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Abstract

Accurate segmentations in medical imaging form a crucial role in many applications from pa-

tient diagnosis to population studies. As the amount of data generated from medical images

increases, the ability to perform this task without human intervention becomes ever more de-

sirable. One approach, known broadly as atlas-based segmentation, is to propagate labels from

images which have already been manually labelled by clinical experts. Methods using this ap-

proach have been shown to be effective in many applications, demonstrating great potential for

automatic labelling of large datasets. However, these methods usually require the use of image

registration and are dependent on the outcome of the registration. Any registrations errors

that occur are also propagated to the segmentation process and are likely to have an adverse

effect on segmentation accuracy. Recently, patch-based methods have been shown to allow a

relaxation of the required image alignment, whilst achieving similar results. In general, these

methods label each voxel of a target image by comparing the image patch centred on the voxel

with neighbouring patches from an atlas library and assigning the most likely label according

to the closest matches. The main contributions of this thesis focuses around this approach

in providing accurate segmentation results whilst minimising the dependency on registration

quality. In particular, this thesis proposes a novel kNN patch-based segmentation framework,

which utilises both intensity and spatial information, and explore the use of spatial context in

a diverse range of applications. The proposed methods extend the potential for patch-based

segmentation to tolerate registration errors by redefining the “locality” for patch selection and

comparison, whilst also allowing similar looking patches from different anatomical structures

to be differentiated. The methods are evaluated on a wide variety of image datasets, ranging

from the brain to the knees, demonstrating its potential with results which are competitive to

state-of-the-art techniques.
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Chapter 1

Introduction

As the society becomes ever more data driven, the explosion in the amount of available data has

yielded substantial advancement in machine learning and data analysis techniques as well as

the scientific understanding of the world we live in. In medicine, the use of medical images has

enabled better understanding of the diversity of biological processes and medical conditions,

driving the advancement of medical knowledge. Further to this, computer aided diagnosis and

clinical decision support systems also benefit from the growth in information. Image segmen-

tation plays a crucial role in this, enabling quantitative analysis of the anatomical structures

captured in the images. However, the amount of data generated from medical imaging can take

a substantial amount of time for clinicians to manually segment, often becoming prohibitive

as a regular task. Consequently, automatic methods for performing these tasks are becoming

more important for image analysis and are an enabling factor for large population studies in

addition to aiding patient-specific diagnosis. Nonetheless, obtaining accurate results is a key

priority and still poses a challenge in many medical imaging applications.

In this thesis, the segmentation objective is broad and general, focusing on a specific method-

ology rather than a specific application. A diverse range of applications are used to test and

evaluate the proposed methods, each of which providing different challenges to overcome. Al-

though not exhaustive, these applications are topical and provide a general representation of

the problems faced in medical imaging and enable the proposed solutions to be demonstrated
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as being relevant in the field. The areas of applications in which the methods are applied and

evaluated are as follows:

• Hippocampus segmentation in brain magnetic resonance (MR) images. The

hippocampus is an important structure in the brain which provides cognitive functionality.

Changes in the hippocampus provide a key biomarker for the onset of dementia and

other cognitive or neurological problems. One approach in detecting these changes is by

identifying strophy in the hippocampal volume over time, which can be calculated after

obtaining the hippocampus segmentation [138], [89].

• Bone and cartilage segmentation for the tibia and femur in knee MR images.

Knee injuries can occur from everyday life, and damage in the joints can build up over

time. This commonly culminates in osteoarthritis of the knee, where the cartilage in

the joints wear away, leading to painful conditions for patients [46]. Bone and cartilage

segmentations can be used to provide biomarkers for disease severity and in diagnosis,

treatment planning and prognosis of patients [87], [189].

• Proximal pelvic limb muscles segmentation in canine leg MR images. The study

of these muscles provide advancement in the knowledge of muscular dystrophies, which

are a group of genetic diseases that can occur worldwide and for all races. Currently

there is no cure for this condition, but there are various treatment options and ongoing

research. Similar genetic conditions also occur in dogs, and they are often used as test

subjects for new treatments. Segmentation of the various muscles enable quantitative

analysis in clinical research and trials [98], [181].

• Left ventricle, myocadium and right ventricle segmentation in cardiac MR im-

ages. Cardiovascular diseases are one of the major causes of death in the western world.

Segmentations of the various components of the heart enable cardiac function analysis

and provide estimations of measures such as the left ventricular mass, end-diastolic vol-

ume, ejection fraction, regional wall motion and regional wall thickening. These measures

are import in routine clinical applications as well as in cardiovascular research [68], [37].
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• Liver, spleen, pancreas and kidney segmentation in abdominal computed to-

mography (CT) images. Segmentation of the abdominal organs enable 3D navigable

visualisations which can be used for surgical planning as well as providing quantitative

analysis for the organs. A detailed mapping of the abdominal regional provides invaluable

input for computer aided diagnosis and laparascopic surgery assistance [88]. In addition,

they can be used for radiotherapy planning as well as cancer detection and staging [130],

[154].

(a) Brain MRI (b) Knee MRI (c) Canine Leg MRI

(d) Cardiac MRI (e) Abdominal CT

Figure 1.1: A snapshot of the different areas of application in this thesis, with anatomical
structures of interest outlined in colour.

1.1 Image Modalities

There are many image modalities that can be employed in medical imaging, ranging from 2D to

4D scans and utilising very different technologies. This thesis focuses on the segmentation of 3D

anatomical structures from Magnetic Resonance (MR) and Computed Tomography (CT) im-

ages, which are the most general and commonly used modalities for 3D structural analysis and
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(a) MR (b) CT

Figure 1.2: Comparing MR and CT images of the abdominal region from different subjects.

segmentation. MR and CT imaging both have their own advantages and limitations depend-

ing on the application, but are considered complementary imaging technologies in structural

imaging [1].

1.1.1 Magnetic Resonance (MR)

Magnetic resonance imaging exploits a quantum mechanical property of protons, mostly in

the form of hydrogen atoms1, and uses strong magnetic fields and radio waves to excite these

atoms whilst measuring the response. The principle behind this relies on detecting changes in

the spin of hydrogen atoms, which can be localised, thus building an image of the presence

of these atoms [75]. There is a high presence of hydrogen atoms within the body in the form

of water and fat, with different quantities present in different tissues, which produce different

signals.

Ordinarily, hydrogen atoms spin in random alignment, however a strong magnetic field can

align the atoms in their spin axis. When aligned, the atoms can spin in two possible directions,

and are at equilibrium with generally no net magnetisation. A radio frequency (RF) pulse

can then be applied such that it causes the spin directions to change and align, affecting the

spin equilibrium in a phenomenon known as resonance. The alignment in the spin of the

atoms produces their own magnetic field, and when the RF pulse is turned off, the atoms lose

their magnetisation and return to their original states in equilibrium in phenomenon known as

1Other atoms such as sodium have also been investigated.
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relaxation. The relaxation releases energy which is detectable, and this is used to create the

MR image. The energy can be released from the atoms in two ways, spin-lattice interactions

and spin-spin interactions. In spin-lattice interactions, there is an energy exchange with the

surroundings occurs in T1 time, whilst in spin-spin interactions, the atoms exchange energy

between themselves in a more rapid process which occurs in T2 time. Different tissues have

different T1 and T2 time constants, thus providing different signals and contrast in the acquired

image. In addition, different images can be captured by altering the echo time (TE), the time

between each pulse and signal measurement, as well as the repetition time (TR), the time

between two RF pulses. The variation in TE and TR provides three main modalities:

• T1 weighted - if the TR and TE is short, tissues with shorter T1 times would have

released more energy and will appear brighter than tissues with longer T1 times. Thus,

the image intensities is dependent on the T1 time of the different tissues.

• T2 weighted - if the TR and TE is long, then all tissues would have time to release

their energy, so then differences in signal strength would depend on the level of spin-spin

interactions which occur.

• Proton density weighted - if a long TR and short TE is used, the strength of the

signal depends on the strength of the acquired magnetisation, which is dependent on the

density of the hydrogen atoms.

MR scans do not damage tissues or cause biological harm, however any ferromagnetic foreign

bodies would cause problems, such as heating and imaging artifacts, due to the strong magnetic

field. This means that certain medical devices and implants may not be safe as well as anyone

with injuries from shell fragments or other metallic objects. Overall, it is highly suited to

general medical imaging, but not emergency situations due to the potential presence of any

ferromagnetic foreign bodies and also the time required for a scan, which differs depending on

the scanner and application. It is also often used for clinical studies due to the non-ionising

nature of the image acquisition process, which allows for repeat scans without causing subjects

any harm.
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1.1.2 Computed Tomography (CT)

Computed Tomography uses X-rays in a similar principle to standard 2D X-ray imaging, where

projecting an X-ray through a body produces a shadow-like remnant when it is blocked by

the various tissues within the body. X-rays are absorbed or attenuated differently by different

tissues, where hard tissues like the bone attenuate X-rays much more than soft tissues like

muscles. In CT scans, an X-ray source and detector2, positioned on opposite sides of the

scanner, acquire a series of cross-sectional scans of the target object at precise rotational steps

around a predefined axis. The steps are usually defined at 0.25◦ to 1◦, producing 1440 to 360

images in a full 360◦ rotation. These scans are then processed using tomographic reconstruction

algorithms, such as Feldkamp’s filtered back-projection algorithm [63] or more recent variations

such as [121], [148] to generate 2D slices which can then be stacked up to create a 3D volume

[84].

X-rays are an ionising radiation, and as such can be harmful to the body. However CT scans

provide high resolution images which are much faster to acquire than MR images and are not

limited by potential metallic objects within the patient, although metallic objects can produce

artifacts. CT scans are more widely used in emergency situations than MRI but are also well

suited for other applications such as bone injuries and cancer detection since CT scans provides

good soft tissue differentiation as well as being able to outline bones inside the body very

accurately.

1.1.3 Other Imaging Modalities

In addition to MR and CT, segmentation of images in other modalities are also often necessary,

although they have not been used in the scope this thesis. There are a range of modalities which

utilise other physical properties to generate 3D images and may have more application-specific

uses. These vary from the use of high frequency sound waves such as in Ultrasound to using

radioactive isotopes which emit gamma rays such as PET and SPECT.

2Some of the more recently developed scanners feature multiple pairs of x-ray sources and detectors
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Ultrasound is often associated with imaging the fetus in pregnant women, but also has broader

uses such as for abdominal organs, heart, breasts and other tissues in the body. The process

is fast, non-ionising and relatively cheap compared to other modalities, however the images

produced also tends to be much noisier and having lower quality compared to other modalities.

PET and SPECT, on the other hand, involves exposure to small doses of ionising radiation

emitted by the radioactive isotopes and are much more expensive and time consuming for each

acquisition. However, they provide images which are primarily used for functional analysis of

organs such as the heart or the brain, in addition to cancer detection, rather than for structural

analysis where MR and CT are better suited. In some cases it is possible to combine modalities,

such as with PET-CT, PET-MRI or SPECT-CT images, which provides an image of both the

functional and the structural aspects of the anatomy in a spatially coherent form. This can be

performed by specialised hybrid machines [26], [54], [93], or they can fused from separate scans

post-acquisition [188].

There are also additional modalities developed more recently which utilise other physical prop-

erties and effects to generate the image. These include photoacoustic (or optoacoustic) imaging

[182] where the photoacoustic effect is used, combining ultrasound and electromagnet waves

(particularly light), and tactile imaging, which measures mechanical pressure responses in soft

tissues [60]. These are not yet widely used in clinical settings, but the development of new

modalities for imaging are an active research area in the field of medical physics.

1.2 Challenges in Image Segmentation

The task of image segmentation is essentially a labelling task where each pixel or voxel is

assigned a label according to its characteristics within the image. The label is usually predefined

to have some semantic meaning such as to denote an object, and the process could be carried

out completely manually by a human expert, semi-automatically with some human input,

or automatically without any human input. The result of image segmentation is an image

partitioned into regions where the pixels or voxels of each region have some common property
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(a) itk-SNAP (b) Microsoft’s GeoS

Figure 1.3: Examples of GUI tools for performing manual segmentations. With itk-SNAP, the
user places marks to create polygons to delineate relevant structures slice-by-slice throughout
the volume. With GeoS, the user can place seeds in the image for different labels and then run
an algorithm to resolve the non-seeded regions.

or meaning. In medical imaging, segmentation is often performed to impose structure on the

data, identifying different tissue types and enabling quantitative analysis of what is captured

in the image to be performed more easily.

Manual and semi-automatic segmentations generally involve the use of a graphical user interface

where the user can either label individual voxels or place seeds within the image for each label

and then running an algorithm, such as region growing, to resolve the non-seeded regions (see

Figure 1.3). This can be time consuming for the user, and may require application specific

knowledge. Furthermore, depending on the repetitive nature and difficulty of the task, each

image may need to be segmented several times in order to minimise human errors. As such, this

approach may not be scalable to large datasets, but is still useful in generating training data

for automatic segmentation methods. Human error is often hard to completely avoid, but it

can be taken into account for to determine the reliability of the manual segmentations. When

a single rater is used to segment an image multiple times, the segmentation will often differ in

some small way each time. This difference is known as intra-observer error. When multiple

experts or raters are used to minimise the systematic error of an individual, the segmentation

may also differ between the raters. This difference is known as inter-observer error.

The aim of automatic segmentation algorithms is to overcome the human resource requirement
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of manual or semi-automatic segmentation tasks whilst also reducing potential human error

and improving consistency. This would empower large-scale scientific studies as well as opening

doors for other applications in computer vision such as object detection and recognition. The

development of these methods is vital to many research projects, and would have a major

impact if they can be transferred into clinical settings. Although a lot work has already been

carried out in this area, resulting in significant advancement, there are still many limitations

in the state-of-the art methods.

In its simplest form, image segmentation can be a binary labelling tasking, separating the

background pixels from an object of interest (or the foreground), but the complexity of the

task is very much dependent on the application. For example, a simple case could be when the

background is highly dissimilar from the foreground, such as a dark object in front of a light

background, however in practice it is rarely this straight forward. In many applications, there

may not be much visual dissimilarity between the foreground and the background, and there

might also be multiple objects of interest which all need to be correctly labelled as well. In

addition, many factors can hinder the abilities of both human experts and computer algorithms

alike, such as the presence of noise and artifacts in the image acquisition, which affects overall

image quality. There are also further specific factors which can affect different modalities of

imaging. For example, occlusion, shadows and reflections are present in visible spectrum images,

whereas MR and CT images are generally free from these issues but poses other problems of

its own which are often application dependent.

1.2.1 Challenges in Medical Imaging

One of the main challenges in medical image segmentation is due to the fact that similar tissues

can take a range of intensities which can lead to ambiguity in tissue classification. One aspect of

MRI which makes it particularly challenging for segmentation is that the range of intensities also

vary from patient to patient and scanner to scanner, and there is often intensity inhomogeneity

within the same tissues. As a result, there is rarely a linear mapping of intensities to tissues

between patients or even within the same image. In CT scans, images outputs are standardised
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using the Hounsfield scale, a quantitative measure for radiodensity, however there are often

overlaps in the intensities of different tissues which can lead to ambiguity (which is also the

case in MR images). Furthermore, the shapes of many anatomical structures are often complex,

with large variations between subjects and may be hard to delineate or model.

For many medical imaging applications, there are some common artifacts that can arise from the

acquisition process. These include motion artifacts, noise, streaks and partial volume effects, as

well as other artifacts which are well documented in [135] and [159]. Both MR and CT images

can suffer from artifacts but the extent of these artifacts occurring is somewhat dependent on

the application as well as the scanner and modality used. For example, motion artifacts are

more common in cardiac and fetal images than in brain images, and CT scans tend to have

fewer motion artifacts due to the faster image acquisition rate. These artifacts affect the quality

of the images, sometimes causing ambiguity when identifying different tissues and can have an

adverse affect on segmentation results if they cannot be corrected or accounted for. Figure 1.4

presents an example of some of the artifacts and challenges in medical images.

Further to challenges within the image data, another challenge is in acquiring sufficient training

data to effectively model or represent the full range of anatomical variations in addition to the

variation in the image with regards to quality and how the anatomy is captured. Unlike

with digital photos, which are more abundant, medical images are both more time consuming

and expensive to acquire, and may be under legal and ethical agreements governing data use.

Additionally, obtaining scans of ”normal control subjects” is also difficult, as healthy patients

normally don’t have any reasons to visit the hospital for a scan. Furthermore, labelling 3D

volumetric images can be a harder and more time consuming task than for 2D images, which

adds to the limitations in training data.

There are also application-specific challenges which present particular problems which must

be overcome, making it difficult for generic methods to work well in every case without some

customisation and tuning. A major issue behind many applications is the sensitivity to the

presence of different pathologies, and the capability to detect and segment the pathology for

decision making. In many cases, grand challenges and challenge workshops have been created at
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 1.4: Examples of some of the artifacts and potential challenges. In (a), (b) and (c),
tissue inhomogeneities can be seen, in addition to different levels of noise, different intensities
for similar tissues and overlapping intensities between different tissues. (d) shows a streaks and
(e) shows rings in CT images. Motion artifacts produce ghosting and blurring of the image in
(f) and can also cause discontinuities between slices as seen in (g). Partial volume effects can
lead to blurry boundaries such as in (h).
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conferences to objectively compare and evaluate methods for specific applications. For example,

these include challenges for brain image segmentation [119], knee cartilage segmentation [82],

cardiac image segmentation [136]. In addition, there have been general segmentation workshops

[102], [101] with specific applications such as the segmentation of brain substuctures, canine

leg muscles and cardiac structures.

Challenges in Brain MRI

In many cases, automated tissue classification such as brain and non-brain, or grey matter,

white matter and cerebrospinal fluid can be already be quite reliably performed [158], however

the segmentation of anatomical structures within the brain can be much more challenging. This

is largely due to many of the distinct structures exhibiting very similar intensities, and some

structures are also composed of multiple tissue types. Anatomical variability exists in many

of the structures, such that relying on image alignment and spatial properties alone may be

insufficient for an accurate segmentation. For the hippocampus, there is variation in the shape

and size between subjects and the exact definition of its boundaries can be ambiguous. Even

between human experts, there are often variations in the delineation of the hippocampus for the

same subject. In the past, there have been different protocols used for manual segmentations,

and only recently has a standardised protocol been proposed [28].

Challenges in Knee MRI

The knee is made of many tissues and structures which exhibits variations in their volume and

spatial distributions. Additionally, many of the structures have a globally cylindrical shape

and there can be significant pose variation of the knee, which altogether provides challenging

conditions for many tasks, not just segmentation. In recent experiments, it was discovered

that 4-5% of all affine registrations fail for the knee [57]. For segmentation, the bones and

the cartilage presents different challenges, although the cartilage is often considered the more

challenging. There can be significant intensity variation and inhomogeneities in the bones,

particularly for diseased patients. For the cartilage, the thickness and spatial distribution is
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perhaps the most challenging aspect. In severe cases of osteoarthritis, the cartilage is thinner

and much harder to identify than in healthy subjects, and there can be osteophytes (bony spurs

or growths) on the bones which alters the shape and appearance of the knee joint.

Challenges in Canine Leg MRI

The application of segmentation methods to canine leg MRI is not as well studied as other other

areas, presenting new challenges for existing methods. There is significant variation in the sizes

of dogs and their legs, as well as their pose, which can be problematic for image alignment.

Additionally, muscle tissues appear textured and do not have homogeneous intensities, whilst

having very similar overall appearances for different muscle groups. Furthermore, the individual

muscles can be interconnected and may not be clearly separable when they are in contact with

each other. This can make it particularly difficult to correctly identify and label each muscle.

Challenges in Cardiac MRI

The acquisition of clear and detailed images of the heart is a challenging task for radiologists,

largely due to the heart being in continuous motion. Additionally, patient motion and respira-

tion further complicates the problem. As a result, the quality of the resulting images are often

limited, particularly when compared to images of more static organs. Furthermore, there is

also great variability between subjects in the shape, orientation and appearance of the heart

and its substructures. In addition to appearance variations caused by the MR scan, pathologi-

cal changes like infarcation can cause local variations in contrast, and blood flow artifacts can

create intensity inhomogeneities within some of the structures.

Challenges in Abdominal CT Images

In abdominal CT images, the contrast and quality are often good, however the complexity in the

layout of the organs presents a significant challenge. There are a large number of organs in the

abdominal region, which are deformable as well as being free to move individually. This makes
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obtaining overall image alignment of the organs particularly challenging. Some organs, such

as the liver, are large and easily identifiable, but others, such as the pancreas, are smaller and

more difficult to locate. In addition, there is significant variation in the sizes of the patients and

their organs, as well as variations in the spatial proximity of the organs between patients. The

segmentation of the pancreas is a particularly difficult, due to its shape and spatial variation.

Unlike other organs, such as the liver and the spleen, which are generally predictable in which

side of the body they occupy, the location of the pancreas is much more variable and is not

fixed to either the left or the right side of the body. Furthermore, it has a complex shape with

many folds and bends along its surface, and can be interwoven between other organs in the

abdomen.

1.2.2 Computational Challenges

The development of general methods or frameworks for image segmentation is an active and

hotly contested area in research, however there is usually some level of customisation required

for each separate application. In general, the ability to be adaptable and versatile, whilst

maintaining a high level of accuracy is one of the biggest computational challenges for any

automatic segmentation approach.

One aspect of using image data as a whole is sometimes known as the “curse of dimensionality”3,

and refers to the problems associated with using high dimensional data like images, but which

do not exist in low dimensions. In most machine learning applications, an individual image is

treated as a single data point in high dimensional space and at its most naive representation,

an image with n pixels is a point that lives in n dimensional space. For example, an image

with a resolution of 800×600 pixels is a point in 800×600 = 480, 000 dimensional space and

when looking at a 3D medical image that is just 128 voxels in each direction, the dimensional

space becomes 128×128×128 = 2, 097, 152. Analysis of high dimensional data poses many

problems as the volume of the space grows exponentially when dimensionality is increased

linearly, resulting in the available data becoming sparse. This then can mean that some of the

3a phrase coined by Richard E. Bellman [22]
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(a) (b) (c)

Figure 1.5: Data in high dimensional spaces can exist on a lower dimensional manifold. Di-
mensional reduction techniques aim to recover the data in a lower dimensional representation.
As a synthetic 3D toy example, data may exist on a swiss roll, as shown in (a), which could
be unrolled into a 2D flat surface. However, the results can differ depending on the choice of
parameters, as seen in (b) with Laplacian Eigenmaps [21]. (c) shows the results of “unrolling”
the images of brains from their high dimensional image representation after applying ISOMAP
[166].

most common operations on this space such as search and data comparison are much more

complicated to compute than in a lower dimensional space, and also prevents existing data

organisation strategies from other areas of computer science from working efficiently.

The representation of images, as a whole and in terms of the objects captured within, is another

open question and topic of research for many scientists. Objects of interest within images are

often said to exist on a manifold where the intrinsic dimension of the manifold is much lower

than the high dimensional space of the image, however extracting this manifold is non-trivial.

Many dimensionality reduction techniques exists [109], but it is hard to verify what the true

dimensional representation of any object looks like as it is generally not known. Instead,

methods aim to approximate a manifold using the training data, and the outcomes are subject

to the choice of objective or distance functions as well as the selected features of the images.

Overall, high dimensional data such as images presents a large number of complexities which

can affect how well any algorithm can perform. These impact not just the computational speed

and efficiency, but also what useful information can be extracted and how they can be used.

Overcoming these challenges is a worthwhile endeavour and of interest for many applications,

not just in medical imaging, but in extending human understanding of the natural world through

computer vision and data analysis.
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1.3 Contributions

The primary objective of this thesis is the formulation of new methods to obtain accurate

automatic segmentation results in medical images. In particular, the focus is on a subcategory

of label propagation methods called patch-based segmentation which propagates labels from

existing labelled images to unlabelled images based on local image comparisons. This approach

has been demonstrated to have potential in achieving highly accurate segmentation results

[47], [142]. These methods utilise principles from machine learning, computer vision and image

processing, and are currently of interest for both computer scientists and clinical researchers.

Traditionally, segmentation approaches which propagates labels from one image to another

require accurate alignment between the images, however the process of fully registering images

to the same coordinate space is complex and usually non-linear. Registration errors can often

occur, although the amount and impact of the errors differ between applications, in some

cases insignificant and other times more severe. In images where there is high anatomical

variability, registration errors are more common and have a greater impact on the outcome of

the segmentation process. Patch-based methods relax the dependency on registration outcome,

often allowing the use of results after just a linear registration process, without requiring images

to be fully aligned. In general, a patch-based approach labels each voxel of an image by looking

at its local patch and comparing with similar local patches from an atlas library. In this thesis,

the concept of patch-based segmentation is expanded upon with the inclusion of spatial context

and a new framework for segmentation using a k nearest neighbour (KNN) perspective on the

locality of patches. The key contributions are as follows:

• A new patch-based segmentation framework which not only uses intensity

information, but also spatial context. The patch-based segmentation approach is

reformulated to use the k nearest patches from a global perspective with regards to both

intensity and spatial information. This removes the fixed window size limit on the locality

of patches used for comparison in the standard patch-based methods, and enabling the

dependency on registration outcome to be further reduced.
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• Development of different approaches to providing spatial context. Three differ-

ent approaches to spatial context are proposed and evaluated, from initially using spatial

coordinates to using relative distances between structures, and then using geodesic dis-

tances within the image instead of Euclidean distances. The approaches allow the need

for alignment between images to be decoupled in different ways, enabling the application

of patch-based segmentation to be more general and versatile.

