
Simultaneous Segmentation and Filtering Via Reduced

Graph Cuts

Nicolas Lermé, François Malgouyres

To cite this version:

Nicolas Lermé, François Malgouyres. Simultaneous Segmentation and Filtering Via Reduced
Graph Cuts. 12 pages. 2012. <hal-00624093v4>

HAL Id: hal-00624093

https://hal.archives-ouvertes.fr/hal-00624093v4

Submitted on 19 Jun 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00624093v4

Simultaneous Segmentation and Filtering via
Reduced Graph Cuts

N. Lermé F. Malgouyres
LAGA UMR CNRS 7539 IMT UMR CNRS 5219
LIPN UMR CNRS 7030 Université Paul Sabatier

Université Paris 13 fmalgouy@math.univ-toulouse.fr
nicolas.lerme@lipn.fr

Abstract. Recently, optimization with graph cuts became very attrac-
tive but generally remains limited to small-scale problems due to the
large memory requirement of graphs, even when restricted to binary
variables. Unlike previous heuristics which generally fail to fully cap-
ture details, [8] proposes another band-based method for reducing these
graphs in image segmentation. This method provides small graphs while
preserving thin structures but do not offer low memory usage when the
amount of regularization is large. This is typically the case when images
are corrupted by an impulsive noise. In this paper, we overcome this sit-
uation by embedding a new parameter in this method to both further
reducing graphs and filtering the segmentation. This parameter avoids
any post-processing steps, appears to be generally less sensitive to noise
variations and offers a good robustness against noise. We also provide
an empirical way to automatically tune this parameter and illustrate its
behavior for segmenting grayscale and color images.

Keywords: graph cuts, reduction, image segmentation, filtering.

1 Motivation and scope

Graph cuts have become increasingly popular due to their ability to efficiently
compute the Maximum A Posteriori of Markov Random Fields (MRF). This pop-
ularity is notably driven by the introduction of a fast maximum-flow (max-flow)
algorithm [3] making near real-time performance possible for solving numerous
labeling problems such as denoising, image segmentation, stereovision, etc.

In parallel, technological advances in image acquisition have both increased
the amount and the diversity of data to process. As an illustration, in the satellite
SPOT-5 launched by Arianespace in 2002, the embedded high resolution sensors
can capture multispectral and panchromatic images of about 1GB.

Processing this type of data amounts to solve large scale optimization prob-
lems. In the image segmentation context, almost all graph cuts-based methods
are impractical to solve such problems due to the memory requirements for stor-
ing the underlying graphs. To overcome this situation, some amount of work
has been done in this direction and a number of heuristics [9,10,12,5] and exact
methods [7,4,13] have been proposed in recent years.

2 Simultaneous Segmentation and Filtering via RGC

To our best knowledge, this problem seems to be first addressed in [9] where
the underlying graph is built upon a pre-segmentation. Although this approach
greatly reduce the computational burden of graph cuts, the results strongly
depend on the algorithm used for computing the pre-segmentation. Also, better
results are obtained when over-segmentation occurs, losing in this way the main
benefit of such a reduction.

Others have also reported band-based methods [10,12,5]. A low-resolution of
the image is first segmented and the solution is propagated to the finer level
by only building the graph in a narrow band surrounding the interpolated fore-
ground/background interface at that resolution. While such an approach drasti-
cally reduce time and memory consumption, it is limited to segment roundish ob-
jects. This problem is notably reduced in [12] but still present for low-contrasted
details. In [5], finer bands are obtained using an uncertainty measure associated
to each pixel.

Exact methods have been also investigated [7,4,13]. In [7], binary energy
functions are minimized for the shape fitting problem with graph cuts in a narrow
band while ensuring the optimality on the solution. One makes a band evolve
around the object to delineate by expanding it when the minimum-cut (min-cut)
touches its boundary. This process is iterated until the band no longer evolves.
Although the algorithm generally converges in few iterations toward the optimal
solution, an initialization is required and no bound on the band size is given.

A parallel max-flow algorithm yielding a near-linear speedup with the number
of processors is described in [4]. Nevertheless, the algorithm is relatively sensitive
to the available amount of physical memory and remains less efficient on small
graphs.

The approach used in [13] is different: instead of reducing the graphs, the
problem is decomposed into optimizable sub-problems, solved independently
and updated according to the results of the adjacent problems. This process
is iterated until convergence and optimality is guaranteed by Lagrangian de-
composition.

