed.

0.5 0.6 0.7 0.8 0.9 10

0.5

1

Link quality

C
D

F

Wi−Fi off
Wi−Fi on

Fig. 11. The link quality of the testbed.

the beginning and then increases as the two parameters
are adjusted according to the continuous measurement.

5 EVALUATION

To evaluate ZiXOR, we first use trace-driven studies to discover
optimized parameters used in ZiXOR, and then conduct testbed
experiments to study the performance of ZiXOR. More specifi-
cally, we compare ZiXOR with the state-of-the-arts such as RS-
code, Seda [9], DLT [17] and RAT [12].

5.1 Experimental Methodology
Implementation issues. We implement ZiXOR on TelosB nodes
with TinyOS 2.1.2. The block size is set to 8 bytes for fair
comparison with other approaches. The redundancy is calculated
using Eq. (2), and the block error rate (BLER) is calculated
using moving average. We vary the weighing parameter of the
moving average, and choose the value of 0.8 because it achieves
the most accurate BLER estimation in our experiments. Namely,
intermediate BLER is weighed 0.8 and the historical BLER is
weighed 0.2. For block error estimation, we use the minimum
RSSI value as the RSSI base, and sum up all the error probabilities
according to the RSSI distances to the base. When the sum exceeds
1, the block is estimated erroneous.

Evaluation for each building block. We first conduct separate
experiments to study the impacts of each building blocks of
ZiXOR, i.e., block error estimation and redundancy estimation.
After that, we also study the impact of varying block sizes. For
block error estimation, we mainly study the relationship between
estimation accuracy and various parameters such as BER (bit error
rate), RSSI threshold and block size. For redundancy estimation,
we define an accurate estimation as the case where the number of
redundant blocks is the same with (or larger by 1) the number of
block errors. Then, we study the redundancy estimation accuracy,
and evaluate the extra overhead when the redundancy is over/under
estimated. For block size, we fix other parameters and tune block

0

20

40

60

80

100

BER(PRR)

R
at

io
 (

%
)

0.1
(97)

0.9
(81)

6
(63)

10.7
(46)

17
(32)

25.3
(22)

29.7
(16)

Correct FN FP

x10-2

(a) Block error detection with differ-
ent BER

1 2 3 4 5 6 7 8 9 10 11 120

20

40

60

80

100

Block Size (bytes)

R
at

io
 (

%
)

Correct FN FP

(b) Block error detection with differ-
ent block size

Fig. 12. Block error estimation.

size to study its impact. We will also discuss the further design
spaces regarding the block size adaptation in Section 5.2.

Testbed experiments. ZiXOR can be generally used in many
network layer protocols [18], [32]–[34] We incorporate ZiXOR
into the collection tree protocol (CTP) and conduct experiments
with our 8x10 TelosB nodes testbed (as shown in Figure 10).
The radio power is set to -32.5 dBm to enable a 5-hop network.
The channel is set to 26 to minimize the impact of Wi-Fi
interference, since it overlaps the least with Wi-Fi communication
channels [11] (It can still be interfered by Wi-Fi). Figure 11 shows
the CDF (cumulative distribution function) of link qualities of
neighboring nodes in the testbed. We can see that when there is
no Wi-Fi interference, almost all links are good links (with link
qualities �90%). When Wi-Fi interference presents, about 30%
turn into intermediate links (with link qualities in (40%⇠90%)).
This confirms that the dominating interference for indoor WSNs
like ours is Wi-Fi interference. We also perform different laptop
actions to study different interference patterns, i.e., web browsing,
video streaming and mixed.

We change CTP’s routing metric ETX (expected number of
transmissions) into EBTX (expected number of block transmis-
sions), such that the most effective relay nodes can be selected in
the context of blocked transmission. The calculation of EBTX is
as follows:

Ep+1 = Ep +
N

1� eb
(8)

where Ep+1 is EBTX from the node with hopcount p+ 1 to the
sink, and N

1�eb
is the EBTX from the node at hop p+ 1 to its

parent at hop p (eb is the block error rate and N is the number of
blocks). We compare the end-to-end performances (e.g., latency,
data yield, and transmissions) of the revised CTP using different
approaches.

