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Abstract  

Background: Automated volumetry software (AVS) has recently become widely available to 

neuroradiologists. MRI volumetry with AVS may support the diagnosis of dementias by identifying regional 

atrophy. Moreover, automatic classifiers using machine learning techniques have recently emerged as 

promising approaches to assist diagnosis. However, the performance of both AVS and automatic classifiers 

has been evaluated mostly in the artificial setting of research datasets.  

Objective: Our aim was to evaluate the performance of 2 AVS and an automatic classifier in the clinical 

routine condition of a memory clinic. 

Methods: We studied 239 patients with cognitive troubles from a single memory center cohort. Using 

clinical routine T1-weighted MRI, we evaluated the classification performance of: i) univariate volumetry 

using two AVS (volBrain and Neuroreader™); ii) Support Vector Machine (SVM) automatic classifier, 

using either the AVS volumes (SVM-AVS), or whole gray matter (SVM-WGM); iii) reading by two 

neuroradiologists. The performance measure was the balanced diagnostic accuracy. The reference standard 

was consensus diagnosis by three neurologists using clinical, biological (cerebrospinal fluid) and imaging 

data and following international criteria.  

Results: Univariate AVS volumetry provided only moderate accuracies (46% to 71% with hippocampal 

volume). The accuracy improved when using SVM-AVS classifier (52% to 85%), becoming close to that of 

SVM-WGM (52 to 90%). Visual classification by neuroradiologists ranged between SVM-AVS and SVM-

WGM.  

Conclusion: In the routine practice of a memory clinic, the use of volumetric measures provided by AVS 

yields only moderate accuracy. Automatic classifiers can improve accuracy and could be a useful tool to 

assist diagnosis.  
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Introduction 

Background:  

The diagnostic criteria of Alzheimer’s disease (AD) and other dementias have evolved in the past decades 

from a clinical descriptive perspective to biomarker-supported definitions, mainly due to innovation in brain 

imaging, and biological fluid markers [1]. Among neuroimaging biomarkers, MRI is the less invasive, most 

widely available, cost-effective, is systematically recommended in dementia and can provide supportive 

criteria for many neurodegenerative conditions [2–4]. MRI can identify areas of atrophy that can suggest 

particular types of dementia, such as atrophy of the medial temporal structures in late-onset AD [5,6] or 

anterior atrophy in frontotemporal dementia [7]. Assessment of regional atrophy using MRI in dementia has 

been extensively studied using visual, semi-quantitative ratings [5–7], manual volumetry, and more recently 

Automated Volumetry Software (AVS)[8–11].  

AVS such as Neuroreader™  [10], and volBrain [12] provide volumetric measures of anatomical 

structures. Unlike subjective visual analysis of atrophy, AVS provide objective, quantitative measurement of 

various regions of interest (ROI) volumes. These tools, which are progressively being implemented in 

clinical MRI software have only been evaluated in research settings [10,11,13,14]. Besides, due to their 

univariate nature, they cannot detect complex multivariate combinations of regional atrophies, essential to 

discriminate between different dementias.  

Automatic classifiers, based on machine learning techniques, are able to automatically learn complex 

multivariate discriminative patterns without priors on specific anatomical structures. Automatic classifiers 

have also mainly been evaluated in research settings, with standardized MRI acquisition and focusing on a 

single type of dementia (most often Alzheimer’s disease) and age-matched healthy controls [15–19].  

Objective: In this study, we evaluated the diagnostic classification performance of AVS volumetry 

(volBrain and Neuroreader™), automatic classifiers (based on whole gray matter or on AVS volumes), in a 

clinical routine cohort of patients presenting with various neurodegenerative dementia disorders, depression 

or subjective cognitive decline. 



 

 

Material and Methods 

Participants 

All subjects were recruited retrospectively in a tertiary academic expert memory center (Institute for 

Memory and Alzheimer’s disease – Department of Neurology, Pitié-Salpêtrière University Hospital) from 

the ClinAD cohort [20]. The ClinAD cohort consists of 992 consecutive patients who consulted from 2005 

to 2014 for cognitive impairment and who underwent lumbar puncture. Data collection was planned before 

the index test and reference standard were performed. All patients had neurological, biological and 

neuropsychological evaluations. Cerebrospinal fluid (CSF) Ab1-42, tau and phosphorylated tau was available 

for all participants. All clinical and biological data were generated during a routine clinical workup and were 

retrospectively extracted for the purpose of this study. Therefore, according to French legislation, explicit 

consent was waived. However, regulations concerning electronic filing were followed, and patients and their 

relatives were informed that anonymised data might be used in research investigations.  

