1,058 research outputs found

    Accelerating multi-channel filtering of audio signal on ARM processors

    Get PDF
    The researchers from Universitat Jaume I are supported by the CICYT projects TIN2014-53495-R and TIN2011-23283 of the Ministerio de Economía y Competitividad and FEDER. The authors from the Universitat Politècnica de València are supported by projects TEC2015-67387-C4-1-R and PROMETEOII/2014/003. This work was also supported from the European Union FEDER (CAPAP-H5 network TIN2014-53522-REDT)

    Optimized Fundamental Signal Processing Operations for Energy Minimization on Heterogeneous Mobile Devices

    Get PDF
    [EN] Numerous signal processing applications are emerging on both mobile and high-performance computing systems. These applications are subject to responsiveness constraints for user interactivity and, at the same time, must be optimized for energy efficiency. The increasingly heterogeneous power-versus-performance profile of modern hardware introduces new opportunities for energy savings as well as challenges. In this line, recent systems-on-chip (SoC) composed of low-power multicore processors, combined with a small graphics accelerator (or GPU), yield a notable increment of the computational capacity while partially retaining the appealing low power consumption of embedded systems. This paper analyzes the potential of these new hardware systems to accelerate applications that involve a large number of floating-point arithmetic operations mainly in the form of convolutions. To assess the performance, a headphone-based spatial audio application for mobile devices based on a Samsung Exynos 5422 SoC has been developed. We discuss different implementations and analyze the tradeoffs between performance and energy efficiency for different scenarios and configurations. Our experimental results reveal that we can extend the battery lifetime of a device featuring such an architecture by a 238% by properly configuring and leveraging the computational resources.This work was supported by the Spanish Ministerio de Economia y Competitividad projects under Grant TIN2014-53495-R and Grant TEC2015-67387-C4-1-R, in part by the University Project UJI-B2016-20, in part by the Project PROMETEOII/2014/003. The work of J. A. Belloch was supported by the GVA Post-Doctoral Contract under Grant APOSTD/2016/069. This paper was recommended by Associate Editor Y. Ha.Belloch Rodríguez, JA.; Badia Contelles, JM.; Igual Peña, FD.; Gonzalez, A.; Quintana Ortí, ES. (2017). Optimized Fundamental Signal Processing Operations for Energy Minimization on Heterogeneous Mobile Devices. IEEE Transactions on Circuits and Systems I Regular Papers. 65(5):1614-1627. https://doi.org/10.1109/TCSI.2017.2761909S1614162765

    FPGA-based architectures for acoustic beamforming with microphone arrays : trends, challenges and research opportunities

    Get PDF
    Over the past decades, many systems composed of arrays of microphones have been developed to satisfy the quality demanded by acoustic applications. Such microphone arrays are sound acquisition systems composed of multiple microphones used to sample the sound field with spatial diversity. The relatively recent adoption of Field-Programmable Gate Arrays (FPGAs) to manage the audio data samples and to perform the signal processing operations such as filtering or beamforming has lead to customizable architectures able to satisfy the most demanding computational, power or performance acoustic applications. The presented work provides an overview of the current FPGA-based architectures and how FPGAs are exploited for different acoustic applications. Current trends on the use of this technology, pending challenges and open research opportunities on the use of FPGAs for acoustic applications using microphone arrays are presented and discussed

    Acceleration Techniques for Sparse Recovery Based Plane-wave Decomposition of a Sound Field

    Get PDF
    Plane-wave decomposition by sparse recovery is a reliable and accurate technique for plane-wave decomposition which can be used for source localization, beamforming, etc. In this work, we introduce techniques to accelerate the plane-wave decomposition by sparse recovery. The method consists of two main algorithms which are spherical Fourier transformation (SFT) and sparse recovery. Comparing the two algorithms, the sparse recovery is the most computationally intensive. We implement the SFT on an FPGA and the sparse recovery on a multithreaded computing platform. Then the multithreaded computing platform could be fully utilized for the sparse recovery. On the other hand, implementing the SFT on an FPGA helps to flexibly integrate the microphones and improve the portability of the microphone array. For implementing the SFT on an FPGA, we develop a scalable FPGA design model that enables the quick design of the SFT architecture on FPGAs. The model considers the number of microphones, the number of SFT channels and the cost of the FPGA and provides the design of a resource optimized and cost-effective FPGA architecture as the output. Then we investigate the performance of the sparse recovery algorithm executed on various multithreaded computing platforms (i.e., chip-multiprocessor, multiprocessor, GPU, manycore). Finally, we investigate the influence of modifying the dictionary size on the computational performance and the accuracy of the sparse recovery algorithms. We introduce novel sparse-recovery techniques which use non-uniform dictionaries to improve the performance of the sparse recovery on a parallel architecture

