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ABSTRACT

Gokhale, Vinayak A. M.S.E.C.E, Purdue University, August 2014. nn-X - A Hardware
Accelerator for Convolutional Neural Networks. Major Professor: Eugenio Culurciello.

Convolutional neural networks (ConvNets) are hierarchical models of the mammalian

visual cortex. These models have been increasingly used in computer vision to perform

object recognition and full scene understanding. ConvNets consist of multiple layers that

contain groups of artificial neurons, which are mathematical approximations of biological

neurons. A ConvNet can consist of millions of neurons and require billions of computations

to produce one output.

Currently, giant server farms are used to process information in real time. These su-

percomputers require a large amount of power and a constant link to the end-user. Low

powered embedded systems are not able to run convolutional neural networks in real time.

Thus, using these systems on mobile platforms or on platforms where a connection to an

off-site server is not guaranteed, is unfeasible.

In this work we present nn-X — a scalable hardware architecture capable of processing

ConvNets in real time. We evaluate the performance and power consumption of the afore-

mentioned architecture and compare it with systems typically used to process convolutional

neural networks. Our system is prototyped on the Xilinx Zynq XC7Z045 device. On this

device, we are able to achieve a peak performance of 227 GOPs/s, a measured performance

of up to 200 GOPs/s while consuming less than 3 W of power. This translates to a perfor-

mance per power improvement of up to 10 times that of conventional embedded systems

and up to 25 times that of performance systems like desktops and GPUs.
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1. INTRODUCTION

Embedded vision systems find applications in many areas - autonomous robots, security

and surveillance systems, UAVs and more recently, mobile phones and automobiles. These

applications require algorithms that are accurate and can be processed in real time. Fur-

thermore, their embedded nature requires low power consumption. Many recent algorithms

have been proposed for performing object recognition and visual understanding. SIFT fea-

ture extractor and the SURF algorithm that it inspired [1, 2], models of the human visual

cortex (HMAX) [3] and convolutional neural networks (ConvNets) [4–8] are some models

that perform feature extraction for object recognition, detection and scene understanding.

Of these, convolutional neural networks achieving state-of-the-art perception [4,9] and

being applied to artificial intelligence [10] have recently been presented. These models’

success has prompted their use by companies like Google and Baidu [11] for visual search

engines. ConvNets comprise hundreds of convolutional filters across multiple layers and re-

quire billions of computations to process one frame. This requires the use of high through-

put, power intensive processors and GPUs to be able to process these networks in real time.

For mobile applications like on smartphones, data is sent to off-site server banks and the

results are then sent back over a network link. This requires a constant, reliable connection

to the off-site server, a fact that limits the abilities of these mobile systems. High-risk tasks

like self-driving vehicles or security systems are not be able to use the capabilities pro-

vided by ConvNets due to lack of custom hardware designed specifically to process these

networks in real time on such systems.

In this thesis we present nn-X, a scalable custom hardware architecture that is capable

of processing convolutional neural networks in real time. nn-X is a low-powered mo-

bile system for accelerating convolutional neural networks. The nn-X system comprises a

host processor, a coprocessor and memory. The nn-X coprocessor efficiently implements

pipelined operators and exploits a large amount of parallelism to deliver very high perfor-
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Convolution Max-pool Convolution Max-pool Convolution Max-pool Linear classifier
1st Layer 2nd Layer 3rd Layer n-th Layer

input image

Fig. 1.1.: Architecture of a typical convolutional neural network for object recognition: a
convolutional feature extractor followed by a classifier (like a multi-layer perceptron) for
generic multi-class object recognition. Once trained, the network can parse arbitrarily large
input images, generating a classification map as the output.

mance per unit power consumed. The prototyping platform used in this work consumes

8W of power for the entire platform and only 3W for the nn-X system and memory.

1.1 Convolutional Neural Networks

A ConvNet comprises several convolution layers. These are followed by a classifier

that classifies the outputs of the convolutional layers as one of the multiple objects it is

trained on. A typical ConvNet is shown in Figure 1.1.

Each convolution layer is followed by a pooling operation and a non-linearity. In this

work, we consider a layer of a ConvNet to comprise all three of the above mentioned

operators while a convolution layer consists of only the convolution operator. Inputs of a

layer are typically images (or frames from a video) but can be any kind of locally correlated

data, like audio signals. The outputs of one layer act as inputs to the next. The inputs (and

by extension, the outputs) are called feature maps.

1.1.1 The Convolution Operator

Mathematically, convolution is an operation performed on two functions that outputs

a third function which is essentially a modified version of one of the two input functions.

This operation is given in Equation 1.1 below



3

y[m,n] =

k�1X

i=0

k�1X

j=0

x[m+ i, n+ j] · w[i, j] (1.1)

where y[m,n] is one data word in the output, x[m,n] is an input data word and w[m,n] are

values of the filter kernels.

In ConvNets, convolution acts to extract a particular type of feature in the input [12].

The input consists of data containing the features to be extracted. Inputs can be audio,

video or raw data and are typically several thousand samples. In this work, we primarily

focus on image inputs.