Finally, another band-based method called Reduced Graph Cuts (RGC) was
proposed for reducing graphs in binary image segmentation [8]. The graph is
progressively built by only adding nodes which locally satisfy a condition. In
the manner of [12,5], the graph nodes are typically located in a narrow band
surrounding the object edges to segment. Empirically, the authors show in [8]
that the solutions obtained with and without reduction are identical and the
time for reducing the graph is even compensated by the time for computing the
min-cut in the reduced graph when the regularization is of moderate level.

The rest of this paper is organized as follows. We first briefly review the
graph cuts framework in Section 2 as well as the band-based strategy of [8]
in Section 3 for reducing graphs. Afterwards, a new parameter is introduced in
Section 4 for further reducing the graphs and removing small undesired segments
in the segmentation due to noise. The sensitivity of this parameter as well as its
robustness against noise are also evaluated through experiments for segmenting
grayscale and color images.

Simultaneous Segmentation and Filtering via RGC 3

2 Preliminaries

Consider a multi-channels image I : P ⊂ Zd → [0, 1]c (c > 0) as a function,
mapping each pixel p ∈ P to a vector Ip ∈ [0, 1]c 1. We define a binary segmen-
tation as an application u affecting to each pixel p ∈ P either 0 (background)
or 1 (object) and we write u ∈ {0, 1}P . A popular strategy to segment I is to
minimize a MRF of the form [2]:

E(u) = β
∑
p∈P

Ep(up) +
∑

(p,q)∈N

Ep,q(up, uq), (1)

among u ∈ {0, 1}P and for a fixed parameter β ∈ R+. The neighborhood system
N ⊂ (P × P) is a subset of all pixel pairs. In the sequel, "connectivity 0" will
denote 4 and 6 neighbors in 2D and 3D images while "connectivity 1" will denote
8 and 26 neighbors for the same images. In (1), the data term Ep(.) is defined as
the negative log-likelihood of a label being assigned to pixel p and is computed
from its color and the appearance models of the object and background seeds 2:{

Ep(1) = −log P(Ip|p ∈ O)
Ep(0) = −log P(Ip|p ∈ B) (2)

For any pixels pair (p, q) ∈ N , the corresponding smoothness term in (1) is
defined as a contrast-sensitive Ising model:

Ep,q(up, uq) =

{
0 if up = uq,

1
‖p−q‖2 exp

(
− ‖Ip−Iq‖22

2σ2

)
otherwise, (3)

where ‖.‖2 is the Euclidean norm (either in Rd or Rc) and σ is a free parameter
generally related to noise acquisition. As an illustration, when pixels p and q
belong to a uniform area, we have ‖Ip − Iq‖2 < σ. This implies a large cost
in the exponential and discourages any cut between pixels p and q. Conversely,
when these pixels are on both sides of a contour, we have ‖Ip − Iq‖2 > σ. This
encourages any cut between pixels p and q due to low value of the exponential.

When the smoothness terms are submodular [6], the minimizer of (1) can be
efficiently obtained by computing a min-cut in a weighted digraph G = (V, E)
with a set of nodes V = P ∪ {s, t}, a set of edges E ⊂ (V × V) and edge
capacities c : (V × V) → R+. The terminal nodes s and t are called the source
and the sink, respectively. The set of edges E is split into two disjoint sets En
and Et denoting respectively n-links (edges linking two nodes of P) and t-links
(edges linking a node of P to the terminal s or t). Once the min-cut is computed
in G, we set up = 1 if a node p is connected to the source s and up = 0 if p is
connected to the sink t.
1 Usually, P corresponds to a rectangle.
2 In this setting, the distributions are estimated using a Gaussian Mixtures Model.
The number of Gaussians is automatically computed using a statistical criterion [1].

4 Simultaneous Segmentation and Filtering via RGC

3 Reduction

As explained before, the memory consumption of graph cuts for segmenting high-
resolution data can be very large. As an illustration, the max-flow algorithm of [3]
v3.01 used in the experiments of Section 4, allocates 25]P + 16]En bytes 3. For
a fixed amount of RAM, one clearly see that the maximum image size quickly
decreases as the dimensionality d of P increases. As shown in [8], most of the
nodes in the graph are however useless during the max-flow computation since
they are not traversed by any flow. Ideally, one would like to extract the smallest
possible graph G′ = (V ′, E ′) from G = (V, E) while keeping the max-flow value
f ′∗ in G′ identical or very close to the max-flow value f∗ in G. This corresponds
to an ideal optimization problem which we will not try to solve since the method
for determining G also needs to be (very) fast.