5.2 Evaluating The Building Blocks
5.2.1 ZiXOR Coding
Table 2 shows the coding efficiencies of different coding
approaches in terms of delay performance with different MCUs.
RAT selectively employs BCH code or Hamming code according
to the interference, thus the decoding time is large. DLT uses
fountain codes and requires Gaussian elimination (GE) for
decoding. Though the decoding delay is reduced by paralleling the
block receiving and GE, the decoding is still considerable when
used for typical ZigBee communications (250Kbps with CC2420
radios). Comparatively, ZiXOR encodes only the redundant
blocks, and its decoding requires only simple XOR operations.
As a result, we can see that ZiXOR indeed achieves the most
lightweight encoding/decoding on MSP430/Cortex-M0+/Cortex-
M3.

10

TABLE 2
Coding efficiency on different platforms.

Delay(ms)!
Platform!

BCH$

(15,1)$

BCH$

(15,5)$

BCH$

(15,7)$

Hamming$

(12,8)$

Hamming$

(7,4)$

Hamming$

(16,11)$

RS$

(15,13)$

RS$

(15,7)$

RS$

(15,3)$
DLT$ ZiXOR!

MSP430$
Encoding$ 0.70$ 0.30$ 0.20$ 0.20$ 0.40$ 3.10$ 23.30$ 25.10$ 29.70$ 0.20$ 0.10!
Decoding$ 83.90$ 74.80$ 54.70$ 4.30$ 3.90$ 3.90$ 31.20$ 101.90$ 142.30$ 4.40$ 0.50!

cortexGM0+$
Encoding$ 0.34$ 0.16$ 0.10$ 0.11$ 0.22$ 1.60$ 13.54$ 14.69$ 16.66$ 0.10$ 0.06!
Decoding$ 41.81$ 42.34$ 27.62$ 2.30$ 2.24$ 2.17$ 16.58$ 53.87$ 69.42$ 2.20$ 0.26!

cortexGM3$
Encoding$ 0.15$ 0.06$ 0.05$ 0.05$ 0.08$ 0.70$ 5.89$ 6.34$ 7.89$ 0.05$ 0.02!
Decoding$ 20.48$ 16.48$ 10.66$ 1.13$ 1.08$ 1.01$ 6.29$ 21.88$ 27.99$ 1.05$ 0.11!

cortexGM4$
Encoding$ 0.02$ 0.01$ 0.01$ 0.01$ 0.01$ 0.10$ 0.42$ 0.75$ 1.20$ 0.01$ <0.01!
Decoding$ 3.26$ 2.15$ 0.83$ 0.13$ 0.15$ 0.09$ 0.65$ 3.11$ 3.51$ 0.07$ 0.02!

cortexGM7$
Encoding$ <0.01$ <0.01$ <0.01$ <0.01$ <0.01$ 0.01$ 0.04$ 0.08$ 0.13$ <0.01$ <0.01!
Decoding$ 0.11$ 0.14$ 0.04$ 0.01$ <0.01$ 0.01$ 0.02$ 0.13$ 0.28$ <0.01$ <0.01!

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
5

10
15
20
25
30
35

α

Pr
ob

ab
ilit

y
(%

)

Estimation error rate
Under estimate

(a) Redundancy with different block error rates.

0M 3M 6M 9M 12M0

25

50

75

100

WiFi Throughput (bps)

R
ed

un
da

nc
y

(b
yt

es
)

 0

0.03

0.06

0.09

0.12

BE
R

SEDA
DLT
RAT
RS
ZiXOR

(b) Redundancy percentage comparison.

0M 3M 6M 9M 12M0

0.5

1

1.5

2

WiFi Throughput (bps)

R
et

ra
ns

m
is

si
on

 R
ou

nd
s

 0

0.03

0.06

0.09

0.12

BE
R

SEDA
DLT
RAT
RS
ZiXOR

(c) Transmission rounds comparison.

Fig. 13. Redundancy estimation.

We also notice that the improvement becomes very small as
the MCU becomes more powerful (Cortex-M4/Cortex-M7). On
the other hand, we should notice that the energy consumption of
Cortex-M4 and Cortex-M7 (with run mode power of 38mA and
208mA, respectively) is much higher than that of MSP430 (with
run mode power 1.8mA). Therefore, when used for low power
networks without dense computational tasks, ZiXOR can achieve
improvement in terms of coding delay.