The convolution kernel acts as the second function. Each kernel is trained to recognize

a particular feature by filtering out the rest of the image. The kernel can be any type of

filter. For example, a Gabor kernel acts as a band pass filter and will recognize edges that

occur at angles similar to its own orientation. A network trained to recognize faces can

consist of hundreds of such filters oriented at different angles. These can then extract the

various features of the human face.

1.1.2 The Non-linear Operator

The non-linearity is used as an activation function to convert the input space into lin-

early separable output spaces. This operator acts to model the rate of firing of the action

potential in a biological neuron. Piece-wise linear activation functions like the Heaviside

step function can be used for this purpose but then linearly inseparable input spaces cannot

be processed by the network [13].

For this reason, non-linear sigmoid functions - specifically, the hyperbolic tangent -

became popular with ConvNets to serve as activation functions. More recently, the rectifier

function has become popular [4].
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1.1.3 The Pooling Operator

Pooling primarily serves the purpose of providing translational invariance to an input.

By pooling over a two dimensional region, we gather information from that region into one

output. If a pixel within that region translates over the pooling region, the output will be

identical.

A second purpose of the pooling operator is to reduce the size of the feature maps for

subsequent layers. The number of feature maps increases as we go deeper into the hidden

layers. Smaller feature maps reduce the computational complexity.

1.1.4 Flow of Information Through a ConvNet

The ConvNet shown in Figure 1.1 takes a greyscale input. In this case, the first layer

would require N convolutions to produce N outputs, where N > 1. Here, the input image

is convolved with each convolution kernel exactly once. The N feature maps produced as

a result are then sent in as inputs to the next layer.

Layer 2 can be fully connected or partially connected. A fully connected layer implies

that information from all of its inputs is used to produce every output. In a partially con-

nected layer, a particular output might not contain information from a particular input but

every input is taken into account in some output.

In this example, we will consider the fully connected case with layer 2 having M out-

puts. Each output is the result of combining N intermediate results. This requires that there

be N ⇥M kernels in layer 2 — N sets of M kernels. The output produced by the convo-

lution of one feature map with one kernel is called an intermediate result. The first input

feature map is convolved with the first kernel of each set to produce N intermediate results.

These N intermediates are combined to produce one output feature map. The combination

is done by adding the i-th word of each intermediate result to produce the i-th word of the

output. Similarly, the other N � 1 input feature maps are convolved with their respective

kernels to produce the other M � 1 output feature maps.
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The kernels can be of any size but are typically between 7⇥ 7 and 11⇥ 11 for the first

layer. The subsequent layers have smaller kernels but this is not necessary. It is typically

done to reduce both training and processing times.

For a layer with 9⇥9 kernels, 3 input feature maps, 96 output feature maps and an input

image of 224⇥ 224, 2.17 billion operations are required to produce the 96 outputs. This is

the first layer of the recently popular network described by Krizhevsky in [4]. Subsequent

layers can require even more computations. Finally, this produces an output classification

map for a single image. Most video runs at 24 frames per second although over 10 is con-

sidered fast enough to be real-time [14]. Depending on the application, faster processing

times could be required. As is evident from the numbers above, several billion computa-

tions are required per second to process video when using large networks.

1.2 Outline

This section describes the organization of this document. In the next chapter, we do a

review of current and past architectures that target the hardware acceleration of artificial

vision, with some specific architectures targeting ConvNets. In Chapter 3, we describe

the coprocessor architecture. Chapter 3 focuses on the design of the coprocessor and the

rationale behind its structure. We introduce the mathematical operators implemented in

the coprocessor and describe the life cycle of data within the coprocessor when running

a typical feed-forward ConvNet. In Chapter 4, we describe the rest of the system that

builds around the coprocessor. We also describe the life cycle of data from the time of its

inception to its consumption by the coprocessor and the life cycle of the resulting output.

This chapter completes the description of the entire nn-X system. Chapter 5 demonstrates

the throughput and performance per unit power consumed of the nn-X system. We also

compare these metrics to both embedded and high performance systems commonly used

to run feed-forward networks. In Chapter 6, we investigate the performance gains of the

coprocessor. We also theorize the reasons for sub-optimal performance of general purpose
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processors. Finally, Chapter 7 concludes this thesis by summarizing the nn-X system, the

results and briefly describing the future directions for this project.
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2. LITERATURE REVIEW

Convolutional neural networks and, really, deep networks in general have been proposed

for over two decades. However, only recently have they been put to use in real-world

applications. This is primarily because of the massive amount of processing power required

to train and process these networks. Such computational throughput was not available on

general purpose architectures until very recently. As such, smaller networks were used but

their applications were limited. Networks like those used by Google for visual searches are

huge and require several billion operations per frame. Their capabilities are made available

to the end user by processing data off-site on servers and sending results back over the

network.

To that end, several custom architectures have been proposed for embedded processing

of neural networks. This chapter details some of these architectures.

We identify three major design points that virtually all existing architectures have taken

into account — scalability, programmability and communication or I/O.

Scalability is important because all platforms need not run the same ConvNet architec-

tures. Some platforms, like security systems might not need to run a network as large as

one that is needed for a self-driving car. Nor would it need to be processed as fast. Such

a system would need a smaller number of processing elements that consume lower power

than a system that needs to process larger networks or process them faster.