 For each patient, the diagnosis was assessed by a group of 3 neurologists based on clinical, 

biological and imaging data, following international consensus criteria for AD (IWG-2) [21], fronto-

temporal dementia (FTD) [2], primary progressive aphasia (PPA) of the logopenic (lv-PPA), semantic (SD) 

or non-fluent/agrammatic (nf-PPA) [22] variant, cortico-basal syndrome (CBD) [4],  progressive 

supranuclear palsy (PSP) [23], posterior cortical atrophy (PCA) [24], Lewy body dementia (LBD) [25], and 

depression [26]. This consensus diagnosis formed the reference standard. The classifier and volumetry 

(index tests) results were not available to assessors of the reference standard.  As clinical presentations and 

atrophy patterns depend mostly on the age of onset of AD [27], the AD group was separated into Early-onset 

AD (EOAD) and Late-Onset-AD (LOAD), with age of onset respectively before and after 65 years. In 

addition, 342 out of 992 patients were excluded because they presented with mixed pathology, vascular 

disease (Fazekas score > 2 or significant stroke) or unclear diagnosis. From the 650 patients of the ClinAD 

cohort, 380 patients were excluded because the MRI was performed outside our center and was not available 

for our study, resulting in 270 patients. We added 12 subjective cognitive decline (SCD) patients, defined as 

patients with cognitive complaint but with normal neuropsychological examination. 



 

 

 Among the 282 patients, 7 were excluded due to poor image quality or failure of image processing 

pipelines. Specifically, 6 had a very low MRI quality on visual analysis (missing slices or strong motion 

artifacts) and the image processing pipelines failed in one participant. The quality of the remaining MRI data 

was variable, reflecting the reality of clinical routine, but proved sufficient for reliable image processing. 

The quality of image segmentation results was visually assessed. Moreover, we excluded diagnostic groups 

with less than 15 patients (nf-PPA, PSP, PCA) as automatic classifiers cannot be trained robustly on very 

small groups of subjects. As a result, the analyses were performed on 239 patients belonging to the 

following eight diagnostic groups: cortico-basal syndrome, early-onset AD, late-onset AD, fronto-temporal 

dementia of the behavioral type, Lewy body dementia, logopenic variant of primary progressive aphasia, 

semantic variant of primary progressive aphasia, and depression. The flow chart is described on 

Supplementary table 1. In this cohort, the only group without degenerative condition was that of patients 

with depression. We aim to compare the results obtained for depression to that obtained for subjective 

cognitive decline (SCD). To that purpose, we added 12 patients with SCD, defined as patients with cognitive 

complaint but with normal neuropsychological examination. For this group, classifiers were trained using 

the depression group and applied to the SCD group, because the training of the classifier on 12 participants 

would not be robust enough. 

 Demographic data are summarized in Table 1. Difference between groups on demographic and 

clinical data was evaluated with ANOVA for continuous data and Χ2 test for binary data using XLStat 

Software (Addinsoft, www.xlstat.com). As expected, since we separated the AD group in LOAD and 

EOAD, age at diagnosis was significantly different between groups (in ANOVA and Post-Hoc Test). The 

MMSE score was also different since the neurodegenerative conditions do not have the same cognitive 

profile. For example, language impairment in PPA usually leads to lower MMSE scores than frontal 

dysfunction in FTD. There was no difference between groups regarding gender and MRI magnetic field. 

  

MRI Acquisition  

All 239 patients had an available brain MRI performed in the Department of Neuroradiology at Pitié-

Salpêtrière Hospital: 63 on a 3T MRI GE Sigma HD, 9 on a 1.5 T MRI GE Optima 450, 44 on a 1.5T MRI 



 

 

GE Signa Excite and 123 on a 1T MRI Philips Panorama. All MRI included a 3D T1-weighted sequence 

with a spatial resolution ranging from 0.5x0.5x1.2mm3 to 1x1x1.2mm3. Since imaging was performed as 

part of clinical routine, MRI acquisition parameters were not homogenized. Sequence parameters are 

available in Supplementary Table 2. The 12 SMC patients had an MRI performed in our center: 8 on a 3T 

MRI GE Signa HD, 1 on a 1.5 T MRI GE Optima 450, and 3 on a 1T MRI Philips Panorama. 

 

Fully Automated Volumetry Software 

The Neuroreader™ software (http://www.brainreader.net) is a commercial clinical brain image analysis tool 

[10]. The system provides the volumes of the following structures: intracranial cavity, tissue categories 

(WM, GM, and CSF), subcortical GM structures (putamen, caudate, pallidum, thalamus, hippocampus, 

amygdala and accumbens) and lobes (occipital, parietal, frontal and temporal). Processing times range from 

3 to 7 minutes as a function of image size, irrespective of magnetic field strength. 

 The volBrain software (http://volBrain.upv.es) is an online freely-available academic brain image 

analysis tool [12]. The volBrain system takes around 15 minutes to perform the full analysis and provides 

the same volumes as Neuroreader™ except for the lobar volumes, only provided by Neuroreader™. 