5.2.2 Block error estimation

As described in Section 4.4, ZiXOR uses the IRS-based block
error estimation. This approach reduces the transmission overhead
whereas possibly increases the retransmission overhead when the
estimation is inaccurate.

We first recall the impact of FPs and FNs before presenting
the results. When FPs happen (an erroneous block is estimated
correct), the further recovery requires extra negotiations and
calculations. When FNs happen (an correct block is estimated
erroneous), the packet can still pass the packet level CRC check
and the block that is estimated erroneous will not incur any extra
overhead. When both FPs and FNs happen within a packet, the
retransmitted blocks will not match the erroneous blocks and
retransmissions are inevitable. The approach of summing up all
probabilities has an inherent bias on FN, thus most errors are
likely to be FNs.

Figure 12(a) shows the estimation accuracy with different
BERs. The corresponding packet reception rates (PRRs) are
denoted in the brackets. we observe that, when BER increases,
the estimation error rate decreases. The reason is that when
BER increases, there are more corrupted packets and less correct
packets. Then the fractions of FNs decrease and the fractions of
FPs increase. As the probability of FPs is inherently smaller than
that of FNs (Section 4.4), the overall error rate decreases.

Figure 12(b) shows the accuracy with different block sizes.
When block size increases, the probability of FNs first decreases
and then increases. The reason is that when block size rises,
more bytes can be used for error estimation, and the estimation
accuracy would increase. However, when the block size continues
to increase, more small error rates would be summed up, and there
will be more FNs. Similarly, since FPs happen only when all byte
errors are estimated correct, the probability of FPs will decrease
when more bytes are included in a block.

5.2.3 Redundancy estimation

We use moving average for redundancy estimation. The weight
of instant redundancy sample (expected number of erroneous
blocks) a (0⇠1) is the key for accurate estimation (the weight
of history is 1-a). We change a and conduct separate redundancy
estimations. The results are shown in Figure 13(a). We can see
that, in our experiment, a = 0.8 achieves the most accurate
estimation, which means the network condition is bursty and
instant samples should be weighed more. We can also see that
the retransmission probability is always much smaller than the
estimation error probability. The reason is that, retransmissions
happen only when the redundancy is under-estimated. From Figure
12, we can see that most errors of block error estimation are
FNs, thus the redundancy is more likely to be over-estimated, with
which retransmissions are not necessary.

We then compare the actually transmitted redundancies of
ZiXOR with other approaches under different interference levels
in Figure 13(b). Similar to [11], we use Iperf [35] to explicitly
control the Wi-Fi transmission rates, so as to tune the interference
conditions. We can see that under different interference conditions,
ZiXOR achieves the least number of redundancy. The reason is
two-fold: first, due to the bursty corruptions, bit errors are likely
clustered in several consecutive blocks; Second, XOR coding

11

0M 3M 6M 9M 12M0

25

50

75

100

WiFi Throughput (bps)

Th
ro

uh
pu

t (
 k

bp
s

)

SEDA
DLT
RAT
RS
ZiXOR

(a) Throughput comparison.

2 4 6 80

0.2

0.4

0.6

0.8

1

Transmissions for Delivering One Packet

C
D

F

RAT Seda DLT ZiXOR

(b) Transmission rounds comparison.

0M 3M 6M 9M 12M0

0.2

0.4

0.6

WiFi Throughput (bps)

D
at

a
La

te
nc

y
(s

)

CTP
SEDA
RAT
DLT
ZiXOR

(c) Latency comparison.

Fig. 14. Evaluation with CTP.

based approach recovers errors at the block level granularity, i.e.,
one block error can be recovered by one redundant block no matter
how many bits are incorrect in the block. DLT also recover errors
in block level. However, its redundancy depends on the linearity
of the coefficients of the received blocks. E.g., an 8-block DLT
packet can be expectedly recovered using 10 blocks.