Programmability is necessary for the same reason a general purpose processor is pro-

grammable. It allows an end user to write software (in C, for example) without knowing

the details of the hardware architecture. Furthermore, while the convolution operator has

remained static through generations of ConvNets, the activation function and the pooling

operator have changed through the years. ConvNets usually featured sigmoid functions

as activation functions. More recently, Krizhevsky et. al. have described the threshold

operator to perform favorably [4].
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Communication is required by an accelerator because it needs to send the results it has

produced to the appropriate location to take action. For example, if the processor detects an

obstacle in the path of a self-driving car, it needs to send a signal to the engine control unit

to slow the vehicle down. Alternatively, the architecture could be designed as a coprocessor

which does not interpret the results but simply sends them out to a host processor which

is responsible for interpreting results and taking appropriate actions. This latter topology

is becoming more popular due to its nature of being modular and easily integrable with a

variety of platforms.

An early implementation of an architecture targeted towards neural networks was de-

scribed by Cloutier in [15]. While slow by today’s standards, the VIP implementation

described by Cloutier was very efficient and several times faster than the processors of the

day. Cloutier describes an architecture with a grid of processing elements (PE) that perform

the convolution operations. Furthermore, this grid is part of a larger grid of four FPGAs

which are part of a 2 ⇥ 2 two dimensional mesh. A PCI bus is used to communicate with

a host processor. Almost all architecture targeted towards ConvNets that have followed

the one described by Cloutier use the concept of single instruction, multiple data (SIMD).

SIMD allows us to exploit the inherent parallelism of the convolution operator that lies at

the heart of all ConvNets.

Kapasi describes an architecture that employs a separate instruction set [16]. An ex-

ternal host is used to send compiled instructions to the processor and results are sent out.

On-chip memory is used as a staging area to both, store results and access inputs. Effi-

cient use of such an architecture dictates for the use of large amounts of SRAM or large

amounts of data transfer between processor and off-chip memory. The former is inefficient

in area while the latter is inefficient in throughput. SRAM costs have not seen a significant

decrease with time (as compared to DRAM) [17] and DRAM accesses are slow.

Research by Farabet has produced a coprocessor that delivers high performance at low

power consumption. A prototype system is described in [14,18]. An ASIC implementation

of this architecture was described in [19]. This architecture is scalable and programmable.

However, it suffers from slow host-coprocessor data transfer. An ethernet link is used to
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interface with the host which adds overhead to off-board data transfer. Finally, an all-to-all

connection grid is used between its operators and while this adds flexibility, it does not nec-

essarily provide better throughput if these connections are seldom utilized. A large number

of such connections are inefficient in an ASIC implementation and reduce maximum oper-

ating frequency.
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3. COPROCESSOR ARCHITECTURE

As seen in the previous chapter, a variety of architectures have been used when design-

ing custom processors for ConvNets. Also introduced were the three design points that

were important when designing a custom coprocessor — scalability, programmability and

communication with the host.

The nn-X system described here takes all three points into consideration. The copro-

cessor is intended to function alongside the host on the same board, or even the same chip,

the latter making it a truly heterogeneous system. A block diagram of the nn-X system is

shown in Figure 3.1. In this implementation, the coprocessor is on-chip.

The nn-X system has three main components: a host processor, a coprocessor and

external memory. The coprocessor comprises an array of processing elements called col-

lections, a memory router and a configuration bus. The collections are a group of functional

units required to perform the most typical operations in ConvNets — convolutions, pooling

and non-linear functions. Each collection also contains a local router for managing data

flow within the collections and interfacing with the memory router.

The coprocessor is a completely modular system. It can function alongside any host

processor with any instruction set and any architecture. It is not bandwidth bottlenecked

when interfacing with the host as communication is primarily through the shared memory

(and as such, bottlenecked by the host’s memory controller itself).

The coprocessor uses a 16-bit data bus that follows the Q8.8 number format. This for-

mat has been shown to provide virtually identical results to neural networks implemented

in 32-bit floating point [20–22].

The nn-X coprocessor is implemented on the embedded programmable logic and in-

terfaces with the host via the AXI bus. Input data in the form of 2D planes is streamed

into the nn-X coprocessor, one data word per clock cycle. Data is organized as an array,
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Fig. 3.1.: A block diagram of the nn-X system. nn-X is composed of a coprocessor, a host
processor and external memory. The coprocessor has three main components: processing
elements called collections, a system bus called the memory router and a configuration
bus to control flow of data. Collections perform the most typical operations in ConvNets:
convolutions, pooling and non-linearity.

with data words streamed in one row at a time. This chapter describes in detail the primary

components of the nn-X system.

3.1 The Host Processor

Two ARM Cortex-A9 CPUs function as the host processor for the nn-X implementation

described here. The host runs the Linux operating system. The processor is responsible for

parsing a network, compiling it into configuration instructions for the coprocessor and pro-

cessing operations that are not implemented on the coprocessor. The compiled instructions

are stored in memory. These instructions are created at compile time and do not change

throughout the program.