However, the volBrain system provides hemisphere, brainstem and cerebellum segmentations which were 

not used in this study. 

 

Automatic classification using SVM 

Pre-Processing: extraction of Whole Grey Matter maps 

All T1-weighted MRI images were segmented into Gray Matter (GM), White Matter (WM) and CSF tissues 

maps using the Statistical Parametric Mapping unified segmentation routine with the default parameters 

(SPM12, London, UK http://www.fil.ion.ucl.ac.uk/spm/) [28]. A population template was calculated from 

GM and WM tissue maps using the DARTEL diffeomorphic registration algorithm with the default 

parameters [29]. The obtained transformations and a spatial normalization were applied to the GM tissue 

maps. All maps were modulated to ensure that the overall tissue amount remains constant and normalized to 



 

 

MNI space. 12mm smoothing was applied as the classification performed better with this parameter than 

with none or less smoothed images.  

 

SVM classification 

Whole Gray Matter (WGM) maps were then used as input of a high-dimensional classifier, based on a linear 

support vector machine (SVM) classifier. In brief, the linear SVM looks for a hyperplane which best 

separates two given groups of patients, in a very high dimensional space composed of all voxel values. In 

such approach, the machine learning algorithm automatically learns the spatial pattern (set of voxels and 

their weights) allowing to discriminate between diagnostic group. Importantly, the classifier does not use 

prior information such as anatomical boundaries between structures or that a specific anatomical structure 

(e.g. hippocampus) would be affected in a given condition. Please refer to Cuingnet et al. [15] for more 

details.   

SVM classification was performed for each possible pair of diagnostic groups (e.g. EOAD vs. FTD, 

LOAD vs. FTD…). The performance measure was the balanced diagnostic accuracy defined as: (sensitivity 

– specificity)/2. Unlike standard accuracy, balanced accuracy allows to objectively compare the performance 

of different classification tasks even in the presence of unbalanced groups [15]. 

In order to compute unbiased estimates of classification performances, we used a 10-fold cross 

validation, meaning that each 10% of the set is used for testing and the other 90% for training, changing the 

groups in each out of the ten trials. This ensures that the patient that is currently being classified has not 

been used to train the classifier, a problem known as “double-dipping”. Finally, the SVM classifier has one 

hyper-parameter to optimize. The optimization was done using a grid-search. Again, in order to have a fully 

unbiased evaluation, the hyper-parameter tuning was done using a second, nested, 10-fold cross-validation 

procedure.  

Finally, in order to have a fair comparison between WGM maps and AVS volumes, we also 

performed SVM classification using volumes of each AVS as input, all regional volumes (for a given AVS) 

being simultaneously used in a multivariate manner.  

 



 

 

Radiological classification 

Two neuroradiologists (AB, with 8 years of experience, and SS, with 4 years of experience), specialized in 

the evaluation of dementia, performed a visual classification of three diagnosis pairs on the same dataset: 

FTD vs EOAD, depression vs LOAD and LBD vs LOAD. We chose FTD vs EOAD and depression vs 

LOAD for their relevance in clinical practice. We chose LBD vs LOAD because the SVM classifier yielded 

only moderate accuracies, and because the diagnosis of LBD based on MRI is difficult. The 

neuroradiologists were blind to all patient data except MRI. 

 



 

 

 
Results 

Automated Volumetry Software: volBrain and Neuroreader™ 

We performed a univariate classification based on each AVS volume separately. Volumes were normalized 

to the measured Total Intracranial volume (mTIV) (using the formula: Volume/mTIV), as discrimination 

was slightly better than with absolute values. VolBrain and Neuroreader™ performed similarly on univariate 

classification with balanced accuracy rates ranging from 46% to 71% based on hippocampal volumes. We 

show various volumes obtained in Neuroreader™ in Supplementary Table 3. We show results of 

classification based on hippocampal volume computed with Neuroreader™ in Table 2. In Supplementary 

Table 4 to 9, we provide classification balanced accuracy based on volumes of other anatomical structures, 

known to be of particular interest in various neurodegenerative conditions.   

 

Automatic SVM classifier from Whole Gray Matter maps  

Table 3 provides the results of automatic SVM classification from WGM segmentation maps.  Balanced 

accuracies ranged from 52% (LBD vs LOAD) to 90% (EarlyAD vs SCD). We present in Supplementary 

Figure 1 two examples of weight maps, which are graphic representations of the most relevant voxels for 

classification.  

 
Automatic SVM classification from AVS volumes 

To fully compare AVS with our SVM-WGM classification, we provide, in Supplementary Table 10, results 

of SVM classification from all volumes obtained with volBrain and Neuroreader™ in addition to SVM 

based on WGM. In general, results were slightly lower than with SVM classification from WGM. Overall, 

volBrain and Neuroreader™ performed similarly, even though one or the other tool achieved slightly higher 

performances in some specific cases.  