We further study the retransmission rounds, which will be
necessary when the redundancy is under-estimated. It is worth
noting that we always use optimal parameters for RS/BCH code
in the experiment, such that the bit errors can never exceed its
recovery ability. Figure 13(c) shows the retransmission rounds.
We can see that the optimal RS code achieves the least number
of retransmission rounds when the Wi-Fi throughput is under
6Mbps. The reason is that RS code can recover in-consecutive
corruptions (about 13% in our measurement) as long as the errors
do not exceed the recovery ability. We can also see that ZiXOR
outperforms all other approaches except RS/RAT, the reason is
that ZiXOR distributes errors to different blocks, and can thus
recover one block error using one redundant block.

5.3 Testbed Results

Recall that we incorporate different coding schemes into CTP
to compare the performance. We compare three end-to-end
important metrics: throughput, transmission count, and data yield.
Throughput is the per-second number of bytes delivered from the
source node to the sink node. Transmission count is the number
of transmissions used for successfully delivering one packet to the
sink node.

Figure 14(a) compares the throughput of CTP using Seda,
DLT, RAT, RS and ZiXOR under different interferences. We can
see that (1) ZiXOR achieves the highest throughput under different
scenarios. The reason is that the decoding of ZiXOR has a 1⇥ time
relation with the number of block errors, while RAT/RS’s adds 2⇥
redundancy and DLT adds ⇡1.25⇥ redundancy for block errors.
(2) The improvement of ZiXOR over RAT and Seda increases
along with the interference. The reason is that when there are fewer
block errors, RS/RAT can select more lightweight coding schemes
(e.g., RS(15,13) and Hamming (7,4)). (3) The improvement over
DLT also increases. The reason is that ZiXOR coding can benefit
more from more bursty errors in packets, while DLT cannot
benefit from the burstiness. As a result, although both throughput
decreases, the improvement of ZiXOR over DLT increases.

Next, we take a step further to study why ZiXOR outperforms
other approaches. Figure 14(b) shows the transmission rounds
for delivering one packet. We can see that, (1) FEC approaches
(ZiXOR,DLT,RAT) have much fewer transmission rounds. More

Channel
12 14 16 18 20 22 24 26

Th
ro
ug
hp
ut

0

10

20

30

40

50

60
ZiXOR
RAT

Fig. 15. Comparison on different channels.

specifically, ZiXOR has the least number of transmission rounds.
The reason is two fold: a) it adaptively adds redundancy according
to the recent block error rates, and tends to cover the possible
block errors. b) Moreover, when decoding failures happen, the
already received blocks are still useful, which is likely to reduce
further retransmissions. (2) In ZiXOR, there are also some
fractions (about 19%) of packets that have 2 or more transmission
rounds. The reason is that not all corruptions are consecutive,
where retransmissions are needed. (3) Though RAT has fewer
transmission rounds than ZiXOR, its decoding time is much larger
than ZiXOR, thus the overall throughput of RAT is worse than
ZiXOR.

Figure 14(c) shows the 5-hop data delivery latency of
ZiXOR and other approaches. We can see that when the Wi-
Fi interference becomes severe, the latencies of all approaches
increase. Specifically, when Wi-Fi is off, ZiXOR has similar
latency performance with other approaches. When there is Wi-Fi
interference, ZiXOR’s latency is smaller than others. The reason is
that ZiXOR’s encoding/decoding is much more lightweight than
other approaches (as in Table 2).

Figure 15 shows the performance improvement of ZiXOR
compared to RAT, with different channels. We can see that 1)
Channels 15, 20, 25, 26 achieve higher throughput than other
channels. 2) The improvement of ZiXOR to RAT on these
channels is smaller than those in other channels. The reason is
two-fold: Firstly, the PRRs on these channels are higher than those
in other channels, leaving less room for improvement. Secondly,
these channels have smaller fraction of single-burst packets than
other channels.

5.4 Comparison with interleaving

RS code assumes the use of symbol level interleaving to distribute
the errors to the whole packet and then recover any k random

12

errors with RS code for each block. Differently, ZiXORs modulo-
k coding can directly distribute the bursty errors into different
redundant blocks and recover the errors using simple XOR
code. ZiXOR is more computationally lightweight. Besides, the
difference between ZiXOR and interleaving-based RS code is
listed as follows.

1) RS code allows for random error distribution and can
be used in both bursty and non-bursty scenarios while
ZiXOR can be mainly used in bursty scenarios.

