887 research outputs found

    Digitizing and 3D Modeling of Urban Environments and Roads using Vehicle-Borne Laser Scanner System

    No full text
    International audience—In this paper we present a system for three-dimensional environment modeling. It consists of an instrumented vehicle equipped with a 2D laser range scanner for data mapping, and GPS, INS and odometers for vehicle positioning and attitude information. The advantage of this system is its ability to perform data acquisition during the vehicle navigation; the sensor needed being a basic 2D scanner with opposition to traditional expensive 3D sensors. This system integrates the laser raw range data with the vehicle's internal state estimator and is capable of reconstructing the 3D geometry of the environment by real-time geo-referencing. We propose a high level representation of the urban scene while identifying automatically and in real time some types of existing objects in this environment. Thus, our modeling is articulated around three principal axes, the segmentation; decimation; the 3D reconstruction and visualization. The road is the most important object for us; some road features like the curvature and the width are extracted

    Monitoring capabilities of a mobile mapping system based on navigation qualities

    Get PDF
    Mobile mapping systems are becoming increasingly popular as they can build 3D models of the environment rapidly by using a laser scanner that is integrated with a navigation system. 3D mobile mapping has been widely used for applications such as 3D city modelling and mapping of the scanned environments. However, accurate mapping relies on not only the scanner’s performance but also on the quality of the navigation results (accuracy and robustness) . This paper discusses the potentials of using 3D mobile mapping systems for landscape change detection, that is traditionally carried out by terrestrial laser scanners that can be accurately geo-referenced at a static location to produce highly accurate dense point clouds. Yet compared to conventional surveying using terrestrial laser scanners, several advantages of mobile mapping systems can be identified. A large area can be monitored in a relatively short period, which enables high repeat frequency monitoring without having to set-up dedicated stations. However, current mobile mapping applications are limited by the quality of navigation results, especially in different environments. The change detection ability of mobile mapping systems is therefore significantly affected by the quality of the navigation results. This paper presents some data collected for the purpose of monitoring from a mobile platform. The datasets are analysed to address current potentials and difficulties. The change detection results are also presented based on the collected dataset. Results indicate the potentials of change detection using a mobile mapping system and suggestions to enhance quality and robustness

    Conceptual issues regarding the development of underground railway laser scanning systems

    Get PDF
    Author name used in this publication: Bruce King2014-2015 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Accuracy of 3D Point-Cloud and Photo-Based Models of City Street Intersections

    Get PDF
    From Georgia Southern University’s Built Environment and Modeling lab, this study compares point positions and distance measurements completed with state-of-the-art instruments and equipment. A modern, 12-second, laser scanner, a modern unmanned aerial vehicle and a highly accurate, 1-second robotic total station were employed for this study. The latter serving as the benchmark instrument. The main objective of this quantitative comparison is to explore the accuracy and usability of a relatively large point-cloud model, as a virtual surveying tool for redesign/reconstruction purposes. This project involves the generation of large, 3D, point-cloud models of two busy and complex city street intersections. One intersection encompasses an approximate area of 300 ft × 750 ft and containing five converging elements: three streets and two railroads. It is an accident-prone location requiring redesign. The second street intersection encompasses an approximate area of 1,500 ft × 2,500 ft, containing two streets intersecting at an approximate 45-degree angle. The resulting computer model has been geo-referenced in the Georgia East State Plane Coordinate System (SPCS) using control points with coordinates established by GPS (Global Positioning System) via a rapid, network-based, Real-Time Kinematic (RTK) approach. These city street intersections are within the Blue-Mile corridor in Statesboro, GA. Along with the Statesboro city engineering, the Blue-Mile corridor has plans to enhance and improve the traffic flow of the Blue-Mile corridor, which contains many businesses and restaurants. The final point-cloud models are to be donated to the city engineers to assist in the redesign of the intersections. A full analysis of the referred discrepancies is presented and recommendations on improving the overall current accuracies are provided