• Application of proposed methods to a large variety of image datasets. The

proposed methods are evaluated on segmenting several different anatomical structures

in different image types. These range from the hippocampus in brain MRI to tissues

in cardiac MRI as well as major organs in abdominal CT scans. The methods are also

applied to open challenge datasets such as the MICCAI SKI10 Grand Challenge, which

involve bone and cartilage segmentations in knee MRI, and segmenting pelvic muscles in

canine leg MRI as part of the SATA MICCAI challenge workshop.

1.4 Overview of Thesis

We start with a background chapter 2 detailing advances in automatic segmentation and the

current state-of-the-art in medical imaging as well as some of the computational techniques and

algorithms used. This is followed by three chapters where a novel kNN patch-based segmenta-

tion framework which uses spatial context is first proposed in Chapter 3 and then extended in

Chapters 4 and 5 with a multi-resolution approach and different approaches to spatial context.

In these chapters, the proposed methods are evaluated on a range of different applications, from

the segmentation of the hippocampus in brain MRI to bone and cartilage segmentation in knee

MRI as well as multi-organ segmentation in abdominal CT scans. Finally, we conclude with a

summary of this thesis and potential future work in Chapter 6.
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Chapter 2

Background

In this chapter, we provide an overview of some of the advances in image segmentation relevant

to the work in this thesis. In addition, we also review the computational techniques and

methods which are used in this thesis. Recent segmentation methods combine techniques from

a range of computer science disciplines, from machine learning to signal and image processing.

The task of image segmentation can be viewed from multiple viewpoints and often there are

several routes to achieving the same goal.

We start with an overview of some of the pre-processing methods used in medical image analysis,

followed by image registration, a vital process which is required for many segmentation methods

as well other aspects of image analysis. Next, we examine the family of methods categorised

under atlas-based segmentation and provide an overview of some other related approaches.

Finally, we finish the chapter with some of the relevant computational techniques that are

commonly used in image segmentation and data analysis.

2.1 Pre-processing Methods

Depending on the intended task, medical images often require some initial processing to reduce

the effects of artifacts and to standardise image outputs. These are considered as pre-processing

45
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tasks and treated as separate problems to any image analysis, but they can play a significant

part in the final outcome. For all applications in this thesis, one or more of these pre-processing

methods are used prior to segmentation.

2.1.1 Bias Correction

(a) Original image (b) Bias corrected image (c) Bias Field (d) Difference

Figure 2.1: An example of the bias and intensity inhomogeneity present in MR images illus-
trated using an image of the knee. (a) shows the original uncorrected image, whilst (b) shows
the result of bias correction using [172]. (c) shows the detected bias field and (d) is an image
of the absolute differences, where bright red indicates large differences and blue indicates no
difference.

A common artifact from MRI is the presence of a bias field, since the strength of the magnetic

field within a scanned body will vary according to the surrounding tissues. Electromagnetic

interaction with the scanned body, the positioning within the scanner and limitations in the

equipment are primary factors in creating the bias field [156]. This causes intensity inhomo-

geneity, where the contrast and range of intensities in the image are uneven, with the effect

varying by location. This often appears as a smooth gradient across the image, as shown in

figure 2.1. It is not always noticeable at first glance, but the bias affects many automated image

analysis tasks such as image registration and segmentation. In particular it alters the contrast

and changes the intensity ranges for the same tissues within the image. The bias field can differ

between subjects, thus it can also distort the outcome of similarity measures between different

images.

One commonly used bias correction method is the nonparametric nonuniformity normalization
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(N3) method presented in [157], which is fully automatic and applicable without any prior

knowledge. The N3 method formulates the problem of bias correction in a fashion that is

common to many other methods, modelling a given image v as:

v(x) = u(x)b(x) + n(x) (2.1)

for a pixel location x in the image, with u being the uncorrupted image, b the bias field and n

the noise. The noise is usually assumed to be independent, which enables the bias correction

algorithm to operate whilst ignoring the noise component. Assuming a noise-free scenario, this

can then be reformulated by taking the logarithm (let û = log u, etc) as

v̂(x) = û(x) + b̂(x) (2.2)

From a signal processing perspective, the bias field reduces the high frequency components

in the intensity distribution of û, thus the approach for bias field correction is to restore this

content [157]. An iterative approach can then be used to estimate the bias field b̂ and obtain an

estimate of the uncorrupted image û in the ith iteration, such that the high frequency content

of the distribution of intensities in û are maximised. The approach taken in [157] is:

ûi = v̂ − b̂i (2.3)

= v̂ − S{v̂ − E[û|ûi−1]} (2.4)

where S{.} is a smoothing operator, usually a B-spline approximator, and E[û|ûi−1] is the

expected value of the true image given the current estimate of the corrected image. The bias

field is usually slowly and smoothly varying, hence the use of a smoothing operator S{.} in

modelling it. Initially, û0 = v̂ and the initial bias estimate b̂0 is the typically set to 0.

In [172], a different B-spline approximator is used to that of [157] and instead of the total
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bias field, the residual bias field is estimated at each iteration, which modifies the optimisation

scheme for faster convergence. Although there are some recent variations of this approach such

as [172], there have been relatively few improvements since. Reviews of this and other bias

correction approaches are presented in [177] and [19].

2.1.2 Denoising

The presence of noise is a common and general problem with all modalities of digital imaging,

from MRI to normal optical images. The term is derived from signal processing, where it is

defined as an unwanted modification to a signal which causes it to degrade and suffer, and is

also sometimes used to refer to a signal which carries no useful information. In images, noise can

be caused by a number of factors, but primarily is an aspect of the detectors and sensors used

and is related to their sensitivity and any signal amplifications used. It most visibly manifests

as speckles or grains on the image, which can interrupt edges as well as create false edges and

alter the homogeneity of tissue intensities.

Denoising, which is sometimes referred to as image restoration, is the process of removing the

noisy signals whilst maintaining the relevant aspects of the image. However, it can be hard to

determine exactly what is noise, and also the noise level in any image is generally unknown.

Overestimating the level of noise may smooth the image and remove details such as the edges,

whilst underestimating would not reduce enough of the noise. In addition, incorrect denoising

may introduce additional artifacts and distortions in the image. In general, denoising is a hard

challenge and there have been numerous approaches proposed; notable developments include

the bilateral filter [169], anisotropic diffusion [132], Total Variation (TV) [145], nonlocal means

(NLM) [33] and block-matching [51]. In addition, there have been recent optimisation for

specific modalities such as MR [48] or CT [115]. A review of some recent methods are provided

in [35].

In most methods, a similar model for image formulation as bias correction (see 2.1) is commonly

used, however in contrast to bias correction, the focus is on estimating the noise and recovering
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(a) Original image (b) Denoised using TV denoising (c) Denoised using NLM

Figure 2.2: An example of noise present in knee MRI, shown in (a), with the result of applying
TV denoising shown in (b) and nonlocal means in (c).

the image solely without noise and ignoring the bias field component. So for an image v, we

have

v(x) = u(x) + n(x) (2.5)

where the aim is to recover the uncorrupted image u whilst estimating the noise n. Individual

denoising methods will differ in the model chosen to describe the distribution of noise and the

smoothing method used to recover the image u. An example of applying denoising to a MRI

of the knee is shown in Figure 2.2.

Total Variation (TV) Denoising

Total Variation (TV) denoising was introduced in [145] based on the principle that noisy images

contain excessive and spurious details, and have high total variation. From a signal processing

perspective, the total variation is a measure of a signal defined by the integral of absolute

gradient of the signal. Reducing the total variation whilst maintaining a close representation

of the original signal, would then remove the unwanted detail (noise) from the signal. In TV
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denoising, the denoised image u is obtained by solving a minimisation problem of the form:

arg min
u
TV (u) + λ

∑
|v(x)− u(x)|2 (2.6)

where v is the original image and TV (u) is the total variation, i.e. TV (u) =
∑
|∇(u)|. The

parameter λ is related to the degree of filtering, with more regularity in the image as λ gets

smaller. A corresponding Euler-Lagrange equation can be derived as

−∇ ·
(
∇(u)

|∇(u)|

)
+ 2λ(u(x)− v(x)) = 0 (2.7)

which can then be solved using gradient descent [145]. The minimisation is also strictly convex,

which enables a range of alternative techniques from convex optimisation to be used to solve

it. More recent adaptions using alternative solutions include those of [39], [38] and [72].

Nonlocal Means (NLM)

The nonlocal means denoising method [33] does not assume any regularity in the images,

which smoothing filters provide, and instead tries to exploit redundancies in the image at

when comparing small windows of the image. The concept forms the basis for patch-based

segmentation methods [47], [142] developed later. In the NLM approach, the value for each

pixel x is estimated based on its Gaussian neighbourhood and comparing it with other pixels

and their Gaussian neighbourhoods. This neighbourhood is essentially a local patch, and the

weighted average value of pixels with the most similar patches are used to provide the estimate

of the denoised image. Thus, we have for an image, v and pixels x, y within the image v,

NLM(v)(x) =
∑

y

w(x,y)v(y) (2.8)

where the weighting w(x,y) can be adapted for different noise distributions such as Rician or
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Figure 2.3: Nonlocal means: each pixel x is assigned a weighted average of values from other
pixels y according to the similarity of their neighbourhoods. In this example, y1 and y2 would
receive higher weights than y3 since their neighbourhoods more closely resembles that of x.

Gaussian noise [48]. In the Gaussian case, it is defined as:

w(x,y) =
1

Z(x)
e
−||Nx −Ny||22

h2
(2.9)

where Nx is the neighbourhood for x and Z(x) is a normalisation factor Z(x) =
∑

y e
−||Nx−Ny||22

h2

and h is a parameter which controls the decay of the exponential function and therefore the

decay of the weights.

2.1.3 Intensity Normalisation

In images, it is often desirable to have similar intensities for similar tissues so that analysis and

comparisons of tissues can be performed more easily. Intensity normalisation is the process of

standardising the range of intensity outputs between a collection of images in order to achieve

this, and is particularly important for any image processes using intensity differences, such

as any form of the Lp norm. This is often needed for MRI but not CT images, since the

intensity outputs are already standardised as part of the acquisition protocol for CT scans

but the complexity of MR acquisitions prohibits this. There are no standardised scales or

interpretations for the intensities in MR images, and the intensities can differ for every scan.
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Although there have been attempts at MR calibration such that intensities can be standardised

during the acquisition [59], the calibration process is cumbersome and it is often more attractive

to normalise the intensities as a post acquisition process.

There are several approaches for intensity normalisation; [123], [44], [110] provide a review of

some popular methods. Naively, normalisation can be achieved by linearly scaling the intensities

to match a given intensity range. Given an image u with minimum and maximum intensities

umin and umax and a target intensity range [τmin, τmax], the normalised image u′ is obtained for

each pixel x using the following:

u′(x) = (u(x)− umin)
τmax − τmin
umax − umin

+ τmin (2.10)

Linear scaling is often insufficient, and instead most methods look at matching some aspect of

the intensity distribution between images, not just the intensity range. In [123], normalisation is

performed by matching to a target histogram profile and comparing landmarks on the histogram

such as the quartiles or percentiles and rescaling the intensities (between landmarks) in the

image accordingly to obtain the best match. The tails of the histograms are ignored so as not

to be biased by outliers. Some region of interest (ROI) masks may be required to remove the

influence of unwanted parts of the image. Thresholding and image registration would then be

precursors to any intensity normalisation, however any errors from these tasks then affects the

size of the ROI masks and reduces the effectiveness of the normalisation process. This is one

of the challenges for intensity normalisation methods and remains an open problem.

2.2 Image Registration

Image registration is the process by which images are spatially aligned to the same space of

reference or coordinate system. Registration is often required to allow comparison of data from

multiple sources, enabling meaningful measurements to be made between different data. The

goal of registration is to produce a mapping from one coordinate space (the source) to another
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(the target or reference), which allows an image to be transformed from one space to the other.

Image registration has been an key area of research in medical imaging for several decades, with

numerous methods and frameworks. There are also a number of reviews and surveys, such as

[32], [113], [76], [197] to mention just a few.

Formally, in 3D, registration produces a transformation T : (xs, ys, zs) → (xt, yt, zt) for the

source image Is to the target image It such that it aligns Is with It and maximises the similarity

between the two images. To do this, all registration methods require

1. A deformation or transformation model - in order to describe how the source image

can be mapped to the target image in a way that can be computed.

2. A similarity measure - this is used with an objective function which describes when

the optimal alignment has been reached.

3. An optimisation method - a way to reach the best alignment as described by the

objective function.

In general, registration methods can be categorised by the transformations that they produce,

which can be loosely classed as being linear1 or non-linear.

2.2.1 Linear Registration

Linear registration methods have linear transformations which are global and can be described

as in a single function which is applied to the whole image. Strictly, a transformation T is

linear if

T(x + y) = T(x) + T(y) (2.11)

1Rigid and affine transformations are not strictly linear, but are often classified as such
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and for any constant c,

cT(x) = T(cx) (2.12)

Linear transformations preserve straight lines in the image and are a core component in rigid

and affine registration. Rigid and affine transformations are linear in the sense that they

preserve straight lines, but they also include translational components, which violates the strict

definition of a linear mapping [85] in 3D Cartesian space. Many authors refer to rigid and affine

registration as being linear and this is true if homogeneous coordinates are used, but it would

be more correct to describe them as linear with translation.

This family of transformations can be sub-classed into the number of degrees of freedom the

transformation provides: typically 6, 9 or 12 for 3D images. Usually, the first 6 degrees of

freedom are for rigid transformations, whilst the next 3 add scaling and the final 3 add shearing.

Broadly speaking, registrations which provide 9 or 12 degrees of freedom are categorised as affine

registrations, which can be considered a superclass of rigid registrations.

Rigid Transformations

Rigid transformations preserve angles and distances in the image before and after the trans-

formations. They have only 6 degrees of freedom: 3 for translation in the direction of each

axis and 3 for rotation around each axis. Let t = (tx, ty, tz) represent the translations in x, y,

and z directions and let R be a orthogonal rotation matrix, then the transformation of a point

x = (x, y, z) in 3D space can be expressed as a function:

Trigid(x) = Rx + t (2.13)
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Affine Transformations

Affine transformations extend the number of degrees of freedom from the 6 in rigid transforma-

tions to also include scaling and shearing, which each add another 3 degrees of freedom. This

means that angles and distances are no longer preserved, but parallel lines still are. The affine

transformation for a point x = (x, y, z) can be described by:

Taffine(x) = Ax + t (2.14)

where A is a 9 parameter transformation matrix describing rotation, scaling and shearing, and

t provides the translational components (tx, ty, tz).

Computationally, both rigid and affine transformations can be performed in a single matrix

multiplication:

Taffine(x) =



x′

y′

z′

1


=



a00 a01 a02 tx

a10 a11 a12 ty

a20 a21 a22 tz

0 0 0 1





x

y

z

1


(2.15)

where {aij : i, j ∈ [0, 2]} are parameters describing the rotation, shearing and scaling properties

of the linear transformation matrix A. For rigid transformations, {aij} can be constrained to

be provide solely rotation components of the orthogonal rotation matrix R.

2.2.2 Non-linear Registration

In contrast to linear registration, non-linear methods, sometimes also referred to as non-rigid or

deformable registration, can provide local transformations rather than just global ones. In gen-

eral, this could enable better alignment than linear transformations, particular for soft non-rigid

tissues, however the process is more complex and requires modelling local deformations which
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are computationally more expensive. In many applications, the need for accurate alignment of-

ten outweighs the computational costs, and linear registration is often insufficient to handle the

non-rigid nature of much of the human body. Additionally, in some segmentation approaches,

such as most atlas-based methods (see section 2.3.2), obtaining an accurate alignment between

images is a prerequisite.

Achieving such a feasible alignment is complex, difficult and sometimes application dependent,

with many proposed approaches to modelling the deformations. These include elastic deforma-

tions [10], modelling as fluids [50], and using basis functions such as splines [30] and wavelets

[193] to name just a few. A recent survey of deformable registration methods is detailed in

[162], which covers the topic in much more detail than the scope of this thesis.

A general constraint of any non-linear registration method is that the deformations must be

smooth and invertible, which ensures that the resulting transformations can be quantified, and

are plausible and realistic. There are also other constraints that are desirable and sometimes

applied [162]:

• Inverse Consistency - Ensuring the forward and backward transformations are inverse

mappings of each other.

• Symmetry - Ensuring registering image Is to image It has the same effect by symmetry,

in terms of deformations, as registering image It to image Is.

• Topology Preserving - Ensuring there is a one-to-one mapping from source to target

image and that the mapping has a continuous inverse; also known as homeomorphism.

• Diffeomorphism - Ensuring the topology preserving constraint is satisfied and addition-

ally that both the mapping function and its inverse are differentiable.

However, the necessity of these constraints are application dependent and may be difficult to

satisfy for general purpose methods. Indeed, the majority of registration methods are asym-

metric and may not satisfy any these constraints. As a consequence, the choice of the target

image or domain is highly important to the registration outcome.
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Free-Form Deformation

One commonly used deformation model is free-form deformation (FFD), a technique derived

from computer graphics [149]. This method manipulates an underlying mesh of control points

which can be displaced to enable local deformations. B-splines can be used as function to model

the local deformation, allowing the deformation to be interpolated between control points and

thus providing a mapping for all pixels in the image [146]. This method has been used to align

images in several notable segmentation methods such as [140], [79] and [4]. Additionally, this

approach has been used in [191], which we compare with in Chapter 5.

Given a nx×ny×nz mesh of regularly spaced control points φi,j,k, the local transformation for

voxel x = (x, y, z) can be modelled by:

Tlocal(x) = x +
∑
l

∑
m

∑
n

Bl,m,nφi+l,j+m,k+n (2.16)

where Bi,j,k depends on the choice of blending function. One such function is the symmetric

cubic B-spline [103], [104], in which case the 3D tensor product of 1D cubic B-splines can be

used as:

Tlocal(x) = x +
3∑
l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)φi+l,j+m,k+n (2.17)

where i = b x
nx
c − 1, j = b y

ny
c − 1, k = b z

nz
c − 1, u = x

nx
− b x

nx
c, v = y

ny
− b y

ny
c, w = z

nz
− b z

nz
c,

and Bl is the lth basis function of the B-spline [103], [104].

Usually in practice, a global alignment is first sought using rigid or affine registration before

applying non-linear methods to align local areas. An overall transformation model [146] can

then be described as

T(x) = Tglobal(x) + Tlocal(x) (2.18)
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where Tglobal(x) is a global affine or rigid transformation and Tlocal(x) is the local deformation

as represented in (2.17). Changing the spacing between control points is one way to control the

amount of allowable deformation, where larger spacing provides more global deformations whilst

smaller control points enable more local and more detailed deformations. In order to allow

detailed alignment whilst maintaining computational efficiency, a multi-resolution approach

is often used for the optimisation process. This coarse-to-fine approach enables bigger, more

global displacements to be made first before fine-tuning of local displacements are made.

As previously mentioned, all registration methods require a similarity or distance metric in

order to compare the alignment between images. There are several metrics that can be used to

this end, which we will discuss later in section 2.4.

2.3 Image Segmentation

Segmentation techniques vary in the type of image information they use as well as any prior

knowledge or constraints about the problem. Consequently, the most suitable method is often

dependent on both the modality of the image as well as the objects of interest within the image.

[133] provides a general overview of early medical image segmentation methods whilst [12] and

[108] provide more recent reviews. Additionally, [36] provides an overview of recent atlas-based

approaches for brain MRI and [81] provides a review on using statistical shape models.

2.3.1 Intensity Modelling

An early approach to segmentation in medical images is to model the intensities of the various

tissues using a finite mixture model, where it is assumed that the intensities are independent

samples from a mixture of probability distributions. Construction of these models often ex-

amine the intensity histograms of the labelled data (see Figure 2.4), however determining the

mixture of each distribution which best describes the data can be accomplished through a

wide variety of approaches. One common approach is to use Gaussian distributions, and are
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referred to specifically as Gaussian mixture models (GMMs) when applied. In these models,

the expectation-maximisation (EM) algorithm [55] is usually used to fit the GMMs to the data.

Other approaches for the finite mixture model include using parzen-windows [128] and Markov

random fields [83] as well as a range of unsupervised methods [64].

Figure 2.4: The intensity histograms for white matter (WM), grey matter (GM), lateral ven-
tricle (lV), thalamus (Th), caudaute (Ca), putamen (Pu), pallidum (Pa), hippocampus (Hp)
and amygdala (Am) in brain MRI from [66]. An example image with some of the structures
outlined in their respective colours are shown on the right.

Originally, models were proposed to model intensities globally, however this approach can be

unreliable and limited due to major overlaps in the intensity values and not taking into account

any spatial information (see the histograms for hippocampus and amygdala in Figure 2.4).

More recent methods address this limitation by combining intensity models with atlases.

2.3.2 Atlas-based Segmentation

One of the most popular concepts for segmentation is known under the umbrella term of atlas-

based segmentation. An atlas in medical imaging is similar in definition to the term used in

cartography, it is a term for an image(s) which is labelled and captures the properties and spatial

relationships of the structures of interest. Atlases provide the ground truths and the examples
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(a) An image (b) A label map (c) An atlas

Figure 2.5: In this thesis, the term atlas is used to mean a pairing of an image and a label map.
An atlas library or database is a collection of these atlases.

for which models can be built around. The formal definition of an atlas differs between authors,

with some choosing it to mean a collection of images and label maps, whilst others use the term

for individual images. At the most basic level, an atlas is a pair (I,M), where I is an image

and M is the corresponding label map - this is the definition adopted in this thesis. Initially,

atlases were constructed from a single subject which is chosen to represent the average, however

this does not capture the anatomical variability present within the population. Modern atlases

are composed from multiple subjects and aim to capture the full diversity of the population.

Usually, atlases are created from individually segmented images, but they could also be created

by integrating information from multiple images registered to a common template space.

One approach for segmentation is to transfer the labels, spatially, from an atlas to an unseg-

mented image by using the mapping derived from registration (see Figure 2.6). The idea here

is to use registration to achieve an alignment of the two images, which also provides the an

alignment for the structures of interest, thus a voxel-wise mapping can also be made from the

labelled data to the unlabelled data. This is known as label propagation and is also sometimes

known as registration-based segmentation [11], [45], [56]. This concept forms the basis for some

recent developments such as probabilistic atlas, multi-atlas and patch-based methods.

The strategy for single atlas segmentation relies heavily on the registration process and in

obtaining highly accurate alignments between images. However, registration errors are often

present in most real-world applications. Whilst accurate segmentations are achievable for sim-

ilar images, which is often the case for when they are from the same subject, the process is far
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Atlas Target Segmentation

Figure 2.6: Atlas-based segmentation (label propagation): Register the atlas to the target
image and transfer the label mapping from the atlas to obtain the segmentation.

less accurate when images are from different subjects, where there can be large differences. Mis-

alignment after registration are far more substantial when images are dissimilar, and because

labels are propagated directly from the resultant mapping, this then leads to incorrect labels

being propagated from the atlas to the target image. Ultimately, this limits the applicability of

this approach, particular for use in population studies where there can be significant differences

between subjects. More recent methods use multiple atlases, probabilistic atlases or models to

overcome this limitation.

2.3.3 Probabilistic Atlas-based Segmentation

Probabilistic atlases [62], [127] can be created from the scans and segmentations of multiple

subjects once they have been registered to a common template space. For example, the MNI-

ICBM152 template is often used in brain MRI applications. This provides spatially varying

prior information, which can be propagated to images after registration and used in a number

of statistical and variational frameworks such as in [66], [116], [78], [17], [153]. An example is

shown for a cardiac probabilistic atlas in Figure 2.7.

The prior information from probabilistic atlases can be used in several ways for segmentation.

A common approach is to combine the probabilities with intensity models, which often use

Gaussian mixture models, where each tissue class is parameterised by a different Gaussian dis-

tribution. These parameters are then often optimised by using the expectation-maximisation

(EM) algorithm [55] to explain the intensities for each target image. This was the approach
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(a) Template (b) Probabilities

Figure 2.7: A probabilistic atlas provides a probability map for each of the labels in a template
space. In this case, we have the probabilities for the background, left ventricle, myocardium
and right ventricle in cardiac MRI. Probabilities are shown as proportional to intensity.

proposed in [175] to obtain model for white matter, grey matter and cerebrospinal fluid clas-

sification in brain MRI whilst also correcting for for intensity inhomogeneities from the MR

acquisitions. In [175], this approach was further extended through the use of a Markov random

field (MRF) to obtain a smooth segmentation for each of the tissues. Other related methods

have since been proposed such as in [66], [106] and [134].