2) The recovery ability is different. RS(15,7) can recover up
to four bit errors using eight redundant bits. Two bits are
required to recover one bit error. Interleaving is used to
avoid too many errors clustered in one block, such that RS
code can be applied. Differently, ZiXOR recovers errors
in block level. Eight redundant bits can recover up to
eight bit errors. Compared to RS code, one bit is able to
recover one bit error, which allows us to greatly reduce
the amount of redundancy.

3) Interleaving-based RS code requires the whole payload to
be buffered before transmission while ZiXOR transmits
native payload with encoded blocks, and do not require
the whole payload to be buffered. This could be a
potential advantage for scenarios with dense network
traffic demands.

6 CONCLUSIONS

In this paper, we study the problem of ZigBee error recovery
under Wi-Fi interference. Motivated by the bursty nature of Wi-Fi
interfered corruptions, we propose a novel forward error recovery
scheme for improving ZigBee communication performance under
Wi-Fi interference. While bringing the ability of FEC with
extremely low decoding overhead using only XOR operations, we
also eliminate all control overhead by using the in-packet RSSI
sampling technique. Overall, ZiXOR is lightweight in terms of
both transmission and coding, and can indeed improve ZigBee
performance under Wi-Fi interference. We implement ZiXOR
with TelosB/TinyOS, and the evaluation results show that ZiXOR
greatly outperforms state-of-the-art works.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science
Foundation of China (No. 61602095 and No. 61472360), the
Fundamental Research Funds for the Central Universities (No.
ZYGX2016KYQD098 and No. 2016FZA5010), National Key
Technology R&D Program (Grant No. 2014BAK15B02), CCF-
Intel Young Faculty Researcher Program, CCF-Tencent Open
Research Fund, China Ministry of Education—China Mobile
Joint Project under Grant No. MCM20150401 and the EU FP7
CLIMBER project under Grant Agreement No. PIRSES-GA-
2012-318939. Wei Dong is the corresponding author.

REFERENCES

[1] C. Reinisch, M. J. Kofler, and W. Kastner, “Thinkhome: A smart home
as digital ecosystem,” in Proc. of IEEE DEST, 2010.

[2] A. Milenković, C. Otto, and E. Jovanov, “Wireless sensor networks for
personal health monitoring: Issues and an implementation,” Computer
communications, vol. 29, no. 13, pp. 2521–2533, 2006.

[3] A. Wood, G. Virone, T. Doan, Q. Cao, L. Selavo, Y. Wu, L. Fang,
Z. He, S. Lin, and J. Stankovic, “Alarm-net: Wireless sensor networks
for assisted-living and residential monitoring,” University of Virginia
Computer Science Department Technical Report, vol. 2, 2006.

[4] J.-H. Hauer, V. Handziski, and A. Wolisz, “Experimental study of the
impact of wlan interference on ieee 802.15. 4 body area networks,” in
Wireless sensor networks. Springer, 2009, pp. 17–32.

[5] X. Zheng, Z. Cao, J. Wang, Y. He, and Y. Liu, “Zisense: towards
interference resilient duty cycling in wireless sensor networks,” in Proc.
of ACM SenSys, 2014, pp. 119–133.

[6] J. Hou, B. Chang, D.-K. Cho, and M. Gerla, “Minimizing 802.11
interference on zigbee medical sensors,” in Proc. of the Fourth
International Conference on Body Area Networks, 2009.

[7] R. K. Ganti, P. Jayachandran, H. Luo, and T. F. Abdelzaher, “Datalink
streaming in wireless sensor networks,” in Proc. of ACM SenSys, 2006.

[8] B. Han, A. Schulman, F. Gringoli, N. Spring, B. Bhattacharjee, L. Nava,
L. Ji, S. Lee, and R. R. Miller, “Maranello: Practical partial packet
recovery for 802.11.” in Proc. of USENIX NSDI, 2010.

[9] J.-H. Hauer, A. Willig, and A. Wolisz, “Mitigating the effects of
rf interference through rssi-based error recovery,” in Wireless Sensor
Networks. Springer, 2010, pp. 224–239.

[10] K. C.-J. Lin, N. Kushman, and D. Katabi, “Ziptx: Harnessing partial
packets in 802.11 networks,” in Proc. of ACM MobiCom, 2008.