 

Radiological classification 



 

 

Classification by experienced neuroradiologists resulted in the following balanced accuracies : 77% 

(neuroradiologist 1) and 72% (neuroradiologist 2) for LOAD vs depression, 72% and 75% for FTD vs 

EOAD, 57% and 63% for LBD vs LOAD (Table 4). Neuroradiological classification performed better than 

both SVM-AVS and univariate AVS except for LBD vs LOAD classification in which they performed 

equally. The performance of the SVM-WGM was in general comparable to that of neuroradiologists. 

However, it was superior to both radiologists for FTD vs EOAD classification.  

 
 
 



 

 

Discussion 

In this study, we assessed the diagnostic performance of AVS and SVM classifiers for various 

neurodegenerative conditions. SVM classifier based on whole gray matter provided accurate diagnostic 

classification for the majority of diagnoses and was far more accurate than univariate classification based on 

regional volumes such as hippocampal volume obtained through AVS. The performance of the SVM 

classifier was similar or slightly higher to that of trained neuroradiologists on selected classification tasks. 

The best accuracies were obtained with SVM classification from whole gray matter maps. Balanced 

accuracy was superior to 70% in 64% of the available combinations and superior to 80% in 25% of them. 

Two studies evaluated SVM classification between AD and FTD in a research setting [16,30]. In this setting, 

they obtained slightly higher diagnostic classification, with AD vs. FTD classification ranging from 84% to 

90% (in our study: FTD vs. EOAD: 83% and FTD vs. LOAD: 73%). This slightly superior accuracy might 

be explained by the more controlled setting of research studies, in particular less heterogeneous MRI 

acquisitions, and by the fact that our patients were at a slightly less advanced disease stage. Moreover, in 

Klöppel et al. [30], the use of anatomopathology as the diagnosis criteria, might have provided more 

homogeneous groups of patients, helping to better distinguish different diagnoses. To the best of our 

knowledge, only one study has previously evaluated SVM classifiers in clinical routine with various types of 

dementia [31].  The accuracies that we report are consistent with those reported in Koikkalainen et al, [31] in 

which diagnostic accuracy for FTD vs. AD was 80% (in our study, FTD vs. LOAD: 73% and FTD vs. 

EOAD: 83%), for LBD vs. AD 68% (in our study, LBD vs. EOAD: 77% and LBD vs. LOAD: 52%) and for 

LBD vs. FTD 77.5 (in our study, LBD vs. FTD: 67%).  In this previous study, as compared to ours, there 

wasn't any patient with PPA or CBD. Furthermore, contrarily to our study, diagnoses were not assessed with 

the latest diagnosis criteria, especially regarding Alzheimer’s CSF biomarkers. Finally, this study did not 

compare the performance of SVM to that of AVS tools which are quickly becoming standard in radiological 

routine. Therefore, to the best of our knowledge, we present the first study of whole-brain classifiers on 

clinical routine data based on the latest diagnostic criteria, and with comparison to AVS tools, the current 

standard of quantitative clinical radiology. 



 

 

When focusing on some particularly difficult clinical situations, automatic classification results are 

particularly promising. For instance, SVM classification distinguished depression, EOAD and FTD with an 

accuracy superior to 80%. In particular, SVM classification was more accurate than that of trained 

neuroradiologists for EOAD vs FTD. These situations often imply facing young patients, with an atypical 

symptomatic presentation. In these cases, there is often a dramatic impact on the professional and familial 

life. Finally, the diagnosis implies different types of care including choosing between cholinesterase 

inhibitors in AD versus antidepressant drugs in depression for instance or making a genetic diagnosis for 

FTD. Another challenging situation can be the disentanglement of PPA variants which all include 

predominant language impairment but are associated to variable neuropathological lesions [32]. SD could be 

distinguished from lv-PPA with an accuracy of 77%. As expected, the classifier, as well as the 

neuroradiologists, performed better on dementia known to have a strongly specific atrophy pattern (such as 

SD or FTD) [7] and worse on dementia with less specific atrophy patterns (LBD, CBD) [33,34]. 

Interestingly, the classifier allowed to distinguish SCD from the vast majority of neurodegenerative diseases 

with high accuracy. One can note that it performed better for SCD than for depression. One explanation 

could be the atrophy usually described in depression [35]. 

Compared to our SVM classifier, univariate classification based on AVS performed poorly. When 

analyzing the accuracy for diagnosis based on each of the volumes obtained with AVS, they ranged between 

53% and 84%. With hippocampus alone, classifying rates rarely exceeded 70%, which is relatively low.  In 

previous studies, the role of the hippocampus has been mainly evaluated for the diagnosis of AD versus 

controls or in mild cognitive impairment (MCI) populations to identify patients who will later progress to 

AD [8,9,11,36,37]. In our study, we evaluated MRI measurements in AD versus other dementia (FTD for 

instance), where hippocampal volumetry alone is known to perform poorly [38,39].  

