3,816 research outputs found

    Computer-aided position planning of miniplates to treat facial bone defects

    Full text link
    In this contribution, a software system for computer-aided position planning of miniplates to treat facial bone defects is proposed. The intra-operatively used bone plates have to be passively adapted on the underlying bone contours for adequate bone fragment stabilization. However, this procedure can lead to frequent intra-operatively performed material readjustments especially in complex surgical cases. Our approach is able to fit a selection of common implant models on the surgeon's desired position in a 3D computer model. This happens with respect to the surrounding anatomical structures, always including the possibility of adjusting both the direction and the position of the used osteosynthesis material. By using the proposed software, surgeons are able to pre-plan the out coming implant in its form and morphology with the aid of a computer-visualized model within a few minutes. Further, the resulting model can be stored in STL file format, the commonly used format for 3D printing. Using this technology, surgeons are able to print the virtual generated implant, or create an individually designed bending tool. This method leads to adapted osteosynthesis materials according to the surrounding anatomy and requires further a minimum amount of money and time.Comment: 19 pages, 13 Figures, 2 Table

    Three-Dimensional Printing and Its Applications in Otorhinolaryngology–Head and Neck Surgery

    Get PDF
    Objective Three-dimensional (3D)-printing technology is being employed in a variety of medical and surgical specialties to improve patient care and advance resident physician training. As the costs of implementing 3D printing have declined, the use of this technology has expanded, especially within surgical specialties. This article explores the types of 3D printing available, highlights the benefits and drawbacks of each methodology, provides examples of how 3D printing has been applied within the field of otolaryngology–head and neck surgery, discusses future innovations, and explores the financial impact of these advances. Data Sources Articles were identified from PubMed and Ovid MEDLINE. Review Methods PubMed and Ovid Medline were queried for English articles published between 2011 and 2016, including a few articles prior to this time as relevant examples. Search terms included 3-dimensional printing, 3D printing, otolaryngology, additive manufacturing, craniofacial, reconstruction, temporal bone, airway, sinus, cost, and anatomic models. Conclusions Three-dimensional printing has been used in recent years in otolaryngology for preoperative planning, education, prostheses, grafting, and reconstruction. Emerging technologies include the printing of tissue scaffolds for the auricle and nose, more realistic training models, and personalized implantable medical devices. Implications for Practice After the up-front costs of 3D printing are accounted for, its utilization in surgical models, patient-specific implants, and custom instruments can reduce operating room time and thus decrease costs. Educational and training models provide an opportunity to better visualize anomalies, practice surgical technique, predict problems that might arise, and improve quality by reducing mistakes

    Final Report to NSF of the Standards for Facial Animation Workshop

    Get PDF
    The human face is an important and complex communication channel. It is a very familiar and sensitive object of human perception. The facial animation field has increased greatly in the past few years as fast computer graphics workstations have made the modeling and real-time animation of hundreds of thousands of polygons affordable and almost commonplace. Many applications have been developed such as teleconferencing, surgery, information assistance systems, games, and entertainment. To solve these different problems, different approaches for both animation control and modeling have been developed

    Reconstruction of 3D human facial images using partial differential equations.

    Get PDF
    One of the challenging problems in geometric modeling and computer graphics is the construction of realistic human facial geometry. Such geometry are essential for a wide range of applications, such as 3D face recognition, virtual reality applications, facial expression simulation and computer based plastic surgery application. This paper addresses a method for the construction of 3D geometry of human faces based on the use of Elliptic Partial Differential Equations (PDE). Here the geometry corresponding to a human face is treated as a set of surface patches, whereby each surface patch is represented using four boundary curves in the 3-space that formulate the appropriate boundary conditions for the chosen PDE. These boundary curves are extracted automatically using 3D data of human faces obtained using a 3D scanner. The solution of the PDE generates a continuous single surface patch describing the geometry of the original scanned data. In this study, through a number of experimental verifications we have shown the efficiency of the PDE based method for 3D facial surface reconstruction using scan data. In addition to this, we also show that our approach provides an efficient way of facial representation using a small set of parameters that could be utilized for efficient facial data storage and verification purposes