The host also controls transfer of input and configuration data to the coprocessor. This

is done over the AXI4-Lite bus and is described in Section 3.4.
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Fig. 3.2.: A collection comprises a router and three operators. The router has “all-to-all”
connections forming a crossbar switch. The configuration bus forms the select line for the
mux-demux combination.

3.2 Collections

Each collection comprises of: one convolution engine, one pooling module and one

non-linear operator. Figure 3.2 shows a collection in detail.

As seen in the figure, each collection has a local router to direct data to the desired

operator, to neighboring collections or back to the memory router. All connections can be

simultaneously enabled. All operators are pipelined resulting in one output word produced
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every clock cycle, notwithstanding an initial setup delay. The following subsections define

the flow of data in a generic ConvNet of the type described in [4].

3.2.1 Convolution Engine

Convolution is the most typical operation of the eponymous convolutional neural net-

works. Convolution is inherently parallel and can be accelerated on data parallel architec-

tures. The operation was introduced in Chapter 1, Section 1.1 and is given below:

y[m,n] =

k�1X

i=0

k�1X

j=0

x[m+ i, n+ j] · w[i, j] (3.1)

In Equation 3.1, y[m,n] is one data word in the output, x[m,n] is an input data word

and w[m,n] are the weights of the filter kernels.

When a convolution needs to be performed, the weights are first streamed in. These

weights are cached for the entire duration of the operation. The nn-X implementation

described here supports a reprogrammable kernel size of up to 10⇥ 10.

The convolution engine is implemented as fully pipelined logic and uses memory to

cache incoming data. This cache is needed for pipelined implementation of the convolution

operation [14]. For a row of width W and a k ⇥ k convolution filter, the size of this cache

is W ⇥ k ⇥ 2 bytes. The factor of 2 comes from the fact that each data word is two bytes

wide. After a delay that is equal to the depth of this cache, outputs are available every clock

cycle. This allows the system to have the max allowable data width as a design parameter.

Output data can then be routed to other operators in the same collection to perform

cascaded pipelined sequences of operations. It can also be sent to a neighboring collection

to be combined with the output of a convolution performed there.

The convolution engine can also perform pooling operations. The kernel can be used

to implement a smooth pooling function (for example, Gaussian) or perform a running

average of pixels or data words (with a uniform kernel).
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3.2.2 Non-linear Operator

The non-linear operator computes a piece-wise linear approximation of any arbitrary

non-linear function. The non-linear operation is described in equation (3.2).

y(x) = amx+ bm for x 2 [lm, lm+1) (3.2)

where lm is the lower bound of the m-th segment and am and bm are its slope and y-

intercept.

The non-linear operator can be programmed to approximate the typical non-linear func-

tions used in ConvNets like a logistic sigmoid, absolute value and the recently popularized

rectifier unit, i.e. max(x, 0) [4]. The number of linear segments used is a design parameter.

This affects the precision of smooth, non-linear function approximations.

This functional unit is configured with the function to implement at the beginning of

a computation. The function is cached until either the unit is reconfigured or reset. To

configure this unit, multiple configuration packets are sent in. The number of configuration

packets is equal to the number of linear segments used. Each packet consists of the lower

bound of the segment (which dictates what range of inputs map to it), its y-intercept and its

slope.

3.2.3 Pooling module

In ConvNets, pooling of data is necessary to give translational invariance to the input.

Pooling also results in reduction of the size of the output feature maps produced by each

layer. nn-X includes a special max-pooling module that takes into consideration a p⇥p 2D

region of the input and outputs the maximum value as the result.

nn-X’s max-pooling module requires one digital comparator and a small amount of

memory. The input data is streamed into the module one row at a time and the max opera-

tion is computed by first computing the maximum of each bW
p c group of data words in the

row, with W being the width of each row. As data words are streamed in, each group of p
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Fig. 3.3.: The memory router makes two connections with each collection and two with the
HP ports. Each bus in the figure is bi-directional.

is compared to the previous max value stored in memory. This requires storing bW
p c values

into the local cache, as the first output cannot be computed until the first p data words of

the p-th row are streamed in. After operating on p rows, the final output can be computed

and output values start to stream out of the module. The value of p can be configured at

run-time and changed as needed.

The advantage of this implementation is that it requires a very small amount of memory

to compute the maximum over a 2D region. In fact, the total memory required is equal to

W , the maximum width of the input image.

3.3 Memory Router

The memory router interfaces the collections with memory. Its purpose is to route

independent data streams and feed data to the collections. The router is implemented as
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a crossbar switch, allowing nn-X access to multiple streams at once and performing full-

duplex data transactions, as shown in Figure 3.3.

There is a small amount of logic between the router’s outputs and memory. This is

described in detail in the next chapter. The router interfaces with the Zynq’s AXI memory

interconnect, which allows for up to four DMA channels with an aggregate bandwidth up

to 3.8GB/s.

DMA transactions to and from memory are initiated by a custom Linux device driver.

This driver enables nn-X to initiate up to four simultaneous bidirectional transactions at a

given time. nn-X uses register polling to determine when a transaction is complete. The

process of initiating a DMA transaction and the life cycle of a data stream is described in

detail in the next chapter.