Usually, only a single registration is required, in order to align target images to the common

template space. However, finding a common template space may be challenging depending

on the anatomical variability between subjects, and registration accuracy would be a critical

component for both the construction of probabilistic atlases and the accuracy of the prior

information for segmentation.

2.3.4 Multi-atlas Label Propagation

Multi-atlas label propagation (MALP) approaches [140],[79],[4],[107] provide a more robust

approach to segmentation compared to the single atlas predecessor. Using multiple atlases

means that the segmentation results are not completely reliant on the outcome of a single

registration. Instead, labels from multiple atlases are propagated to the target image after

registration. This provides multiple segmentations, which are then combined using a label

fusion process to determine the overall consensus segmentation (see Figure 2.8). Usually, only

the most appropriate atlases are selected for label fusion by comparing the atlases with the

target image with some predefined similarity measure. The use of multiple atlases can better

account for the anatomical variability in images than a single atlas and minimise the effect
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of registration errors through consensus voting. There are a number of strategies for MALP;

variations are largely around the atlas selection scheme [4] and the label fusion process [7],

which are often applied with other atlas-based segmentation approaches such as probabilistic

and patch-based methods.

Multiple
Atlases

Target Multiple
Segmentations

Final
Segmentation

Figure 2.8: Multi-Atlas Label Propagation: Register each atlas to the target image, then select
the most similar atlases and perform label fusion to combine their segmentations to obtain the
final result.

Atlas Selection

Atlas selection strategies vary according to the distance or similarity measure and the number

of atlases used. In general, it is desirable to use only similar atlases to propagate labels from,

as registration errors tend to be reduced when subjects are similar, thus the labelling is more

likely to be accurate. [140] and [4] provides a comparative study of some of these strategies,

post-registration. Selecting atlases pre-registration is non-trivial and has not been well stud-

ied, however it is related to content based image retrieval (CBIR), which has many different

approaches. [3] provides a review of some current techniques used in CBIR.

Similarity and distance metrics used for registration are often also used for atlas selection, with

the most popular approaches using sum of square differences (SSD) and normalised mutual

information (NMI) (see Chapter 2.4). These measures are applied after registration, and are

calculated on a one-to-one pixel-to-pixel basis. This is performed between the target image and

each of the atlases, so that the atlases can be ranked in order of similarity. This then allows

the N most similar to be selected for label propagation. [140] and [4] demonstrated that using
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multiple similar atlases is more effective than using the single most similar atlas, but only a

limited number of atlases should be used rather than all available atlases. This is due to the

effect of registration errors that can be minimised through consensus labelling from multiple

atlases, whilst using all atlases would also propagate labels from dissimilar atlases where the

labels are not likely to match the target image. The application of atlas selection was also

shown to be more effective than selecting a random subset of atlases in [4], thus demonstrating

that the atlas selection scheme is important for segmentation accuracy.

The choice of similarity metric is dependent on the application, as the use of SSD may not be

applicable without adequate intensity normalisation, whilst NMI is not as sensitive to small local

differences, but is well suited when there is widely differing levels of contrast and appearance.

Label Fusion

Label fusion, also sometimes known as decision fusion, is often considered analogous to tradi-

tional classification problems using multiple independent classifiers, since each registered atlas

provides a classification [141]. These methods can be categorised into global methods, where

weighting for each atlas is performed on an image-wide basis, and local methods, where weights

vary spatially within each image. [7] and [36] provide comparative reviews of many of these

approaches prior to the development of patch-based methods.

Generally, given a set of possible labels {Li}, a consensus label L(x) for each voxel x can be

derived by the combining the outputs from each of the atlases a1(x), ..., aN(x), where N is the

number of atlases, and by using some performance or evaluation model E:

L(x) = arg max
i
p(x ∈ Li|aj(x), ..., aj(x), E) (2.19)

The simplest approach is majority voting, which is also one of the first and most popular

approaches, and often compared to as a baseline method in MALP. In this approach, each

selected atlas casts a single vote for the label at each voxel and the label which obtains the
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most votes is then chosen as the final labelling. This is equivalent to the vote rule for decision

fusion, proposed for combining the results of multiple classifiers in [192]. This provides a global

approach that is simple to implement, yet proven to be effective in several cases [79], [80]. Given

N atlases with labels ai(x) for i = 1, ..., N at each voxel x, the final labelling L is given by:

L(x) = arg max
i

N∑
j


1, if i = aj(x)

0, otherwise

(2.20)

Since transformations are continuous, the voxel grids may not exactly align, thus the transfor-

mation of segmentations may result in contention for the same voxel by differing neighbouring

labels. To resolve this, an interpolation scheme can be applied. In the simplest approach,

nearest neighbour interpolation is used and each voxel is always has assigned a singular whole

label, as is assumed in (2.20). In other schemes, such as partial volume interpolation [111], a

weight for each label may be assigned at each voxel [141]. This then allows each atlas to provide

a probabilistic or weighted vote for each voxel. A straight-forward extension of the vote rule to

this case would be to sum up the probabilities from each atlas as weights, and then the class

with the largest weight is chosen as the final label. This is known as the sum rule. A more

in-depth review of the different decision rules that may be used, including the sum rule and

vote rule, can be found in [94].

Another popular scheme is the STAPLE method [184], which uses the EM framework to iterate

between an estimation of the “true” consensus segmentation and an estimation of the reliability

parameters of each of the atlases. In each iteration, the current consensus segmentation can be

used to measure the reliability of each of the atlases, and provide weights of the contribution

of each atlas, based on its sensitivity and specificity. The derived weights are then used to

generate the estimate of the consensus segmentation in the next iteration. This provides a

globally weighted approach which is more sophisticated than majority voting and able to assign

different weights to each atlas in order to minimise the impact of the dissimilar atlases. This

can be particularly advantageous if there is a large variation in the selected atlases.
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Locally weighted methods were developed more recently, with [7] proposing a generic approach

where weights for each atlas vary spatially according to a local similarity measure, calculated

using a distance metric within a fixed local neighbourhood. This can be expressed as

L(x) = arg max
i

N∑
j


[m(p, r)]s, if i = aj(x)

0, otherwise

(2.21)

where m(p, r) is any local similarity measure that which compares a local neighbourhood of

shape p, radius r and with s controlling the sensitivity. Potential measures include normalised

mutual information, normalised cross correlation and mean square distance, which were evalu-

ated in [7]. This is generally more computationally complex than globally weighted methods,

but was found to perform more favourably. In general, locally weighted methods can better ac-

commodate the range of anatomical differences between subjects (see Figure 2.9), which enables

them to provide superior performance compared to globally weighted methods.

In other local approaches, spatially varying probabilities can be used to provide local weights.

In [107], MALP was combined with local intensity models to refine the segmentation estimate as

well as applying a graph cuts method based on [190]. Prior to this, a similar approach using local

intensity appearance models was proposed in [174] which generated target-specific probabilistic

atlases after registering individual atlases and then combining this with local intensity models

as well as graph cuts refinement using [74].

More recently, the development of locally weighted methods has lead to approaches which

perform weighted label fusion after local correspondence searches rather than direct voxel-to-

voxel based weighting [47], [178], [142]. These methods can be classified under the category of

patch-based segmentation, and are reviewed in more detail in the next section.
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(a) Target (b) Registered atlases (c) Majority Voting

Figure 2.9: A simple example to illustrate the limitations of globally weighted local fusion.
Individually, none of the atlases align perfectly to the target image. Locally, the atlases together
would be able to accommodate for misaligned regions of the image, however if weights were
assigned globally, this would not be possible. (c) provides an example of the result of a globally
weighted label fusion - using majority voting.

2.3.5 Patch-based Segmentation

For most multi-atlas segmentation methods, the dependence on image registration can be prob-

lematic as inaccurate alignment adversely affects the performance of the segmentation. Addi-

tionally, finding suitable (fixed) registration parameters that yield accurate non-linear corre-

spondences on different images can be a challenge on its own, particularly for anatomies that

are highly variable. Furthermore, the range of atlases available may not always fully accom-

modate for the anatomical variability present between subjects, particularly as acquiring large

datasets of atlases may be time consuming and expensive.

Patch-based methods for label propagation [47],[142] relax the dependence on registration ac-

curacy and do not rely on explicit one-to-one correspondences between images. In general,

these approaches label each voxel of a target image by comparing the image patch centred

on the voxel with neighbouring patches from an atlas library and assigning the most likely

label according to the closest matches (see Figure 2.10). Due to the relaxation of the required

alignment between images, these methods are often able to use affine rather than non-rigid

registration, yet still produce comparable results [142]. Patch-based methods for label fusion

have also been shown to be effective for several applications in medical imaging [8], [179].

In contrast to previous MALP approaches, where atlas selection and label fusion is performed
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Figure 2.10: Patch-based Segmentation: For each voxel, labels are propagated from the most
similar patches in the atlas library, rather than propagating one-to-one, voxel-to-voxel from the
atlases to the image like in MALP.

on a global voxel-to-voxel basis, the patch-based approach to segmentation can be conceptually

described as a similar process but within local neighbourhoods around each voxel. For each voxel

within an image, a patch is essentially a raw feature descriptor of the local area which surrounds

that voxel. Selecting similar patches from atlases for patch-level label fusion is analogous to

selecting atlases for label fusion in MALP. The key advantages of this local approach are:

1. Increased population size and reduced dimensionality. There are many more patches to

select from than whole atlases. The dimensionality of each patch is also much smaller

than a whole image, decreasing the possible combinations of intensity values. This means

the data space is much more dense, so increasing the chances that the selection results

have high statistical significance.

2. No assumption of a one-to-one mapping between images. MALP transfers labels from

atlases to images on a one-to-one voxel basis, but this relationship may not always be

present between images, even after registration. A patch-based approach does not assume

an explicit one-to-one mapping between images and label transfer is not limited to a one-

to-one relationship between images. Voxel-wise, labels can be transferred to any number

of voxels on the target image. This can overcome problems for multi-atlas segmentation

where the anatomical variability cannot be fully accounted with the available atlases. This

also relaxes the required accuracy of the registration algorithms, reducing the amount of

manual input and bespoke customization needed.
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Nonlocal Means Based Label Propagation

Many existing patch-based approaches [47, 142, 61, 191] apply a label fusion method based

on the nonlocal means method [34] which was original proposed for patch-based denoising.

When applied to label fusion, this approach derives a weighting for each label according to the

intensity distances of the most similar patches. At each voxel location, x, in the target image,

let P (x) be the patch extraction operator at x and let Nx be a surrounding neighbourhood of

x and yL,i ∈ Nx represent voxels from the atlas library for label L which have similar patches

to x. A weighting for each label at voxel x is then determined as:

wL(x) =

∑
yL,i∈Nx

w(x,yL,i)∑
L∈LA

∑
yL,i∈Nx

w(x,yL,i)
(2.22)

where w(x,y) is the weight of each patch and is determined by:

w(x,y) = e
−||P (y)− P (y)||22

h2(x)
(2.23)

h2(x) is a decay parameter to control the level of influence of patches as the distance increases.

In [47], an automatic estimation of this is calculated for each voxel based on the minimum

distance between patch P (x) and the relevant patches from the atlas library, {P (yi) : yi ∈ Nx}:

h2(x) = min{||P (x)− P (yi)||22} (2.24)

In approaches based on [47, 142], L is determined as the final label if wL(x) is greater than

a predefined threshold t, otherwise the label defaults to the background label. For binary

labelling, t is often simply defined as 0.5, which is equivalent to determining the final label by

majority voting. Additionally in these methods, a sliding window approach is used to define

Nx, and only patches from within this window are used for label fusion. In [47], a structural

similarity measure [183] is used to preselect a subset of the patches within the search window
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from for label fusion. This is defined as:

ss =
2µxµy

µxµy

× 2σxσy

σxσy

(2.25)

where µ and σ are the means and standard deviation of the intensities of the patches around

voxel x in the target image and voxel y from the atlas. Only patches with structural similarities

greater than a predefined threshold are used for label fusion. This was used to reduce the

computational time, since heat maps of the means and standard deviations can be produced

offline. In [47] and [61] only patches with ss > 0.95 were used.

Joint Label Fusion

In addition to nonlocal means derived methods, other alternative patch-based approaches have

also been proposed, although not always explicitly described as such. One particular approach,

called joint label fusion [179], was proposed to combine labels whilst evaluating the performance

of the atlases together rather than independently as the other multi-atlas approaches have done

so far. By doing so, it aims to take into account similar errors which can occur with different

atlases and minimise the expected total labelling error. To do this, the pairwise dependency

between atlases is modelled as a joint probability of two atlases making an error at each voxel.

This is approximated by looking at the intensity similarities between each pair of atlases and

the target image in a local neighbourhood, similarly to [7] and as shown in (2.21). Thereafter,

the aim is to choose a set of weights w∗x for the atlases that minimise the error between the

true segmentation and the consensus segmentation. This can be represented as:

w∗x = arg min
wx

wT
x Mxwx subject to

N∑
i=1

wx(i) = 1 and wx(i) ≥ 0 (2.26)

where wx is a vector of weights [w1(x), ..., wN(x)] for each atlas and Mx is a pairwise depen-

dency matrix with Mx(i, j) being the probability atlas i and atlas j both produce the wrong

segmentation label, given the local image similarity. Let It be the target image and Ii and Ij
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be the images of atlases i and j, then the joint probability can be written as:

Mx(i, j) ∝ [|Pt(x)− Pi(x′)||Pt(x)− Pj(x′′)|]s (2.27)

with Pt(.), Pi(.) and Pj(.) being patch extraction operators for image It, Ii and Ij respectively,

and s being a parameter for sensitivity. The proportionality does not affect the choice of weights

since multiplying by a positive constant does not change the solution w. x′ is selected from a

search window Nx around voxel x by:

x′ = arg min
y∈Nx

||Pt(x)− Pi(y)||2 (2.28)

and similarly for x′′ with atlas j. This presents the biggest difference, ideologically, to ap-

proaches derived from [47] based on nonlocal means in that only a single patch is evaluated

from each atlas at each voxel x, whereas the nonlocal means compares multiple patches from

each atlas. Prior to joint label fusion, the author also proposed a regression based label fusion

approach using a similar principle [178].

For performance reasons and to provide context for patch comparisons, the window size for Nx

is often limited in the most patch-based methods (typically less than 113 = 1331 voxels). This

means that images must be aligned within this margin of error in order for the patch selection

and label fusion strategy to work well.

2.4 Image Similarity and Distance Metrics

It is often desirable to quantify the similarity, or conversely the distance, between two images

in order to compare them. This is fundamental for many methods in machine learning as

well as from a data analysis and retrieval perspective. For example, to rank search results,

or to compare alignments for registration. There are many ways to compare images, however

the meaningfulness of the comparison is very much dependent on the context. In general,
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the range of methods can be broadly split into two main categories: distance metrics and

similarity measures. They can thought of as being inverse to each other, the former is derived

from mathematics and geometry, whilst the latter is largely rooted in signal processing and

information retrieval.

2.4.1 Distance Metrics

Commonly, when images are vectorised, distance metrics are applied to them using vector

norms - for example the 2-norm which is also referred to as the Euclidean distance:

√√√√ n∑
i=1

(xi − yi)2 (2.29)

As a generalised form, this is also known as the p-norm, Lp-distance or Minkowski distance

with order p:

(
n∑
i=1

|xi − yi|p
)1/p

(2.30)

When p = 1 this is also known as the Manhattan distance and is sometimes referred to as

the sum of absolute differences (SAD).

For p ≥ 1, p-norms satisfy the mathematical definition of a distance metric. This is defined as

a function, d, on a set X which returns a real number, where given x, y, z ∈ X , the following

constraints hold true:

1. Non-negativity:, d(x, y) ≥ 0

2. Identity: d(x, y) = 0 ⇐⇒ x = y

3. Symmetry: d(x, y) = d(y, x)

4. Triangle Inequality: d(x, z) ≤ d(x, y) + d(y, z)
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The triangle inequality is particularly important for several algorithms, such as metric trees

for nearest neighbour search, which exploit it to avoid exhaustive search of the entire space.

However, not all distance functions satisfy this constraint. Outside the pure mathematical

context, distance functions and metrics are often used interchangeably without regard to the

mathematical definition. A commonly used example is the sum of squared differences

(SSD). This is essentially the squared Euclidean distance and is defined as:

n∑
i=1

(xi − yi)2 (2.31)

SSD does not satisfy the triangle inequality in a case where x = (0, 0), y = (0, 2), z = (0, 4):

here, d(x, z) = 16, d(x, y) = 4 and d(y, z) = 4 but 16 � 4 + 4. However SSD is still often

used for comparisons as it penalises large differences and is more sensitive than the SAD or

Euclidean distance.

The choice of distance metrics are not particularly well studied for image comparison applica-

tions, although [2] provides a comparative review of Minkowski distances in high dimensional

spaces, as well as suggesting the use of Lp-distances with p < 1. This is contrary to the majority

of applications using distance metrics, where the Euclidean distance is chosen as a default.

Other relevant distances used include the Hamming distance [77] and the Mahalanobis distance

[112], although they are generally not used directly for comparison in the image space. The

Hamming distance is only valid between binary vectors, whilst the Mahalanobis distance is a

statistical measure which requires the calculation of a covariance matrix first.

2.4.2 Similarity Metrics

Similarity can be considered the inverse of distances, although similarity measures in general

can be defined more loosely than distance metrics. Recently, [40] presented a formal definition

of a similarity metric as a counter to the established definition of a distance metric: for x, y, z

in a set X , a similarity metric is a function s which satisfies the following:
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1. s(x, x) ≥ 0

2. s(x, x) ≥ s(x, y)

3. s(x, y) = s(y, x)2

4. s(x, y) + s(y, z) ≤ s(x, y) + s(y, y)

5. s(x, x) = s(y, y) = s(x, y) ⇐⇒ x = y

Popular similarity measures, particularly for registration, includes cross-correlation, mutual

information and normalised mutual information. [131] provides a review of these as well as

some additional measures used in registration.

Cross-correlation (CC) measures similarities in intensities at corresponding points between

images by their dot product, and can be considered analogous to the convolution (or interfer-

ence) of two signals. For two images x and y, CC is defined as:

scc =
n∑
i=1

xi · yi (2.32)

Normalised cross-correlation (NCC) is a form of CC which reduces sensitivity to the

differences in brightness and contrast between images x and y:

sncc =
n∑
i=1

(xi − µx) · (yi − µy)√
(xi − µx)2 · (yi − µy)2

(2.33)

where µx and µy are the mean intensities of x and y respectively.

In contrast to cross-correlation, mutual information and normalised mutual information provide

entropy-based measures. These measures examine the joint probability distribution of the two

images after binning the intensities at each voxel. Entropy [151] is defined by the probability

2This case is not always true - for example the correlation ratio which is sometimes used as a similarity
metric.
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p of (binned) intensity values i within an image x as:

H(x) = −
∑
i

p(i) log p(i) (2.34)

and the joint entropy, which itself can be considered a similarity measure, for two images x

and y with intensities ix in x and iy in y, and joint probability function p is given by:

H(x, y) = −
∑
ix,iy

p(ix, iy) log p(ix, iy) (2.35)

Mutual information (MI) [176] is defined using entropy as:

sMI = H(x) +H(y)−H(x, y) =
∑
ix,iy

p(ix, iy) log
p(ix, iy)

p(ix) · p(iy)
(2.36)

A normalised form of this also exist - normalised mutual information (NMI) [165] is

defined as

sNMI =
H(x) +H(y)

H(x, y)
(2.37)

For image alignment, NMI is usually favoured since it is invariant to the amount of overlap of

the background and low intensity regions between the images, whereas MI and joint entropy

are both sensitive to this. NMI also allows comparison between images of different modalities,

whereas intensity-based metrics like cross-correlation assumes that there is a linear relationship

between intensities when comparing images.

Similarity measures are also used in evaluating segmentation accuracy. One commonly used

measure is the Dice coefficient, which is defined for two segmentations, A and B as:

sDice =
2|A ∩B|
|A|+ |B|

(2.38)
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where the intersection of two segmentations are calculated for each label c on a voxel-to-voxel

basis, i.e. for each voxel x A(x) ∩B(x) ⇐⇒ A(x) = B(x) = c

This defines a function in terms of overlap between the two segmentations, which is one way in

which the similarity of two segmentations can be measured. A related function which is also

used is the Jaccard index, which measures the similarity between segmentation A and B by:

sJaccard =
|A ∩B|
|A ∪B|

(2.39)

where the union and intersection of the two segmentations are calculated as before, on a voxel-

to-voxel basis.

2.4.3 Learned Similarities and Distances

In addition to predefined similarity measures, it is also possible to learn a task-specific similarity

or dissimilarity measure. Approaches have been proposed for registration [86], segmentation

[164], as well as general classification [186]. Recently, this line of thought has also led to an

approximate nearest neighbour data structure using random forests [97]. However, the use

of learned similarity or distance metrics remain an open research topic and is not yet widely

adopted for practical applications.

2.5 Nearest Neighbour Search

Nearest neighbour search is a critical yet expensive step in a wide range of computer vision

and image analysis methods, such as clustering [91], manifold learning [20], inpainting [58] and

classification [29] to name just a few. k nearest neighbour (kNN) classifiers are also used in a

number of segmentation methods, such as in [67], [187]. However due to the large dimensionality

of images, fast kNN search is a challenging problem. Given a query in a collection of n images

with d dimensions, a naive exhaustive linear search would cost time that is proportional to nd.
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This would be acceptable when both n and d is expected to be low, but in many applications,

such as looking at image patches in medical imaging, both n and d can be very large - for

example a 125× 125× 125 resolution image could be split into (125− 5)3 = 1728000 patches of

5×5×5 = 125 dimensions, resulting in a significantly large value that makes nearest neighbour

search a substantial bottle neck in the speed of information processing.

Both the k nearest neighbour and the related ε-radius near neighbour search problem has been

tackled in many areas associated with machine learning and data mining and as a result, a

wealth of methods exists that can be applied to imaging applications. In general, speed-ups

come from either partitioning the data in some way so that exhaustive search is not necessary,

requiring comparisons for only a small subset of the entire data, or using a lower dimensional

representation or feature space, where the search process is less complex. Methods generally

require constructing data structures prior to searches, in a classic computer science case of

using a trade-off between speed and memory costs.

2.5.1 Trees

A tree is a data structure that partitions the data with each branch according to some decision

metric and has leaf nodes at the bottom of the tree which each contain a significantly smaller

subset of the total data. Trees are constructed recursively, partitioning each subset of the

data at each branch until some termination criteria is met. The way the data is partitioned

is generally what defines each type of tree. The most common type of trees are binary search

trees - each node partitions the data into two subsets, however quadtrees [65] and trees with

even more branches per node, such as hash-trees[120], have been previously developed.

Trees can also be grouped into two types according to how they categorise the data:

• Projective trees - these partition points based on their projection into some lower-

dimensional space

• Metric trees - these use some metric on defined pairs of points in space, and generally

take advantage of the triangle inequality for more efficient data access.



78 Chapter 2. Background

(a) Projective tree (b) Projective tree (c) Metric tree

Figure 2.11: Example of how trees might partition a 2D space. (a) is an axis aligned projective
tree, (b) is a non-axis aligned tree. (c) is a generalised metric tree

kd-Tree

Bentley’s kd-tree [23] is a binary search tree and is one of the most commonly used algorithms

- it is well known, simple to implement and there are also existing libraries for it in a variety

of programming languages3. It splits the data using values from a single dimension at each

branch until the size of the subset of data is below a certain threshold. For smaller trees[24],

the dimension which with maximum variance is chosen and the split value is usually chosen to be

the median value. This results in a fairly balanced partitioning of points into hyper-rectangles

(see figure 2.11a) which are axis aligned, but this can lead to poor search performance if the data

distribution does not favour this type of dimensional-partitioning. Furthermore, the number of

neighbours for each leaf grows exponentially with dimensions and the data structure does not

scale well with increases in dimensionality.

PCA Tree

Sproull [163] attempts to remedy the axis-alignment problem in kd-trees by applying Principle

Component Ananylsis at each node to obtain the eigenvector corresponding to the maximum

variance and then splitting the data along that direction. This still results in linear partitions

3scipy for Python, libkdtree++ for C++, Caltech Large Scale Image Search Toolbox for Matlab - to name
a few
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but they are no longer confined to the dimensional axes of the data (see figure 2.11b), but are

partitioned by hyperplanes that can be of any orientation.