Poor performance of univariate classification and improvement when using SVM classification of 

both AVS volumes (balanced accuracy ranging from 60 to 80%) emphasize the fact that atrophy in dementia 

involves complex distributed spatial pattern. The only study comparing univariate (hippocampus) and 

multivariate analysis in two AVS (NeuroQuant™ and Neuroreader™) found different conclusions [13]. 

They didn’t find any additional prognostic performance with multivariate analysis compared to univariate. 



 

 

Nevertheless, this study focused on prediction of progression to AD among MCI patients, an objective that 

differs from ours. Finally, the SVM classifier using whole gray matter generally performed better than the 

multivariate analyses of both AVS. This is likely because the pattern of atrophy may not coincide with the 

boundaries of the anatomical regions delineated by AVS. This demonstrates the interest of letting the 

algorithm learn a discriminative pattern from the whole gray matter, without prior, rather using anatomical 

boundaries provided by AVS. 

Neuroradiological classification was generally more accurate than hippocampal volumetry using 

AVS. The only exception was for LBD vs LOAD, a differential diagnosis for which anatomical MRI does 

not bring much relevant information and for which all approaches performed relatively poorly. 

Neuroradiological classification and SVM-WGM generally achieved similar performance. Nevertheless, the 

performance of SVM-WGM was superior for EOAD vs FTD. This indicates that an automatic classifier can 

be a useful tool to assist trained neuroradiologists for difficult situations.  

Our study also demonstrates the feasibility of those techniques in the context of routine MRI data of 

varying image quality and acquired at different magnetic field strength. AVS segmentation and SVM 

classification were successful on almost every MRI. 

One limitation of our study is the use of a binary classifier which does not totally correspond to the 

clinical practice where patients can have multiple diagnostic hypotheses. Further investigations could 

include multi-group classification instead of paired groups, in order to obtain a probability related to each 

potential diagnosis. Another limitation that we did not include healthy controls but rather used two control 

groups composed of patients with depression and SCD respectively. However, this situation is representative 

of the clinical routine: patients seen in a memory clinic are usually diagnosed with a neurological or a 

psychiatric condition, or present with subjective cognitive impairment, and are thus not “pure” control 

subjects.  

As AVS start to be implemented in clinical routine, a final step in the analysis of raw AVS volumes 

could be a classification with an SVM based on all the AVS data. By analogy with AVS, our SVM-WGM 

classifier could be implemented in the post-processing of MRI in clinical routine. Thus, neuroradiologists 

could use the indication provided by the automatic classifier to refine their diagnosis. Also, in our study, 



 

 

neuroradiologists were operating in highly specialized centers and had considerable experience with 

different types of dementia (including rare diseases). It is thus conceivable that an automatic classifier would 

be of even greater help in less specialized centers. 

 

Conclusion 

Our study supports the applicability of computer-assisted diagnostic tools such as AVS and SVM classifiers 

to clinical routine data. When facing various dementia disorders, the accuracy of univariate volumetric 

analysis is too low to assist clinical decision making. In a clinical routine setting, automatic classifiers 

provide high diagnostic accuracy for distinguishing between several types of dementia. The implementation 

of advanced MRI-based computer-assisted diagnostic tools in clinical routine, such as SVM classification, 

could help to improve diagnostic accuracy.  
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Table 1. Demographic and clinical characteristics of the population.  

Group differences were assessed with ANOVA for continuous variables and Χ2 test for discrete variables. 

Data are expressed as mean +/- SD. 

CBD = Cortico-basal syndrome, Depr. = Depression, EarlyAD = Early-onset AD, FTD = Fronto-temporal dementia of the 

behavioral type, LBD= Lewy body dementia, LateAD = Late-Onset-AD, lv-PPA = logopenic variant of Primary progressive 

aphasia, SCD= Subjective Cognitive Decline, SD = Semantic variant of primary progressive aphasia 

 

  

 Diagnosis Number 
Age 

mean ± SD [range] 
 

Gender 
 

MMSE 
mean ± SD 

[range] 

Magnetic Field  
(1T / 1.5T / 3T) 

CBD 31 69.75 ± 1.4 16 M / 15 F 23.2 ± 4.5 16 / 10 / 5 

Depression 24 64.52 ± 1.6 6 M / 18 F 25.2 ± 3.2 18 / 3 / 3 

EarlyAD 34 59.72 ± 1.49 13 M / 21 F 20.0 ± 5.5 21 / 7 / 6 

FTD 39 67.31 ± 1.315 22 M / 17 F 23.2 ± 4.2 19 / 7 / 13 

LBD 22 70.6 ± 1.75 13 M / 9 F 22.3 ± 6.1 13 / 5 / 4 

LateAD 49 73.5 ± 1.21 25 M / 24 F 22.4 ± 4.1 24 / 9 / 16 

lv-PPA 23 67.05 ± 1.7 15 M / 8 F 19.9 ±  5.2 6 / 6 / 11 

SD 17 65.36 ± 1.99 10 M / 7 F 20.9 ±  8.1 7 / 5 / 5 

SCD 12 72.5 ± 2.15 3 M / 9 F 25,2 ± 2.9 3/3/6 

p-value  < 0.0001 0.25 0.01 0.12 

 