3.4 Configuration Bus

The AMBA 4 bus has an AXI 4-Lite data transfer specification which is a low through-

put, memory-mapped bus. 32 registers are available to send and receive data from the

coprocessor. It takes exactly 16 cycles once a transaction is initiated to transfer data to the

coprocessor. Each transaction can transfer a single 32-bit data word.

A custom Linux character driver is used to transfer configuration data to the coproces-

sor. The configuration data can be one of the following:

• Resets - The resets are so organized that individual areas can be reset separately as,

of course, can the entire coprocessor. For example, if only one collection needs to

be reset, or only the memory router, these can separately be reset without having to

restart the rest of the coprocessor. This allows for addition of caches, among other

things, which would not be able to hold data if only a global reset was available.

• Configuration of data paths - Not all data needs to follow the exact same path. For

example, intermediate results need to be stored in memory until all intermediates

have accumulated. The output is then sent to the max-pool and then the non-linearity

functional units. The memory router also needs to be configured to receive streams
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from memory and send them to the collections. Finally, the collection router needs to

be configured to receive data from the memory router and direct it to a functional unit

or the neighboring collection. Alternatively, on the return path, it can be configured

to receive data from a functional unit and send to the neighboring collection or back

to the memory router.

• Functional unit configuration - Each functional unit needs to be configured before

it can process a stream. The convolver needs to be configured with the size of the

kernel and the image, the max-pool unit needs to be configured with the pooling area

and the non-linear unit needs to be configured with the non-linear function it needs

to implement.

• Convolution kernels - The weights for a convolution are transferred over the con-

figuration bus. Once the weights are cached, the convolver is ready to receive an

image.
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4. SYSTEM OVERVIEW

This chapter describes the life cycle of an image in the nn-X system. It details the flow of

data, starting from its storage in memory to being processed by the coprocessor and ending

with the generation of a classification map and its associated results.

ConvNets process the red, green and blue channels of an image separately. Most images

from cameras or those stored on disk are compressed using the JPEG standard. Decom-

pressed JPEG images have 24 bits per pixel, 8 bits each for the red, green and blue (RGB)

channels. This allows us to decompress the image into red, green and blue image streams

and store each channel as a separate array in memory. Each channel is then sent in to

the accelerator independently. This is shown in Figure 4.1. The figure shows a pictorial

representation of the state the memory is in before a DMA transaction. The JPEG frame

is stored in system memory. It is then separated into its three channels and stored in the

DMA buffers. While this involves a memory copy, this latency can be hidden within the

processing of the previous frame by using a different thread to perform this memory copy.

4.1 Overview of a DMA Transaction

Image data can either be stored on disk or received via I/O (like from a USB camera).

From here, it is stored in the system memory as shown in Figure 4.1. For the purposes

of DMA, a physically contiguous, non-cacheable memory buffer is allocated in memory.

Linux has provisions for requesting such a buffer by specifying such a requirement in the

device tree.

While this memory is set aside by the operating system, its use by software must be

explicitly stated. The compiler requests space in this buffer at compile time. Data is then

copied from its current location into the DMA buffer. Linux provides functions that give

the user a physical handle to the virtual memory location that the data is stored at. Since this



19

Fig. 4.1.: A pictorial representation of the state of the memory before initiating a DMA
transaction. The system memory is a buffer that holds a JPEG image and the image ar-
ray has 32-bit elements. Each channel is stored separately in DMA buffers and has 8-bit
elements.

buffer is guaranteed to be contiguous in physical memory, the DMA engine only requires

the physical address of the first element of the data array and the length of data to be

transferred.

Xilinx provides soft DMA IP (called DMA engines) to perform transactions over the

AXI bus from memory to the programmable logic. Figure 4.2 shows the components in-

volved in a DMA transaction. Four high performance (HP) ports are available to transfer

data to the programmable logic. The DMA engines attach themselves to these HP ports.

A HP port is essentially a high throughput bi-directional link to memory. It can be pro-

grammed to be 32-bit or 64-bit wide. In this implementation, we use 32-bit ports because

we do not need the added bandwidth provided by the wider links.

The engines include a buffer to store data until it is required by the coprocessor. A

DMA transaction initiated by the software causes the DMA engine to send data to the

programmable logic. The software needs to specify the pointer to the first item in the array

to be transferred, the length of the array to be transferred and the DMA engine (and by

extension, the HP port) that is responsible for the transfer. Data is transferred by the DMA

engines from memory in bursts. The DMA engines can perform a burst of 256 data words.

Each burst has a setup time associated with it, after which the 256 data words are sent to

the DMA engine’s buffer, one word per clock cycle.
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Fig. 4.2.: Components involved in performing a DMA transaction. Data is stored in mem-
ory by the host processor. From here, a DMA transaction is initiated by the host. The
DMA engines, which are soft IP and are implemented in the programmable logic, receive
data from memory and store it in a buffer. From here, data is transferred to the coprocessor
which is also in the programmable logic.