Ball Tree

The ball tree [124] is a metric tree which splits splits data according to which of two centres

that it is closest to. It has similarities to the k-means algorithm, however the centres are chosen

and fixed during the start of the construction of each node where construction is as follows:

1. Find the centroid of the dataset for the node.

2. Find the data point that has the greatest distance from the centroid and use that as the

first centre.

3. Find the data point that has the greatest distance first centre and use that as the second

centre.

4. Partition dataset into two subsets according to which centre the data is closest to.

There is no constraint on the number of data points assigned to each partition and the tree

construction terminates when there is less than a certain number of data points at each leaf.

The partitioning looks similar to the one for PCA tree, but each hyperplane bisects two centres

and data points are partitioned according to distance to these centres rather than just absolute

value. This method takes longer to construct than kd-tree and could be highly unbalanced,

but could be significantly faster if it discovers the true distribution of data points in the data

space.

vp-Tree

Vantage point (vp) trees [194] are similar to ball trees but rather than have multiple centres

at each level of the tree, there is only a single centre at each level and data points are parti-

tioned according to distance to it. The centre for each node can be chosen randomly or as the
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centroid. This splits the data into “hypershells” around each centroid, and the thickness of the

“hypershell” can be chosen in a variety of ways.

Other Trees

There are variety of other tree structures that can be used for nearest neighbour search such

as cover trees[27], M-trees[42], R-trees[143] and their variants.

Cover tree are a type of metric tree which uses a refinement of the navigating nets data

structure[99]. It tries to overcome the issue of space requirement by other tree structures

such as kd-tree by making the space requirement linearly proportional to the dataset size,

rather than exponentially proportional to the dimensionality. Cover trees are designed so that

each level of the tree is a “cover” for the level beneath it, and the level is indexed by an integer

scale which decreases as the tree is descended. Each node in the tree is associated to a data

point, and each data point can be associated to multiple nodes in the tree, but appearing only

once per level. There are 3 invariants that define the cover tree structure - let Ci denote the

set of data points associated with the nodes at level i, d is the distance function:

• Nesting - Ci ⊂ Ci−1. This implies each data point occurs in every level below Ci once

there is a node associated with it.

• Covering tree - for every p ∈ Ci−1, there is a q ∈ Ci such that d(p, q) < 2i and the node

in level i associated with q is a parent of the node in level i− 1 associated with p

• Separation - for all distinct p, q ∈ Ci, d(p, q) > 2i

M-trees are defined by an object at each node that identifies it, and a “ball” (within certain

radius) around each node which defines the data points which belong to that node. It is similar

to ball trees and vp-trees, but the “ball” around each node can overlap with that of another

node. Each Leaf has a maximum population and a new node is created during insertion once

the maximum population has been reached, splitting the population of the leaf into one of the

two new leaves of the node.
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R-trees are quite similar to kd-trees in that the data space is divided into hyper-rectangles,

however in R-trees, each hyper-rectangles represent a “minimum bounding box” of the data at

each level of the tree. There are several variants of R-trees such as R* tree [18], R+ tree[150],

Hilbert R-tree [92] and X-tree [25].

2.5.2 Approximate Nearest Neighbour (ANN) Search

In many applications, it may be acceptable to trade accuracy for speed in the retrieval of the

nearest neighbours, particularly if there is a large amount of high dimensional data. This is

the idea behind approximate nearest neighbour (ANN) search, which often allows the user to

set an approximation error bound to control the trade-off between speed and accuracy.

FLANN

One relatively popular choice for ANN search is the fast library for approximate Nearest Neigh-

bours (FLANN) introduced by [122]. This library contains uses two principle data structures,

randomised kd-trees and hierarchical k-means trees, which are used without backtracking and

examining all candidate leaf nodes in order to achieve a speed up. A pre-defined level of pre-

cision, p can be set such that the correct nearest neighbour is returned for p% of the queries.

FLANN has been used for a number of applications such as image classification [118], and as

part of the point cloud library [147] in ROS4.

Hashing

A data structure that is well known for its fast look-up times, which is on average a constant

O(1), is that of the hash table. There have been several hash table based data structures

that have been applied to image search. These search methods are probabilistic, and are not

guaranteed to find the exact nearest neighbour, however they can be employed for approximate

nearest neighbour search. In an ordinary hash table, objects in the table are assigned a key,

4Robot Operating System http://wiki.ros.org/

http://wiki.ros.org/
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based on a mathematical function of the object known as a “hash”. There is a probability,

depending on the size of the hash table, the hash function used, the length of the key and the

dynamic nature of the table, that two object may have the same hash-key, or that a query of

a non-existent item in the hash table will return an item, because the hash function returns

the same value. When this occurs, it is known as a collision, and a lot of research exists on

preventing and resolving collisions because it is undesirable when looking up a singular item.

When hashing is applied to image search, collisions are actually desirable, since two similar

images should return the same or similar hash-key.

Locality-sensitive hashing (LSH) [70], which can also be considered a form of dimensionality

reduction, uses a family of hash functions in order to increase chances of collisions. Similar items

are mapped to the same bucket with high probability via the family of hashes. The principle

behind this method is that the probability of collision of two data points is closely related to

the distance between then, so the larger the distance, the smaller the collision probability. This

originally made use of the hamming distance but has since been extended for the Euclidean

distance [6].

2.5.3 Other Approaches

Pyramids

If the dataset of images is maintained in pyramidal representations, this hierarchical represen-

tation can then be used to overcome the curse of dimensionality and has been proposed for

use in image analysis [5]. Pyramid based data structures allow comparisons between images

in the dataset at a variety of dimensionalities, so starting at the top of the pyramid, would

be the lowest dimensional representation, and working down the pyramid, there is more and

more of the data to compare. This allows the range of images to compare with to be narrowed

as you go down the pyramid levels. Pyramids can be constructed in several ways, such as

Gaussian pyramids or Laplacian pyramids or simply by sub sampling the images to different

lower resolutions.
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However, the application of pyramids in image search could be limited, particularly for image

patches which may be too small to down sample. Furthermore, the loss of detail from sub-

sampling may actually hinder the nearest neighbour search process between very similar images,

or lead to incorrect matches at finer resolutions. Despite this, image pyramids provides a simple

and effective hierarchical scheme for image processing, particularly if processing directly in the

native resolution is computationally expensive.

Image Correspondence Search

A common application of nearest neighbour search is finding correspondences within images

rather than comparing whole images. This is particularly important for tasks which try to

analyse small parts of the images or different objects present within the images, such as ap-

plications of patch-based methods. Many approaches do not differentiate between searching

within the image and searching a database of images, however the natural structure inherient

within images could be exploited to speed up the search process for these tasks. This is what

the recently proposed PatchMatch algorithm from [13] does for finding corresponding patches

between images.

(a) Initialisation (b) Propagation (c) Search

Figure 2.12: The PatchMatch random search algorithm: (a) patches are initially assigned
random mappings; (b) the assignments are checked to find the best match, propagating if its
good; (c) search randomly for improvements in concentric neighbourhoods.

The PatchMatch algorithm searches spatially in the 2D or 3D image coordinate space rather
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than in the dimensional space of the patches to obtain a substantial speed benefit (see Figure

2.12). Random comparisons are made in the image and the position where the best match

occurs is then refined by iteratively comparing adjacent patches. This approach has also been

extended to a more generalised form for finding the k nearest patches rather than singular

correspondences between images [14]. The PatchMatch algorithm is technically an ANN rather

than exact kNN approach, since the random initiation does not guaranteed the exact nearest

neighbours will be found, however it often works well enough for many common applications

of nearest neighbour search such as denoising [14], inpainting [13], superresolution [152], and

segmentation [53]. It is also used as part of a “advanced region fill” feature in Adobe Photoshop.

Feature-based Search

Search could also be carried by using a set of features about an image and comparing features

rather than pixels. For example, Noah Snavely et al [160] makes use of SIFT features to search

objects within a collection of photos. The dimensionality of the features would tend to be much

less than the pixel dimensionality of an image, and if the feature is also a location descriptor

such is the case of SIFT, it could work well to speed-up image comparison simply by reducing

the number of values to compare. Additionally, using features could make search results more

meaningful if the choice of features augment the variations of interest in a dataset.

Recently, Ender Konukoglu et al proposed Neighbourhood Approximation Forests (NAFs) [97]

as a data structure which learns the local neighbourhoods of data according to a given dis-

tance labels. Unlike general purpose nearest neighbour data structures, this approach requires

annotations or labels for each dataset, but it aims to improve the speed for task-specific near-

est neighbour searches. This approach uses random forests which are trained to approximate

“out-of-sample” data using the k nearest data items. The training process determines the best

image features to use in order to predict the neighbourhood for new unseen data.
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2.6 Summary and Conclusion

In this chapter, we reviewed some of the existing image segmentation approaches as well as the

main computational methods which are relevant to the work in this thesis. The development of

segmentation algorithms have gradually shifted over the years from global intensity-based meth-

ods to those which use registration and spatially varying information. The shift in atlas-based

methods from globally weighted to locally weighted methods have provided better accuracy

and robustness. However, despite improvements in registration methods, the dependency on

registration can still pose a problem as registrations errors still commonly occur and can ad-

versely affect segmentation results. The recent developments in using patch-based methods

have provided a starting point in reducing dependency on registration and improving robust-

ness to registration errors, and it is from this point where the main contributions of this thesis

are introduced.

In the next chapter, a novel kNN patch-based segmentation framework is presented which uses

several of the methods reviewed here, in particular kNN data structures and patch-based seg-

mentation based on nonlocal means. The conceptual idea is to extend patch-based methods and

further reduce the dependency on registration whilst improving the robustness and accuracy.
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Chapter 3

Spatially Aware Patch-based

Segmentation

This chapter is based on the following publication:

• Zehan Wang, Robin Wolz, Tong Tong, Daniel Rueckert. Spatially Aware Patch-based

Segmentation (SAPS): An Alternative Patch-based Segmentation Framework. Second

International MICCAI Workshop on Medical Computer Vision: Recognition Techniques

and Applications in Medical Imaging (MCV 2012). LNCS Volume 7766, pages 93-103.

Springer Heidelberg 2013.

3.1 Introduction

Patch-based segmentation methods compare patches in a local neighbourhood in order to de-

termine the label for each voxel. The underlying assumption is that patches with similar

intensities and from similar local neighbourhoods are likely to be the part of the same anatom-

ical structure. Traditionally, this locality is enforced by a sliding search window of a fixed size

(typically less than 113 voxels). Label fusion then determines spatially-varying weights for each

label according to the similarity of the corresponding patches within each voxel neighbourhood.

87
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This neighbourhood, when defined as a fixed size search window, imposes a hard restriction on

tolerance to any registration errors that occur. Increasing this search window increases the tol-

erance to registration errors but also increases the computational requirements and may yield

patches with similar appearance but from different anatomical structures. Using hierarchical

frameworks [61], [191] partly addresses these restrictions, however these approaches still use a

fixed search window size for patch selection and comparison.

As an alternative approach, the patch selection process is reformulated so that it is no longer

constrained by a fixed search window size. Instead patches are considered from all plausible

regions of the image, without fixing or limiting the size of the search volume. To reduce the

computational burden, kNN data structures are used so that an exhaustive search of all patches

is not necessary. To differentiate between similar patches from different structures, the use of

spatial context is employed to augment the intensity information for each patch. This means

that for each voxel x, a feature vector can be produced consisting of the intensity information

for the patch centred on x in addition to the spatial information for x (see Figure 3.1). The

local neighbourhood for patch comparison is then defined by the k nearest neighbours from

each relevant label in the atlas library, in terms of both spatial distance and intensity distance,

using the feature vector. This allows the search space of patches to be global whilst maintaining

the sense of locality, thus removing the requirement for a fixed search window size to be set.

Label fusion is performed by comparing the k nearest patches of each label to derive the final

labelling.

For spatial context, the spatial coordinates of each voxel is used in this chapter, but other forms

of spatial context will be discussed in later chapters.

3.1.1 Chapter Overview

This chapter introduces a novel patch-based segmentation framework which is used and ex-

tended with new approaches for spatial context in subsequent chapters. We start with a re-

formulation of an existing patch-based method [47] in a kNN framework which also includes

spatial context as part of the label fusion process. This is followed by a proposal to use kNN
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Figure 3.1: The proposed patch-based segmentation framework uses both the intensities of the
patch, extracted using a patch extraction operator P (x), and spatial information, provided by
a spatial context function S(x). These are concatenated to produce a feature vector, enabling
kNN with standard data structures. The spatial weight α controls the contribution and balance
of the two components. In this chapter, S(x) is returns the image coordinates of voxel x, but
in subsequent chapters, other functions for the spatial context will be explored.

data structures to enable the patch search process to occur without constraining the search

window size. Finally, we end with the experiments performed using the proposed framework

for hippocampus segmentation in brain MRI and a discussion of the results.

3.2 kNN Spatially Aware Label Fusion

Let P (.) be a patch extraction operator, so for each voxel x, P (x) provides the vector of

intensities at the patch centered on x and let S(.) be a spatial context function, such that S(x)

produces a vector of the spatial information at voxel x. For this chapter, S(x) is returns the

image coordinates of voxel x, but in subsequent chapters, other functions will be explored. For

voxel x, then let us denote for each label L, the k most similar patches from the atlas library

as a set of voxels {yL,i : i ∈ 1, ..., k} according the weighted distance of the intensities and the

spatial context combined:

dα(x,yL,i) =
√
||P (x)− P (yL,i)||22 + α||S(x)− S(yL,i)||22 (3.1)

where α is the spatial weight which balances the relative importance between the spatial and
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intensity components. In practice, the patch intensities and the spatial information for each

voxel can be concatenated together, with α pre-applied, into a single vector rather than comput-

ing the two components separately. This enables use of existing kNN data structures without

re-implementing their functionality, since dα is then equivalent to the Euclidean distance of the

overall vectors. This also enables other distance metrics to be used other than the Euclidean

distance. However, on small scale images such as patches, the Euclidean distance is generally

sufficient when intensities are normalised and the images are of the same modality.

A weighting wL for each label L is then determined as follows:

wL(x) =
k∑
i=1

w(x,yL,i) (3.2)

where

w(x,y) = e
−{||P (x)− P (y)||22 + α||S(x)− S(y)||22}

h2(x)
(3.3)

and similarly to [47], h2(x) is determined by the minimum distance with regards to the set of

the most similar patches for all labels {yi} ∈
⋃
L{yL,i : i ∈ 1, ..., k}:

h2(x) = min{||P (x)− P (yi)||22 + α||S(x)− S(yi)||22}+ c (3.4)

A small constant c is added to ensure h2(x) 6= 0. The final label L̂ at voxel x is decided by

majority vote, i.e.

L̂(x) = arg max
L

wL(x) (3.5)

Overall, the label fusion remains similar to the non-local means approach used in [47], [142]

(see Chapter 2.3.5) and follows the same principles. However, the local neighbourhood Nx

around each voxel x is now defined by the k nearest patches for each label instead of the search
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window size. This not only changes the neighbourhood definition but also means that there is

no need to normalise the total weight for each label in order to compare each label’s relative

weighting. Since the final weighting is the decided by majority vote, using the same number

of patches for each label means that the arg max can be computed directly. Furthermore, the

spatial information for each patch is also considered, and is used to determine the k nearest

patches as well as being part of the label fusion process. The weight α is used to balance the

contribution of the intensity and spatial information since the Euclidean distance is used and

the two types of information are not directly comparable.

3.3 kNN Patch Selection

In general, an exhaustive search of any dataset for the k nearest neighbours would have a

computational complexity that is linearly proportional to the size of the dataset and can be

quite prohibitive in large datasets. In 3D volumetric images, the number of voxels is usually

on the order of millions, and even using the masks to define regions of interest, the number of

possible patch comparisons on a global basis would be a substantial computational bottleneck.

This is another reason why existing patch-based methods use a small search window size,

typically in the region of 11×11×11 = 1331 voxels, whilst patch sizes are typically 7×7×7 or

5×5×5 voxels. This limitation then reduces the tolerance to registration errors, and requires

that collectively, any image misalignment must be within a few voxels between the atlases and

the target image.

To increase the search volume size without a detrimental impact to the search speed, efficient

kNN search data structures are required. In this thesis, a ball tree [124] (see Chapter 2.5.1) is

used - these provide much better search performance than kd trees or brute force searches for

high dimensional data [100]. Ball trees are metric trees which use a given distance metric to

partition the data so that only a small part of the data need to be queried. The distance metric

used must obey the triangle inequality for metric trees to work correctly. Since Euclidean

distances are used in both patch based comparisons and atlas selection, and this obeys the
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triangle inequality, ball trees can be used to provide the results to kNN queries.

3.3.1 Data Structure Construction

In principle all patches could be stored in a single tree, however, the memory requirements would

grow prohibitively large as the number of atlases increases. In addition, search performances

cease to obey the theoretical O(n log n) computational complexity as the overhead for random

memory access and tree traversal becomes more expensive as the memory usage increases.

Furthermore, this also makes it difficult to use atlas selection to select the most appropriate

atlases for label fusion. Instead, trees are constructed on an atlas-by-atlas basis and for each

separate region of interest (ROI). This enables atlas selection to be performed on a region-by-

region basis, providing flexibility in atlas usage whilst reducing memory requirements at the

same time. This is particularly desirable as atlas selection has been demonstrated to be an

important process in multi-atlas segmentation [140], [4] and also means that the exhaustive

(and computationally expensive) search of the whole atlas library is not required. Additionally,

patches are extracted and sorted by their label and a single tree is constructed for each label.

This allows the k nearest patches for each label to be found in a straight forward way and

organises the data structures in a modular and flexible fashion. Since the label fusion process

uses the k nearest patches for each label to determine a weighting, it is easier to accomplish

when the patches are sorted by their label. Furthermore, it enables patch search to be performed

in parallel for each label and for each atlas.

The data structure construction can be considered analogous to the “training” process for many

other machine learning methods and can be performed offline. However, the patch extraction

and ball tree construction times are sufficiently fast that it can all be performed on-the-fly at

run-time.
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Figure 3.2: Example: ball tree construction using patches from the hippocampal regions. For
each atlas, a tree is created for each label (including the background label) in each hippocampal
region.

3.3.2 Atlas Selection and Patch Search

For each ROI that requires labelling, the nearest N atlases are found for each region by com-

paring them using a distance function d(.). Performing atlas selection on a regional basis also

allows for more granularity in the choice of atlases than doing so on a global image level. This

relies on a globally defined mask for the regions of interest for all images, then any similarity

or distance metric could be used for the region (See Chapter 2.4). For example, SSD could

be used, then for each corresponding pixel xi in the target image It, and atlas image Ia and a

common ROI mask of size n, this distance is:

d(It, Ia) =
n∑
i=1

(It(xi)− Ia(xi))2 (3.6)

This can be normalised by the number of pixels n to compare between different sized ROIs.

However, when a common ROI is defined for all images, normalisation is not required.

In MALP, the choice of distance function for atlas selection often depends on the application.

For the proposed framework, the distance metric used for atlas selection should be related to

that used in the patch selection and label fusion. Since Euclidean distance is usually used for

patch selection, then it follows that it or SSD would also be used for atlas selection, provided
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(a) Atlas masks (b) Union (c) Dilation

Figure 3.3: Creating a common ROI mask: take binary masks from each of the atlases and use
the union of the masks as the base ROI mask. The base mask can then be dilated to enlarge
it and allow for more variability.

that the image intensities are normalised. SSD provides higher sensitivity than the Euclidean

distance to the image differences.

If images are all aligned, then the regional masks can be created by taking the unions of the

labels from the atlases and dilating the results. This mask is used to narrow the search space

and restrict search to valid areas where a label might appear. The mask needs to be large

enough to allow for possible variations in anatomical variability, whilst being minimal in size

so that the kNN search process can be more efficient. The mask can be dilated multiple times

to enlarge it, if required.

Using a limited selection of the best subjects from the atlas library has been shown to provide

more effective segmentation results [4] in MALP, but for the proposed framework, this is largely

for easing the computational burden of the kNN search. This is due to the relationship for

selecting the most appropriate “images” for label fusion being at patch level in this approach

rather than the atlas level in traditional MALP. The k nearest patches are more likely to

be chosen from similar atlases but it is also plausible that there are locally similar regions

in atlases which would appear dissimilar with a global similarity measure. For this reason,

multiple atlases will still be required, with more atlases likely to provide better results. For

particularly large atlas libraries, kNN data structures could also be used for atlas selection, as

well as patch selection, to speed up the search process.

After selecting the N nearest atlases, the corresponding kNN data structure for those atlas
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regions are then used for patch-based segmentation. Patches are extracted from the target

image using the same method as for the atlases, using the same patch size and spatial weight

α. For each voxel, the k nearest patches with regards to both intensity and spatial information

are retrieved for each label by querying the respective kNN data structures. These are then

used for label fusion, as described above in section 3.2.

3.4 Framework Summary

In summary, the proposed framework can be split into two stages, the training or construction

stage and the testing or run-time stage, as shown below in Figure 3.4. During the former stage,

kNN data structures are constructed for extracted patches in each region of each atlas and for

each label. In the latter stage, the k nearest patches are retrieved for each voxel and for each

possible label, after performing atlas selection to select the N nearest atlases. Label fusion is

used to determine the overall labelling for each voxel.

The label fusion process uses the k nearest patches with regards to both intensity information

and spatial information, using a Gaussian function on their distance to derive weights for

each label. The overall consensus label is then established by a weighted voting according

to the derived weights. This is performed for each voxel in the image and can be computed

independently and in parallel.

3.5 Application to ADNI Brain MRI Dataset

For evaluation, the proposed framework and methods are applied to hippocampus segmentation

in brain MRI. The hippocampus is a key structure which provides cognitive functionality, and

its volume can be used as an early biomarker for Alzheimer’s disease [89]. In order to do so,

accurate segmentations are required to correctly identify atrophy in the hippocampal volume

[15]. Images from the Alzheimers Disease Neuroimaging Initiative (ADNI) database1 were used

1www.loni.ucla.edu/ADNI
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(a) Training/Construction (b) Testing/Run-Time

Figure 3.4: The two stages of the proposed framework. In the first stage in (a), patches and
spatial information are extracted for each atlas region and kNN data structures are constructed
for each label. In the second stage in (b), atlas selection and patch selection is performed, with
resulting segmentation derived from the label fusion process.

for validation.

3.5.1 ADNI Dataset

The dataset used for evaluation are images from 202 randomly selected subjects from the ADNI

database. These were acquired using different scanners from 68 normal control subjects, 93

subjects with mild cognitive impairment (MCI), and 41 subjects with Alzheimer’s disease (AD).

Images were prepared by the standard ADNI pipeline [90], where image correction methods

were applied for gradient non-linearity and intensity non-uniformity on an individual case-by-

case basis. Reference segmentations were obtained semi-automatically using a commercially

available high dimensional brain mapping tool (Medtronic Surgical Navitgation Technologies,

Louisville, CO) by propagating 60 manually labelled images.
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3.5.2 Implementation

A leave-one-out validation strategy was applied where each image was segmented in turn using

the remaining dataset as the atlas database. A patch size of 7×7×7 was used whilst experiments

were performed with the number of atlases used, N , the spatial weights, α, and the number of

nearest neighbours for each patch, k. For spatial context, the spatial coordinates of each voxel

were used. For atlas selection, sum of squared differences was used as the distance metric.

The main framework was implemented in Python and Cython using open source modules such

as NumPy, SciPy and SciKit-learn. During testing, the computation time is around 10 minutes

for each image using 8 cores clocked at 2.67GHz each and 8GB RAM when using 20 atlases

and using the 100 nearest neighbours. The patch extraction and construction of trees for each

atlas requires less than 5 seconds. The trees for each atlas require around 150MB if using 64-bit

double precision for the data, but they do not all need to be loaded in memory at the same

time. The main bottleneck for speed is the kNN lookup, however the choice of the best kNN

data structure, still remains an open question in computer science.

Pre-processing

Atlases are all registered to the MNI-ICBM152 template space using affine registration and

intensities are normalised using the method proposed by Nyúl and Udupa [123]. Two ROI

masks for atlas selection and patch selection were created based around the left and the right

hippocampus by taking the union of these labels from all atlases and dilating the result. The

atlases are also denoised to improve robustness. Total Variation (TV) denoising was used

as a quick and easy-to-apply method which can be effective in regularizing images without

smoothing boundaries and edges [38]. Figure 3.5 illustrates the effect of using these methods.

Summary of Parameters

The parameters and specifications used are summarised below, in Table 3.1:
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(a) Original (b) Normalised (c) Denoised

Figure 3.5: Examples from the pre-processing pipeline: (a) shows the original image, skull-
stripped, in its native space. (b) shows the result of intensity normalisation after the ROI
masks has been applied and having been registered to the MNI-ICBM152 template space. (c)
shows the result of performing TV denoising. The hippocampus is outlined in yellow.

