1,058 research outputs found

    Design and Evaluation of a Hardware System for Online Signal Processing within Mobile Brain-Computer Interfaces

    Get PDF
    Brain-Computer Interfaces (BCIs) sind innovative Systeme, die eine direkte Kommunikation zwischen dem Gehirn und externen Geräten ermöglichen. Diese Schnittstellen haben sich zu einer transformativen Lösung nicht nur für Menschen mit neurologischen Verletzungen entwickelt, sondern auch für ein breiteres Spektrum von Menschen, das sowohl medizinische als auch nicht-medizinische Anwendungen umfasst. In der Vergangenheit hat die Herausforderung, dass neurologische Verletzungen nach einer anfänglichen Erholungsphase statisch bleiben, die Forscher dazu veranlasst, innovative Wege zu beschreiten. Seit den 1970er Jahren stehen BCIs an vorderster Front dieser Bemühungen. Mit den Fortschritten in der Forschung haben sich die BCI-Anwendungen erweitert und zeigen ein großes Potenzial für eine Vielzahl von Anwendungen, auch für weniger stark eingeschränkte (zum Beispiel im Kontext von Hörelektronik) sowie völlig gesunde Menschen (zum Beispiel in der Unterhaltungsindustrie). Die Zukunft der BCI-Forschung hängt jedoch auch von der Verfügbarkeit zuverlässiger BCI-Hardware ab, die den Einsatz in der realen Welt gewährleistet. Das im Rahmen dieser Arbeit konzipierte und implementierte CereBridge-System stellt einen bedeutenden Fortschritt in der Brain-Computer-Interface-Technologie dar, da es die gesamte Hardware zur Erfassung und Verarbeitung von EEG-Signalen in ein mobiles System integriert. Die Architektur der Verarbeitungshardware basiert auf einem FPGA mit einem ARM Cortex-M3 innerhalb eines heterogenen ICs, was Flexibilität und Effizienz bei der EEG-Signalverarbeitung gewährleistet. Der modulare Aufbau des Systems, bestehend aus drei einzelnen Boards, gewährleistet die Anpassbarkeit an unterschiedliche Anforderungen. Das komplette System wird an der Kopfhaut befestigt, kann autonom arbeiten, benötigt keine externe Interaktion und wiegt einschließlich der 16-Kanal-EEG-Sensoren nur ca. 56 g. Der Fokus liegt auf voller Mobilität. Das vorgeschlagene anpassbare Datenflusskonzept erleichtert die Untersuchung und nahtlose Integration von Algorithmen und erhöht die Flexibilität des Systems. Dies wird auch durch die Möglichkeit unterstrichen, verschiedene Algorithmen auf EEG-Daten anzuwenden, um unterschiedliche Anwendungsziele zu erreichen. High-Level Synthesis (HLS) wurde verwendet, um die Algorithmen auf das FPGA zu portieren, was den Algorithmenentwicklungsprozess beschleunigt und eine schnelle Implementierung von Algorithmusvarianten ermöglicht. Evaluierungen haben gezeigt, dass das CereBridge-System in der Lage ist, die gesamte Signalverarbeitungskette zu integrieren, die für verschiedene BCI-Anwendungen erforderlich ist. Darüber hinaus kann es mit einer Batterie von mehr als 31 Stunden Dauerbetrieb betrieben werden, was es zu einer praktikablen Lösung für mobile Langzeit-EEG-Aufzeichnungen und reale BCI-Studien macht. Im Vergleich zu bestehenden Forschungsplattformen bietet das CereBridge-System eine bisher unerreichte Leistungsfähigkeit und Ausstattung für ein mobiles BCI. Es erfüllt nicht nur die relevanten Anforderungen an ein mobiles BCI-System, sondern ebnet auch den Weg für eine schnelle Übertragung von Algorithmen aus dem Labor in reale Anwendungen. Im Wesentlichen liefert diese Arbeit einen umfassenden Entwurf für die Entwicklung und Implementierung eines hochmodernen mobilen EEG-basierten BCI-Systems und setzt damit einen neuen Standard für BCI-Hardware, die in der Praxis eingesetzt werden kann.Brain-Computer Interfaces (BCIs) are innovative systems that enable direct communication between the brain and external devices. These interfaces have emerged as a transformative solution not only for individuals with neurological injuries, but also for a broader range of individuals, encompassing both medical and non-medical applications. Historically, the challenge of neurological injury being static after an initial recovery phase has driven researchers to explore innovative avenues. Since the 1970s, BCIs have been at one forefront of these efforts. As research has progressed, BCI applications have expanded, showing potential in a wide range of applications, including those for less severely disabled (e.g. in the context of hearing aids) and completely healthy individuals (e.g. entertainment industry). However, the future of BCI research also depends on the availability of reliable BCI hardware to ensure real-world application. The CereBridge system designed and implemented in this work represents a significant leap forward in brain-computer interface technology by integrating all EEG signal acquisition and processing hardware into a mobile system. The processing hardware architecture is centered around an FPGA with an ARM Cortex-M3 within a heterogeneous IC, ensuring flexibility and efficiency in EEG signal processing. The modular design of the system, consisting of three individual boards, ensures adaptability to different requirements. With a focus on full mobility, the complete system is mounted on the scalp, can operate autonomously, requires no external interaction, and weighs approximately 56g, including 16 channel EEG sensors. The proposed customizable dataflow concept facilitates the exploration and seamless integration of algorithms, increasing the flexibility of the system. This is further underscored by the ability to apply different algorithms to recorded EEG data to meet different application goals. High-Level Synthesis (HLS) was used to port algorithms to the FPGA, accelerating the algorithm development process and facilitating rapid implementation of algorithm variants. Evaluations have shown that the CereBridge system is capable of integrating the complete signal processing chain required for various BCI applications. Furthermore, it can operate continuously for more than 31 hours with a 1800mAh battery, making it a viable solution for long-term mobile EEG recording and real-world BCI studies. Compared to existing research platforms, the CereBridge system offers unprecedented performance and features for a mobile BCI. It not only meets the relevant requirements for a mobile BCI system, but also paves the way for the rapid transition of algorithms from the laboratory to real-world applications. In essence, this work provides a comprehensive blueprint for the development and implementation of a state-of-the-art mobile EEG-based BCI system, setting a new benchmark in BCI hardware for real-world applicability