    Nn-X - a hardware accelerator for convolutional neural networks

    Get PDF
    Convolutional neural networks (ConvNets) are hierarchical models of the mammalian visual cortex. These models have been increasingly used in computer vision to perform object recognition and full scene understanding. ConvNets consist of multiple layers that contain groups of artificial neurons, which are mathematical approximations of biological neurons. A ConvNet can consist of millions of neurons and require billions of computations to produce one output. ^ Currently, giant server farms are used to process information in real time. These supercomputers require a large amount of power and a constant link to the end-user. Low powered embedded systems are not able to run convolutional neural networks in real time. Thus, using these systems on mobile platforms or on platforms where a connection to an off-site server is not guaranteed, is unfeasible. ^ In this work we present nn-X — a scalable hardware architecture capable of processing ConvNets in real time. We evaluate the performance and power consumption of the aforementioned architecture and compare it with systems typically used to process convolutional neural networks. Our system is prototyped on the Xilinx Zynq XC7Z045 device. On this device, we are able to achieve a peak performance of 227 GOPs/s, a measured performance of up to 200 GOPs/s while consuming less than 3 W of power. This translates to a performance per power improvement of up to 10 times that of conventional embedded systems and up to 25 times that of performance systems like desktops and GPUs

    Exploring Processor and Memory Architectures for Multimedia

    Get PDF
    Multimedia has become one of the cornerstones of our 21st century society and, when combined with mobility, has enabled a tremendous evolution of our society. However, joining these two concepts introduces many technical challenges. These range from having sufficient performance for handling multimedia content to having the battery stamina for acceptable mobile usage. When taking a projection of where we are heading, we see these issues becoming ever more challenging by increased mobility as well as advancements in multimedia content, such as introduction of stereoscopic 3D and augmented reality. The increased performance needs for handling multimedia come not only from an ongoing step-up in resolution going from QVGA (320x240) to Full HD (1920x1080) a 27x increase in less than half a decade. On top of this, there is also codec evolution (MPEG-2 to H.264 AVC) that adds to the computational load increase. To meet these performance challenges there has been processing and memory architecture advances (SIMD, out-of-order superscalarity, multicore processing and heterogeneous multilevel memories) in the mobile domain, in conjunction with ever increasing operating frequencies (200MHz to 2GHz) and on-chip memory sizes (128KB to 2-3MB). At the same time there is an increase in requirements for mobility, placing higher demands on battery-powered systems despite the steady increase in battery capacity (500 to 2000mAh). This leaves negative net result in-terms of battery capacity versus performance advances. In order to make optimal use of these architectural advances and to meet the power limitations in mobile systems, there is a need for taking an overall approach on how to best utilize these systems. The right trade-off between performance and power is crucial. On top of these constraints, the flexibility aspects of the system need to be addressed. All this makes it very important to reach the right architectural balance in the system. The first goal for this thesis is to examine multimedia applications and propose a flexible solution that can meet the architectural requirements in a mobile system. Secondly, propose an automated methodology of optimally mapping multimedia data and instructions to a heterogeneous multilevel memory subsystem. The proposed methodology uses constraint programming for solving a multidimensional optimization problem. Results from this work indicate that using today’s most advanced mobile processor technology together with a multi-level heterogeneous on-chip memory subsystem can meet the performance requirements for handling multimedia. By utilizing the automated optimal memory mapping method presented in this thesis lower total power consumption can be achieved, whilst performance for multimedia applications is improved, by employing enhanced memory management. This is achieved through reduced external accesses and better reuse of memory objects. This automatic method shows high accuracy, up to 90%, for predicting multimedia memory accesses for a given architecture

    An IoT Endpoint System-on-Chip for Secure and Energy-Efficient Near-Sensor Analytics

    Full text link
    Near-sensor data analytics is a promising direction for IoT endpoints, as it minimizes energy spent on communication and reduces network load - but it also poses security concerns, as valuable data is stored or sent over the network at various stages of the analytics pipeline. Using encryption to protect sensitive data at the boundary of the on-chip analytics engine is a way to address data security issues. To cope with the combined workload of analytics and encryption in a tight power envelope, we propose Fulmine, a System-on-Chip based on a tightly-coupled multi-core cluster augmented with specialized blocks for compute-intensive data processing and encryption functions, supporting software programmability for regular computing tasks. The Fulmine SoC, fabricated in 65nm technology, consumes less than 20mW on average at 0.8V achieving an efficiency of up to 70pJ/B in encryption, 50pJ/px in convolution, or up to 25MIPS/mW in software. As a strong argument for real-life flexible application of our platform, we show experimental results for three secure analytics use cases: secure autonomous aerial surveillance with a state-of-the-art deep CNN consuming 3.16pJ per equivalent RISC op; local CNN-based face detection with secured remote recognition in 5.74pJ/op; and seizure detection with encrypted data collection from EEG within 12.7pJ/op.Comment: 15 pages, 12 figures, accepted for publication to the IEEE Transactions on Circuits and Systems - I: Regular Paper
    • …
    corecore