Table 3.1: Table of parameters for the ADNI dataset.

Method/Description Parameter(s)

Registration Type Affine, 12 parameters
Intensity Range [0, 68]
TV Denoisinga weight=5
Patch Size 7×7×7
ROI mask size 50,015 voxels overall

ascikit-image 0.7 implementation

3.5.3 Experiments and Results

Effect of the Spatial Weight, α

Experiments using several values for spatial weights, α, showed that using spatial information to

provide a soft-weighting has a significant impact on the segmentation accuracy (see Figures 3.6

and Table 3.2). Comparing results of using even a small weight, α=3, with not using any spatial

context, α=0, yields p-values of 4.6×10−7, 6.3×10−5, and 5.8×10−7 for the left, right and overall

hippocampus respectively with Welch’s paired two sample T-test. Example segmentations,

shown in Figure 3.7, highlights the problem with performing global patch comparison, where

similar patches from different (background) structures yield greater weighting during label

fusion for homogeneous regions of the hippocampus. The inclusion of spatial context with a

suitable weighting provides a remedy for this problem.
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(a)

(b)

Figure 3.6: Comparison of Dice coefficients for a range of spatial weighting values α with N=20
and k=64. (a) is a beanplot where large thick lines indicate medians, dotted line indicates
median across all α values. The shape of the “bean” shows the distribution of the results and
individual data points are shown as small lines on the bean. (b) provides the line plot for the
mean, worst case and best case results, whist error bars show the standard deviation.
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Table 3.2: Dice coefficients, shown as mean (median) [worst, best], for the hippocampus (HC)
when using different spatial weights α, with k=64 and number of atlases N=20. Best values
are shown in red.

α Left HC Right HC Overall

0 0.834 (0.842) ±0.037 0.839 (0.848) ±0.037 0.836 (0.844) ±0.033
3 0.851 (0.857) ±0.027 0.853 (0.860) ±0.030 0.852 (0.857) ±0.025
5 0.856 (0.862) ±0.025 0.857 (0.862) ±0.029 0.856 (0.862) ±0.024
7 0.856 (0.863) ±0.026 0.857 (0.863) ±0.030 0.857 (0.862) ±0.025
10 0.859 (0.865) ±0.024 0.859 (0.864) ±0.027 0.859 (0.863) ±0.023
13 0.860 (0.865) ±0.024 0.859 (0.865) ±0.028 0.859 (0.864) ±0.023
15 0.859 (0.864) ±0.025 0.859 (0.864) ±0.028 0.859 (0.863) ±0.024
20 0.857 (0.862) ±0.027 0.857 (0.863) ±0.029 0.857 (0.862) ±0.025

(a) α=0 [Dice: 0.863 0.868] (b) α=5 [Dice: 0.893 0.902] (c) α=13 [Dice: 0.894 0.903]

Figure 3.7: Example of results with different spatial context for the hippocampus, with k=64
and number of atlases N=20. Segmentations are filled in grey and the outlines of the ground
truth shown in blue and orange for the left and right hippocampus respectively. In (a), the lack
of spatial context leads to incorrect labelling, seen as “holes” in the hippocampus segmentation.
As spatial context is introduced and the weights increased in (b) and (c), the holes disappear
as similar patches from different structures can be better differentiated.

Additionally, the distribution of the results as seen in the beanplots in Figure 3.6 also suggests

that both the accuracy and consistency of the results increases significantly when we use spatial

information. The values attempted suggests that segmentation accuracy peaks at α=13. If the

spatial weighting is too high, there is a detrimental effect on the segmentation accuracy as this

soft-weighting becomes too restrictive when comparing patch intensities. As α increases, the

behaviour becomes more like traditional multi-atlas segmentation approaches where one-to-one

label fusion occurs.

Further analysis of the effect altering the spatial weighting α is presented in Figure 3.8 and

Table 3.3. Here it can be seen that the most optimal values for α is between α=10 and α=13.
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Table 3.3: Mean sensitivity, specificity, precision and F1-Score for different values of spatial
weighting α, with k=64 and number of atlases N=20. Best values are shown in red.

α Sensitivity Specificity Precision F1-Score

0 0.8534 0.9774 0.8234 0.8366
3 0.8568 0.9797 0.8503 0.8523
5 0.8626 0.9795 0.8530 0.8566
7 0.8661 0.9789 0.8504 0.8569
10 0.8662 0.9794 0.8557 0.8597
13 0.8663 0.9792 0.8556 0.8596
15 0.8663 0.9790 0.8551 0.8593
20 0.8651 0.9785 0.8530 0.8576

Figure 3.8: ROC analysis, comparing true positive rates (sensitivity) to false positive rates
(1-specificity) for the different values of spatial weighting α.
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Effect of the Number of Nearest Patches and Atlases Used

With the spatial weight fixed at α = 13, experiments were conducted using a range of values

for the number of patches, k, as well as the number of atlases, N . k is dependent on N as using

more atlases would present a bigger selection of patches to choose from and, as seen in Figure

3.9, this means the optimal k value differs for the different N values.

Figure 3.9: Median Dice coefficients for the whole hippocampus whilst using a range of k values
with different N values.

Generally, the accuracy increases as k increases, but reaches a limit after k > 60. There is an

increase in computational cost as k increases as more comparisons must be made in the kNN

data structures, so it is most computationally optimal to select the lowest k value that provides

the desired segmentation accuracy.

An increase in the number of atlases used generally increases segmentation accuracy, but the

gain in accuracy after N > 10 becomes more marginal, particularly with changes in the dis-

tribution of the results. Given that the computational cost increases linearly with the number

atlases used whilst the increase in segmentation appears to be logarithmic, the results suggest

there is both a practical limit and a theoretical limit on the number of atlases to use to and
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that there is a trade-off between the computational time spent and the accuracy gained.

Figure 3.10: Beanplot showing overall Dice coefficients distributions for a range of N values
with k=64. Large thick lines indicate medians, dotted line indicates median across all k values.
The shape of the “bean” shows the distribution of the results and individual data points are
shown as small lines on the bean.

Table 3.4: Dice coefficients, shown as mean (median) ± standard deviation, for the hippocam-
pus (HC) when using different number of atlases, N , with k=64. Best values are show in
red.

N Left HC Right HC Overall

5 0.832 (0.839) ±0.036 0.841 (0.849) ±0.032 0.837 (0.842) ±0.030
10 0.854 (0.859) ±0.027 0.854 (0.860) ±0.029 0.854 (0.860) ±0.024
20 0.860 (0.865) ±0.024 0.859 (0.865) ±0.028 0.859 (0.864) ±0.023
30 0.861 (0.866) ±0.024 0.862 (0.868) ±0.027 0.862 (0.866) ±0.023
40 0.863 (0.867) ±0.025 0.863 (0.868) ±0.027 0.863 (0.867) ±0.023

Effect of the Number of Total Available Atlases

To compare the effect of dataset size, experiments were conducted using random subsets of the

total 202 available atlases, drawn independently for each case of 25, 50 and 100 total number of

atlases used. Other parameters were fixed with N=20, k=64 and α=13. The results for each

case can be seen in Figure 3.11 and Table 3.5.
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Table 3.5: Dice coefficients, shown as mean (median) ± standard deviation, for the hippocam-
pus (HC) when using different number of total atlases, with N=20, k=64 and α=13.

Total No. Atlases Left HC Right HC Overall

25 0.843 (0.852) ±0.034 0.845 (0.850) ±0.034 0.844 (0.853) ±0.031
50 0.844 (0.851) ±0.036 0.851 (0.860) ±0.028 0.848 (0.853) ±0.029
100 0.855 (0.858) ±0.027 0.856 (0.860) ±0.025 0.856 (0.860) ±0.023
202 0.860 (0.865) ±0.024 0.859 (0.865) ±0.028 0.859 (0.864) ±0.023

Figure 3.11: Dice coefficients distributions for results obtained for different sized atlas libraries
with N=20, k=64 and α=13. Large thick lines indicate medians, dotted line indicates me-
dian across both datasets. The shape of the “bean” shows the distribution of the results and
individual data points are shown as small lines on the bean.

When reducing the total number of atlases available, the overall performance and consistency

suffers as can be expected given the nearest neighbour approach. With a reduced dataset,

the similarity of the selected atlases is likely not to be as high and the number of appropriate

patches for label fusion may not be sufficient.
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Effect of Denoising

Comparing results from using non-denoised training data to those from using denoised training

data, it can be seen that using denoised training data provides an improvement to the median

segmentation accuracy (see Figure 3.12). Further to this, the range of the results is smaller

with a more favourable distribution when using denoised training data and using Welch’s paired

two sample T-test provides p-values of 1.6×10−6, 5.6×10−2 and 2.5×10−4 for the left, right and

overall hippocampus respectively. This suggests that denoising generally improves accuracy

and robustness of the framework, however given that the differences for the right hippocampus

is not as large as for the left, it seems that denoising does not always provide a significantly

large improvement and its use may be dependent on the application.

Figure 3.12: Dice coefficients distributions for results using denoised and non-denoised training
data with N=20, k=64, α=13. Large thick lines indicate medians, dotted line indicates me-
dian across both datasets. The shape of the “bean” shows the distribution of the results and
individual data points are shown as small lines on the bean.
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Comparison of Results to an Existing Method

Finally, with the same dataset of ADNI images (and same ground truth segmentations), the

results obtained by the proposed approach are compared to that using the current state-of-the-

art patch-based method, as described by Coupé et al in [47], which does not use spatial context

and has a fixed search window size. Parameters which were suggested as being most optimal for

hippocampus segmentation were used, with patch sizes fixed at 7×7×7 and the search window

size at 9×9×9. Results were compared for the case when the number of atlases, N , is set at

10.

It can be seen in Table 3.6 and Figure 3.13, that the proposed method generally outperforms the

existing method and is more robust. When no spatial context is used with α=0, the label fusion

of the two methods become very similar (see Table 3.2), and can be considered approximately

equivalent with the approach from [47] using the whole ROI for patch comparison rather than

a limited search window. This highlights the problem of using a search window size that is too

large, and which then leads to comparisons with similar patches but from different structures,

thus providing worse segmentation accuracy.

Table 3.6: Dice coefficients shown as mean (median) [worst, best] for the hippocampus (HC)
comparing different methods with the number of atlases N=10 for both. Proposed method uses
k=64, α=13 as its other parameters. Best values are highlighted in red. p-values of 1.5×10−5,
4.6×10−3 and 1.1×10−4 were obtained for the left, right and overall hippocampus respectively
with Welch’s paired two sample t-test.

Left HC Right HC Overall

[47] 0.842 (0.847) ±0.032 0.846 (0.851) ±0.034 0.844 (0.845) ±0.030
Proposed 0.854 (0.859) ±0.027 0.854 (0.860) ±0.029 0.854 (0.860) ±0.024

Applying Welch’s paired two sample t-test on these results gave p-values of 1.5×10−5, 4.6×10−3

and 1.1×10−4 for the left, right and overall hippocampus respectively. Additionally, there is

also a 0.05 decrease in the standard deviation of the results compared to that of [47].

When comparing results across the different disease status of the subjects, we see in Table 3.7

and Figure 3.14 that the proposed approach improves upon that of [47] for all categories. Out
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Figure 3.13: Comparison of Dice coefficients distributions for the proposed method versus [47]
with k=64, α=13. Large thick lines indicate medians, dotted line indicates median across both
datasets. The shape of the “bean” shows the distribution of the results and individual data
points are shown as small lines on the bean. Results of the proposed method for N = 40 are
shown for further comparison.
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Table 3.7: Dice coefficients shown as mean (median) ± standard deviation for the hippocampus
across disease status type. The proposed method uses k=64, α=13 as its other parameters.
Results of the proposed method for N=40 are shown for further comparison.

Control stable MCI

[47] (N=10) 0.855 (0.856) ±0.022 0.850 (0.853) ±0.023
Proposed (N=10) 0.861 (0.864) ±0.020 0.859 (0.863) ±0.019
Proposed (N=40) 0.868 (0.870) ±0.019 0.866 (0.868) ±0.018

progressive MCI AD

[47] (N=10) 0.835 (0.836) ±0.033 0.828 (0.838) ±0.034
Proposed (N=10) 0.845 (0.851) ±0.030 0.847 (0.852) ±0.025
Proposed (N=40) 0.854 (0.860) ±0.029 0.859 (0.867) ±0.024

Figure 3.14: Comparison of segmentation accuracy for different disease status. Solid line indi-
cates the median, the dashed line indicates the mean and standard deviation is shown by the
dashed diamond.

of the 202 total subjects, 68 were control, 49 had stable MCI, 44 had progressive MCI and 41

had AD.

3.5.4 Discussion

The experiments indicate that the use of spatial context, when combined with using a global

kNN approach without limiting the search volume size, improves segmentation results in terms

of both accuracy and consistency. This not only provides validation for the proposed frame-

work but also highlights that there is a problem with the reliance on registration accuracy

for segmentation and that existing patch-based methods are unable to fully accommodate for

the anatomical variability between subjects. Overall, the results demonstrate potential in the
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Reference Segmentation Best Subject - Dice: 0.910

Reference Segmentation Median Subject - Dice: 0.867

Reference Segmentation Worst Subject - Dice: 0.701

Figure 3.15: Example segmentations of the right hippocampus with parameters N=40, k=79,
α=13

proposed approach to address to this problem, and provide accurate and robust segmentations.

One computational side effect of the proposed framework in extracting the patches from the

images and storing within kNN data structures is that it allows the voxel labelling process

to be easily exploited for parallel execution since voxels can be labelled independently. Addi-

tionally, the framework allows a trade-off between segmentation accuracy and speed through

adjusting the number of atlases used. In general there is a logarithmic trend for improvements

in segmentation accuracy with increases in the number of atlases, but a linear relationship for

computational time with the number of atlases. Using patches from half as many atlases, would

allow the segmentation to be completed in half as much time. At the lowest limit tested, using

5 atlases was still able to yield a median Dice coefficient of 0.842 for the whole hippocampus.

The findings on changing the number of atlases agree with those presented in [47] which also

suggested that increasing the number of atlases N yields diminishing gains in accuracy as

N increases following a logarithmic pattern. This is somewhat contrary to experiments with
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traditional multi-atlas approaches [4], which suggested there is often an optimal number of

atlases which is much lower than the total number within the atlas library and that increasing

the number of atlases past this point would worsen the results. The reason for this is due

to the non-local label fusion which does not simply use patches from all atlases to form a

consensus labelling, but rather only using the most likely patches which are then weighted

according to their similarities. Increasing the number of atlases for patch-based segmentation

provides additional examples for which to select patches from, and because patches are weighted

by similarity, it is not likely to worse the segmentation accuracy. This behaviour provides an

additional advantage over traditional multi-atlas approaches in the ability to utilise the available

data and to handle the anatomical variability between different images.

3.6 Summary and Conclusion

This chapter presented a new generalised framework for applying patch-based segmentation

which uses spatial context to enable patch comparisons to be made on a global basis in order

to better accommodate variations in image alignment. This approach no longer requires local

search windows to be defined and extends the non-local label fusion approach of previous patch-

based methods by incorporating spatial information and a spatial weighting to each patch.

The proposed framework is validated against 202 ADNI images of patients at various stages of

Alzheimer’s disease and achieved an overall median dice coefficient of 0.867 using patches from

the 40 most similar atlases. When compared with an existing and well established patch-based

segmentation approach [47], the proposed approach is able to provide both higher segmentation

accuracy on average and better consistency in the results.

In subsequent chapters, we will look at this approach can be extended to other applications as

well as using different approaches for spatial context to further relax the dependency on image

alignment.



Chapter 4

Patch-based Segmentation without

Registration

This chapter is based on the following publication:

• Zehan Wang, Claire Donoghue, Daniel Rueckert. Patch-based Segmentation without Reg-

istration: Application to Knee MRI. Fourth International Workshop on Machine Learning

in Medical Imaging (MLMI 2013). LNCS Volume 8184, pages 98-105. Springer Heidel-

berg 2013.

• Zehan Wang, Anil Rao, Daniel Rueckert. Patch-based Segmentation without Registra-

tion: Application to Canine Leg MRI. MICCAI Challenge Workshop on Segmentation:

Algorithms, Theory and Applications (SATA). 2013.

4.1 Introduction

The previous chapter introduced the basis for a kNN patch-based segmentation framework

which incorporates spatial context for improved segmentation performance. Using each voxel’s

coordinates as spatial context provided an improvement in segmentation accuracy compared to

111
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previous patch-based methods which did not use spatial context. Now let us look at extending

this approach to accommodate more challenging datasets in terms of registration.

One potential weakness of using voxel coordinates as spatial context is that this still relies on the

alignment of the anatomical structures - and thus is still susceptible to registration errors. In

some applications, it is not uncommon for registrations to fail altogether. Problems with affine

registration of knee MRI have been previously quantified in [57] where the authors observed

4.08% of direct pairwise registrations fail without manual input. Here, failure is defined when

registration results in the distance between manually identified landmarks within the image

being greater than 10mm. There are many other applications where registration failures also

occur with significant frequency without manual input. For example in cardiac images, manual

landmarks are often required to initialise the registration [9], and in a recent segmentation

challenge1, around 20% of registrations failed in the canine leg dataset. This is something that

receives little attention in many atlas-based segmentation methods, particularly if majority

voting is used, since failed registrations can be ignored as long as they do not compromise the

majority. However, this is not always guaranteed, and if weighted voting is used, the outliers are

no longer ignored. This indicates that there is an issue with relying on the registration outcome,

particularly if misalignment commonly occurs. The registration outcome has a direct effect on

the segmentation accuracy as well as the scalability of the overall framework, particularly if

manual input is required.

To avoid these issues, this chapter investigate the potential to perform segmentation without

any kind of registration. Note that the goal here is to be able to handle the normal range of

outputs from medical scanners and this is not the same as the ability to be invariant to arbitrary

image orientations imposed after a normal scan. To overcome the dependency on registration,

an approach is proposed to provide spatial context that is robust to the image alignment by

using the concept of relative distances rather than using absolute coordinates within the image.

Additionally, an atlas selection method is proposed which uses histograms with 3D oriented

gradients as image descriptors to enable fast and generic similarity comparisons. Without

registration, traditional atlas selection methods [140], [4] may not provide meaningful results

1MICCAI 2013 Challenge Workshop on Segmentation: Algorithms, Theory and Applications (SATA)
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as they use distance metrics that implicitly assume correspondences between image and atlas.

Patch-based methods use local intensity information, so the atlas selection scheme is intended

to reflect this in addition to being registration-free.

The proposed methods are applied within a multi-resolution framework and evaluated on two

diverse and challenging datasets - knee MRI from the MICCAI SKI10 Grand Challenge and ca-

nine leg MRI from the SATA MICCAI challenge workshop. This framework can quickly obtain

a coarse initial segmentation in the lowest resolution without relying on image correspondences

and without requiring any information regarding alignment. This initial segmentation is then

refined by propagating through subsequently higher resolutions until the required resolution

has been reached.

4.1.1 Chapter Overview

In this chapter, we begin with a method for establishing spatial context without registration,

using relative distances between established structures in the image. An approach for estab-

lishing these structures automatically in the initial segmentation is also proposed here. This is

then followed by the introduction of a multi-resolution segmentation framework which uses the

proposed spatial context approach in an iterative process, where both the spatial context and

the segmentation is refined and updated with each iteration. Finally, we end with the atlas

selection scheme before discussing the results of applying the proposed methods to knee and

canine leg MRI datasets.

4.2 Providing Spatial Context without Registration

4.2.1 Adaptive Coordinate System

Without registration, using spatial coordinates as spatial context is not effective since the

coordinates are not aligned. This is especially the case when dealing with potentially large
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(a) (b)

Figure 4.1: (a) and (b) represent the same anatomical structures but the two images are not
aligned. Spatial context for patch P (x) can be provided by the distances to these structures
regardless of the how they are positioned within the image.

misalignments between images where spatial context based on explicit image coordinates can

be unreliable. Spatial context should therefore be defined in a way that is robust to misregistra-

tions. To this end, relative distances can be employed. If any reference points or an initial rough

segmentation can be established, the distance to each of the labelled structures can be used to

create a non-Cartesian, patient-specific coordinate system that is invariant to how anatomical

structures are positioned within the image (Fig. 4.1).

Let us define a structure as a landmark or labelled structure in the image, which can then

be described spatially by the set of coordinates which it takes up in the image. This could

be a single coordinate for a landmark or multiple coordinates to describe the location of an

anatomical structure, essentially describing structures in a similar fashion as level sets. Then,

for a voxel x and a set of n structures {Ri : i ∈ 1, ..., n}, the spatial context function Sadaptive(.)

for x can be defined according to the shortest distances between x and {Ri} according to their

voxel-wise coordinates. i.e.

Sadaptive(x) = [dmin(x, R1), dmin(x, R2), ..., dmin(x, Rn)] (4.1)

where dmin : R3×{R3} → R is a distance function which finds the minimum distance between

x and Ri based on their coordinates and using some a defined distance metric. In this chapter,
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the Euclidean distance is used as the metric, and the Euclidean distance transform (EDT) can

be used to calculate dmin for all pixels. The EDT effectively provides a distance map (or image),

where the value for each pixel is the minimum distance to the designated structure. It can be

computed in linear time using the approach in [117] and enables us to calculate the spatial

context on-the-fly during the segmentation.

Using a binary mask of each structure in turn, the EDT can be applied to provide a distance

map for each voxel in the image, effectively providing a new coordinate system to use which is

adaptive to the anatomical structures present in each image, and provides an efficient solution

to establishing spatial context without registration. This can be calculated for each target

image based on either an initial segmentation or established reference points and could be

based on either an automatic approach or by manual interaction.

In principle, at least three structures are required to localise a point in 3D space, but this may

not be necessary depending on how it is applied. For example, the EDT of two structures can

localise a non-Cartesian line, whilst the EDT of a single structure can provide enough spatial

context for a non-Cartesian plane or surface. This may provide enough additional information

to distinguish between patches of similar intensities from different structures.

4.2.2 Establishing an Initial Segmentation

The approach for establishing an initial segmentation is influenced by the findings in [171],

where, motivated by the remarkable tolerance of the human visual system to degradations in

image resolution, the authors reported automated segmentation tasks can be performed on

images with resolutions as small as in the range of 32× 32 to 16× 16 depending on the size of

the object.

Initial experiments at low resolutions suggested that a patch-based approach could be used

to determine an initial coarse segmentation both with and without spatial context. At this

resolution, it is computationally feasible to make patch comparisons across the whole image

without the need to define any regions of interest. Differences in global alignment of images
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can be adequately accounted for on a patch level with atlases in similar orientations, regardless

of their alignment. At low resolutions, the computational cost of searching through atlases for

similar patches is also lower, enabling more atlases to be used, thereby potentially enabling the

anatomical variability to be better accounted for at the patch level.

Spatial context based on relative distances between structures cannot be applied initially with-

out having some prior knowledge of some of the structures locations, but weaker spatial context

could be used such as scaled coordinates or the distance to the centre of the image. This sort of

spatial context is relatively inaccurate without registration, but can still be beneficial when ap-

plied weakly. Results and examples of the low resolution segmentation are presented in sections

4.6.3 and 4.7.3. Once an initial segmentation has been established, it can then be refined with

stronger spatial context by using the EDT-based approach, thus overcoming the misalignment

between images and lack of direct image correspondences.

4.3 Segmentation Framework Overview

Figure 4.2: General overview of the proposed segmentation framework: once, the initial seg-
mentation is established in the lowest resolution, the segmentation is then refined through
subsequently higher resolutions until the required resolution is reached.

As an overall segmentation framework, a multi-resolution approach can be applied with the core

methods described above and using the same segmentation principle as that introduced in 3.

The segmentation labelling process uses the spatially weighted label fusion approach, previously

introduced in 3.2, in a simple iterative manner. A high level overview of the proposed framework

is illustrated in Figure 4.2.
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This approach can quickly establish a coarse initial segmentation in the lowest resolution image

and then refine it using subsequently higher resolutions with the EDT-based spatial context.

With each subsequent refinement, not only is the segmentation being improved, but also the

accuracy of the spatial context. The same method for atlas selection and patch-based label

fusion (SAPS) is applied at all resolutions (see Table 4.1) to provide the initial, intermediate

and final segmentations. The atlas selection approach is described in more detail in section 4.4.

4.3.1 Hierarchical Segmentation Strategy

Table 4.1: Example of a Gaussian image pyramid for a knee MR image from the SKI10 dataset
with voxel size (V. Size) and image resolution (res.). Let level 0 denote the native resolution,
then the levels are numbered upwards in ascending order, where level 1 is the highest sub-
sampled isotropic resolution and each subsequent level is half the resolution of the previous
level.

Level 0 1 2 3 4

V. Size 0.392×1mm 0.78mm3 1.56mm3 3.12mm3 6.24mm3

Res. 280×400×110 140×200×140 70×100×70 35×50×35 17×25×17

Multiple resolutions of each image can be created by constructing a Gaussian image pyramid [5].