 

 

 

 

 



 

 

Table 2. Classification results for univariate classification from hippocampal volumes obtained with 

Neuroreader™ ASS. For each pair of possible diagnoses, we report the balanced accuracy. Chance level 

classification is at 50%. Colder colors (green/blue) correspond to less accurate classifications while warmer 

colors (red/orange) correspond to more accurate classifications.  

CBD = Cortico-basal syndrome, Depr. = Depression, EarlyAD = Early-onset AD, FTD = Fronto-temporal dementia of the 

behavioral type, LBD= Lewy body dementia, LateAD = Late-Onset-AD, lv-PPA = logopenic variant of Primary progressive 

aphasia, SCD= Subjective Cognitive Decline, SD = Semantic variant of primary progressive aphasia 

  
 

 SCD Depr. EarlyAD LateAD CBD LBD FTD lv-PPA SD 
SCD X X 53% 65% 56% 55% 63% 49% 64% 

Depr. X X 61% 71% 53% 59% 70% 60% 71% 
EarlyAD 53% 61% X 58% 59% 48% 60% 52% 63% 
LateAD 65% 71% 58% X 66% 62% 48% 69% 46% 

CBD 56% 53% 59% 66% X 60% 66% 57% 68% 
LBD 55% 59% 48% 62% 60% X 58% 53% 60% 
FTD 63% 70% 60% 48% 66% 58% X 66% 52% 

lv-PPA 49% 60% 52% 69% 57% 53% 66% X 70% 
SD 64% 71% 63% 46% 68% 60% 52% 70% X 



 

 

 

Table 3. Classification results for SVM classification from Whole Gray Matter maps. For each pair of 

possible diagnoses, we report the balanced accuracy. Chance level is at 50%. Colder colors (green/blue) 

correspond to less accurate classifications while warmer colors (red/orange) correspond to more accurate 

classifications. 

CBD = Cortico-basal syndrome, Depr. = Depression, EarlyAD = Early-onset AD, FTD = Fronto-temporal dementia of the 

behavioral type, LBD= Lewy body dementia, LateAD = Late-Onset-AD, lv-PPA = logopenic variant of Primary progressive 

aphasia, SCD= Subjective Cognitive Decline, SD = Semantic variant of primary progressive aphasia 

 SCD Depr. EarlyAD LateAD CBD LBD FTD lv-PPA SD 
SCD X X 90% 85% 87% 69% 80% 75% 87% 

Depr. X X 83% 73% 78% 71% 82% 66% 86% 
EarlyAD 90% 83% X 59% 70% 77% 82% 67% 71% 
LateAD 85% 73% 59% X 78% 52% 74% 54% 73% 

CBD 87% 78% 70% 78% X 55% 67% 58% 88% 
LBD 69% 71% 77% 52% 55% X 67% 54% 84% 
FTD 80% 82% 82% 74% 67% 67% X 70% 73% 
lPPA 75% 66% 67% 54% 58% 54% 70% X 77% 
SD 87% 86% 71% 73% 88% 84% 73% 77% X 

 



 

 

Table 4. Comparative performances of Neuroradiologists, univariate AVS, and automatic classifiers. 

The three diagnostic classification tasks are Depression vs LOAD,  

FTD vs EOAD and LBD vs LOAD. 

AVS = Automated Volumetry Software 

SVM-AVS = Support Vector Machine Automated Volumetry Software 
 

Depression vs LOAD FTD vs EOAD LBD vs LOAD 

Neuroradiologist 1 77% 72% 57% 

Neuroradiologist 2 72% 75% 63% 

Hippocampal volumetry (AVS) 71% 60% 62% 

SVM-AVS (VolBrain) 60% 67% 54% 

SVM-AVS (Neuroreader) 76% 67% 63% 
SVM-WGM 73% 82% 52% 

 



 

 

Appendix 
 

Supplementary Figure 1. Spatial pattern learned by the classification algorithm. The maps represent 

contribution of each voxel to classification towards a given class (blue/green) or the other (yellow/red). Left 

panel: FTD (in yellow/red) vs. EarlyAD (in blue/green) displaying an anteroposterior gradient of atrophy. 

Right: LateAD (in blue/green) vs. depression (in yellow red) with medial temporal lobe voxels mostly 

blue/green. 