The coprocessor has four buses for receiving data from and sending data to the DMA

engines. Figure 4.3 shows the signals comprising a bus. Each bus has three signals — data,

valid and ready. While the valid signal has the same direction as the data and is a single bit

indicating the presence of valid data on the bus, the ready signal has the opposite direction.

The ready is a signal coming from the receiver indicating the ability of the receiver to

process incoming data. The clock is passed to all peripherals that are part of the AMBA

bus.

Processed data is sent to a DMA engine, usually the one the input data came from.

Polling registers, one per HP port, are used to determine when the processed data has been

written back to memory. From there, another transaction can be initiated.

Alternatively, the data can also be accessed by the host. If the data stored is the final

result, this result can be processed by the host. The host can then take appropriate action

based on the result.
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Fig. 4.3.: Each bus has three signals — data, valid and ready. When valid is asserted, the
data on the bus can be read and processed. Valid can only be asserted when the ready is
high. Ready is controlled by the destination; it is high when the destination — DMA engine
or coprocessor — is ready to receive data. The clock is the AXI clock and is the primary
clock for all peripherals on the AMBA bus.

4.2 Flow of Data Within the Coprocessor

Inside the coprocessor, data is sampled on the rising edge of the clock, when valid is

asserted. While the input and output buses on the HP ports have data widths of 32-bits, the

coprocessor uses a 16-bit data bus. This provides for an attractive opportunity to improve

throughput and performance. Two 16-bit words can be packed into one 32-bit word. This

effectively reduces the number of data words transferred by the DMA engines by a factor

of 2. Since the DMA engines have an overhead associated with each transaction and this

overhead is directly proportional to the length of the transaction, reducing the length of the

DMA transaction while keeping throughput the same will result in a performance improve-

ment. Since two data words are produced every clock cycle, they need to be consumed

every clock cycle. This is not possible unless the operators are running at a faster clock

frequency (up to a maximum of twice the clock frequency).
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However, if the two data words are consumed by two different collections, the entire

accelerator can run at the same frequency while consuming both data words in the same

clock cycle. This is not possible when the RGB channels are input at the beginning but

the first three transfers form a small part of the entire process. When data is sent back to

memory, one 16-bit word from one collection and one from another collection can be con-

catenated together. This outgoing data stream contains information from two collections.

Since eight collections can fit in the current implementation on the ZC706 development

board and there are four HP ports available, concatenation provides a convenient way of

utilizing all available resources.

For the purposes of concatenating data, a packer module is attached to each HP port.

Each packer has a buffer associated with it that is 64 entries deep. The purpose of this

buffer is to provide a continuous flow of data in the event that any of the functional units

downstream deassert their ready signal for a few clock cycles. Without this buffer, the

DMA engine would need to be stalled each time the ready is deasserted, even for one

clock cycle. Restarting a transaction from the DMA engines requires a setup time which

would be significant in the event that several such one clock cycle delays are requested by

the functional units. However, a buffer would hold the data in such cases and these short

pauses would be invisible to the DMA engines.

The packer has multiple “modes” for different types of data packing:

1. 8⇥4 - This mode is used for deserializing four 8-bit words packed into one incoming

packet. This is used when passing a red, green or blue channel the first time since

each pixel in these channels is 8-bits.

2. 16⇥2 - This mode is used for deserializing two 16-bit words. This mode is unused for

the implementation described here but is included for potential future improvements

to the coprocessor including running parts of the coprocessor at a faster clock, which

would add the ability to consume two data words in one clock cycle.
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Fig. 4.4.: Packing of data within the coprocessor.

3. Concatenated 16 ⇥ 2 - This mode is used for deserializing two different streams

packed into one input stream. This is used for streams except the initial input and the

final output.

4. Fixed-to-float conversion - This mode is used when the final output is produced by

the coprocessor. This data needs to be read by the host CPU. Since the coprocessor

uses fixed point representation, it is much quicker to convert the output stream to

the IEEE 754 floating point representation in hardware than have the CPU do the

conversion for each pixel. The conversion in hardware takes only one clock cycle

and has an initial latency of four clock cycles.

The implementation described here primarily uses modes 1, 3 and 4 described above,

at different stages of processing a frame. On the very first pass, data is packed as four 8-bit

words as explained in Section 4.1. However, all this data goes to the same collection (since

each stream is not a concatenation of two different data streams). When it is processed
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and sent back, eight collections are feeding data back at the same time. Data from two

collections is concatenated into one 16-bit word and sent out as one data packet. When

the streams are read out from memory, they are deserialized such that half the packet (the

most significant 16-bits) are sent to one collection while the other half is sent to the other

collection. This entire process is shown in Figure 4.4.

Should the design be scaled further to include more than 8 collections, the streams can

be time multiplexed so that more than two streams map to one port. This technique will

work until we reach the maximum bandwidth of the DDR3 protocol running at the available

frequency.
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5. PERFORMANCE COMPARISON AND ANALYSIS

The nn-X implementation described in this work is prototyped on the Xilinx ZC706 plat-

form (refer to Table 5.1).