Given an initial segmentation from a low resolution image, only a boundary region, which can

be calculated as a morphological gradient [139] defined by the difference between the dilation

and erosion of each segmented structure, will need to be refined in a higher resolution (see

Fig. 4.3). This is because a low resolution segmentation cannot represent the boundaries of

each structure as well as a higher resolution. However, for internal voxels of each structure, the

low resolution segmentation would be sufficient, so no further refinement would be required for

these voxels.

The size and shape of the boundary region can be controlled by the structuring elements used

for dilation and erosion as well as the number times the dilation and erosion are performed
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Figure 4.3: Determining the boundary region for refinement from an initial segmentation. The
red outline represents the true segmentation boundary. This approach is also used to define
the region of interest to use for atlas selection.

before taking their differences. For simplicity, this can be a ‘+ shaped’ structuring element

with a radius of 1 pixel in each axis for both dilation and the erosion, and the same number

of dilation and erosion operations can be applied to produce the boundary region. This also

allows the boundary size to be defined by the number of dilation (or erosion) operations used

to create the morphological gradient. i.e. a boundary size of 3 means that it is created from

the difference between 3 dilation operations and 3 erosion operations. This definition is used

to allocate a ROI mask of equivocal boundary size in each image for the refinement process.

Multiple iterations of this boundary refinement can be carried out at each resolution to in-

crease the accuracy. This forms a straight-forward and computationally-efficient strategy to

process images through increasing resolutions, allowing a patch-based approach to be used in

all resolutions. This approach to establishing a boundary region for refinement is similar to

that used in [155]. However erosion is used in addition to dilation since the true boundary can

lie within the segmentation from the lower resolution. This also allows some error correction

to occur during the refinement process. The boundary size can be adjusted to account for

potential errors from the initial segmentation, however it is desirable to minimise this size in

order to limit the number of patch comparisons and thus the computational cost during each

refinement.
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4.4 Atlas Selection Using Histogram of Gradients

Previous works using patch-based approaches, such as in [47] or in the previous chapter, sug-

gested that linear increases in the number of atlases yields logarithmic improvements in the

segmentation. Therefore, as a trade-off between time and accuracy, only the nearest N atlases

are used rather than the entire atlas library. Traditional atlas selection methods which typically

use voxel-to-voxel based distance metrics cannot be used meaningfully when the images are not

aligned, so a different type of similarity measure must be employed. Assuming images can be

intensity normalised, one approach to compare images is by their intensity histograms. This

can provide a measure of the high level differences in the distribution of intensities, however this

discards local neighbourhood information which is relevant for patch comparisons. Instead, a

better alternative would be to use a histogram of oriented 3D gradients based on [95] and [52],

as this incorporates local neighbourhood information in providing gradients for each voxel.

Gradients are calculated using a 1D Sobel operator in each direction (~x, ~y, ~z) of the image to

derive the gradient magnitudes for the three natural orthogonal axis of the image. The Sobel

operator uses the convolution mask [−1, 0, 1] to derive approximations for the gradient and

presents a computationally simple and efficient manner to calculate the gradients for all voxels

in the image. This then provides magnitudes in the three orthogonal axis directions of the

image and must be binned in 3D to produce a 3D histogram. Ensuring the orientation bins

are equidistant in 3D is not trivial, known otherwise as the Thomson problem [167], but using

the centre positions of faces on regular polyhedrons such as the icosahedron is one solution.

The icosahedron has 20 regular faces and was suggested as an appropriate choice for histogram

binning in [95]. The 20 faces around a unit sphere centred on the original can be described by

the following 20 centre points:

{(±1,±1,±1), (0,±1/φ,±φ), (±1/φ,±φ, 0), (±1/φ, 0,±φ)} (4.2)

where φ = 1+
√
5

2
is the golden ratio. These can be used as vectors to describe the gradient

orientation and to bin the gradients calculated by the Sobel operators. Let P = [p1,p2, ...,p20]T
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Figure 4.4: The icosahedron is a regular 20 sided shape. The centre of each of the faces are
equidistant from each other, providing suitable orientations in which to bin gradients in 3D.

be the matrix of be the orientation vectors representing the centre of the faces of the icosahedron

and let q ∈ R3 be a vector of the gradients for a voxel in the image. Then q can be binned

into one of 20 bins in the histogram, by first selecting the orientation bin hi in the histogram

as:

hi = arg max
pi∈P

pi · q (4.3)

After which, the total gradient magnitude, ||q||2, is used as the value to bin, whilst there is no

change to other bins. This is performed for all relevant voxels, as defined by any ROI masks,

and summed up in order to build a histogram. Then for each image, a histogram of 3D gradients

can be produced which can be used to compare and order images by similarity.

There are many distance measures that can be employed for histogram comparison such as

the earth mover’s distance [144], but for the applications in this chapter, the L1 norm was

found to be a simple and effective measure. For the initial segmentation, the atlas selection

process compares histograms of the whole image, but once an initial segmentation has been

established, regions of interest can be defined for the purpose of segmentation refinement using

the boundary regions as shown in Figure 4.3. These regions can then be used to restrict the

parts of the image where comparisons are made for atlas selection. To increase specificity,

histograms are calculated separately for each structure’s boundary region within each region

and then concatenated to produce an overall histogram for that region.
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4.5 Framework Summary

The methods proposed in this chapter, effectively extends the framework proposed previously in

Chapter 3, using it in an iterative process to initialise and then refine a segmentation in multiple

resolutions. A Gaussian image pyramid scheme is used to provide the multiple resolutions, and

segmentation is carried in a coarse-to-fine fashion from the lowest resolution to the highest.

The new approach for spatial context, based on relative distances to structures rather than

using the explicit coordinates of each patch, enables us to be less dependent on the alignment

of the images and to provide spatial context without registration. The kNN patch selection

and the label fusion process still uses the same approach which was presented previously in

Chapter 3.2 and 3.3.

For atlas selection, in order to compare images without registration, histogram of 3D oriented

gradients are computed from each image and then the N nearest atlases can be selected based

their histograms similarities. Gradients for each voxel are binned regularly in 3D according to

the 20 faces of an icosahedron to build up a histogram.

4.6 Application to MICCAI SKI10 Grand Challenge

For experimentation and evaluation, the proposed methods were applied to the MICCAI SKI10

Grand Challenge [82] dataset. The only assumption made is that the joint is the main focus for

these images and that they are acquired in some approximately standardised orientation, i.e.

none of the images are upside-down. However, no orientation information, nor any information

regarding image alignment are explicitly used.

4.6.1 Dataset

The basis for the SKI10 dataset are a range of knee images originating from the surgical

planning program of Biomet, Inc. This dataset contains an approximately equal number of
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both left and right knee images from multiple patients, and were acquired at over 80 different

centres in the USA using MRI machines from all major vendors, i.e. General Electric, Siemens,

Philips, Toshiba and Hitachi. A range of MRI sequences were employed, with the majority using

T1-weighting, but some also used T2-weighting. Many images used gradient echo or spoiled

gradient echo sequences, and fat suppression techniques were common as well. Additionally,

the field strength applied also varied, with 90% of cases using 1.5T, but the rest using 3T or

1T. All images were acquired in the sagittal plane with pixel spacing of 0.39 × 0.39mm2 and

slice distance of 1mm without using contrast agents. The images were acquired for the purpose

of surgical planning for partial or complete knee replacements, however information regarding

pathologies were omitted. 100 images are provided for training purposes and 50 separate unseen

images are used for testing. No reference segmentations are provided for the test images and

results are validated independently by the challenge organisers.

4.6.2 Implementation

The framework from the previous chapter was extended to allow a multi-resolution approach

as well as allowing a choice of spatial context to use. The implementation used open-source

modules in Python and Cython when possible.

As a pre-processing step, all images are bias field corrected [172], re-sampled to isotropic voxel

size and intensity normalised [123], with intensities scales to the range [0, 100]. All images are

considered for each stage of the segmentation process without separation of MR field strengths,

or into left or right knees.

Initial segmentations were obtained, as proposed in section 4.2.2, with voxel coordinates nor-

malised to the range [0, 100] used to provide spatial context and a weak spatial weighting

α. Although images are not aligned, the use of normalised coordinates with a weak spatial

weighting were found to provide more accurate initial segmentations than not using any spatial

information at all. For segmentation refinement, the EDT from the tibia and the femur were

used to provide relative distances as they constitute the main structures in these images which

are subject to change in pose within the images. At the same time, the anatomy of the knee
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naturally places the femur and tibia relative to each other spatially, hence making good candi-

dates to provide relative distances for spatial context. The choices for α at each resolution and

iteration were chosen empirically based on experiments with the training data.

Different patch sizes were found to provide the better results for each resolution, with a general

trend of increasing patch sizes as the resolution increased. For the initial segmentation, it was

found that larger patch sizes would have the most stable and consistent results whilst smaller

patch sizes could perform better on average but had greater variation in the range of results.

To combine the qualities of different patch sizes, an initial segmentation was established using

relatively larger patches but then refined in the same resolution using smaller patches before

propagation to higher resolutions. Since the native image resolution is non-isotropic, the choice

of patch size for the final resolution was also chosen to be non-isotropic so that the information

contained in each patch is more consistent in each direction.

The initial segmentation can have a great impact on the overall segmentation quality and it was

found that performing refinements with smaller patch sizes in the lowest resolution to obtain

a better coarse level segmentation would ultimately lead to better segmentation accuracy after

propagating through higher resolutions. Furthermore, the computational costs of performing

multiple refinements in the initial resolution is relatively cheap compared to doing so at a higher

resolution. The parameters used and computational times for each resolution are summarised

in Table 4.2.

4.6.3 Results and Discussion

The results for the SKI10 grand challenge2 are presented in Tables 4.3, 4.4 and Figure 4.6,

showing promising potential for this framework and demonstrating the possibility of applying

patch-based segmentation in images without applying registration. It is interesting to note that

a segmentation of the knees, with an average surface distance to the bones of under 1.2mm,

can be achieved in under 2 minutes using the second lowest resolution level. The framework

does not make any prior assumptions about the different anatomical structures, yet achieves

2See http://www.ski10.org/results.php for a full list of results from other entries.

http://www.ski10.org/results.php
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Table 4.2: Example segmentations, parameters and computation times for each resolution level.
Segmentations from the proposed method are overlaid in green for the bone and yellow for the
cartilage. The reference segmentations are outlined in red.

Level 4 3 2 1 0

Patch Size 73, 53, 33 33 53 73 7× 7× 3
α 5.5, 2.3, 1.5 2.4 13 35 60
k 15 15 25 40 40

Boundary Size 2 2 2 2 1
Time ∼30 seconds ∼40 seconds ∼10 minutes ∼2.5 hours ∼1.5 hours



4.6. Application to MICCAI SKI10 Grand Challenge 125

Level 4 Level 3 Level 2 Level 1 Level 0 Reference

Figure 4.5: Example volume renderings of the segmentation results from each resolution level
in comparison to the reference segmentation.

a good score for bone segmentation whilst the score for cartilage segmentation is comparable

to the top scoring entries in the challenge. In the final resolution, the framework achieved an

overall score of 58.3, with average scores of 64.9 for cartilage and 51.7 for bone. Overall within

the challenge, these results rank 3rd for cartilage segmentation, 8th for bone segmentation, 7th

overall. The SKI10 challenge operates on a rolling basis, and at the current time of writing,

there are 14 total entries including this one.

In general, many of the top scoring methods use model-based approaches, which tend to have

strong correlations between the bone and cartilage segmentation accuracy as cartilage seg-

mentation relies on an accurate bone segmentation to define the bone-cartilage-interface. In

contrast, the proposed method does not have such a tightly coupled relationship between the

bone and cartilage segmentation results since bone and cartilage labelling are performed simul-

taneously. Although the relative bone positions influence the cartilage segmentation, it does not

restrict the shape of the cartilage segmentation. As a result, this approach is able to work well

on the cartilage, producing comparable scores with the top scoring methods, even with much
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Figure 4.6: Beanplot of segmentation scores for each resolution level in comparison to the
highest scoring method and the average score in the SKI10 Grand Challenge. The shape of the
“bean” shows the distribution of the results and individual data points are shown as small lines
on the bean. The overall score (calculated by the mean) for each resolution is indicated by the
thick black line on the bean. Average SKI10 scores are calculated from the SKI10 results table,
excluding the proposed method.

Table 4.3: Overall results from the SKI10 grand challenge showing average surface distance
(AvgD), root mean squared surface distance (RMSD), volumetric overlap error (VOE), volu-
metric difference (VD), score (Scr) and their standard deviations for each resolution level.

Res.
Level

Femur Bone Tibia Bone Femoral Cartilage Tibial Cartilage
AvgD RMSD

Scr
AvgD RMSD

Scr
VOE VD

Scr
VOE VD

Scr
[mm] [mm] [mm] [mm] [%] [%] [%] [%]

4
1.71 2.32 30.8 1.72 2.38 7.8 75.70 −6.10 37.5 76.42 −1.86 26.4
±0.27 ±0.50 ±10.8 ±0.60 ±0.96 ±6.2 ±3.57 ±16.00 ±17.2 ±9.21 ±48.33 ±17.6

3
1.18 1.88 49.1 1.15 1.91 34.4 56.17 −1.71 47.4 55.83 −1.05 46.9
±0.39 ±0.80 ±15.0 ±0.73 ±1.30 ±16.6 ±4.27 ±15.63 ±17.9 ±5.72 ±24.56 ±17.0

2
0.95 1.74 56.1 0.94 1.83 43.3 39.28 0.99 59.7 40.35 −1.20 56.2
±0.42 ±0.86 ±15.9 ±0.81 ±1.44 ±19.1 ±5.54 ±14.19 ±17.3 ±5.78 ±18.35 ±16.8

1
0.90 1.75 57.1 0.88 1.84 44.9 32.81 0.65 62.1 33.55 −2.36 61.6
±0.44 ±0.89 ±16.3 ±0.81 ±1.46 ±19.9 ±6.69 ±13.88 ±17.5 ±6.37 ±15.96 ±16.9

0
0.88 1.73 57.8 0.86 1.82 45.6 27.19 −0.894 65.4 27.96 −4.39 64.4
±0.44 ±0.89 ±16.3 ±0.80 ±1.45 ±20.1 ±8.03 ±13.16 ±16.2 ±7.05 ±15.56 ±18.1
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Table 4.4: Overall scores and rankings from the SKI10 grand challenge. The rank is given as
the current position in the SKI10 results table.

Res.
Level

Bone
Rank

Cartilage
Rank

Overall
Rank

Score Score Score

4 19.32± 7.20 12 31.96± 12.8 11 25.63± 7.5 11
3 41.79± 12.9 11 47.14± 13.6 11 44.44± 9.8 11
2 49.72± 12.1 8 57.95± 12.5 10 53.81± 9.2 10
1 50.99± 14.4 8 61.84± 13.6 4 56.42± 9.8 8
0 51.75± 14.5 8 64.88± 13.7 3 58.31± 9.9 7

lower bone segmentation accuracy. This can be particularly of an advantage in cases where it

is challenging to accurately align correspondences on the bones. Additionally, the structural

variability of the cartilage can be much greater than the bones so model-based approaches can

be at a disadvantage to nearest-neighbour approaches if their models do not fully explain the

complexities. However, the model-based approaches tend to perform better for bone segmenta-

tion. This is in part due to the limited shape variation for individual bones, so a model-based

approach is able to capture this during training fairly well. Patch-based methods do not in-

corporate shape information and can be misled by the intensity information if there are not

enough sufficiently locally-similar examples within the atlas library. Given that the bones are

relatively large and that variations in intensities can differ from region to region, even within

a single subject, it is likely that the atlases in the training set were not sufficiently diverse

enough for the proposed approach to fully account for it. The intensity normalisation process

also greatly affects the intensity variability between images, and therefore, the segmentation

results. The fact that the SKI10 dataset were produced from different scanners with differing

image acquisition protocols certainly poses a challenge for intensity normalisation across the

images, especially when they are not aligned. This a weakness of nearest-neighbour approaches

based on absolute intensity information, and partly explains why the model-based approaches

perform better in this case. This could potentially be addressed in changing the distance met-

rics used for patch comparison, such as by using a NMI-like metric instead of an Euclidean

one. This is plausible in the proposed framework as long as it is a true metric which obeys

the triangle inequality, which the ball tree relies upon. Otherwise, an alternative kNN data

structure will be required.
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The use of k-NN data structures such as the ball tree removed the requirement for using fixed-

size search windows and in turn, enabled the proposed framework to allow segmentation without

any kind of registration between images. However, the speed is still dependent on the number

of voxels within the image. It can be seen in Table 4.2 that the increase in computation times

grows exponentially as resolution increases. Even though the use of a binary search tree such

as the ball tree theoretically reduces search time to O(log2 n), the number of voxels grows by

O(n3) with each increase in resolution. This puts a constraint on the size of the images that

a voxel-by-voxel patch-based approaches can be suitably applied to. One possible solution to

overcome this problem is to exploit parallelism, since voxels are labelled independently from

each other, so the segmentation process could be potentially run on GPUs or CPU clusters.

Overall, the proposed framework streamlines and simplifies the image segmentation pipeline,

requiring fewer separate processes than model-based approaches where correct image alignment

and extensive model training are required. The results for this dataset demonstrate potential

in an alternative approach that is not usually used for this application, although more can be

done to improve the overall performance. One possibility is to combine model-based approaches

with the proposed framework, using the patch-based approach to refine and further adapt

trained models to each target image. This could be performed after model fitting, where an

initial segmentation can be estimated, thereby providing structures for relative distances and

enabling the proposed approach for spatial context. Patch-based refinement can then carried

out to improve the initially fitted model.

4.7 Application to Canine Leg MRI

The proposed framework was also applied to the canine leg MRI dataset from the 2013 MICCAI

challenge workshop on Segmentation: Algorithms, Theory and Applications (SATA). This op-

erated in a similar fashion to the SKI10 challenge, where the challenge organisers independently

evaluate the performance of each method on an unseen test set.
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Figure 4.7: Example of images and reference segmentations in the SATA canine leg MRI dataset.
Reference Segmentations are outlined in yellow for each of the muscle groups visible.

4.7.1 Dataset

The dataset contains MR images of the proximal pelvic limbs of 8 normal dogs and 10 golden

retrievers with muscular dystrophy at approximately 3 and 6 months of age. Additional scans

were performed on 4 of the normal dogs and 5 of the golden retrievers at 9 months of age.

The images were acquired with Siemens 3T MRI scanners using T2-weighted protocols and

have resolutions of 256×256×180 voxels with each voxel having a resolution of 1×1×1mm3.

The labels for each atlas consisted of 7 proximal pelvic limbs muscles manually segmented by

3 experts by delineating the outline of each muscle for every 5th image slice and using linear

interpolation to connect up the segmentations in 3D. The muscles segmented were the cranial

sartorius, rectus femoris, semitendinosus, biceps femoris, gracilis, vastus lateralis and adductor

magnus. In total, 22 images were provided for training and 23 additional unseen images were

used for testing. Segmentation results were evaluated independently by the challenge organisers.

4.7.2 Implementation

A similar approach was applied as for the SKI10 dataset, initialising using spatial coordinates,

normalised to the range [0, 100], and then using the EDT to each of the muscle groups as
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spatial context. Pre-processing was also similar, however Otsu thresholding [125] was applied

to remove the background prior to intensity normalisation. Multiple boundary refinements were

performed for each resolution using different patch sizes (see Table 4.5 for parameters). The

small size of the atlas library meant it was computationally feasible to use all atlases to provide

patches for segmentation, so atlas selection was not required or used for this dataset.

Background Removal using Otsu Thresholding

Otsu’s method [125] is an automatic approach to find a threshold value, which can be used for

background removal. This can be particularly useful in the situations where the background can

be clearly removed, but the threshold value varies between images. The method exhaustively

searches for a threshold that minimises the intra-class variance for two classes, the foreground

and the background, defined as a sum of variances of the two classes:

σ2
w(t) = w1(t)σ

2
1(t) + w1(t)σ

2
1(t) (4.4)

where weights wi are the probabilities of the two classes with variances σ2
i , and t is the threshold

value that separates them. This can be equivalent to maximising the inter-class variance which

is easier to compute:

σ2
b (t) = σ2 − σ2

w(t) = w1(t)w2(t)[µ1(t)− µ2(t)]
2 (4.5)

where µi are the class means. The class probability wi(t) is computed from the intensity

histogram with t as a limit, so w1(t) =
∑t

i=0 p(i) and w2(t) =
∑n

i=t p(i) for the n bins of the

histogram. The means are computed in a similar fashion using the threshold t, so µ1(t) =

[
∑t

i=0 p(i)x(i)]/wi and µ2(t) = [
∑n

i=t p(i)x(i)]/wi, where x(i) is the central value for each bin of

the histogram. The values are then computed iteratively until convergence, selecting the best

threshold t each time. The final t value can then be used to threshold the background from the

foreground.
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Table 4.5: Parameters used for each resolution. Resolution levels are numbered such that level
1 denotes the highest resolution segmented and each subsequent level is half the resolution of
the previous level. Parameters are chosen by experimentation with the training set.

Resolution Level (voxel size) 3 - Initial (8mm3) 3 (8mm3) 2 (4mm3) 1 (2mm3)

Patch Size 73 53, 33 73, 53 73

α 10 3.5, 0.9 3.5, 2 5
k 15 15 15 25

Boundary Size - 3 3 3

4.7.3 Results and Discussion

The results from the SATA segmentation challenge3 are presented in table 4.6 and the final

results for each muscle group presented in Figure 4.9. A comparison of the results with some

of the other methods used in the challenge is presented in Table 4.7.

(a) Level 3, 8mm3 (b) Level 2, 4mm3 (c) Level 1, 2mm3

Figure 4.8: Example segmentations are outlined in yellow with ground truth outlined in red,
shown in respective ordering to resolution levels. Resolution levels are numbered such that level
1 denotes the highest resolution segmented and each subsequent level is half the resolution of
the previous level. Parameters are chosen by experimentation with the training set.

Table 4.6: Overall results for each resolution level. Time taken is an average estimate per image
for the resolution on an 8 core 2.8GHz CPU. Infinities (Inf) and undefined (NaN) are caused
by failed segmentations where a structure is missing in some of the results.

Res. Level Dice Metric Hausdorff Dist. (mm) Time
(Voxel Size) Mean (median) ± Std. Mean (median) ± Std. Taken

3 - Initial (8mm3) 0.441 (0.436) ± 0.078 Inf (42.931) ± NaN ∼5 secs

3 (8mm3) 0.464 (0.460) ± 0.060 Inf (37.692) ± NaN ∼5 secs
2 (4mm3) 0.568 (0.571) ± 0.074 32.101 (32.580) ± 6.671 ∼2 mins
1 (2mm3) 0.597 (0.587) ± 0.089 33.383 (33.097) ± 6.881 ∼20 mins

3See http://masi.vuse.vanderbilt.edu/submission/leaderboard.html for all other submitted results
as well as results for other challenges

http://masi.vuse.vanderbilt.edu/submission/leaderboard.html
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Figure 4.9: Segmentation results for the final resolution level (2mm3) of the proposed method
for each of the muscle groups.
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Table 4.7: Comparison of results with the top performing method and with baseline methods
performed by the challenge organisers using a standardised registration method. Infinities (Inf)
and undefined (NaN) are caused by failed segmentations where a structure is missing in some
of the results.

Method
Dice Metric Hausdorff Dist. (mm)

Mean (median) ± Std. Mean (median) ± Std.

Proposed (Level 1, 2mm3) 0.597 (0.587) ± 0.089 33.383 (33.097) ± 6.881
[179] 0.762 (0.797) ± 0.098 27.129 (27.257) ± 8.073

Majority Vote 0.418 (0.424) ± 0.108 Inf (39.198) ± NaN
Spatial STAPLE 0.559 (0.540) ± 0.125 38.6044 (38.141) ± 8.017

The proposed approach was the only one in the challenge which attempted to perform seg-

mentation without any registration. The fact that it was able to outperform both the baseline

majority vote and spatial STAPLE methods, which used a standard affine and non-rigid de-

formable registrations, shows promise and highlights the issues with dependence on accurate

registrations for segmentation. However, ultimately the results fell short of the top performing

method which did use registration, although their label fusion used a patch-based approach

which also allows some relaxation in the dependence on voxel-wise correspondences between

images.

The segmentation of muscles, especially ones which neighbour each other proved to be very

difficult for the proposed approach as well as many other approaches. One of the issues is in

part due to the large variation in sizes of the muscles and the variation in the sizes of the dogs in

the dataset. Using two breeds of dogs lead to a large variation in the anatomical sizes and given

the relatively small dataset, it meant that the available atlases could not fully account for the

total variation that could be exhibited. Another issue was the quality of the MRI scans which

varied greatly and how it affected the intensity normalisation outcome. One particular aspect

of the proposed framework which may have not worked well was the multi-resolution approach

and the initial resolution used. Here, it often became difficult to separate neighbouring muscle

groups as downsampling to such a low resolution removed the visible boundaries between them.

