26 research outputs found

    Simultaneous Segmentation and Filtering Via Reduced Graph Cuts

    Get PDF
    12 pagesInternational audienceRecently, optimization with graph cuts became very attractive but generally remains limited to small-scale problems due to the large memory requirement of graphs, even when restricted to binary variables. Unlike previous heuristics which generally fail to fully capture details, another band-based method was proposed for reducing these graphs in image segmentation. This method provides small graphs while preserving thin structures but do not offer low memory usage when the amount of regularization is large. This is typically the case when images are corrupted by an impulsive noise. In this paper, we overcome this situation by embedding a new parameter in this method to both further reducing graphs and filtering the segmentation. This parameter avoids any post-processing steps, appears to be generally less sensitive to noise variations and offers a good robustness against noise. We also provide an empirical way to automatically tune this parameter and illustrate its behavior for segmenting grayscale and color images

    An Investigation into Segmenting Traffic Images Using Various Types of Graph Cuts

    Get PDF
    In computer vision, graph cuts are a way of segmenting an image into multiple areas. Graphs are built using one node for each pixel in the image combined with two extra nodes, known as the source and the sink. Each node is connected to several other nodes using edges, and each edge has a specific weight. Using different weighting schemes, different segmentations can be performed based on the properties used to create the weights. The cuts themselves are performed using an implementation of a solution to the maximum flow problem, which is then changed into a minimum cut according to the max-flow/min-cut theorem. In this thesis, several types of graph cuts are investigated with the intent to use one of them to segment traffic images. Each of these variations of graph cut is explained in detail and compared to the others. Then, one is chosen to be used to detect traffic. Several weighting schemes based on grayscale value differences, pixel variances, and mean pixel values from the test footage are presented to allow for the segmentation of video footage into vehicles and backgrounds using graph cuts. Our method of segmenting traffic images via graph cuts is then tested on several videos of traffic in various lighting conditions and locations. Finally, we compare our proposed method to a similarly performing method: background subtraction

    Reduced graphs for min-cut/max-flow approaches in image segmentation

    No full text
    International audienceIn few years, min-cut/max-flow approach has become a leading method for solving a wide range of problems in computer vision. However, min-cut/max-flow approaches involve the construction of huge graphs which sometimes do not fit in memory. Currently, most of the max-flow algorithms are impracticable to solve such large scale problems. In this paper, we introduce a new strategy for reducing exactly graphs in the image segmentation context. During the creation of the graph, we test if the node is really useful to the max-flow computation. Numerical experiments validate the relevance of this technique to segment large scale images

    Fast and Memory Efficient Segmentation of Lung Tumors Using Graph Cuts

    No full text
    12In medical imaging, segmenting accurately lung tumors stay a quite challenging task when touching directly with healthy tissues. In this paper, we address the problem of extracting interactively these tumors with graph cuts. The originality of this work consists in (1) reducing input graphs to reduce resource consumption when segmenting large volume data and (2) introducing a novel energy formulation to inhibit the propagation of the object seeds. We detail our strategy to achieve relevant segmentations of lung tumors and compare our results to hand made segmentations provided by an expert. Comprehensive experiments show how our method can get solutions near from ground truth in a fast and memory efficient way

    Methods for Real-time Visualization and Interaction with Landforms

    Get PDF
    This thesis presents methods to enrich data modeling and analysis in the geoscience domain with a particular focus on geomorphological applications. First, a short overview of the relevant characteristics of the used remote sensing data and basics of its processing and visualization are provided. Then, two new methods for the visualization of vector-based maps on digital elevation models (DEMs) are presented. The first method uses a texture-based approach that generates a texture from the input maps at runtime taking into account the current viewpoint. In contrast to that, the second method utilizes the stencil buffer to create a mask in image space that is then used to render the map on top of the DEM. A particular challenge in this context is posed by the view-dependent level-of-detail representation of the terrain geometry. After suitable visualization methods for vector-based maps have been investigated, two landform mapping tools for the interactive generation of such maps are presented. The user can carry out the mapping directly on the textured digital elevation model and thus benefit from the 3D visualization of the relief. Additionally, semi-automatic image segmentation techniques are applied in order to reduce the amount of user interaction required and thus make the mapping process more efficient and convenient. The challenge in the adaption of the methods lies in the transfer of the algorithms to the quadtree representation of the data and in the application of out-of-core and hierarchical methods to ensure interactive performance. Although high-resolution remote sensing data are often available today, their effective resolution at steep slopes is rather low due to the oblique acquisition angle. For this reason, remote sensing data are suitable to only a limited extent for visualization as well as landform mapping purposes. To provide an easy way to supply additional imagery, an algorithm for registering uncalibrated photos to a textured digital elevation model is presented. A particular challenge in registering the images is posed by large variations in the photos concerning resolution, lighting conditions, seasonal changes, etc. The registered photos can be used to increase the visual quality of the textured DEM, in particular at steep slopes. To this end, a method is presented that combines several georegistered photos to textures for the DEM. The difficulty in this compositing process is to create a consistent appearance and avoid visible seams between the photos. In addition to that, the photos also provide valuable means to improve landform mapping. To this end, an extension of the landform mapping methods is presented that allows the utilization of the registered photos during mapping. This way, a detailed and exact mapping becomes feasible even at steep slopes