    Multidisciplinary perspectives on Artificial Intelligence and the law

    Get PDF
    This open access book presents an interdisciplinary, multi-authored, edited collection of chapters on Artificial Intelligence (‘AI’) and the Law. AI technology has come to play a central role in the modern data economy. Through a combination of increased computing power, the growing availability of data and the advancement of algorithms, AI has now become an umbrella term for some of the most transformational technological breakthroughs of this age. The importance of AI stems from both the opportunities that it offers and the challenges that it entails. While AI applications hold the promise of economic growth and efficiency gains, they also create significant risks and uncertainty. The potential and perils of AI have thus come to dominate modern discussions of technology and ethics – and although AI was initially allowed to largely develop without guidelines or rules, few would deny that the law is set to play a fundamental role in shaping the future of AI. As the debate over AI is far from over, the need for rigorous analysis has never been greater. This book thus brings together contributors from different fields and backgrounds to explore how the law might provide answers to some of the most pressing questions raised by AI. An outcome of the Católica Research Centre for the Future of Law and its interdisciplinary working group on Law and Artificial Intelligence, it includes contributions by leading scholars in the fields of technology, ethics and the law.info:eu-repo/semantics/publishedVersio

    Fictocritical Cyberfeminism: A Paralogical Model for Post-Internet Communication

    Get PDF
    This dissertation positions the understudied and experimental writing practice of fictocriticism as an analog for the convergent and indeterminate nature of “post-Internet” communication as well a cyberfeminist technology for interfering and in-tervening in metanarratives of technoscience and technocapitalism that structure contemporary media. Significant theoretical valences are established between twen-tieth century literary works of fictocriticism and the hybrid and ephemeral modes of writing endemic to emergent, twenty-first century forms of networked communica-tion such as social media. Through a critical theoretical understanding of paralogy, or that countercultural logic of deploying language outside legitimate discourses, in-volving various tactics of multivocity, mimesis and metagraphy, fictocriticism is ex-plored as a self-referencing linguistic machine which exists intentionally to occupy those liminal territories “somewhere in among/between criticism, autobiography and fiction” (Hunter qtd. in Kerr 1996). Additionally, as a writing practice that orig-inated in Canada and yet remains marginal to national and international literary scholarship, this dissertation elevates the origins and ongoing relevance of fictocriti-cism by mapping its shared aims and concerns onto proximal discourses of post-structuralism, cyberfeminism, network ecology, media art, the avant-garde, glitch feminism, and radical self-authorship in online environments. Theorized in such a matrix, I argue that fictocriticism represents a capacious framework for writing and reading media that embodies the self-reflexive politics of second-order cybernetic theory while disrupting the rhetoric of technoscientific and neoliberal economic forc-es with speech acts of calculated incoherence. Additionally, through the inclusion of my own fictocritical writing as works of research-creation that interpolate the more traditional chapters and subchapters, I theorize and demonstrate praxis of this dis-tinctively indeterminate form of criticism to empirically and meaningfully juxtapose different modes of knowing and speaking about entangled matters of language, bod-ies, and technologies. In its conclusion, this dissertation contends that the “creative paranoia” engendered by fictocritical cyberfeminism in both print and digital media environments offers a pathway towards a more paralogical media literacy that can transform the terms and expectations of our future media ecology