[11] C.-J. M. Liang, N. B. Priyantha, J. Liu, and A. Terzis, “Surviving Wi-Fi
Interference in Low-power Zigbee Networks,” in Proc. of ACM SenSys,
2010.

[12] P. Guo, J. Cao, K. Zhang, and X. Liu, “Enhancing zigbee throughput
under wifi interference using real-time adaptive coding,” in Proc. of IEEE
INFOCOM, 2014.

[13] B. Chen, Z. Zhou, Y. Zhao, and H. Yu, “Efficient error estimating coding:
Feasibility and applications,” IEEE/ACM Transactions on Networking
(TON), vol. 20, no. 1, pp. 29–44, 2012.

[14] J. Huang, G. Xing, G. Zhou, and R. Zhou, “Beyond co-existence:
Exploiting wifi white space for zigbee performance assurance,” in Proc.
of IEEE ICNP, 2010.

[15] X. Zhang and K. G. Shin, “Enabling coexistence of heterogeneous
wireless systems: case for zigbee and wifi,” in Proc. of ACM MobiHoc,
2011.

[16] F. Barac, M. Gidlund, and T. Zhang, “Scrutinizing bit-and symbol-
errors of ieee 802.15. 4 communication in industrial environments,”
Instrumentation and Measurement, IEEE Transactions on, vol. 63, no. 7,
p. 1783C1794, 2014.

[17] W. Du, Z. Li, J. C. Liando, and M. Li, “From rateless to distanceless:
enabling sparse sensor network deployment in large areas,” in Proc. of
SenSys, 2014.

[18] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis, “Collection
tree protocol,” in Proc. of ACM SenSys, 2009.

[19] K. Srinivasan, M. A. Kazandjieva, S. Agarwal, and P. Levis, “The b -
factor: measuring wireless link burstiness,” in Proceedings of the 6th
ACM conference on Embedded network sensor systems. ACM, 2008,
pp. 29–42.

[20] K. Srinivasan, M. Jain, J. Choi, T. Azim, E. Kim, P. Levis, and
B. Krishnamachari, “The k Factor: Inferring Protocol Performance Using
Inter-link Reception Correlation,” in Proc. of ACM MobiCom, 2010.

[21] I. Hou, Y. Tsai, T. Abdelzaher, and I. Gupta, “AdapCode: Adaptive
Network Coding for Code Updates in Wireless Sensor Networks,” in
Proc. of INFOCOM, 2008.

[22] M. H. Alizai, O. Landsiedel, J. Á. B. Link, S. Götz, and K. Wehrle,
“Bursty traffic over bursty links,” in Proceedings of the 7th ACM
Conference on Embedded Networked Sensor Systems. ACM, 2009,
pp. 71–84.

[23] K. Srinivasan, P. Dutta, A. Tavakoli, and P. Levis, “Understanding the
causes of packet delivery success and failure in dense wireless sensor
networks,” in Proc. of SenSys, 2006.

[24] F. Hermans, O. Rensfelt, T. Voigt, E. Ngai, L.-Å. Norden, and
P. Gunningberg, “Sonic: classifying interference in 802.15. 4 sensor
networks,” in Proc. of IPSN, 2013.

[25] T. Liu and A. E. Cerpa, “Temporal Adaptive Link Quality Prediction
with Online Learning,” ACM Transactions on Sensor Networks, vol. 10,
no. 3, 2014.

[26] G. Wei, Y. Ling, B. Guo, B. Xiao, and A. V. Vasilakos, “Prediction-based
data aggregation in wireless sensor networks: Combining grey model and
kalman filter,” Computer Communications, vol. 34, no. 6, pp. 793–802,
2011.

[27] T. Bujlow, T. Riaz, and J. M. Pedersen, “A method for classification
of network traffic based on c5. 0 machine learning algorithm,”
in Computing, Networking and Communications (ICNC), 2012
International Conference on. IEEE, 2012, pp. 237–241.

[28] Z. Chen and D. Wu, “Prediction of transmission distortion for wireless
video communication: Analysis,” Image Processing, IEEE Transactions
on, vol. 21, no. 3, pp. 1123–1137, 2012.