Let us first introduce some terminology before reviewing the method of [8]
for building G′. For the sake of clarity, the same notations are used as in [8].
In accordance with the construction given in [6], we consider (without loss of
generality) that a node is connected to at most one terminal

(s, p) ∈ Et ⇒ (p, t) 6∈ Et, ∀p ∈ P. (4)

We also summarize t-links capacities by

c(p) = c(s, p)− c(p, t), ∀p ∈ P. (5)

For any B ⊂ Zd 4 and a node p ∈ P, we denote by Bp the set translation of B
at p

Bp = {q + p | q ∈ (B ∩ P)}. (6)

For Z ⊂ P and B ⊂ Zd, we denote by ZB the dilation of Z by B as

ZB = {p+ q | q ∈ (B ∩ P), p ∈ Z} =
⋃
p∈Z

Bp. (7)

From here, the idea developed in [8] for building G′ is to remove from the nodes
of G any Z ⊂ P where all nodes are linked to s (resp. to t) and such that all
the flow that might get in (resp. out of) the region ZB does so by traversing its
boundary and can be absorbed (resp. provided) by the band ZB \ Z. Building
such Z is done by testing each individual pixel p ∈ P. In the manner of [12,5], the
remaining nodes are therefore located in a narrow band surrounding the object
edges to segment. In practice, the authors of [8] use a more conservative test by
testing each node p ∈ Z in a square window B of size (2r + 1)d centered in p: either

(
∀q ∈ Bp, c(q) ≥ +δr

)
,

or
(
∀q ∈ Bp, c(q) ≤ −δr

)
.

(8)

3 The operator ’]’ stands for the cardinality of a set.
4 In practice, B is a square centered at the origin.

Simultaneous Segmentation and Filtering via RGC 5

where δr = P (B)
(2r+1)d−1

and P (B) is defined as

P (B) = max(]{(p, q) : p ∈ B, q 6∈ B and (p, q) ∈ N},
]{(q, p) : p ∈ B, q 6∈ B and (q, p) ∈ N}). (9)

In words, for any node p ∈ Z satisfying the first (resp. second) condition of (8),
all its neighbors q ∈ Bq are only linked to s (resp. t) and the flow that might
get in (resp. out) through t-links in Bp \ {p} suffices to saturate the n-links
going out (resp. in) Bp. Thus, p becomes useless and need not to be added to
G′. An algorithm of complexity O(1) (i.e. independent of r) is also mentioned
in [8] for computing (8). Additionally, the extra memory storage required by
this algorithm is a table of dimensionality (d − 1) and is therefore negligible
over the image and the graph size. A key point of [8] is that the pixel error
between segmentations obtained with and without reduction remains extremely
low, hence preserving thin structures which are ubiquitous in some applications.

The experiments presented in [8] confirm the intuitive dependence between
the size of the reduced graph G′ and the model parameters. Indeed, when min-
imizing (1) by graph cuts, the t-links capacities are all multiplied by β. It is
therefore straightforward to observe that the test (8) is harder to satisfy as β
decreases. In such a situation, we need a larger window radius for decreasing δr
in order to reduce the size of the reduced graph G′. This results in wider bands
around the object contours. Conversely, when β is large, we can afford a large δr
and therefore a small window radius to decrease the size of the reduced graph
G′. An ideal situation therefore consists of large area of nodes connected to the
same terminals separated by rough borders. As opposite, a less favorable situ-
ation occurs when these area consist of nodes connected to different terminals.
This is typically the case when dealing with noisy images. In the next section,
we embed a new parameter in (8) to both further reducing G′ and filtering the
segmentation while keeping β large.

4 Simultaneous segmentation and filtering

A naive approach to filter the segmentation is to apply morphological operators
(e.g. opening or closing). Nonetheless, when the amont of noise is large, such
an approach fail during the reduction since a lot of nodes would be added to
the reduced graph. Another approach would consist in denoising the image first
and then applying [8]. This would lead to unsatisfactory results in the case for
instance of echographic images since contours of objects would be over-smoothed.