    Physical and statistical shape modelling in craniomaxillofacial surgery: a personalised approach for outcome prediction

    Get PDF
    Orthognathic surgery involves repositioning of the jaw bones to restore face function and shape for patients who require an operation as a result of a syndrome, due to growth disturbances in childhood or after trauma. As part of the preoperative assessment, three-dimensional medical imaging and computer-assisted surgical planning help to improve outcomes, and save time and cost. Computer-assisted surgical planning involves visualisation and manipulation of the patient anatomy and can be used to aid objective diagnosis, patient communication, outcome evaluation, and surgical simulation. Despite the benefits, the adoption of three-dimensional tools has remained limited beyond specialised hospitals and traditional two-dimensional cephalometric analysis is still the gold standard. This thesis presents a multidisciplinary approach to innovative surgical simulation involving clinical patient data, medical image analysis, engineering principles, and state-of-the-art machine learning and computer vision algorithms. Two novel three-dimensional computational models were developed to overcome the limitations of current computer-assisted surgical planning tools. First, a physical modelling approach – based on a probabilistic finite element model – provided patient-specific simulations and, through training and validation, population-specific parameters. The probabilistic model was equally accurate compared to two commercial programs whilst giving additional information regarding uncertainties relating to the material properties and the mismatch in bone position between planning and surgery. Second, a statistical modelling approach was developed that presents a paradigm shift in its modelling formulation and use. Specifically, a 3D morphable model was constructed from 5,000 non-patient and orthognathic patient faces for fully-automated diagnosis and surgical planning. Contrary to traditional physical models that are limited to a finite number of tests, the statistical model employs machine learning algorithms to provide the surgeon with a goal-driven patient-specific surgical plan. The findings in this thesis provide markers for future translational research and may accelerate the adoption of the next generation surgical planning tools to further supplement the clinical decision-making process and ultimately to improve patients’ quality of life

    3D reconstruction for plastic surgery simulation based on statistical shape models