Given that the muscle groups were generally quite similar in intensities, it is often difficult to

differentiate between the different muscle groups, particularly for the initial segmentation when

strong spatial context could not be provided.
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The approach for spatial context using relative Euclidean distances between muscle groups

allowed the provision of spatial context once an initial segmentation was established, however

it was easily mislead by incorrectly labelled structures. Additionally, it did not allow much

flexibility in accounting for the two different types of dogs which had large variation in the

shape and sizes of their legs since. This potentially could have been solved by a registration

approach which could enable the dogs to be realigned to a similar scale. However, judging by

the results from applying baseline segmentation approaches using a current and standardised

registration method, achieving good alignment between these images is a challenging task and

remains open to significant improvements.

4.8 Summary and Conclusion

In this chapter, we looked at the possibility of segmentation without registration using a new

multi-resolution framework for applying patch-based segmentation and an approach to provide

spatial context which is not dependent on voxel-wise correspondences between images. In

addition, an atlas selection method was also proposed which uses histograms of 3D gradients

for image comparison to enable atlas selection without registration. The overall framework was

evaluated without any post-processing methods by applying it to two challenging and publicly

available datasets from the MICCAI SKI10 grand challenge and the canine leg dataset from

the SATA MICCAI challenge workshop.

This is the first time a purely patch-based method has been applied to segmenting knee images,

producing results which are comparable to many of the other methods used in the challenge.

The scores indicate a promising first application of the proposed framework but potential

improvements could be achieved in the intensity normalisation process and the adaptability to

inter-subject appearance variation. Additionally, the use of more training data could may have

also have provided a performance increase, as well as post-processing refinements.

Using the EDT from different structures as relative distances to provide an adaptive coordinates

allowed the use of spatial context for images which are not aligned. However the Euclidean
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distances are subject to variations in scale between subjects, particularly as images are not

registered. Additionally, use of the EDT may not fully compensate for incorrectly labelled

regions from the initial segmentation which do not lie within the boundary region for refinement.

Although it is plausible to perform segmentation without registration, the proposed approach is

ultimately not able to outperform the most successful methods in the segmentation challenge.

However, the proposed framework could be coupled with model-based approaches, which have

more commonly been used in knee segmentations, in order to overcome some of the problems

that have been mentioned.

In the next chapter we will explore the use of another approach for spatial context which uses

the geodesic distances along the image intensities as an alternative to using the Euclidean

distance.



136 Chapter 4. Patch-based Segmentation without Registration



Chapter 5

Geodesic Patch-based Segmentation

This chapter is based on the following publication:

• Zehan Wang, Kanwal K. Bhatia, Ben Glocker, Antonio de Marvao, Tim Dawes, Kazunari

Misawa, Kensaku Mori, Daniel Rueckert. Geodesic Patch-based Segmentation Medical

Image Computing and Computer-Assisted Intervention – MICCAI. LNCS Volume 8673,

pages 666-673. Springer International 2014.

5.1 Introduction

So far, we have looked at the use of spatial context within a patch-based segmentation frame-

work to regularise patch selection, enabling similar looking patches from different structures

to be distinguished and removing the requirement for the use of search windows. The pre-

vious chapter introduced a new approach to provide spatial context using relative distances

between anatomical structures to provide an adaptive coordinate system which is independent

of voxel-wise image correspondences. This then lead to an investigation for applying it as a

plausible approach for segmentation without registration, which could also be used to cope with

registration errors.

137
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Previously, the EDT was applied from labelled structures to provide relative distances for use

as spatial context, but the Euclidean distance is sensitive to anatomical variability as well

as the quality of initial segmentation. As spatial features to regularise patch comparisons, it

would be desirable to have relative distances between structures which are comparable in the

presence of shape and size variability between different subjects, particularly for applications

where accurate registration can prove challenging. In these circumstances, using the Euclidean

distance may be insufficient for this purpose, particularly since it provides a linear measure

which ignores any information within the image such as boundaries between structures or the

presence of flat homogeneous regions.

As an alternative, this chapter looks at using the geodesic distances within the image, which are

able to contribute information on the locality of structure boundaries, to provide spatial context

and an anatomically-adaptive coordinate system. The use of geodesic distances has been shown

to be effective in interactive segmentation [49] and this is adopted within the spatially aware

patch-based framework proposed in previous chapters. In addition to the proposed application

of geodesic distances as spatial features, it has also recently been used with random forest

classifiers in [96].

5.1.1 Chapter Overview

This chapter begins by presenting a new approach for spatial context, based on using the

geodesic distance within the image, and showing how it can be calculated efficiently using a

distance transform. This approach is used within the multi-resolution segmentation frame-

work presented in the previous chapter, and evaluated with multi-structure segmentation in 20

cardiac MR images as well as multi-organ segmentation in 150 abdominal CT images.
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5.2 Anatomically-Adaptive Coordinate System

To overcome the shortfalls of the Euclidean distance in providing adaptive spatial context,

geodesic distances within the image could be used instead. This takes into account image

gradients and describes distance between two points using the shortest path along the image

intensities rather than just through physical (empty) space.

(a) Euclidean distance (b) Geodesic distance

Figure 5.1: A comparison of Euclidean distances in (a) and geodesic distances in (b) within an
image, shown in green and cyan respectively.

In general, the geodesic distance between two points x, y within an image I is defined as follows:

d(x,y) = inf
Γ∈Px,y

∫ l(Γ)

0

√
1 + γ2(∇I(θ) · Γ′(θ))2 dθ (5.1)

where Γ is a path in the set of all paths, Px,y between x and y and is parametrised by its

arclength θ ∈ [0, l(Γ)]. The Euclidean distance can be considered a special case of the geodesic

distance, since these are equivalent when γ is set to 0, and in practice it is possible to tune

for some balance between a purely Euclidean and purely gradient-derived distance measure,

depending on the application.

The same principle in providing spatial context is use as that described previously in Chapter

4.2.1, using relative distances to structures, but using geodesic distances instead of Euclidean

distances. This provides a coordinate system that is then not only adaptive to the anatomical



140 Chapter 5. Geodesic Patch-based Segmentation

structures used to provide relative distances, but also adaptive to anatomical features within

the image between these structures. This substantially alters the relative distances between

structures as the distances are now affected by visible boundaries and takes into account the

image gradients between structures (see Figure 5.2). Using geodesic distances from multiple

structures then allows patches to be localised in a way that is more comparable between different

subjects than using Euclidean distances, particularly when there are large differences in the

physical sizes of the subjects’ anatomies.

(a) (b)

(c) Euclidean distances (d) Geodesic distances

Figure 5.2: (a) and (b) represent the same anatomical structures but the two images are not
aligned. Spatial context for patch P (x) can be provided by the distances to these structures
regardless of the how they are positioned within the image. (c) and (d) provide an example
where this type of spatial context can be used and how the distances will be different using the
geodesic distances compared to Euclidean distances.

To efficiently calculate geodesic distances for all pixels in an image, a distance transform can

be applied in a similar fashion to the EDT which was used in the previous Chapter. This
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calculates the minimum distances to a reference point or labelled structure within the image

and provides a distance map, describing the distances for each of the pixels to the structure.

This can be performed for multiple structures to obtain the relative distances to each, thus

providing spatial context in the form Sadaptive(x) = [dmin(x, R1), dmin(x, R2), ..., dmin(x, Rn)] for

each pixel x and structures Ri as previously defined in Chapter 4.2.1.

5.2.1 Geodesic Distance Transform (GDT)

There are several geodesic distance transform algorithms [185]; this chapter uses the approach

from [168], which was also used in [49] and demonstrated to have good performance with linear

computational requirements. This approach uses a local wavefront propagation algorithm with

a fast sweeping method [195], which iteratively sweeps from one corner of the image to the

opposite corner in alternating directions, updating the distances of each path in a local kernel

in favour of the shortest.

This requires discretising the image domain and the geodesic distance formulation in (5.1), then

traversing the image grid using a local neighbourhood structure. Given two pixels x and y, paths

between them can be constructed using chains of neighbouring pixels (s0 = x, s1, ..., sn = y).

Along such a chain, the integral in (5.1) can be approximated as

n∑
i=1

[|si − si−1|2 + γ2|I(si)− I(si−1)|2]
1
2 (5.2)

Based on this, the GDT can then be calculated by finding the minimum paths. This can be

performed using a wave-front propagation approach, where the distances for the current pixel

x is updated according to the minimum:

D(x) = min{D(x + ai) + [|ai|2 + γ2|I(x)− I(x + ai)|2]
1
2} (5.3)

D is current depth map and eventual output of the GDT, and ai defines the local neighbourhood
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which represents the local wave-front. The fast sweep method updates the distances by first

sweeping from one corner of the image to the opposite corner and then sweeping in the opposite

direction, e.g. the upper-top-left corner to the lower-bottom-right corner and vice versa. A local

window of size 3×3×3 is usually sufficient in providing the local neighbourhood for the GDT,

although larger ones could be used which produce better approximations with each sweep but

with a significant reduction in speed [49]. It takes a few iterations of this to converge to

the distance of the shortest path from a seeded region to all other points in the image, and

thus provide the correct distance map. Results from [168] suggests it requires 3-10 iterations,

depending on the nature and size of the image. The algorithm has an optimal computational

complexity of O(N) where N is the number pixels, and accesses the image data in memory in

contiguous blocks allowing it run quite fast in practice.

(a) GDT map from kidneys (b) GDT map from pancreas

(c) GDT map from liver (d) Original image (e) EDT map from liver

Figure 5.3: Comparing the EDT to the GDT as distance maps created using eroded (×2)
versions the anatomical structures in abdominal CT images. Distances are shown as being
proportional to the intensity.

Examples of distance maps using geodesic distances in comparison to the Euclidean distance
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(a) Original image (b) EDT map (c) GDT map

Figure 5.4: Comparing the EDT to the GDT as distance maps created using eroded (×2)
versions the left ventricle in cardiac MR images, shown from two perpendicular view points.
Distances are shown as being proportional to the intensity.

is shown in Figures 5.3 and 5.4. Here it can be seen, that contrary to the EDT distance map,

structure boundaries are clearly visible and distances within the same anatomical structures

are more similar than that from other structures in the GDT distance maps.

5.3 Framework Overview

As an overall segmentation framework, the multi-resolution approach previously introduced in

Chapter 4.3 can be adopted with the same principles for patch-based segmentation as in Chap-

ter 3. Although it is plausible to perform segmentation without registration using the proposed

approach for spatial context, it is difficult to obtain an initial segmentation with sufficient ro-

bustness for all applications without registration. This was seen with the results of the canine

leg MRI challenge in the previous chapter, where errors in the initial segmentation could not be

fully corrected by the refinement process, which also adversely affected the relative distances

used for spatial context. This could potentially be addressed with a coarse registration so that

the organs are in the same orientation and share a similar frame of view, enabling the initial

segmentation to benefit from the use of coordinates as spatial context. This can be achieved
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using linear registration without requiring non-rigid deformable registration. Registration fail-

ures can still occur depending on the application, but only a subset of atlases are required for

the initial segmentation.

5.3.1 Initial Segmentation

Given that images are coarsely aligned, there are several options for an initial segmentation

to enable the use of the GDT for spatial context. One possibility is to use the approach used

previously in Chapter 4.3, where coordinates are used as spatial context with a weak spatial

weight in very low resolution. One issue with this approach is that the resolution must be

low enough such that it is computationally plausible to perform image-wide kNN patch search

without relying upon well defined and concise ROI masks. This may cause problems if the

structures of interest are not distinguishable at this resolution, resulting in incorrectly labelled

initial segmentations.

Another possibility is to establish globally defined reference structures based on the binary

intersection of each label from the atlases. This can then be used to provide relative distances

to patches for all images. This option has the benefit of being fast and simple to obtain but

relies upon the registration outcome to be sufficiently accurate such that the the intersection of

the atlases does not yield an empty set. This is unlikely to be the case in images where there

is substantial variability in the location of the anatomical structures.

Finally, the initial segmentation could be obtained by another independent segmentation ap-

proach. The framework used in this chapter enables a boundary region to be set for any

segmentation and to refine it using the proposed patch-based approach with spatial context

derived from the eroded versions of the structures. The region for refinement can be estab-

lished by taking the difference between the dilation and the erosion of the structures as shown

in Figure 4.3 in the previous Chapter.

Ultimately, the choice in how to obtain the initial segmentation, as well as the resolution to

obtain it at, may be dependent on the application. For example, in the cardiac dataset, the
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intersection of the atlases can be used, but in the abdominal dataset, the intersection of the

atlases results in an empty set. Further details are presented on the different approaches with

regards to specific applications in the next section.

5.3.2 Segmentation Refinement

As part of the multi-resolution framework, once an initial segmentation has been established,

only the boundary region for each label requires refinement after each iteration. In the same

manner as presented in Chapter 4.3.1, the boundary region is defined by the morphology

gradient (dilation minus erosion) of each structure. The boundary region size is controlled by

the number of dilations and erosions performed before taking their differences.

5.3.3 Atlas Selection

Another consequence of using registration is that it enables the use of established atlas selection

schemes in MALP. This allows the approach used in Chapter 3.3.2 to be adopted, where a pixel-

to-pixel distance measure such as SSD or Euclidean distance is used. In this chapter, the SSD

is used when atlas selection is required, in the same manner as was previously described in

Chapter 3.

5.3.4 Label Fusion

The label fusion uses the same spatially aware label fusion approach that was introduced in

Chapter 3.2, using relative geodesic distances, calculated with the GDT, as the spatial compo-

nent. The GDT is always calculated in the native resolution (and downsampled if required) so

that the same spatial weighting α can be used at all resolutions.
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5.4 Application to Cardiac MRI Dataset

5.4.1 Dataset

Experiments were performed using end-diastolic frames of cardiac MR images, captured from 20

subjects using a 1.5T Philips Achieva system, evaluating the segmentation of the left ventricle,

myocardium and right ventricle. The images were acquired in a single breath-hold using cine

imaging sequences with 2mm gaps in the left ventricular short axis direction and have a native

resolution of 256×256×64 voxels with voxel sizes of 1.25×1.25×2mm3. The ground truth

segmentations were provided by two experts manually labelling each voxel using freely available

software (ITK-SNAP). In addition, they also provided six pre-defined landmarks on each image,

so that the different orientation of the heart could be accounted for when aligning the images.

The landmarks were mostly based around of the left ventricle and myocardium, with a single

landmark on the right ventricle (see Figure 5.5).

The experiments also compared using the GDT with using the EDT in providing relative

distances for an adaptive coordinate system as well as using explicit image coordinates as spatial

context. In addition, these methods using spatial context were also compared to the standard

patch-based approach from Coupé [47]. Each method was evaluated using leave-one-out cross

validation with all available atlases (19) to segment each test image. Affine registration using

only the six pre-defined landmarks were applied to align the atlases to each test image in turn.

5.4.2 Implementation

Atlas selection was not used due to the low number of available atlases (19 atlases for each

test image). For the methods using relative distances (using the GDT or the EDT), the initial

segmentation is defined by the intersection of the atlases, and distances to the left ventricle,

right ventricle and background labels were used to provide spatial context. These methods

used a multi-resolution framework to refine the quality of the segmentations that provide the

relative distances as spatial context. In total, 3 resolution levels were used, with the lowest
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(a) Landmarks

(b) Segmentations

Figure 5.5: Examples from the cardiac dataset in their native space, shown all at the same scale.
(a) shows four of the landmark positions as red crosses. These four landmarks are positioned
in the middle slice along the long axis of the left ventricle, whilst the other two landmarks (not
shown) are positioned at the top and the bottom of the centre of the left ventricle. Reference
Segmentations are shown in (b) with left ventricle (LV), myocardium, right ventricle (RV)
outlined in pink, yellow and cyan respectively. The myocardium is the wall around the left
ventricle.
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resolution at 5×5×5mm3 voxel sizes, the intermediate level at 2.5×2.5×2.5mm3 voxel sizes and

the highest at the native resolution with 1.25×1.25×2mm3 voxel sizes. For the standard patch-

based approach and the approach using explicit image coordinates, the segmentation outcome

using multi-resolution and single resolution approaches would be the same since they are not

affected by the intermediate results as they are not adaptive to any changes in the segmentation

between iterations.

A patch size of 5×5×5 voxels was used for all methods and all resolutions and k was fixed at

40 for the kNN methods. For the different approaches to spatial context, α was selected in the

lowest resolution and then applied for all subsequent resolutions whilst γ was set at 100 for

GDT. For spatial context using image coordinates, the weights are adjusted for each resolution

to reflect the same overall effect in real-world distance. The parameters and specifications used

are summarised in Table 5.1. Total computational time was about 4 hours per image running

on a 16-core machine clocked at 2.8Ghz.

Table 5.1: Table of parameters for the cardiac MRI dataset.

Method/Description Parameter(s)

Registration Type Affine (landmark-based) - 9 parameters (no shearing)
Number of Landmarks 6
Intensity Range [0, 100]
Patch Size 5×5×5
k 40
Boundary Size 3
Number of Resolutions 3

5.4.3 Experiments and Results

Effect of the Spatial Weight α

The results, presented in Figure 5.6, suggest that for each method, there is a different optimal

spatial weighting α and this is also somewhat dependent on the application. The results also

suggests that, even in the lowest resolution, methods using adaptive spatial context are able to

provide more accurate segmentations than the other methods. Using these results, α=7, α=13

and α=5 provide suitable parameters to use, respectively, for coordinates, EDT and GDT as



5.4. Application to Cardiac MRI Dataset 149

(a) Left Ventricle (b) Myocardium

(c) Right Ventricle (d) Key

Figure 5.6: Comparison of mean segmentation accuracy in the initial resolution level with
regards to spatial weighting and different spatial context. Error bars represent the standard
deviation. Results using a standard patch-based approach [47] with a window size of 3 voxels
is shown for comparison.

spatial context in subsequent resolutions. In general, there is a minimum value for which α

should be to have a positive effect, but the effect of changing α is fairly stable and predictable;

a rough ballpark number can provide reasonable results and precise tuning of this parameter is

not required.

Final Segmentation

Figure 5.7 and Table 5.2 summarises the final segmentation accuracy for all approaches to

providing spatial context as well as using a standard patch-based approach with different search

window sizes (WS) for patch comparison. Examples of segmented images from all methods are



150 Chapter 5. Geodesic Patch-based Segmentation

Figure 5.7: Comparison of segmentation accuracy for each label with regards to different spatial
context and different search window sizes. Solid line indicates the median, the dashed line
indicates the mean and standard deviation is shown by the dashed diamond.

presented in Figure 5.8.

Refining an Existing Segmentation

As another possibility for the initial segmentation, a segmentation provided by an independent

segmentation process could be used as the initial segmentation. The boundary regions could be

refined using the proposed framework, much in the same manner as if was the result was from

a previous iteration. To demonstrate this, experiments were conducted using the results from

applying Coupé’s patch-based method [47] with a window size of 73 voxels (see Table 5.2) as
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(a) Coordinates (Dice: 0.938, 0.797, 0.905) (b) Coordinates (Dice: 0.944, 0.801, 0.912)

(c) EDT (Dice: 0.936, 0.828, 0.919) (d) EDT (Dice: 0.961, 0.859, 0.937)

(e) GDT (Dice: 0.929, 0.801, 0.905) (f) GDT (Dice: 0.953, 0.838, 0.934)

(g) Coupé [47] (Dice: 0.942, 0.801, 0.922) (h) Coupé [47] (Dice: 0.947, 0.823, 0.925)

(i) Coupé [47]+GDT (Dice: 0.938, 0.808, 0.930) (j) Coupé [47]+GDT (Dice: 0.947, 0.831, 0.930)

(k) Reference Segmentation (l) Reference Segmentation

Figure 5.8: Examples segmentations from all methods for two subjects, shown from two or-
thogonal directions. Dice coefficients are shown for the left ventricle, myocardium and right
ventricle respectively. “[47]+GDT” indicates results which used [47] (WS=7) to provide the
initial segmentation, followed by refinement with γ=100.
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Table 5.2: Final segmentation accuracy from all methods for each label. “[47]+GDT” indicates
results which used [47] (WS=7) to provide the initial segmentation. Dice coefficients are shown
as mean (median) ±standard deviation. Best values are show in red.

Method/Description Left Ventricle Myocardium Right Ventricle

Coordinates (α=7) 0.931 (0.934) ±0.016 0.763 (0.763) ±0.049 0.871 (0.879) ±0.037
EDT (α=13, γ=0) 0.938 (0.938) ±0.017 0.806 (0.814) ±0.049 0.882 (0.893) ±0.047

GDT (α=5, γ=100) 0.934 (0.941) ±0.019 0.797 (0.803) ±0.039 0.901 (0.904) ±0.021
Coupé [47] (WS=73) 0.931 (0.936) ±0.020 0.773 (0.787) ±0.053 0.889 (0.902) ±0.035

[47]+EDT (α=10, γ=0) 0.940 (0.942) ±0.017 0.803 (0.814) ±0.046 0.896 (0.906) ±0.033
[47]+GDT (α=10, γ=0.1) 0.938 (0.940) ±0.018 0.802 (0.816) ±0.047 0.897 (0.910) ±0.033
[47]+GDT (α=10, γ=1) 0.937 (0.941) ±0.017 0.789 (0.793) ±0.048 0.900 (0.911) ±0.031
[47]+GDT (α=10, γ=10) 0.935 (0.939) ±0.016 0.783 (0.786) ±0.044 0.897 (0.908) ±0.031
[47]+GDT (α=10, γ=100) 0.935 (0.938) ±0.016 0.784 (0.782) ±0.041 0.894 (0.908) ±0.031

Method/Description All Labels

Coordinates (α=7) 0.855 (0.854) ±0.030
EDT (α=13) 0.875 (0.883) ±0.031
GDT (α=5) 0.877 (0.879) ±0.022

Coupé [47] (WS=73) 0.865 (0.868) ±0.032

[47]+EDT (α=10, γ=0) 0.879 (0.884) ±0.026
[47]+GDT (α=10, γ=0.1) 0.879 (0.882) ±0.028
[47]+GDT (α=10, γ=1) 0.875 (0.880) ±0.027
[47]+GDT (α=10, γ=10) 0.872 (0.875) ±0.025
[47]+GDT (α=10, γ=100) 0.871 (0.874) ±0.026

Figure 5.9: Comparison of segmentation accuracy for each label with regards to refining an
existing segmentation. “Coupé+GDT” indicates the results which used [47] (WS=7) to provide
the initial segmentation, followed by refinement with γ=100. Solid line indicates the median,
the dashed line indicates the mean and standard deviation is shown by the dashed diamond.
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the initial segmentation. This was refined in the native resolution, using the GDT from eroded

versions of the background, left ventricle, myocardium and right ventricle to provide spatial

context. Further to this, several different γ values were also applied under this scenario.

The results are presented in Figure 5.9 and Table 5.2. Comparing the refined results (γ=100)

and the original unrefined results using Welch’s paired two sample T-test yields p-values of

0.11, 0.023, 0.00061 and 0.0076 for the left ventricle, myocardium, right ventricle and overall

across all labels. This represents the extreme case, and there is further improvement as γ is

reduced, thus p-values would be also be smaller for smaller values of γ as the differences are

more significant. The best values for γ seem to be different for the different structures, with

γ = 1 providing the best results for the right ventricle, whilst γ = 0 provides better results for

the left ventricle and myocardium.

5.4.4 Discussion

The results indicate that using relative geodesic distances to provide spatial context is com-

petitive with other methods and is often able to provide more accurate and consistent results

on average. The geodesic parameter γ was not tuned for the experiments, but it could be

optimised for a performance that is between the results given by using the EDT (γ=0) and the

GDT(γ=100) presented here. The results from using several different γ values for the GDT

suggest that the best value is likely to be dependent on the application and may differ from

structure to structure.

One potential reason for the GDT not outperforming the EDT in segmenting the left ventricle

and myocardium is due to the lack of visible boundaries in certain parts of the image, leading

to an overflow in the segmentation, especially as local patches are also similar in these areas.

This is most evident at the top of the left ventricle, as can be seen in Figure 5.10. In the

outlying case, part of an unknown image artifact in the left ventricle was incorrectly identified

as myocardium. This is likely caused by the local appearance similarities to the myocardium

and the initial segmentation not establishing it as part of the left ventricle, which then leads

to a higher geodesic distance in that area compared to the rest of the left ventricle. Using
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(a) Segmentation overflow at the top of the left ventricle

(b) Image artifact in the left ventricle incorrectly labelled as myocardium

Figure 5.10: Example showing where using the GDT performs relatively poorly. Reference
segmentations for the left ventricle (LV), myocardium and right ventricle (RV) are outlined in
pink, yellow and cyan respectively, whilst the segmentation from using the GDT is shown in
grey and white.

the Euclidean distance ignores image artifacts and limits the overflow in the segmentation

more than the geodesic distance, thus providing a more accurate segmentation. This could be

addressed by lowering the weight γ for the gradient component of the geodesic distance, which

would increase the weight of the Euclidean component of the distance measure and improve

the segmentations. This would also lower the impact of noise in images, which would increase

the geodesic distance in otherwise homogeneous regions and make distances less comparable

between images with differing noise-to-signal ratios.

