1,544 research outputs found

    Accuracy of MRI Classification Algorithms in a Tertiary Memory Center Clinical Routine Cohort

    Get PDF
    BACKGROUND:Automated volumetry software (AVS) has recently become widely available to neuroradiologists. MRI volumetry with AVS may support the diagnosis of dementias by identifying regional atrophy. Moreover, automatic classifiers using machine learning techniques have recently emerged as promising approaches to assist diagnosis. However, the performance of both AVS and automatic classifiers has been evaluated mostly in the artificial setting of research datasets.OBJECTIVE:Our aim was to evaluate the performance of two AVS and an automatic classifier in the clinical routine condition of a memory clinic.METHODS:We studied 239 patients with cognitive troubles from a single memory center cohort. Using clinical routine T1-weighted MRI, we evaluated the classification performance of: 1) univariate volumetry using two AVS (volBrain and NeuroreaderTM^{TM}); 2) Support Vector Machine (SVM) automatic classifier, using either the AVS volumes (SVM-AVS), or whole gray matter (SVM-WGM); 3) reading by two neuroradiologists. The performance measure was the balanced diagnostic accuracy. The reference standard was consensus diagnosis by three neurologists using clinical, biological (cerebrospinal fluid) and imaging data and following international criteria.RESULTS:Univariate AVS volumetry provided only moderate accuracies (46% to 71% with hippocampal volume). The accuracy improved when using SVM-AVS classifier (52% to 85%), becoming close to that of SVM-WGM (52 to 90%). Visual classification by neuroradiologists ranged between SVM-AVS and SVM-WGM.CONCLUSION:In the routine practice of a memory clinic, the use of volumetric measures provided by AVS yields only moderate accuracy. Automatic classifiers can improve accuracy and could be a useful tool to assist diagnosis

    Cross-cohort generalizability of deep and conventional machine learning for MRI-based diagnosis and prediction of Alzheimer's disease

    Get PDF
    This work validates the generalizability of MRI-based classification of Alzheimer’s disease (AD) patients and controls (CN) to an external data set and to the task of prediction of conversion to AD in individuals with mild cognitive impairment (MCI).We used a conventional support vector machine (SVM) and a deep convolutional neural network (CNN) approach based on structural MRI scans that underwent either minimal pre-processing or more extensive pre-processing into modulated gray matter (GM) maps. Classifiers were optimized and evaluated using cross-validation in the Alzheimer’s Disease Neuroimaging Initiative (ADNI; 334 AD, 520 CN). Trained classifiers were subsequently applied to predict conversion to AD in ADNI MCI patients (231 converters, 628 non-converters) and in the independent Health-RI Parelsnoer Neurodegenerative Diseases Biobank data set. From this multi-center study representing a tertiary memory clinic population, we included 199 AD patients, 139 participants with subjective cognitive decline, 48 MCI patients converting to dementia, and 91 MCI patients who did not convert to dementia.AD-CN classification based on modulated GM maps resulted in a similar area-under-the-curve (AUC) for SVM (0.940; 95%CI: 0.924–0.955) and CNN (0.933; 95%CI: 0.918–0.948). Application to conversion prediction in MCI yielded significantly higher performance for SVM (AUC = 0.756; 95%CI: 0.720-0.788) than for CNN (AUC = 0.742; 95%CI: 0.709-0.776) (p<0.01 for McNemar’s test). In external validation, performance was slightly decreased. For AD-CN, it again gave similar AUCs for SVM (0.896; 95%CI: 0.855–0.932) and CNN (0.876; 95%CI: 0.836–0.913). For prediction in MCI, performances decreased for both SVM (AUC = 0.665; 95%CI: 0.576-0.760) and CNN (AUC = 0.702; 95%CI: 0.624-0.786). Both with SVM and CNN, classification based on modulated GM maps significantly outperformed classification based on minimally processed images (p=0.01).Deep and conventional classifiers performed equally well for AD classification and their performance decreased only slightly when applied to the external cohort. We expect that this work on external validation contributes towards translation of machine learning to clinical practice

    Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: The CADDementia challenge

    Get PDF
    Algorithms for computer-aided diagnosis of dementia based on structural MRI have demonstrated high performance in the literature, but are difficult to compare as different data sets and methodology were used for evaluation. In addition, it is unclear how the algorithms would perform on previously unseen data, and thus, how they would perform in clinical practice when there is no real opportunity to adapt the algorithm to the data at hand. To address these comparability, generalizability and clinical applicability issues, we organized a grand challenge that aimed to objectively compare algorithms based on a clinically representative multi-center data set. Using clinical practice as the starting point, the goal was to reproduce the clinical diagnosis. Therefore, we evaluated algorithms for multi-class classification of three diagnostic groups: patients with probable Alzheimer's disease, patients with mild cognitive impairment and healthy controls. The diagnosis based on clinical criteria was used as reference standard, as it was the best available reference despite its known limitations. For evaluation, a previously unseen test set was used consisting of 354 T1-weighted MRI scans with the diagnoses blinded. Fifteen research teams participated with a total of 29 algorithms. The algorithms were trained on a small training set (n = 30) and optionally on data from other sources (e.g., the Alzheimer's Disease Neuroimaging Initiative, the Australian Imaging Biomarkers and Lifestyle flagship study of aging). The best performing algorithm yielded an accuracy of 63.0% and an area under the receiver-operating-characteristic curve (AUC) of 78.8%. In general, the best performances were achieved using feature extraction based on voxel-based morphometry or a combination of features that included volume, cortical thickness, shape and intensity. The challenge is open for new submissions via the web-based framework: http://caddementia.grand-challenge.org