Another way to filter the segmentation is to relax (8) is to allow some nodes
in Bp to fail complying the test. The proportion of nodes satisfying (8) can
be controlled by a parameter η ∈ [0, 1]. As η decreases, the test (8) becomes
easier to satisfy since a larger proportion of nodes can be connected to opposite
terminals. Embedding η in (8) leads to either

(
]{q ∈ Bp | c(q) ≥ +δr} ≥ η]Bp

)
,

or
(
]{q ∈ Bp | c(q) ≤ −δr} ≥ η]Bp

)
.

(10)

6 Simultaneous Segmentation and Filtering via RGC

4.1 Further reducing graphs

The parameter η can be used for decreasing the memory consumption of graph
cuts. The Figure 3 illustrates how far the test (8) can be relaxed for further
reducing graphs while getting nearly the same segmentation. In this experiment,
the segmentation as well as the reduced graph are shown for segmenting a 2D
noisy image. Since the test (10) is easier to satisfy as η decreases, the reduced
graph G′ becomes thicker around the object contours.

4.2 Automatic tuning of η

Lower bound For a fixed window radius, notice first that the value of η must be
large enough to not increase the number of components in the reduced graph G′
(see Figure 2). Indeed, below some value (denoted by ηmin), the reduced graph
G′ is split into multiple pieces in areas with high-curvature and the min-cut is
no longer ensured of being fully embedded into G′. This implies that some voxels
could be wrongly labeled in the segmentation.

The Figure 1 illustrates a situation where ηmin can be easily computed with
an image consisting of two highly-contrasted areas. Using (10) with a square
window of radius r and η = 1, the reduced graph G′ corresponds to a thin band
of size 2r. An easy under-estimation of ηmin is obtained by imposing that ηmin
permits to segment these two contrasted areas. In order to do so, we want the
test (10) to be false for any pixel p at the boundary between these areas. For
such a pixel, we have (assuming e.g. that c(p) ≥ +δr)

]{q ∈ Bp | c(q) ≥ +δr} = (r + 1)(2r + 1)d−1. (11)

As a consequence, if

η ≤ (r + 1)(2r + 1)d−1

(2r + 1)d
, (12)

the node p does not belong to the reduced graph G′. Since we want to avoid the
situation, we must therefore have

η > (r+1)(2r+1)d−1

(2r+1)d

= 1− r
2r+1 = ηmin.

(13)

Remark that (13) does not depend on the dimensionality d of P. By observ-
ing (13), it is straightforward to see that, as the window radius r tends to infin-
ity, the proportion of nodes allowed to be connected to opposite terminals tends
to 1

2 . In practice, we also observed that (13) is less accurate in connectivity 0
than in connectivity 1 (see Figure 2).

Upper bound For a fixed window radius r and a positive amount of noise ξ,
one can observe in Figure 3 that there exists a value of the parameter η for which
most of the nodes in noisy regions are removed from the graph G, leading to a
diminution of the size of the reduced graph G′.

Simultaneous Segmentation and Filtering via RGC 7

The purpose of this paragraph is to identify, from a statistical point of view,
a reliable value of the parameter η for which all nodes of P are very likely to
be removed from G. For a fixed amount of noise ξ in the image I, we therefore
want to find an upper bound on η by finding the maximum value of η in such
a way that we control the proportion of nodes corresponding to noisy pixels in
homogeneous areas.

Consider a noisy constant image I with a noise generated by a Bernoulli
distribution of parameter ξ ∈]0, 1[, corresponding to the amount of noise in I 5.
The two cases where ξ = 0 and ξ = 1 are trivial and are not considered in
our analysis. Assume now that the graph G is defined as in Section 3 where
the nodes corresponding to noise-free pixels are connected to the sink t with a
capacity c(q) ≤ −δr and the nodes corresponding to noisy pixels have a capacity
c(q) > −δr.

First, let X be a discrete random variable counting degraded pixels in a
square window B of size n = (2r + 1)d in the image I. Then, the probability
that at least k pixels are corrupted in B is given by

P(X > k) =
n∑

i=k+1

(
n

i

)
ξi(1− ξ)n−i, (14)

where
(
n
i

)
= n!

i!(n−i)! . For a fixed window radius r, it is straightforward to see
that (14) is decreasing in k and tends to ξn if we impose that ξ ∈]0, 1[. According
to the test (10) and the hypothesis on G: a node p ∈ P can be removed from G
if and only if

]{q ∈ Bp | c(q) ≤ −δr} =]{q ∈ Bp | q is noise-free} ≥ ηn (15)

Moreover, we assumed

]{q ∈ Bp | q is noise-free} ∼ (n−X). (16)