    Get PDF
    This thesis has been accomplished in Crisalix in collaboration with the Universitat Pompeu Fabra within the program of Doctorats Industrials. Crisalix has the mission of enhancing the communication between professionals of plastic surgery and patients by providing a solution to the most common question during the surgery planning process of ``How will I look after the surgery?''. The solution proposed by Crisalix is based in 3D imaging technology. This technology generates the 3D reconstruction that accurately represents the area of the patient that is going to be operated. This is followed by the possibility of creating multiple simulations of the plastic procedure, which results in the representation of the possible outcomes of the surgery. This thesis presents a framework capable to reconstruct 3D shapes of faces and breasts of plastic surgery patients from 2D images and 3D scans. The 3D reconstruction of an object is a challenging problem with many inherent ambiguities. Statistical model based methods are a powerful approach to overcome some of these ambiguities. We follow the intuition of maximizing the use of available prior information by introducing it into statistical model based methods to enhance their properties. First, we explore Active Shape Models (ASM) which are a well known method to perform 2D shapes alignment. However, it is challenging to maintain prior information (e.g. small set of given landmarks) unchanged once the statistical model constraints are applied. We propose a new weighted regularized projection into the parameter space which allows us to obtain shapes that at the same time fulfill the imposed shape constraints and are plausible according to the statistical model. Second, we extend this methodology to be applied to 3D Morphable Models (3DMM), which are a widespread method to perform 3D reconstruction. However, existing methods present some limitations. Some of them are based in non-linear optimizations computationally expensive that can get stuck in local minima. Another limitation is that not all the methods provide enough resolution to represent accurately the anatomy details needed for this application. Given the medical use of the application, the accuracy and robustness of the method, are important factors to take into consideration. We show how 3DMM initialization and 3DMM fitting can be improved using our weighted regularized projection. Finally, we present a framework capable to reconstruct 3D shapes of plastic surgery patients from two possible inputs: 2D images and 3D scans. Our method is used in different stages of the 3D reconstruction pipeline: shape alignment; 3DMM initialization and 3DMM fitting. The developed methods have been integrated in the production environment of Crisalix, proving their validity.Aquesta tesi ha estat realitzada a Crisalix amb la col·laboració de la Universitat Pompeu Fabra sota el pla de Doctorats Industrials. Crisalix té com a objectiu la millora de la comunicació entre els professionals de la cirurgia plàstica i els pacients, proporcionant una solució a la pregunta que sorgeix més freqüentment durant el procés de planificació d'una operació quirúrgica ``Com em veuré després de la cirurgia?''. La solució proposada per Crisalix està basada en la tecnologia d'imatge 3D. Aquesta tecnologia genera la reconstrucció 3D de la zona del pacient operada, seguit de la possibilitat de crear múltiples simulacions obtenint la representació dels possibles resultats de la cirurgia. Aquesta tesi presenta un sistema capaç de reconstruir cares i pits de pacients de cirurgia plàstica a partir de fotos 2D i escanegis. La reconstrucció en 3D d'un objecte és un problema complicat degut a la presència d'ambigüitats. Els mètodes basats en models estadístics son adequats per mitigar-les. En aquest treball, hem seguit la intuïció de maximitzar l'ús d'informació prèvia, introduint-la al model estadístic per millorar les seves propietats. En primer lloc, explorem els Active Shape Models (ASM) que són un conegut mètode fet servir per alinear contorns d'objectes 2D. No obstant, un cop aplicades les correccions de forma del model estadístic, es difícil de mantenir informació de la que es disposava a priori (per exemple, un petit conjunt de punts donat) inalterada. Proposem una nova projecció ponderada amb un terme de regularització, que permet obtenir formes que compleixen les restriccions de forma imposades i alhora són plausibles en concordança amb el model estadístic. En segon lloc, ampliem la metodologia per aplicar-la als anomenats 3D Morphable Models (3DMM) que són un mètode extensivament utilitzat per fer reconstrucció 3D. No obstant, els mètodes de 3DMM existents presenten algunes limitacions. Alguns estan basats en optimitzacions no lineals, computacionalment costoses i que poden quedar atrapades en mínims locals. Una altra limitació, és que no tots el mètodes proporcionen la resolució adequada per representar amb precisió els detalls de l'anatomia. Donat l'ús mèdic de l'aplicació, la precisió i la robustesa són factors molt importants a tenir en compte. Mostrem com la inicialització i l'ajustament de 3DMM poden ser millorats fent servir la projecció ponderada amb regularització proposada. Finalment, es presenta un sistema capaç de reconstruir models 3D de pacients de cirurgia plàstica a partir de dos possibles tipus de dades: imatges 2D i escaneigs en 3D. El nostre mètode es fa servir en diverses etapes del procés de reconstrucció: alineament de formes en imatge, la inicialització i l'ajustament de 3DMM. Els mètodes desenvolupats han estat integrats a l'entorn de producció de Crisalix provant la seva validesa

    New Trends in 3D Printing

    Get PDF
    A quarter century period of the 3D printing technology development affords ground for speaking about new realities or the formation of a new technological system of digital manufacture and partnership. The up-to-date 3D printing is at the top of its own overrated expectations. So the development of scalable, high-speed methods of the material 3D printing aimed to increase the productivity and operating volume of the 3D printing machines requires new original decisions. It is necessary to study the 3D printing applicability for manufacturing of the materials with multilevel hierarchical functionality on nano-, micro- and meso-scales that can find applications for medical, aerospace and/or automotive industries. Some of the above-mentioned problems and new trends are considered in this book