    Energy-Sustainable IoT Connectivity: Vision, Technological Enablers, Challenges, and Future Directions

    Full text link
    Technology solutions must effectively balance economic growth, social equity, and environmental integrity to achieve a sustainable society. Notably, although the Internet of Things (IoT) paradigm constitutes a key sustainability enabler, critical issues such as the increasing maintenance operations, energy consumption, and manufacturing/disposal of IoT devices have long-term negative economic, societal, and environmental impacts and must be efficiently addressed. This calls for self-sustainable IoT ecosystems requiring minimal external resources and intervention, effectively utilizing renewable energy sources, and recycling materials whenever possible, thus encompassing energy sustainability. In this work, we focus on energy-sustainable IoT during the operation phase, although our discussions sometimes extend to other sustainability aspects and IoT lifecycle phases. Specifically, we provide a fresh look at energy-sustainable IoT and identify energy provision, transfer, and energy efficiency as the three main energy-related processes whose harmonious coexistence pushes toward realizing self-sustainable IoT systems. Their main related technologies, recent advances, challenges, and research directions are also discussed. Moreover, we overview relevant performance metrics to assess the energy-sustainability potential of a certain technique, technology, device, or network and list some target values for the next generation of wireless systems. Overall, this paper offers insights that are valuable for advancing sustainability goals for present and future generations.Comment: 25 figures, 12 tables, submitted to IEEE Open Journal of the Communications Societ

    Využití softwarově definovaného rádia v oblasti SMART technologii

    Get PDF
    Modern telecommunication systems are rapidly evolving. This rapid development requires constant research and fast prototyping. This dissertation thesis focusses on deployment of software defined radio (SDR) in multiple application areas, including SMART technologies. SDR itself is a tool behind many breakthroughs in modern telecommunications, due to its major adaptability. It offers a comprehensive way of fast prototyping, which rely on suitable software platform. The field of telecommunications is ever-changing, due to the constant pressure on innovation. For this reason, it is desirable to test some of the alternative communication technologies. Visible light communication (VLC) system based on combination of virtual instrumentation and software defined radios was chosen for experimentation. This dissertation focusses on multiple versions of VLC system that were developed over the years. Each version is further discussed, and their advantages and disadvantages are presented. A draft of fourth and newest version is mentioned along with possible directions of the research. Results from multiple application areas are presented, which show the adaptability of the whole platform to different use cases including but not limited to: SMART technologies, automotive, nuclear waste disposal sites, or industry. It is demonstrated that the newest version of the system, which is based on OFDM modulation, can communicate up to 50 meters in closed environments and up to 35 meters in outdoor scenarios. This opens further research directions such as truck platooning or underwater communications.Moderní komunikační systémy jsou jednou z nejrychleji se rozvíjejících oblastí. Takového markantního posunu lze dosáhnout pouze skrze nový vývoj a aplikaci metodiky fast prototypingu. Tato disertace se zaměřuje na nasazení technologie softwarově definovaného rádia (SDR) v různých aplikačních oblastech. Samotné SDR je díky své adaptabilitě nástrojem, který stál na pozadí rozvoje mnoha moderních telekomunikačních systémů. Jedná se o ucelenou platformu pro fast prototyping, která se opírá o robustní softwarovou základnu. Právě telekomunikace jsou oblastí, kde je takové zařízení nedocenitelné, právě kvůli neustálému tlaku na inovace. Právě to je důvodem, proč je vhodné také testovat různé alternativní technologie pro přenos dat. Jednou z takových je komunikace viditelným spektrem světla (VLC), která je náplní této práce. Součástí praktické části je vývoj a popis několika verzí VLC systému založených na virtuální instrumentaci a SDR, které vznikly během autorova studia. Každá verze je samostatně popsána včetně výhod a nevýhod, které poskytují. Součástí je též první náčrt čtvrté verze, která bude součástí budoucího výzkumu. Prezentované výsledky z různých aplikačních oblastí jasně ukazují, že je celou platformu možné použít v různých aplikačních oblastech, včetně SMART technologií, automotive, úložišti jaderného odpadu anebo Průmyslu 4.0. Součástí jsou též výsledky z poslední verze, které dokazují, že je systém ve vnitřních prostorech komunikovat až na vzdálenost 50 metrů, zatímco ve venkovních podmínkách je to 35 metrů. Díky tomu je možné vytyčit nové oblasti výzkumu jako je například platooning (tandemová jízda) anebo podvodní komunikace.450 - Katedra kybernetiky a biomedicínského inženýrstvívyhově