Therefore, we have

P(p is not removed) = P((n−X) < ηn) = P(X > (1− η)n). (17)

Fixing a proportion ε ' 0 of wrongly constructed nodes, we choose

η+ = max {η ∈ [0, 1] | P(X > (1− η)n) ≥ ε}, (18)

Considering the lower bound ηmin defined in (13), we set

ηmax = max {ηmin, η+}. (19)

Combining the definitions of the lower and upper bounds (see (13) and (19)), it
now becomes easy to get an estimation of the parameter η∗ for a fixed window
radius by setting

η∗ =
(ηmin + ηmax

2

)
. (20)

5 Histogram-based techniques can be for instance used to estimate ξ.

8 Simultaneous Segmentation and Filtering via RGC

Let us now analyze the joint behavior of the lower and the upper bounds.
When the amount of noise ξ is fixed, one can easily observe that the gap

∆η = (ηmax − ηmin), (21)

grows as the window radius r increases. Indeed, we have previously seen that the
lower bound ηmin tends to 1

2 as the window radius r increases (see (13)). The
previous observation is also due to the fact that the upper bound ηmax grows as
the window radius r increases.

Similarly, when the window radius r is fixed, remark that (21) decreases
when the amount of noise ξ increases. This situation is consistent because ηmin
remains the same but ηmax tends to 1

2 since it is more likely that the number of
degraded pixels increase in the window B. Increasing the window radius r can
compensate the augmentation of the amount of noise only up to ξ = 0.5. Finally,
we empirically found that setting ε = 0.05 gives best estimate of ηmax in (18).

4.3 Filtering

The parameter η can also serves to filter the segmentation. This behavior is
illustrated in Figure 4 for segmenting a 3D noisy image acquired from a confocal
microscope. White spots correspond to cell nuclei in a mouse cerebellum. Observe
how far the filtering acts for small values of η: small regions in the reduced graph
G′ as well as in the segmentation are progressively removed as η decreases.

The robustness (see Figure 6 and 5) and sensitivity to noise of the parameter
η are now (see Figure 7) are now analyzed. Let us describe the experimental
setup. The experiment consists in segmenting four grayscale and five 2D color
images in connectivity 1 with an increasing noise level ranging from 4 to 48%.
For each image, we compute a reference segmentation on the noise-free image
by placing the seeds by hand. We set β = +∞ and automatically estimate the
σ parameter as explained in [11]. Then, for each impulsive noise level, we select
the segmentation maximizing the Dice Similarity Coefficient (DSC) between the
reference image and all segmentations obtained through a fixed range of window
radii and η values. We choose window radii r from 1 to 12 and eight linearly
spaced values of η from ηmin (w.r.t. r) to 1. Then, each segmentation is computed
using the same seeds as those used for the computing the reference segmentation.
Again, the σ parameter is automatically estimated as in [11].

As shown in Figure 6, for an impulsive noise level up to 45%, the param-
eter η appears to be reasonably robust with a DSC always greater than 94%
for all images, except for the image "rice". However, such high and stable noise
robustness can only be reached by increasing the amount of seeds (see Figure 6).
The reason why the algorithm behaves poorly on the "rice" image is the fol-
lowing. As said earlier, r must be large enough when ξ increases for removing
a maximum number of segments due to noise. This implies wider bands in G′
around the object contours. However, the object contours further oscillate as
ξ increases. Another reason is due to the proximity of the objects to segment.
As an illustration, consider two circles over a uniform background, separated by

Simultaneous Segmentation and Filtering via RGC 9

a distance d0 > 0. We clearly see that the test (10) becomes more and more
difficult to satisfy when the window radius r increases. When (2r+ 1) ≥ d0, the
reduced graphs of both circles fuse into one component. This is typically the
case for the image "rice" because it consists of small assembled rice grains near
from each other. Finally, the Figure 7 also illustrates that the parameter η is not
very sensitive to the variations of r and η. The DSC does not vary much with
respect to noise, except for the image "rice". This exception can be explained
for the same reasons as before.

Fig. 1: Toy example for computing the lower bound ηmin.

η = 1.0 η = 0.8 η = 0.6 η = 0.53 η = 0.52

Fig. 2: Illustration of the lower bound ηmin for segmenting a 2D synthetic image. In
this experiment, ηmin ' 0.523 and we set r = 10 using connectivity 1. On all images,
the nodes of G′ are superimposed in yellow to the image by transparency. The bottom
row correspond to a close-up of the box in purple color. Observe how the reduced graph
G′ splits into multiple pieces as soon as η ≤ ηmin.