The ZC706 development board contains two ARM Cortex-A9 cores, 1GB of DDR3

memory and a programmable logic array. The programmable logic can fit up to 8 col-

lections, each with one 10 ⇥ 10 convolution engine, one max-pooling module and one

non-linear mapping module. We measured the power consumption of the entire board in

this configuration to be 8W and 3W for the Zynq SoC and DDR3 memory. This large dis-

crepancy exists because the ZC706 board contains many features that are not used by the

design but cannot be turned off. These include a transceiver, a DDR3 SODIMM dedicated

for the programmable logic, analog circuitry and I/O. However, since the power consump-

tion of the board is measured while that of the relevant components is modeled, we use the

larger number for sake of accuracy.

The ZC706 platform was chosen because performance increases linearly with the num-

ber of collections, and being able to fit 8 collections gave us a favorable balance of perfor-

mance and performance per watt.

Table 5.1.: This table describes nn-X’s hardware specifications

Platform Xilinx ZC706
Chip Xilinx Zynq XC7Z045 SoC
Processor 2 ARM Cortex-A9 @800 MHz
Programmable Logic Kintex-7
Memory 1GB DDR3 @533MHz
Memory bandwidth 3.8GB/s full-duplex
Accelerator frequency 142MHz
Number of Collections 8

Peak performance 227G-ops/s
Power consumption 3W (Zynq+mem), 8W (board)
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Torch7 was used as the main software tool in this work [23]. Torch7 is a module

implemented in the Lua programming language.

Performance analysis revolved around three design areas -

1. Performance with increasing resources - In an embedded system, resource utiliza-

tion is key to delivering high performance. If there are long bubbles in the pipeline

or some of the available resources remain unused for a significant amount of the

processing time, then performance will be sub-optimal. As is, embedded systems

have area constrains and utilizing all of the available resources is key to increasing

performance.

2. Performance per unit power - This is an important metric because it defines whether

a system is embeddable or not. A system with low performance per unit power

consumed might not be desirable over a large system like a graphics processor due

to the relative ease of programming of GPUs.

3. Raw performance - This metric is also important because delivering a large perfor-

mance per unit power consumed is not enough if raw performance is too low. The

right balance of power and performance needs to be achieved when targeting embed-

ded systems.

The rest of this chapter analyzes these three areas of the nn-X system.

5.1 Performance per Resource

On the ZC706 prototype platform, nn-X features up to 8 collections. Since the Zynq

device on the board has a maximum of four ports to memory, routing independent streams

from each collection can be difficult. However, the concatenation mode described in Chap-

ter 4, Section 4.2 mitigates this problem by efficiently routing all eight streams through the

four ports. This prevents the nn-X coprocessor from stalling mid-stream.

Figure 5.1 shows the performance of the nn-X coprocessor with increasing collections.

The coprocessor is within 89% of its theoretical maximum. The overhead exists due to
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Fig. 5.1.: Performance of the nn-X coprocessor with increasing collections. The input was
a 500⇥ 500 image to a 8 collections, each featuring 10⇥ 10 disparate convolution kernels.

the set up time of the DMA transaction. This demonstrates scalability, subject to availabil-

ity of bandwidth. Each collection can process 270 megabytes of data per second. This

translates to a bandwidth requirement of 2.11 gigabytes per second through the four ports.

The maximum bandwidth available from the DDR3 protocol when running at 533MHz

is 4.2 gigabytes per second. This implies that the current architecture can scale up to 16

collections without bottlenecking the memory bus or requiring faster memory.

5.2 Performance Per Unit Power Consumed

For this metric, we compare the performance per unit power of the nn-X system to

systems commonly used to process ConvNets. The results are shown in Figure 5.2. Most

desktop and laptop CPUs and GPUs peaked at under 3G-ops/s-W even when the algorithm

was optimized to take advantage of hardware acceleration. Mobile processors reported

better efficiencies of 8G-ops/s-W.
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nn-X (red) implemented in programmable logic was able to deliver more than 25G-

ops/s-W. nn-X’s embeddable factor is six times that of the Snapdragon 800 SoC and twenty

times that of NVIDIA’s GTX 780. Figure 5.2 compares nn-X to custom processors running

at much higher frequencies. An implementation of nn-X in silicon at similar process nodes

would significantly improve its performance.

Fig. 5.2.: Performance per watt of different platforms. Most desktop CPUs and GPUs
gave under 3G-ops/s-W while mobile processors performed slightly better. nn-X (red)
implemented in programmable logic was able to deliver more than 25G-ops/s-W.
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Fig. 5.3.: Single neural network layer with 4 input planes of 500 ⇥ 500, 18 output planes
and 3.6 billion operations per frame. nn-X computed one frame in 6.2ms and was 271

times faster than the embedded processors.

5.3 Raw Performance

We developed demonstration applications for neural networks in Torch7 to benchmark

the raw performance of the nn-X system.

Figure 5.3 shows an image from the first application: a fully-connected neural network

layer with 4 inputs and 18 outputs. The network used 10 ⇥ 10 convolution kernels with

4 ⇥ 18 random filters, a max-pooling operation of 2 ⇥ 2 and thresholding. This network

required 2.8 billion operations per frame. In this application, nn-X computed one frame in

11.2ms and was 271 times faster than the embedded ARM processors. nn-X’s measured

performance was 200G-ops/s, which is more than 83% of its theoretical peak performance.