    3D Motion Analysis via Energy Minimization

    Get PDF
    This work deals with 3D motion analysis from stereo image sequences for driver assistance systems. It consists of two parts: the estimation of motion from the image data and the segmentation of moving objects in the input images. The content can be summarized with the technical term machine visual kinesthesia, the sensation or perception and cognition of motion. In the first three chapters, the importance of motion information is discussed for driver assistance systems, for machine vision in general, and for the estimation of ego motion. The next two chapters delineate on motion perception, analyzing the apparent movement of pixels in image sequences for both a monocular and binocular camera setup. Then, the obtained motion information is used to segment moving objects in the input video. Thus, one can clearly identify the thread from analyzing the input images to describing the input images by means of stationary and moving objects. Finally, I present possibilities for future applications based on the contents of this thesis. Previous work in each case is presented in the respective chapters. Although the overarching issue of motion estimation from image sequences is related to practice, there is nothing as practical as a good theory (Kurt Lewin). Several problems in computer vision are formulated as intricate energy minimization problems. In this thesis, motion analysis in image sequences is thoroughly investigated, showing that splitting an original complex problem into simplified sub-problems yields improved accuracy, increased robustness, and a clear and accessible approach to state-of-the-art motion estimation techniques. In Chapter 4, optical flow is considered. Optical flow is commonly estimated by minimizing the combined energy, consisting of a data term and a smoothness term. These two parts are decoupled, yielding a novel and iterative approach to optical flow. The derived Refinement Optical Flow framework is a clear and straight-forward approach to computing the apparent image motion vector field. Furthermore this results currently in the most accurate motion estimation techniques in literature. Much as this is an engineering approach of fine-tuning precision to the last detail, it helps to get a better insight into the problem of motion estimation. This profoundly contributes to state-of-the-art research in motion analysis, in particular facilitating the use of motion estimation in a wide range of applications. In Chapter 5, scene flow is rethought. Scene flow stands for the three-dimensional motion vector field for every image pixel, computed from a stereo image sequence. Again, decoupling of the commonly coupled approach of estimating three-dimensional position and three dimensional motion yields an approach to scene ow estimation with more accurate results and a considerably lower computational load. It results in a dense scene flow field and enables additional applications based on the dense three-dimensional motion vector field, which are to be investigated in the future. One such application is the segmentation of moving objects in an image sequence. Detecting moving objects within the scene is one of the most important features to extract in image sequences from a dynamic environment. This is presented in Chapter 6. Scene flow and the segmentation of independently moving objects are only first steps towards machine visual kinesthesia. Throughout this work, I present possible future work to improve the estimation of optical flow and scene flow. Chapter 7 additionally presents an outlook on future research for driver assistance applications. But there is much more to the full understanding of the three-dimensional dynamic scene. This work is meant to inspire the reader to think outside the box and contribute to the vision of building perceiving machines.</em

    A Non-Heuristic Reduction Method For Graph Cut Optimization

    Get PDF
    Graph cuts optimization is now well established for their efficiency but remains limited to the minimization of some Markov Random Fields (MRF) over a small number of variables due to the large memory requirement for storing the graphs. An existing strategy to reduce the graph size consists in testing every node and to create the node satisfying a given local condition. The remaining nodes are typically located in a thin band around the object to segment. However, there does not exists any theoretical guarantee that this strategy permits to construct a global minimizer of the MRF. In this paper, we propose a local test similar to already existing test for reducing these graphs. A large part of this paper consists in proving that any node satisfying this new test can be safely removed from the non-reduced graph without modifying its max-flow value. The constructed solution is therefore guanranteed to be a global minimizer of the MRF. Afterwards, we present numerical experiments for segmenting grayscale and color images which confirm this property while globally having memory gains similar to ones obtained with the previous existing local test

    Patch-based segmentation with spatial context for medical image analysis

    Get PDF
    Accurate segmentations in medical imaging form a crucial role in many applications from pa- tient diagnosis to population studies. As the amount of data generated from medical images increases, the ability to perform this task without human intervention becomes ever more de- sirable. One approach, known broadly as atlas-based segmentation, is to propagate labels from images which have already been manually labelled by clinical experts. Methods using this ap- proach have been shown to be e ective in many applications, demonstrating great potential for automatic labelling of large datasets. However, these methods usually require the use of image registration and are dependent on the outcome of the registration. Any registrations errors that occur are also propagated to the segmentation process and are likely to have an adverse e ect on segmentation accuracy. Recently, patch-based methods have been shown to allow a relaxation of the required image alignment, whilst achieving similar results. In general, these methods label each voxel of a target image by comparing the image patch centred on the voxel with neighbouring patches from an atlas library and assigning the most likely label according to the closest matches. The main contributions of this thesis focuses around this approach in providing accurate segmentation results whilst minimising the dependency on registration quality. In particular, this thesis proposes a novel kNN patch-based segmentation framework, which utilises both intensity and spatial information, and explore the use of spatial context in a diverse range of applications. The proposed methods extend the potential for patch-based segmentation to tolerate registration errors by rede ning the \locality" for patch selection and comparison, whilst also allowing similar looking patches from di erent anatomical structures to be di erentiated. The methods are evaluated on a wide variety of image datasets, ranging from the brain to the knees, demonstrating its potential with results which are competitive to state-of-the-art techniques.Open Acces
    corecore