    Analysing and Reducing Costs of Deep Learning Compiler Auto-tuning

    Get PDF
    Deep Learning (DL) is significantly impacting many industries, including automotive, retail and medicine, enabling autonomous driving, recommender systems and genomics modelling, amongst other applications. At the same time, demand for complex and fast DL models is continually growing. The most capable models tend to exhibit highest operational costs, primarily due to their large computational resource footprint and inefficient utilisation of computational resources employed by DL systems. In an attempt to tackle these problems, DL compilers and auto-tuners emerged, automating the traditionally manual task of DL model performance optimisation. While auto-tuning improves model inference speed, it is a costly process, which limits its wider adoption within DL deployment pipelines. The high operational costs associated with DL auto-tuning have multiple causes. During operation, DL auto-tuners explore large search spaces consisting of billions of tensor programs, to propose potential candidates that improve DL model inference latency. Subsequently, DL auto-tuners measure candidate performance in isolation on the target-device, which constitutes the majority of auto-tuning compute-time. Suboptimal candidate proposals, combined with their serial measurement in an isolated target-device lead to prolonged optimisation time and reduced resource availability, ultimately reducing cost-efficiency of the process. In this thesis, we investigate the reasons behind prolonged DL auto-tuning and quantify their impact on the optimisation costs, revealing directions for improved DL auto-tuner design. Based on these insights, we propose two complementary systems: Trimmer and DOPpler. Trimmer improves tensor program search efficacy by filtering out poorly performing candidates, and controls end-to-end auto-tuning using cost objectives, monitoring optimisation cost. Simultaneously, DOPpler breaks long-held assumptions about the serial candidate measurements by successfully parallelising them intra-device, with minimal penalty to optimisation quality. Through extensive experimental evaluation of both systems, we demonstrate that they significantly improve cost-efficiency of autotuning (up to 50.5%) across a plethora of tensor operators, DL models, auto-tuners and target-devices

    Accessibility of Health Data Representations for Older Adults: Challenges and Opportunities for Design

    Get PDF
    Health data of consumer off-the-shelf wearable devices is often conveyed to users through visual data representations and analyses. However, this is not always accessible to people with disabilities or older people due to low vision, cognitive impairments or literacy issues. Due to trade-offs between aesthetics predominance or information overload, real-time user feedback may not be conveyed easily from sensor devices through visual cues like graphs and texts. These difficulties may hinder critical data understanding. Additional auditory and tactile feedback can also provide immediate and accessible cues from these wearable devices, but it is necessary to understand existing data representation limitations initially. To avoid higher cognitive and visual overload, auditory and haptic cues can be designed to complement, replace or reinforce visual cues. In this paper, we outline the challenges in existing data representation and the necessary evidence to enhance the accessibility of health information from personal sensing devices used to monitor health parameters such as blood pressure, sleep, activity, heart rate and more. By creating innovative and inclusive user feedback, users will likely want to engage and interact with new devices and their own data

    Neural function approximation on graphs: shape modelling, graph discrimination & compression