One region where using the GDT notably outperformed the other methods is with the right

ventricle. A clear example is shown in Figure 5.11. Here using the EDT yielded many more

outliers, which lowered the average performance. The cause for this is likely caused by the

choice of landmarks for registration which were focused around the left ventricle. This would

most likely not have been enough to fully capture all the anatomical differences, resulting in

size differences for the right ventricle after registration. This would also explain why using

explicit coordinates and the standard patch-based approach also gave a much bigger range in

results. Using the GDT to provide spatial context provided more comparable spatial features
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(a) EDT (0.762) (b) GDT (0.899) (c) Reference

(d) Coordinates (0.793) (e) Coupé (0.819) (f) Coupé+GDT (0.832)

Figure 5.11: Example, shown from two orthogonal directions, where using the GDT clearly
outperforms the other approaches for the right ventricle. Dice coefficients are shown in brackets
for the right ventricle only.
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across different subjects and accommodated for the anatomical variability. In contrast, for the

left ventricle, there were generally less variance in the results for all methods since the majority

of the landmarks were defined around this region.

The ability to refine an existing segmentation from an established segmentation method also

demonstrates the validity and versatility of the refinement approach in the proposed framework.

For all labels, the refinement of [47] resulted in improved results on average and significantly so

for the right ventricle. When using a high γ value, the left ventricle and myocardium did not

show as big a difference, largely due to the segmentation overflow and image artifacts as just

discussed. However, for smaller values of γ, the improvements become much more significant.

Overall, the results show that using the GDT to provide spatial context works well and is adap-

tive to different registration outcomes in this dataset. Although, it did not always outperform

the EDT in providing spatial context when there is low contrast or in the presence of image

artifacts, the results still demonstrate great potential in this approach.

5.5 Application to Abdominal CT Dataset

5.5.1 Abdominal CT Dataset

In addition to the cardiac dataset, the proposed framework was also evaluated using leave-

one-out cross validation on abdominal CT scans of 150 subjects, both male and female, ageing

from 26 to 84 years with an average age of 62.8±12.0. The images have an in plane resolution

of 512×512 voxels with voxel sizes ranging from 0.55 to 0.82mm and contain between 263 to

538 slices with spacing ranging from 0.4 to 0.8mm depending on the field of view and the slice

thickness. All images were acquired from the Aichi Cancer Center in Nogaya, Japan for the

purpose of laparoscopic resection of the stomach and gallbladder glands or colon. Out of the

150 subjects, 141 subjects had early or advanced gastric cancer, one subject had cholecystitis

cancer and eight subjects had colorectal cancer.

For each scan, manual segmentations of the liver, spleen, pancreas and the kidneys were pro-
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(a) Subject 1

(b) Subject 2

(c) Subject 3

(d) Subject 4

Figure 5.12: Examples of 4 random subjects from the abdominal dataset. Images differ in their
quality and have high variability in size, shape and location of organs between subjects. In
some images, some of the organs have been clipped during the scan - as can be seen in subject
2. Images have been intensity thresholded to the range [1800, 2400] and are presented at the
same physical scale in their native space.
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duced by one of three trained raters (examples shown in Figure 5.12). The large variability

in the positions of each organ presents challenging conditions for registration and also may be

ill-suited for using the EDT to provide relative distances for spatial context.

5.5.2 Implementation

For this application, three resolutions levels were used, at 4mm3, 2mm3 and 1mm3 voxel sizes.

For each test image, affine registration was used to align the atlases and the 50 nearest at-

lases were selected using sum of squared differences as the distance measure. Initial coarse

segmentations were established by using coordinates normalised to the range [0, 100] as spatial

context with α=0.6, whilst subsequent refinements using GDT as spatial context used α=7.

Similarly to both [191] and [41], graph cuts [31] was applied as post processing to obtain the

final segmentation, using the same adaptations and parameters as proposed in [191].

Figure 5.13: Graph cuts uses the max-flow min-cut principle: Treating an image as a graph,
find a cut between terminal nodes s and t which partitions the graph into two sets with s and t
in different sets such that only the minimum capacity edges are removed. The cut thus provides
a foreground/background segmentation.

Graph cuts is a maximum-flow minimum-cut graph based optimisation which has been widely

used for image segmentation [161], [174], [105]. It automatically estimates an intensity model

for a structure of interest based on spatial prior in the image before finding the optimal cut

in a graph representation, which segments the structure (foreground) from the background.

An image can be considered a graph Γ = (V,E) with vertices v ∈ V representing pixels and
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edges e ∈ E representing the flow of between vertices and two terminal nodes, s and t. A

segmentation is obtained by determining an s-t cut on Γ, which splits s and t into two different

sets (see Figure 5.13). In graph cuts, the flow is maximised to solve an MRF-based energy

function:

E(l) = λ
∑
x∈I

Dx(lx) +
∑

{p,q}∈Nx

Vp,q(lp, lq) (5.4)

where Nx is a neighbourhood around voxel x and lx is the labelling of x in the unseen image in

I. Dx(lx) is a data term which measures the disagreement between a prior probabilistic model

and the observed data, whilst Vi,j is a smoothness term, which penalises discontinuities in the

grey value appearance. Dx(lx) is defined as

Dx(lx) = −β lnPA(y, ly)− (1− β) lnPi(x, lx) (5.5)

where Pi(p, lx), i ∈ s, t are Gaussian intensity models estimated for foreground and background

of structure li and PA(q, lk) is spatial prior. In this implementation, the spatial prior PA is

obtained from the existing segmentation by setting a Gaussian neighbourhood around the each

segmented structure with a fixed size Gσ. This can be performed simply by Gaussian blurring

each segmented structure in turn with σ as the width of the Gaussian. The foreground intensity

model Px is estimated from all voxels which have at least 95% confidence for the associated

structure in the spatial prior PA based on the intensity distribution model, i.e. Ps(p, li) =

P (I(x)|li). The background distribution model Pt is described as a Gaussian distribution of

background voxels estimated from a dilated region of voxels that have a foreground probability

of more than 0 but with a maximum of 5%. The intensity distribution for this region then

provides the probabilities, in a similar fashion as for Ps.
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Table 5.3: Table of parameters for the abdominal CT dataset.

Method/Description Parameter(s)

Registration Type Affine - 12 parameters
Intensity Range [1800, 2400]
Patch Size 5×5×5
k 40
α 0.6 (initialisation), 7
Boundary Size 3
Number of Resolutions 3
Number of Atlases 50, 30 in final resolution
Graph cuts - λ 1
Graph cuts - β 0.1
Graph cuts - c 0.5

Following [161] and [191], Vi,j is defined as:

Vp,q(lp, lq) = c

(
1 + ln

(
1 +

1

2

(
|I(p)− I(q)|

σ

)2
))−1

+ (1− c)
(

1− max
x∈Mp,q

B(x)

)
(5.6)

where Mp,q is a line joining p and q, B is the intervening contour probabilistic map derived

from the gradient image [114] and σ is the robust scale of the image I [161]. The intensity

information and the contour probability information are balanced by the weight c.

The parameters used are summarised in Table 5.3.

5.5.3 Results

The results presented in Figure 5.15 and Table 5.4, demonstrate competitive accuracy compared

to other state-of-the-art methods, also presented in Table 5.4. The results from [191] and [41]

both required non-rigid registration, with the former performing separate registrations for each

organ and the latter using multiple cubic divisions of each image and registering them in a

hierarchical framework. In contrast, the proposed approach only used global affine registration.

The dataset used in this experiment were also used for [191] and [41], although [41] only

experimented with 100 of the 150 total images available.
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(a) Reference (b) Proposed

Figure 5.14: Examples segmentations for the Liver, Spleen, Pancreas, Kidneys with Dice of
0.947, 0.955, 0.826, 0.924 respectively. Reference segmentations are outlined on the left. Volume
renderings shown on bottom from two different perspectives.
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Table 5.4: Overall Dice coefficients in comparison to other state-of-the-art methods shown as
mean±standard dev. with (median) and [worst, best] where available. Best values are shown
in red.

Proposed (150 images) [191] (150 images) [41] (100 images)

Liver 0.947 (0.957) ±0.036 [0.654, 0.979] 0.940 ±0.028 [0.814, 0.974] 0.951 ±0.010
Spleen 0.934 (0.958) ±0.077 [0.425, 0.983] 0.920 ±0.092 [0.264, 0.982] 0.914 ±0.057

Pancreas 0.673 (0.731) ±0.189 [0.031, 0.907] 0.696 ±0.167 [0.069, 0.909] 0.691 ±0.153
Kidneys 0.933 (0.956) ±0.083 [0.344, 0.980] 0.925 ±0.072 [0.515, 0.982] 0.901 ±0.050

Figure 5.15: Comparison of mean Dice Coefficients with other state-of-the-art methods.

Effect of Graph Cuts Post-Processing

A comparison of the results before and after performing graph cuts [31] as a post-process

refinement are outlined below in Table 5.5 and Figure 5.16. Use of graph cuts provides an

improvement in segmentation accuracy for almost every subject across all organs, although the

level of improvement differs from organ-to-organ. When Welch’s paired two sample t-test is

applied, the p-values1 obtained are << 0.0001 for all organs.

Table 5.5: Comparison of segmentation accuracy before and after graph cuts post processing.
Results showing Dice coefficients mean±standard dev. with (median) and [worst, best].

Before Graph Cuts After Graph Cuts

Liver 0.940 (0.951) ±0.038 [0.627, 0.976] 0.947 (0.957) ±0.036 [0.654, 0.979]
Spleen 0.918 (0.946) ±0.080 [0.425, 0.971] 0.934 (0.958) ±0.077 [0.425, 0.983]

Pancreas 0.651 (0.700) ±0.180 [0.030, 0.875] 0.673 (0.731) ±0.189 [0.031, 0.907]
Kidneys 0.922 (0.946) ±0.083 [0.351, 0.968] 0.933 (0.956) ±0.083 [0.344, 0.980]

1Exact p-values: 7.2×10−31, 1.0×10−29, 8.1×10−32, 1.4×10−41 for the liver, spleen, pancreas and kidneys
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Figure 5.16: Segmentation accuracy comparison across all labels, with and without graph
cuts post processing. Solid line indicates the median, the dashed line indicates the mean and
standard deviation is shown by the dashed diamond.

5.5.4 Discussion

The proposed approach was able to achieve results competitive with the current state-of-the-art

whilst only relying on a global affine registration to align images, contrary to the approaches

used in [191] and [41], which also used non-rigid deformable registrations at various partitions

of the image space as well. This demonstrates the robustness of using geodesic distances for

spatial context and the ability to be less reliant on the registration outcome.

The pancreas remains one of the most challenging organs for automated segmentation, as there

is a particularly large variance in both the shape and position of this organ between subjects.

Furthermore, the organ’s size is relatively small in comparison to the other organs and can

be harder to locate in the large volume of the abdominal region. This can lead to incorrect

initialisations which do not get corrected during the refinement.

For all organs, there are several outlying cases where the proposed approach did not perform so

well (see Figure 5.16), thus reducing the mean accuracy significantly below that of the median.

The predominant cause for this may be due to the different diseases and disease stages of the
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subjects, which often affects the intensity outputs in the CT images. Whilst the majority,

141 out of 150, had gastric cancer, the remainder had different types of cancer. Furthermore,

three of the subjects had only one kidney, which differed in the location within the body and

had a significant impact on the spatial configuration of the organs. The outlying cases were

not well represented within the atlas library, thus finding similar examples for patch-based

label propagation often lead to incorrect labelling in these cases. This highlights one of the

weaknesses of using a kNN approach for segmentation.

Overall, the results still demonstrates great potential in the proposed approach. Despite, the

shortcomings in a small minority of cases, the results on average provide improved accuracy

for some organs such as the spleen and kidneys whilst maintaining a comparable level for the

liver and pancreas.

5.6 Summary and Conclusion

This chapter further explored options for patch-based segmentation with spatial context and

proposed the use of the geodesic distance transform to measure relative distances between struc-

tures in providing an anatomically-adaptive coordinate system. This approach was evaluated

on cardiac MRI and abdominal CT scans which are two very different datasets, yet demon-

strating good results with both. The approach compares favourably with other approaches that

have been proposed for spatial context and the GDT can be fine tuned to provide behaviour

that is similar to the EDT if required. In both applications, the proposed approach only uses

global affine registration, whilst many existing methods require the use of non-rigid deformable

registration, sometimes on an multiple hierarchical levels as well as requiring initial global align-

ment. The results demonstrate robustness in the proposed approach and the ability to provide

accurate results when images are not well aligned. Overall this approach shows much potential

for automated image segmentation, particularly in more challenging datasets where achieving

accurate registration is difficult.
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Conclusions

6.1 Summary of Achievements

During the course of this thesis, a general segmentation framework was developed which uses

patch-based segmentation with spatial context. The framework reformulates the patch-based

segmentation approach in [47] and [142] as a global kNN approach which incorporates spatial

context and removes the requirement for a limited search window for patch comparison. In

addition, three methods of providing spatial context for patches within the proposed framework

were developed and evaluated, which are listed below in descending order of dependence on

registration accuracy:

1. Voxel coordinates within the image space.

2. Euclidean distances between structures or reference points.

3. Geodesic distances within the image, between structures or reference points.

These approaches have different suitability for different types of applications, each with their

own strengths and weaknesses. A more detailed comparison of these approaches are given in

later section 6.2.

165
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6.1.1 Applications

The proposed framework and methods have been applied to a large variety of image datasets,

which are summarised below:

• Brain MRI - hippocampus. 202 images from the ADNI dataset were used to evaluate

the initially proposed kNN patch-based framework using a leave-one-out cross-validation

strategy. The image coordinates of each patch were used to provide spatial context,

demonstrating superior performance to an established patch-based method [47]. Mean

Dice scores of 0.863 were achieved for the hippocampus using only affine registration to

align the images to the MNI-152 template space.

• Knee MRI - tibia and femur (bone and cartilage. The SKI10 Grand Challenge

provided a challenging but relevant dataset to evaluate the newly proposed multi-scale

patch-based framework. Here, 100 images were provided for training and 50 additional un-

seen images were used for testing. An adaptive coordinate system using relative distances

between structures was used as to provide spatial context. The proposed framework was

applied without any registration, demonstrating plausibility in such an approach. The

results ranked 3rd for cartilage, 8th for bone and 7th overall, out of a total of 16 entries.

• Canine Leg MRI - 7 proximal pelvic limb muscles. The SATA segmentation

challenge provided another application to continue the investigation on segmentation

without registration. Here, the canine leg dataset was used, which provided 22 images for

training and 23 unseen images for testing. The same method was used as for the SKI10

knee MRI dataset, and obtained results which outperformed standard majority voting

and spatial STAPLE methods which used non-rigid deformable registration.

• Cardiac MRI - myocardium, left and right ventricles. 20 cardiac MR images were

used to evaluate a new spatial context approach based on geodesic distances. A leave-

one-out cross-validation strategy was used, and all previously proposed spatial context

methods were also evaluated. The results demonstrates superior performance to [47] when

only affine registration is used. Mean Dice scores of 0.934, 0.797, 0.901 were achieved for
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the left ventricle, myocardium and right ventricle when using geodesic distances to provide

spatial context.

• Abdominal CT - liver, spleen, pancreas and kidneys. Further to the cardiac

dataset, the proposed approach was also applied to 150 abdominal CT images and evalu-

ated using a leave-one-out cross-validation strategy. It obtained results which are compet-

itive to current state-of-the-art methods such as [191] and [41], achieving mean Dice scores

of 0.947, 0.934, 0.673, 0.933 for the liver, spleen, pancreas and kidneys. Furthermore, the

proposed approach only used a global affine registration whilst the other methods also

apply additional non-rigid deformable registration at various different hierarchical levels.

6.2 Comparison of Spatial Context Approaches

The proposed approaches for spatial context each have different suitability for different appli-

cations. Table 6.1 below summarises their strengths and weaknesses relative to each other:

Table 6.1: Summary comparison of proposed spatial context approaches.

Voxel Coordinates EDT-based GDT-based

Registration dependence High Low Low

Requires initial segmentation
or reference structures

No Yes Yes

Suitability to single structure
segmentation

High Low Low

Suitability to multi-structure
segmentation

Low Medium High

Suitability for high anatomical
variability

Low Medium High

Aware of image boundaries No No Yes

Affected by image noise No No Yes

Use of voxel coordinates as spatial context works best in segmenting single structures and where

the anatomical variability is low. It is not as effective in multi-structure segmentation as there

is generally more anatomical variability in those cases. However, it can be used to provide a

coarse initial segmentation for the other approaches for spatial context.

Use of relative distances require an initial segmentation or reference in order to work. They’re
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most effective when segmenting multiple structures where more spatial information can be

provided. Using Euclidean distances or geodesic distances with a low value for γ works best

in cases where there is more image noise and where image contrast is low - such as certain

MR applications. However, using the Euclidean distance is not as effective where there are

large variances in the relative positions of the anatomical structures as well as the scale of the

structures. The use of geodesic distances, with a moderate to high value for γ, is more effective

in this situation. However geodesic distances do not work as well in noisy images or where

image artifacts commonly occur.

6.3 Limitations and Future Work

There are several key areas which limit the proposed framework, in both the general appli-

cability and the adoption by research scientists and clinicians or as part of a clinical decision

support system. These areas can be interesting avenues to explore in extending or adopting

the methods presented in this thesis for future work.

6.3.1 Speed

One particularly unfavourable aspect of the proposed framework is the speed and computational

requirement for each segmentation. This is primarily due to performing global kNN search for

the patches in each atlas and is particularly a problem for larger images since each voxel

is labelled individually. This imposes a restriction on both the number of atlases and the

dimensional size of the images that can be used. The two are related, and it may be for

larger images, fewer atlases can be used, as the computational time requirement could be

halved by simply halving the number of atlases used. However, using fewer atlases reduces the

anatomical variability that can be expressed through the atlases and thus the robustness of the

segmentation performance.
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Implementation

Without altering the algorithm of the proposed methods, one area that would yield improve-

ments in speed is in the implementation, particularly in exploiting parallelism. Although the

independent labelling for each voxel enables parallelism to be exploited, this has so far been

with CPU-based architecture, which is limited and more costly for massively parallel tasks.

Using a GPU-based implementation for kNN search could provide a significant boost in perfor-

mance, and recent works such as [69] and [16] demonstrate the possibility for such an approach.

However, the memory limitation of the GPU can still present a significant engineering challenge

to overcome.

Alternative Data Structures

In the software implementations, the kNN datastructure used was a ball tree from scikit-learn,

an open-source module for Python. This is a generalised kNN data structure but may not be

the most optimal, in terms of speed and memory usage, for patch search and comparison. The

proposed segmentation framework is suitably modular such that the ball tree could be replaced

with alternatives, and a wide range of these were reviewed in chapter 2. Data structures

that provide approximate nearest neighbours could also be used instead of exact kNN. Both

the PatchMatch algorithm and the neighbourhood approximation forests (NAFs) are potential

candidates that could be integrated into the proposed framework, although the training times

for NAFs would be prohibitive for on-the-fly spatial context extraction and would limit the

flexibility of the framework.

One aspect of performing kNN search that is not often taken into account in many data struc-

tures is the similarity of the queries. In general, applications of kNN search rarely only perform

a singular kNN query, but performs them more like a batch process which are repeated many

times. This has been termed as general N-body problems by Alexander Gray et al [73]. It would

be plausible to exploit the fact that similar queries should return similar results, and this is

proposed by works such as [73] and [137] which propose the use of dual-trees, where a tree
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is constructed for the query items as well the data library. This is related to the all nearest

neighbour problem which has been studied in computational geometry [43], [173].

Alternative Classification Frameworks

A more drastic change to improve the speed would be to alter the classification framework

from relying on using the kNN at run time, to one which does not use such a dense and

potentially redundant representation of the training data. The approach of using random

forests in [196] provides a potential candidate for which the spatial context methods developed

in this thesis could be easily adopted. Another alternative could be using random ferns [126]

and the extremely random variant [71], which could allow similar on-the-fly functionality for

incorporating spatial context as the proposed framework. Additionally, dictionary learning

could be applied to learn the range of patches and how they can be expressed in order to reduce

the redundancy between them. A recent approach [170] uses such a principle for segmentation

of the hippocampus, and could provide a template for future work.

6.3.2 Atlas Selection

One aspect of multi-atlas segmentation approaches which could benefit from further investiga-

tion is the atlas selection process, particularly for large datasets and where it is desirable to

select atlases without registration first. This was briefly visited in chapter 4, where an approach

using histogram of 3D oriented gradients was proposed, but was not explored to substantial

depth. Methods from content-based image retrieval could be used in alternative atlas selection

schemes, but this has received relatively little attention in the medical imaging field.

Additionally, traditional atlas selection strategies of selecting the most similar atlases for label

propagation should be reconsidered. Although selecting the most similar atlases would reduce

the errors, it does not guarantee the atlases can account for the anatomical differences between

them. This may have been the most optimal approach for multi-atlas approaches which are

reliant on registration accuracy, but it may not hold for patch-based frameworks where there is
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less dependency on voxel-wise image correspondence. Perhaps an alternative strategy should

be to select a set of nearby atlases which are diverse enough to account for a wide range of

local differences instead.

Furthermore, there is a trade-off in speed and accuracy with regards to the number of atlases to

use. An increase in the number of atlases used yields logarithmic returns in the improvement

to segmentation performance, as both the experimental results in chapter 3 and the results

from [47] suggest. An atlas selection strategy could also be optimised to produce the maximum

local diversity with the minimum number of atlases, which would be highly beneficial to the

computational performance.

6.3.3 Patch and Spatial Comparison

One general limitation of patch-based segmentation methods, particularly for MRI application,

is how patches are compared. The use of intensity based metrics requires that images are nor-

malised in order for their differences to be meaningful. Intensity normalisation can sometimes

be challenging with MR images, especially if they are acquired from different scanners. Most

normalisation methods use approaches based on histogram analysis, but this is then dependent

on the anatomy captured within the images. For datasets with large anatomical variability, this

can limit the effectiveness of intensity normalisation, particularly if there is a subtle difference

in diseased and healthy tissues of the same organ. Better intensity normalisation methods could

address this weakness, but this area is currently lacking further development. Alternative patch

comparison metrics could be used, such as mutual information or cross correlation, but this

may not be as efficient for kNN search and the current label fusion process based on non-local

means would have to be altered.

The use of spatial context augments the intensity information and has been shown to benefi-

cial, particularly when there is ambiguity when comparing patches, however balancing the two

components requires adjustment of the spatial weighting α. This is due to the use of distances

for the non-local means approach to label fusion which evaluates the two components together.

The parameter α is currently chosen manually and requires some level of trial and error in
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order to select a reasonable value. Ideally, this could be either selected automatically, allowing

for α to vary spatially, or the label fusion could be altered to take into account the intensity

and spatial information differently. This presents a possible extension to the current framework

which could utilise other recent developments in machine learning.

6.3.4 Segmentation Initialisation

A major limitation of using the approach for spatial context proposed in chapters 4 and 5, based

on relative distances to known structures or reference points, is correctly identifying them at

initialisation. So far, the proposed frameworks have used coarse low resolutions obtained using

the approach from chapter 3 with weak spatial weighting α. This coarse initial segmentation

is then eroded as false negatives in the labelling would be detrimental to the accuracy of the

relative distances. However, this process is limited by the size of the organ in the initial

resolution. Performing this initialisation in higher resolutions is more computationally costly

and more dependent on registration accuracy.

To overcome this limitation, a classifier could be trained to locate each organ within the image

in the original resolution. A bounding box for these organs could be enough to provide relative

distances and would also reduce the search space for patch selection and comparison. Random

forest based classifiers, which have recently been proposed for organ location [129], could be

adopted as a potential solution.

6.3.5 Summary

The work presented in this thesis demonstrates the potential for patch-based segmentation

methods with spatial context to be a robust and versatile approach for image segmentation.

The various approaches to spatial context reduces dependence on the registration outcome,

enabling multi-atlas label propagation in applications where obtaining accurate image alignment

is challenging. The methods proposed here could also be adapted to segmentation problems

we have not explored, such as other organs as well as those in different image modalities.
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It is also plausible to apply the methods for tumour segmentation, where registration is also

challenging [180]. Although there are some limitations to the proposed segmentation framework

and methods, they present interesting areas for future development.
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