5 Conclusion

In this paper, we have presented a new parameter to embed in [8] for simul-
taneously reduce graphs and filter segmentations with the same computational
complexity. We have also described an original manner to automatically tune
it with the window radius parameter. In the proposed experiments, this new
parameter generally appears to be less sensitive to noise but only for a lim-
ited amount, typically less than 50%. To overcome this situation, we could for
instance inspect larger neighborhoords to further discriminate signal from noise.

10 Simultaneous Segmentation and Filtering via RGC

η 1.0 0.9 0.8 0.7 0.6
100×]V ′/]V 93.28% 30.99% 5.74% 3.65% 2.00%

Fig. 3: Memory gain when segmenting a 2D synthetic image corrupted by 10% of im-
pulsive noise (left). Top row shows the nodes of the reduced graph in light gray while
bottom row shows the corresponding segmentation. In this experiment, we set r = 3
and use connectivity 1.

η 1.0 0.9 0.8 0.7 0.6
100×]V ′/]V 55.70% 37.15% 18.26% 12.65% 8.87%

Fig. 4: Simultaneous segmentation and filtering of a 3D noisy image (left). In this
picture, the white spots correspond to cell nuclei in a mouse cerebellum. Top row shows
the nodes of the reduced graph in light gray while bottom row shows the corresponding
segmentation. In this experiment, we set r = 5 and use connectivity 1.

Simultaneous Segmentation and Filtering via RGC 11

Fig. 5: Qualitative analysis of the robustness to noise for segmenting the images
"f117" (left-most column), "pyramid" (left column), "sunflower" (right column) and
"flamingo" (right-most column) in with a fixed impulsive noise level of 36%. Seeds and
model parameters are the same than those used in Figure 6 (top row).

Fig. 6: Quantitative analysis of the robustness to noise for segmenting in connectivity 1
four 2D grayscale images (top-most curves in the list) and five 2D color images with
an impulsive noise level ranging from 4 to 48%.

12 Simultaneous Segmentation and Filtering via RGC

Fig. 7: Sensitivity of η for segmenting the images in Figure 6 with an impulsive noise
level of 36%. The seeds and model parameters are the same than those used in Figure 6.

References

1. C. A. Bouman. Cluster: An unsupervised algorithm for modeling Gaussian mix-
tures. Available from http://www.ece.purdue.edu/~bouman, April 1997.

2. Y. Boykov and M-P. Jolly. Interactive graph cuts for optimal boundary and region
segmentation of objects in N-D images. In ICCV, volume 1, pages 105–112, 2001.

3. Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max-
flow algorithms for energy minimization in vision. IEEE Transactions on PAMI,
26(9):1124–1137, 2004.

4. A. Delong and Y. Boykov. A scalable graph-cut algorithm for N-D grids. In CVPR,
pages 1–8, 2008.

5. P. Kohli, V. Lempitsky, and C. Rother. Uncertainty driven multi-scale energy
optimization. In DAGM, pages 242–251, 2010.

6. V. Kolmogorov and R. Zabih. What energy functions can be minimized via graph
cuts? IEEE Transactions on PAMI, 26(2):147–159, 2004.

7. V. Lempitsky and Y. Boykov. Global optimization for shape fitting. In CVPR,
pages 1–8, 2007.

8. N. Lermé, F. Malgouyres, and L. Létocart. Reducing graphs in graph cut segmen-
tation. In ICIP, pages 3045–3048, 2010.

9. Y. Li, J. Sun, CK. Tang, and HY. Shum. Lazy Snapping. ACM Transactions on
Graphics, 23(3):303–308, 2004.

10. H. Lombaert, Y.Y. Sun, L. Grady, and C.Y. Xu. A multilevel banded graph cuts
method for fast image segmentation. In ICCV, volume 1, pages 259–265, 2005.

11. C. Rother, V. Kolmogorov, and A. Blake. "GrabCut": Interactive foreground ex-
traction using iterated graph cuts. In SIGGRAPH, pages 309–314, 2004.

12. A.K. Sinop and L. Grady. Accurate banded graph cut segmentation of thin struc-
tures using laplacian pyramids. In MICCAI, volume 2, pages 896–903, 2006.

13. P. Strandmark and F. Kahl. Parallel and distributed graph cuts by dual decom-
position. In CVPR, pages 2085–2092, 2010.