 

 



 

 

Supplementary Table 1. Patients Flow Chart 

 

Supplementary Table 2. Patients MRI Sequence parameters.  

Magnetic Field Strength = MF, T = Tesla, TE = Echo time, TR = Repetition time, TI = Inversion Time, ST = 
Slice Thickness, FA = Flip Angle, NA = Number of averages, PS = Pixel spacing, MT = Matrix Type 
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Supplementary Table 3. Mean volumes obtained through automatical segmentation using Neuroreader™. 

Volumes are expressed in cm3 or as a percentage of Total Intracranial Volume. P-value were calculated 

using an ANOVA. 

CBD = Cortico-basal degeneration, EOAD = Early-onset AD, FTD = Fronto-temporal dementia of the 

behavioral type, LBD= Lewy body dementia, LOAD = Late-Onset-AD, lv-PPA = logopenic variant of 

Primary progressive aphasia, SD = Semantic dementia, GM = Grey Matter, WM = White Matter, CSF = 

Cerebrospinal Fluid 
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Supplementary Table 4. Classification results for univariate classification from gray matter volumes 

obtained using Neuroreader™. For each pair of possible diagnoses, we report the balanced accuracy. Chance 

level is at 50%. Colder colors (green/blue) correspond to less accurate classifications while warmer colors 

(red/orange) correspond to more accurate classifications. 

 SCD Depr. EarlyAD LateAD CBD LBD FTD lv-PPA SD 
SCD X X 62% 61% 61% 59% 66% 58% 54% 

Depr. X X 66% 66% 65% 63% 74% 62% 62% 
EarlyAD 62% 66% X 50% 52% 56% 60% 55% 46% 
LateAD 61% 66% 50% X 47% 55% 64% 47% 50% 

CBD 61% 65% 52% 47% X 55% 63% 56% 46% 
LBD 59% 63% 56% 55% 55% X 67% 55% 52% 
FTD 66% 74% 60% 64% 63% 67% X 70% 64% 

lv-PPA 58% 62% 55% 47% 56% 55% 70% X 55% 
SD 54% 62% 46% 50% 46% 52% 64% 55% X 

 

Supplementary Table 5. Classification results for univariate classification from caudate nucleus volumes 

obtained using Neuroreader™. For each pair of possible diagnoses, we report the balanced accuracy. Chance 

level is at 50%. Colder colors (green/blue) correspond to less accurate classifications while warmer colors 

(red/orange) correspond to more accurate classifications. 

 SCD Depr. EarlyAD LateAD CBD LBD FTD lv-PPA SD 
SCD X X 78% 68% 79% 65% 87% 70% 69% 

Depr. X X 67% 54% 66% 55% 72% 58% 57% 
EarlyAD 78% 67% X 61% 51% 56% 57% 67% 55% 
LateAD 68% 54% 61% X 60% 50% 67% 51% 53% 

CBD 79% 66% 51% 60% X 58% 62% 64% 55% 
LBD 65% 55% 56% 50% 58% X 66% 51% 51% 
FTD 87% 72% 57% 67% 62% 66% X 69% 61% 

lv-PPA 70% 58% 67% 51% 64% 51% 69% X 48% 
SD 69% 57% 55% 53% 55% 51% 61% 48% X 

 



 

 

Supplementary Table 6. Classification results for univariate classification from amygdala volumes 

obtained using Neuroreader™. For each pair of possible diagnoses, we report the balanced accuracy. Chance 

level is at 50%. Colder colors (green/blue) correspond to less accurate classifications while warmer colors 

(red/orange) correspond to more accurate classifications.  

 SCD Depr. EarlyAD LateAD CBD LBD FTD lv-PPA SD 
SCD X X 60% 69% 70% 65% 67% 62% 66% 

Depr. X X 62% 67% 67% 62% 72% 55% 76% 
EarlyAD 60% 62% X 52% 56% 52% 53% 59% 59% 
LateAD 69% 67% 52% X 58% 56% 50% 62% 58% 

CBD 70% 67% 56% 58% X 46% 59% 63% 65% 
LBD 65% 62% 52% 56% 46% X 57% 62% 64% 
FTD 67% 72% 53% 50% 59% 57% X 65% 58% 

lv-PPA 62% 55% 59% 62% 63% 62% 65% X 71% 
SD 66% 76% 59% 58% 65% 64% 58% 71% X 

 

 

Supplementary Table 7. Classification results for univariate classification from temporal lobe volumes 

obtained using Neuroreader™. For each pair of possible diagnoses, we report the balanced accuracy. Chance 

level is at 50%. Colder colors (green/blue) correspond to less accurate classifications while warmer colors 

(red/orange) correspond to more accurate classifications.  