13

[29] H. Dubois-Ferrière, D. Estrin, and M. Vetterli, “Packet combining in
sensor networks,” in Proc. of ACM SenSys, 2005, pp. 102–115.

[30] T. Jin, G. Noubir, and B. Sheng, “Wizi-cloud: Application-transparent
dual zigbee-wifi radios for low power internet access,” in Proc. of IEEE
INFOCOM, 2011, pp. 1593–1601.

[31] ——, “Wizi-cloud: Application-transparent dual zigbee-wifi radios for
mobile internet,” in Tech. Report, 2012.

[32] F. Sutton and L. Thiele, “Wake-up flooding: an asynchronous network
flooding primitive,” in Proceedings of the 14th International Conference
on Information Processing in Sensor Networks. ACM, 2015, pp. 360–
361.

[33] Z. Zhao, W. Dong, J. Bu, Y. Gu, and C. Chen, “Link-correlation-aware
data dissemination in wireless sensor networks,” Industrial Electronics,
IEEE Transactions on, vol. 62, no. 9, pp. 5747–5757, 2015.

[34] J. J. Pérez-Solano and S. Felici-Castell, “Adaptive time window linear
regression algorithm for accurate time synchronization in wireless sensor
networks,” Ad Hoc Networks, vol. 24, pp. 92–108, 2015.

[35] A. Tirumala, F. Qin, J. Dugan, J. Ferguson, and K. Gibbs, “Iperf: The
tcp/udp bandwidth measurement tool,” htt p://dast. nlanr. net/Projects,
2005.

Zhiwei Zhao (S’11-M’16) received his PhD
degree in computer science from Zhejiang Uni-
versity in 2015. He is currently an assistant pro-
fessor at the College of Computer Science and
Engineering in University of Electronic Science
and Technology of China (UESTC). His research
interests include on wireless computing, hetero-
geneous wireless networks, protocol design and
network coding. He is a member of IEEE.

Wei Dong (S’08-M’11) received the B.S. and
Ph.D. degrees in computer science from Zhe-
jiang University, Hangzhou, China, in 2005 and
2011, respectively. He is currently an Associate
Professor with the College of Computer Sci-
ence, Zhejiang University .His research interests
include network measurement, wireless and
mobile computing, and sensor networks. He is
an member of IEEE and ACM, and a senior
member of CCF.

Gonglong Chen (S’15) received his BS degree
from the College of Criminal Justice at East
China University of Political Science and Law.
He is currently a second year Ph.D student at
the College of Computer Science in Zhejiang
University. His current research interests include
wireless and mobile computing. He is a student
member of IEEE.

Geyong Min (M’01) is the Chair Professor and
Director of High Performance Computing and
Networking (HPCN) Research Group at the
University of Exeter, UK. He received the PhD
degree in Computing Science from the Univer-
sity of Glasgow, UK, in 2003, and the B.Sc.
degree in Computer Science from Huazhong
University of Science and Technology, China, in
1995. He joined the University of Bradford as a
Lecturer in 2002, became a Senior Lecturer in
2005 and a Reader in 2007, and was promoted

to a Professor in Computer Science in 2012. His main research interests
include Next-Generation Internet, Wireless Networks, Mobile Com-
puting, Cloud Computing, Big Data, Multimedia Systems, Information
Security, System Modelling and Performance Optimization.

Tao Gu (S’03-M’07-SM’14) is currently an As-
sociate Professor in Computer Science at RMIT
University, Australia. He received his Bachelor
degree from Huazhong University of Science
and Technology, M.Sc. from Nanyang Tech-
nological University, Singapore, and Ph.D. in
computer science from National University of
Singapore.His current research interests include
mobile computing, ubiquitous/pervasive com-
puting, wireless sensor networks, distributed
network systems, sensor data analytics, Internet

of Things, and online social networks. He is a Senior Member of IEEE
and a member of ACM.

Jiajun Bu (M’06) received the B.S. and Ph.D.
degrees in computer science from Zhejiang
University, China, in 1995 and 2000, respec-
tively. He is a professor in College of Computer
Science and the deputy dean of the Department
of Digital Media and Network Technology at Zhe-
jiang University. His research interests include
embedded system, mobile multimedia, and data
mining. He is a member of IEEE and ACM.