    Technical and clinical validation of commercial automated volumetric MRI tools for dementia diagnosis-a systematic review

    Get PDF
    Developments in neuroradiological MRI analysis offer promise in enhancing objectivity and consistency in dementia diagnosis through the use of quantitative volumetric reporting tools (QReports). Translation into clinical settings should follow a structured framework of development, including technical and clinical validation steps. However, published technical and clinical validation of the available commercial/proprietary tools is not always easy to find and pathways for successful integration into the clinical workflow are varied. The quantitative neuroradiology initiative (QNI) framework highlights six necessary steps for the development, validation and integration of quantitative tools in the clinic. In this paper, we reviewed the published evidence regarding regulatory-approved QReports for use in the memory clinic and to what extent this evidence fulfils the steps of the QNI framework. We summarize unbiased technical details of available products in order to increase the transparency of evidence and present the range of reporting tools on the market. Our intention is to assist neuroradiologists in making informed decisions regarding the adoption of these methods in the clinic. For the 17 products identified, 11 companies have published some form of technical validation on their methods, but only 4 have published clinical validation of their QReports in a dementia population. Upon systematically reviewing the published evidence for regulatory-approved QReports in dementia, we concluded that there is a significant evidence gap in the literature regarding clinical validation, workflow integration and in-use evaluation of these tools in dementia MRI diagnosis

    Translation of quantitative MRI analysis tools for clinical neuroradiology application

    Get PDF
    Quantification of imaging features can assist radiologists by reducing subjectivity, aiding detection of subtle pathology, and increasing reporting consistency. Translation of quantitative image analysis techniques to clinical use is currently uncommon and challenging. This thesis explores translation of quantitative imaging support tools for clinical neuroradiology use. I have proposed a translational framework for development of quantitative imaging tools, using dementia as an exemplar application. This framework emphasises the importance of clinical validation, which is not currently prioritised. Aspects of the framework were then applied to four disease areas: hippocampal sclerosis (HS) as a cause of epilepsy; dementia; multiple sclerosis (MS) and gliomas. A clinical validation study for an HS quantitative report showed that when image interpreters used the report, they were more accurate and confident in their assessments, particularly for challenging bilateral cases. A similar clinical validation study for a dementia reporting tool found improved sensitivity for all image interpreters and increased assessment accuracy for consultant radiologists. These studies indicated benefits from quantitative reports that contextualise a patient’s results with appropriate normative reference data. For MS, I addressed a technical translational challenge by applying lesion and brain quantification tools to standard clinical image acquisitions which do not include a conventional T1-weighted sequence. Results were consistent with those from conventional sequence inputs and therefore I pursued this concept to establish a clinically applicable normative reference dataset for development of a quantitative reporting tool for clinical use. I focused on current radiology reporting of gliomas to establish which features are commonly missed and may be important for clinical management decisions. This informs both the potential utility of a quantitative report for gliomas and its design and content. I have identified numerous translational challenges for quantitative reporting and explored aspects of how to address these for several applications across clinical neuroradiology

    Artificial intelligence for diagnostic and prognostic neuroimaging in dementia: a systematic review

    Get PDF
    Introduction: Artificial intelligence (AI) and neuroimaging offer new opportunities for diagnosis and prognosis of dementia. Methods: We systematically reviewed studies reporting AI for neuroimaging in diagnosis and/or prognosis of cognitive neurodegenerative diseases. Results: A total of 255 studies were identified. Most studies relied on the Alzheimer's Disease Neuroimaging Initiative dataset. Algorithmic classifiers were the most commonly used AI method (48%) and discriminative models performed best for differentiating Alzheimer's disease from controls. The accuracy of algorithms varied with the patient cohort, imaging modalities, and stratifiers used. Few studies performed validation in an independent cohort. Discussion: The literature has several methodological limitations including lack of sufficient algorithm development descriptions and standard definitions. We make recommendations to improve model validation including addressing key clinical questions, providing sufficient description of AI methods and validating findings in independent datasets. Collaborative approaches between experts in AI and medicine will help achieve the promising potential of AI tools in practice. Highlights: There has been a rapid expansion in the use of machine learning for diagnosis and prognosis in neurodegenerative disease Most studies (71%) relied on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset with no other individual dataset used more than five times There has been a recent rise in the use of more complex discriminative models (e.g., neural networks) that performed better than other classifiers for classification of AD vs healthy controls We make recommendations to address methodological considerations, addressing key clinical questions, and validation We also make recommendations for the field more broadly to standardize outcome measures, address gaps in the literature, and monitor sources of bias

    Machine Learning for Alzheimer’s Disease and Related Dementias

    Get PDF
    Dementia denotes the condition that affects people suffering from cognitive and behavioral impairments due to brain damage. Common causes of dementia include Alzheimer’s disease, vascular dementia, or frontotemporal dementia, among others. The onset of these pathologies often occurs at least a decade before any clinical symptoms are perceived. Several biomarkers have been developed to gain a better insight into disease progression, both in the prodromal and the symptomatic phases. Those markers are commonly derived from genetic information, biofluid, medical images, or clinical and cognitive assessments. Information is nowadays also captured using smart devices to further understand how patients are affected. In the last two to three decades, the research community has made a great effort to capture and share for research a large amount of data from many sources. As a result, many approaches using machine learning have been proposed in the scientific literature. Those include dedicated tools for data harmonization, extraction of biomarkers that act as disease progression proxy, classification tools, or creation of focused modeling tools that mimic and help predict disease progression. To date, however, very few methods have been translated to clinical care, and many challenges still need addressing
    corecore