 SCD Depr. EarlyAD LateAD CBD LBD FTD lv-PPA SD 
SCD X X 59% 64% 52% 59% 67% 59% 74% 

Depr. X X 63% 64% 62% 63% 69% 59% 82% 
EarlyAD 59% 63% X 51% 54% 48% 55% 53% 64% 
LateAD 64% 64% 51% X 60% 49% 57% 52% 61% 

CBD 52% 62% 54% 60% X 55% 67% 57% 73% 
LBD 59% 63% 48% 49% 55% X 62% 49% 75% 
FTD 67% 69% 55% 57% 67% 62% X 52% 61% 

lv-PPA 59% 59% 53% 52% 57% 49% 52% X 61% 
SD 74% 82% 64% 61% 73% 75% 61% 61% X 

 

 



 

 

 
Supplementary Table 8.  Classification results for univariate classification from frontal lobe volumes 

obtained using Neuroreader™. For each pair of possible diagnoses, we report the balanced accuracy. Chance 

level is at 50%. Colder colors (green/blue) correspond to less accurate classifications while warmer colors 

(red/orange) correspond to more accurate classifications.  

 SCD Depr. EarlyAD LateAD CBD LBD FTD lv-PPA SD 
SCD X X 47% 57% 62% 50% 76% 55% 59% 

Depr. X X 58% 61% 69% 63% 82% 62% 61% 
EarlyAD 47% 58% X 56% 62% 48% 71% 59% 58% 
LateAD 57% 61% 56% X 59% 53% 74% 52% 55% 

CBD 62% 69% 62% 59% X 68% 72% 55% 54% 
LBD 50% 63% 48% 53% 68% X 80% 58% 54% 
FTD 76% 82% 71% 74% 72% 80% X 75% 73% 

lv-PPA 55% 62% 59% 52% 55% 58% 75% X 45% 
SD 59% 61% 58% 55% 54% 54% 73% 45% X 

 

 

Supplementary Table 9. Classification results for univariate classification from parietal lobe volumes 

obtained using Neuroreader™. For each pair of possible diagnoses, we report the balanced accuracy. Chance 

level is at 50%. Colder colors (green/blue) correspond to less accurate classifications while warmer colors 

(red/orange) correspond to more accurate classifications.  

 SCD Depr. EarlyAD LateAD CBD LBD FTD lv-PPA SD 
SCD X X 73% 62% 72% 58% 74% 74% 59% 

Depr. X X 71% 70% 75% 59% 74% 72% 61% 
EarlyAD 73% 71% X 58% 52% 61% 54% 50% 58% 
LateAD 62% 70% 58% X 60% 57% 62% 61% 56% 

CBD 72% 75% 52% 60% X 62% 54% 52% 57% 
LBD 58% 59% 61% 57% 62% X 66% 67% 46% 
FTD 74% 74% 54% 62% 54% 66% X 48% 59% 

lv-PPA 74% 72% 50% 61% 52% 67% 48% X 59% 
SD 59% 61% 58% 56% 57% 46% 59% 59% X 

 



 

 

 
Supplementary Table 10. Classification results for SVM classification from fall volumes obtained using 

volBrain (on top) and Neuroreader™ (at the bottom). For each pair of possible diagnoses, we report the 

balanced accuracy. Chance level is at 50%. Colder colors (green/blue) correspond to less accurate 

classifications while warmer colors (red/orange) correspond to more accurate classifications. 

VolBrain          
 SCD Depr. EarlyAD LateAD CBD LBD FTD lv-PPA SD 

SCD X X 82% 57% 81% 64% 80% 60% 72% 
Depr. X X 71% 68% 68% 70% 79% 72% 85% 

EarlyAD 82% 71% X 72% 65% 68% 73% 52% 58% 
LateAD 57% 68% 72% X 78% 68% 77% 68% 62% 

CBD 81% 68% 65% 78% X 60% 56% 59% 67% 
LBD 64% 70% 68% 68% 60% X 69% 56% 77% 
FTD 80% 79% 73% 77% 56% 69% X 60% 54% 

lv-PPA 60% 72% 52% 68% 59% 56% 60% X 71% 
SD 72% 85% 58% 62% 67% 77% 54% 71% X 

Neuro 
Reader 

         

 SCD Depr. EarlyAD LateAD CBD LBD FTD lv-PPA SD 
SCD X X 62% 54% 78% 63% 74% 62% 79% 

Depr. X X 65% 60% 75% 56% 77% 70% 79% 
EarlyAD 62% 65% X 61% 80% 70% 67% 62% 73% 
LateAD 54% 60% 61% X 69% 54% 66% 64% 70% 

CBD 78% 75% 80% 69% X 63% 60% 60% 83% 
LBD 63% 56% 70% 54% 63% X 69% 54% 84% 
FTD 74% 77% 67% 66% 60% 69% X 65% 82% 

lv-PPA 62% 70% 62% 64% 60% 54% 65% X 65% 
SD 79% 79% 73% 70% 83% 84% 82% 65% X 

 
 

 