    Get PDF
    Graphs serve as a versatile mathematical abstraction of real-world phenomena in numerous scientific disciplines. This thesis is part of the Geometric Deep Learning subject area, a family of learning paradigms, that capitalise on the increasing volume of non-Euclidean data so as to solve real-world tasks in a data-driven manner. In particular, we focus on the topic of graph function approximation using neural networks, which lies at the heart of many relevant methods. In the first part of the thesis, we contribute to the understanding and design of Graph Neural Networks (GNNs). Initially, we investigate the problem of learning on signals supported on a fixed graph. We show that treating graph signals as general graph spaces is restrictive and conventional GNNs have limited expressivity. Instead, we expose a more enlightening perspective by drawing parallels between graph signals and signals on Euclidean grids, such as images and audio. Accordingly, we propose a permutation-sensitive GNN based on an operator analogous to shifts in grids and instantiate it on 3D meshes for shape modelling (Spiral Convolutions). Following, we focus on learning on general graph spaces and in particular on functions that are invariant to graph isomorphism. We identify a fundamental trade-off between invariance, expressivity and computational complexity, which we address with a symmetry-breaking mechanism based on substructure encodings (Graph Substructure Networks). Substructures are shown to be a powerful tool that provably improves expressivity while controlling computational complexity, and a useful inductive bias in network science and chemistry. In the second part of the thesis, we discuss the problem of graph compression, where we analyse the information-theoretic principles and the connections with graph generative models. We show that another inevitable trade-off surfaces, now between computational complexity and compression quality, due to graph isomorphism. We propose a substructure-based dictionary coder - Partition and Code (PnC) - with theoretical guarantees that can be adapted to different graph distributions by estimating its parameters from observations. Additionally, contrary to the majority of neural compressors, PnC is parameter and sample efficient and is therefore of wide practical relevance. Finally, within this framework, substructures are further illustrated as a decisive archetype for learning problems on graph spaces.Open Acces

    On benchmarking of deep learning systems: software engineering issues and reproducibility challenges

    Get PDF
    Since AlexNet won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) in 2012, Deep Learning (and Machine Learning/AI in general) gained an exponential interest. Nowadays, their adoption spreads over numerous sectors, like automotive, robotics, healthcare and finance. The ML advancement goes in pair with the quality improvement delivered by those solutions. However, those ameliorations are not for free: ML algorithms always require an increasing computational power, which pushes computer engineers to develop new devices capable of coping with this demand for performance. To foster the evolution of DSAs, and thus ML research, it is key to make it easy to experiment and compare them. This may be challenging since, even if the software built around these devices simplifies their usage, obtaining the best performance is not always straightforward. The situation gets even worse when the experiments are not conducted in a reproducible way. Even though the importance of reproducibility for the research is evident, it does not directly translate into reproducible experiments. In fact, as already shown by previous studies regarding other research fields, also ML is facing a reproducibility crisis. Our work addresses the topic of reproducibility of ML applications. Reproducibility in this context has two aspects: results reproducibility and performance reproducibility. While the reproducibility of the results is mandatory, performance reproducibility cannot be neglected because high-performance device usage causes cost. To understand how the ML situation is regarding reproducibility of performance, we reproduce results published for the MLPerf suite, which seems to be the most used machine learning benchmark. Because of the wide range of devices and frameworks used in different benchmark submissions, we focus on a subset of accuracy and performance results submitted to the MLPerf Inference benchmark, presenting a detailed analysis of the difficulties a scientist may find when trying to reproduce such a benchmark and a possible solution using our workflow tool for experiment reproducibility: PROVA!. We designed PROVA! to support the reproducibility in traditional HPC experiments, but we will show how we extended it to be used as a 'driver' for MLPerf benchmark applications. The PROVA! driver mode allows us to experiment with different versions of the MLPerf Inference benchmark switching among different hardware and software combinations and compare them in a reproducible way. In the last part, we will present the results of our reproducibility study, demonstrating the importance of having a support tool to reproduce and extend original experiments getting deeper knowledge about performance behaviours

    Sustainable Value Co-Creation in Welfare Service Ecosystems : Transforming temporary collaboration projects into permanent resource integration

    Get PDF
    The aim of this paper is to discuss the unexploited forces of user-orientation and shared responsibility to promote sustainable value co-creation during service innovation projects in welfare service ecosystems. The framework is based on the theoretical field of public service logic (PSL) and our thesis is that service innovation seriously requires a user-oriented approach, and that such an approach enables resource integration based on the service-user’s needs and lifeworld. In our findings, we identify prerequisites and opportunities of collaborative service innovation projects in order to transform these projects into sustainable resource integration once they have ended
    corecore