    Assessing the Accuracy of Land-Based Mobile Laser Scanning Data

    No full text
    Also available online at http://journals.bg.agh.edu.pl/GEOMATICS/2012.6.3/geom.2012.6.3.73.pdfInternational audienceIn this paper, we have described an accuracy analysis of MLS point clouds collected using the LARA3D prototype platform in an urban area. Accuracy of the MLS was achieved through comparison with other data sources more accurate that the studied system. The study has shown, that when compared with control points, collected by a Total Station, the prototype system LARA3D is able to produce data with an accuracy better then 0.3 m. However, taking into consideration the uncertainty in the identification of common points, this method is affected by man-made error and limited by point cloud resolutions. Meanwhile, the use of existing reference data, such as e.g. high resolution point clouds from static terrestrial laser scanning provides fast and reliable data evaluation. The subjective element of operator interpretation is also removed. Results achieved using ICP algorithm show, that our mobile mapping system suffers from limitations of the sensor quality and Kalman filter implementation. In the case of point clouds locally degraded, proper matching is impossible and the obtained result does not reflect the type and scale of deformation correctly. Meanwhile, another less time-consuming and more automated method for assessing data accuracy should be developed. That may be referred to using the existing spatial data as reference, such as e.g.: cadastre, ALS data, Topographic Data Base (TBD), Digital Terrain Model, orthophotos and so on

    SIMULATION BASED COMPARATIVE ANALYSIS FOR THE DESIGN OF LASER TERRESTRIAL MOBILE MAPPING SYSTEMS

    Get PDF
    Over the past decade, laser terrestrial Mobile Mapping Systems (MMS) have been developed for the digital mapping of outdoor environments. While the applications of MMS are various (urban security, road control, virtual world, entertainment, etc.), one may imagine that for each application the system designs could be different. Hence, a comparative analysis of different designs may be useful to find the best solution adapted to each application. The objective of this paper is to propose a methodology to compare point-cloud data quality from different MMS designs by modifying spatial configuration of laser imaging system. For this methodology, we define several quality criteria such as precision, resolution, completeness. We illustrate this in the case of urban architecture digital mapping based on the use of a simulator

    Seamless integration of above- and under-canopy unmanned aerial vehicle laser scanning for forest investigation

    Get PDF
    BackgroundCurrent automated forest investigation is facing a dilemma over how to achieve high tree- and plot-level completeness while maintaining a high cost and labor efficiency. This study tackles the challenge by exploring a new concept that enables an efficient fusion of aerial and terrestrial perspectives for digitizing and characterizing individual trees in forests through an Unmanned Aerial Vehicle (UAV) that flies above and under canopies in a single operation. The advantage of such concept is that the aerial perspective from the above-canopy UAV and the terrestrial perspective from the under-canopy UAV can be seamlessly integrated in one flight, thus grants the access to simultaneous high completeness, high efficiency, and low cost.ResultsIn the experiment, an approximately 0.5ha forest was covered in ca. 10min from takeoff to landing. The GNSS-IMU based positioning supports a geometric accuracy of the produced point cloud that is equivalent to that of the mobile mapping systems, which leads to a 2-4cm RMSE of the diameter at the breast height estimates, and a 4-7cm RMSE of the stem curve estimates.ConclusionsResults of the experiment suggested that the integrated flight is capable of combining the high completeness of upper canopies from the above-canopy perspective and the high completeness of stems from the terrestrial perspective. Thus, it is a solution to combine the advantages of the terrestrial static, the mobile, and the above-canopy UAV observations, which is a promising step forward to achieve a fully autonomous in situ forest inventory. Future studies should be aimed to further improve the platform positioning, and to automatize the UAV operation.Peer reviewe

    COMPARATIVE ANALYSIS BASED ON SIMULATION FOR THE DESIGN OF LASER TERRESTRIAL MOBILE MAPPING SYSTEMS

    No full text
    International audienceOver the past decade, laser terrestrial Mobile Mapping Systems (MMS) have been developing for the digitizing of outdoor environments. While the applications of MMS are various (urban security, road control, virtual world, entertainment, etc.), one may imagine that for each application the system designs could be different. Hence, a comparative analysis of different designs may be useful to find the best solution adapted to each application. We present in this paper a methodology based on the use of a simulator, to compare several designs of MMS and to improve the design. We illustrate it in the case of urban architecture digitizing

    UAVs for the Environmental Sciences

    Get PDF
    This book gives an overview of the usage of UAVs in environmental sciences covering technical basics, data acquisition with different sensors, data processing schemes and illustrating various examples of application
    corecore