    Virtual Surgery in Implantology: A Systematic Review and State of the Art

    Get PDF
    Introduction: Dental implant procedures have increased worldwide, reaching approximately one million dental implants per year. The optimization of faster and more accurate techniques by dentists and postoperative surgeons with better results and quality of life stimulated the development of numerous software and hardware for performing computer-guided surgeries, so-called virtual surgeries (VS). Objective: to present, through a systematic review, the main considerations of virtual surgery in dentistry and their respective advantages, disadvantages, and limitations. Methods: The model used for the review was PRISMA. We used databases such as Scielo, Lilacs, Google Scholar, PubMed. Major findings: In the scenario of VS in dentistry, advances in technology have contributed to the improvement of the models, since there was only the direct molding technique to obtain patient models, with the positioning of implants not very favorable in terms aesthetics. The information that is acquired in the 3D reconstructions allows us to determine the quantity and quality of the available bone and also allows the simulation of the installation of the implants in a virtual environment. This provides predictability of techniques and difficulties that can be encountered during surgical intervention, reducing the time and the possibility of errors, allowing the overall reduction of oral rehabilitation costs. Conclusion: Preoperative virtual planning and reconstruction of the mandible guided by dental implants through preoperative designs provide high success rates for the implant and dental rehabilitation, benefiting also prosthetic restorations supported by fixed implants. Still, the concept of using personalized implants with the help of 3D virtual treatment planning, stereolithographic models, and computer-assisted design greatly improves the mandibular restoration and helps to obtain a good facial profile, aesthetic and dental rehabilitation, avoiding complications with the grafts autologous

    Assessment of a novel patient-specific 3D printed multi-material simulator for endoscopic sinus surgery

    Get PDF
    Background: Three-dimensional (3D) printing is an emerging tool in the creation of anatomical models for surgical training. Its use in endoscopic sinus surgery (ESS) has been limited because of the difficulty in replicating the anatomical details. Aim: To describe the development of a patient-specific 3D printed multi-material simulator for use in ESS, and to validate it as a training tool among a group of residents and experts in ear-nose-throat (ENT) surgery. Methods: Advanced material jetting 3D printing technology was used to produce both soft tissues and bony structures of the simulator to increase anatomical realism and tactile feedback of the model. A total of 3 ENT residents and 9 ENT specialists were recruited to perform both non-destructive tasks and ESS steps on the model. The anatomical fidelity and the usefulness of the simulator in ESS training were evaluated through specific questionnaires. Results: The tasks were accomplished by 100% of participants and the survey showed overall high scores both for anatomy fidelity and usefulness in training. Dacryocystorhinostomy, medial antrostomy, and turbinectomy were rated as accurately replicable on the simulator by 75% of participants. Positive scores were obtained also for ethmoidectomy and DRAF procedures, while the replication of sphenoidotomy received neutral ratings by half of the participants. Conclusion: This study demonstrates that a 3D printed multi-material model of the sino-nasal anatomy can be generated with a high level of anatomical accuracy and haptic response. This technology has the potential to be useful in surgical training as an alternative or complementary tool to cadaveric dissection

    Virtual Surgical Planning in Craniomaxillofacial surgery: A Structured Review

    Get PDF
    Craniomaxillofacial (CMF) surgery is a challenging and very demanding field that involves the treatment of congenital and acquired conditions of the face and head. Due to the complexity of the head and facial region, various tools and techniques were developed and utilized to aid surgical procedures and optimize results. Virtual Surgical Planning (VSP) has revolutionized the way craniomaxillofacial surgeries are planned and executed. It uses 3D imaging computer software to visualize and simulate a surgical procedure. Numerous studies were published on the usage of VSP in craniomaxillofacial surgery. However, the researchers found inconsistency in the previous literature which prompted the development of this review. This paper aims to provide a comprehensive review of the findings of the studies by conducting an integrated approach to synthesize the literature related to the use of VSP in craniomaxillofacial surgery. Twenty-nine related articles were selected as a sample and synthesized thoroughly. These papers were grouped assigning to the four subdisciplines of craniomaxillofacial surgery: orthognathic surgery, reconstructive surgery, trauma surgery and implant surgery. The following variables – treatment time, the accuracy of VSP, clinical outcome, cost, and cost-effectiveness – were also examined. Results revealed that VSP offers advantages in craniomaxillofacial surgery over the traditional method in terms of duration, predictability and clinical outcomes. However, the cost aspect was not discussed in most papers. This structured literature review will thus provide current findings and trends and recommendations for future research on the usage of VSP in craniomaxillofacial surgery
    corecore