The filter bank test is representative of the hidden layers in a ConvNet. While the first

layer has either 1 or 3 inputs, the hidden layers can have several inputs, ranging from 16 to

as many as 192 in the network designed by Krizhevsky et. al. in [4]. Figure 5.4 shows the

performance across embedded devices.
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Fig. 5.4.: Performance comparison across embedded devices when running the filter-bank
test.

In fact, nn-X is outperformed in raw performance only by NVIDIA’s GTX 780 GPU.

The accelerator outperforms the Intel i7 mobile processor and the NVIDIA GT650m mo-

bile GPU in raw performance by 2 and 4 times respectively. Those devices are not shown

here due to them not being true embedded processors.

The next application is the face detector described by Farabet in [14]. We used a slightly

modified version of this network. The first layer comprises 16 feature maps of 5 ⇥ 5 and

is fully connected with the second convolution layer which comprises 64 feature maps of

7⇥7. Each of these layers is interspersed with max-pooling of 4⇥4 and thresholding. The

input to the network was a 500 ⇥ 350 greyscale image. This network requires 552M-ops



31

Fig. 5.5.: A face detector application with 552M-ops / frame. nn-X was able to process
a 500 ⇥ 350 video at 42 frames a second and was 115 times faster than the embedded
processors. The image on the left is a multi-scale pyramid to provide scale-invariance to
the input.

per frame and includes a multi-scale pyramid with scales of 0.3, 0.24, 0.1. Construction

of this pyramid is a pre-processing step that is performed on the ARM processors. The

pyramid itself is used for providing scale invariance to the input as the network is trained

on images that are all the same size while inputs when running the feed forward network

can be varying in size based on the distance of the user from the camera. The multi-scale

input is then sent to the network for detection. nn-X was more than 115 times faster than

the embedded ARM processors.

The raw performance of this network on the embedded devices is shown in Figure

5.6. The Tegra GPU is not able to perform as well as in the filterbank because of under-

utilization of resources. While the performance of the GPU drops by a factor 10, nn-X

suffers a drop by a factor of 2. This is primarily because the size of kernels is smaller than

the maximum possible and this causes under-utilization of coprocessor resources.

The third application was a street scene parser capable of categorizing each pixel of the

input image into one of eight categories: buildings, cars, grass, persons, road, street signs,

sky and trees. This network requires 350M-ops to process one frame.
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Fig. 5.6.: Comparison of performance across embedded devices. nn-X performs more than
4 times better than the next fastest processor on the face detector.

Figure 5.7 demonstrates nn-X performing full-scene understanding of a typical scene

encountered when driving an automobile. nn-X processed a 510 ⇥ 288 video sequence in

4.5ms, and was 112 times faster in processing time than the embedded ARM cores for this

application.

The performance for the devices used is shown in Figure 5.8. In this application too,

nn-X outperforms all other devices by at least a factor of 3.
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Fig. 5.7.: Street scene-parser requiring 350M-ops / frame. This application processes a
510⇥288 input in 4.5ms and produces an 8-class label for each frame. On this application,
nn-X is 112 times faster than the Zynq processors.

Fig. 5.8.: Comparison of performance across embedded devices. nn-X performs at least
3.5 times better than the embedded processors.
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6. DISCUSSION

In this chapter we analyze the large performance benefit of this architecture over general

purpose processors. One advantage is nn-X’s large parallelism; eight convolutional engines

of 10 ⇥ 10 can deliver up to 227 G-ops/s while running at 142MHz. General purpose

processors run at much higher frequencies. This chapter discusses two main strengths of

the nn-X architecture.

6.1 Lack of Control Flow

The nn-X coprocessor does not process conditional statements. The compiler trans-

lates a network into the ConvNet’s operators. Lack of conditional statements allows nn-X

to use every clock cycle to perform useful computation. In general purpose processors,

conditional statements result in inefficient use of a processor’s pipeline [24].

In ConvNets, the convolution operator has few branches in its code as compared to the

max-pooling and thresholding operators. Furthermore, branches in the convolution opera-

tor are mostly predictable on account of them being the result of iterative statements (“for”

loops). However, the conditional statements in the max-pooling and thresholding operators

are not predictable as their path is based on the value of the input pixel. This causes a

performance drop in CPUs due to branch mispredictions. On GPUs, control divergence

causes a drop in throughput [25].

To demonstrate this, we used two model deep networks. The first model consisted of an

input layer of 3⇥16 kernels of 10⇥10 and an output layer of 16⇥32 kernels of 7⇥7. The

second model consisted of the same convolution layers but these were interspersed with

max-pooling and thresholding operations. We used the same platforms from Figure 5.2 to

perform this experiment.
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In this context, we define efficiency as the performance achieved when running the

model with only convolution layers versus the performance achieved when running the

model with the max-pooling and threshold operations included. With the Torch7 package,

all general purpose processors achieved an efficiency between 75% to 85%. nn-X achieved

an efficiency close to 100%.

We explain this by the fact that in nn-X, the output of a convolution does not need to

be written to memory due to the cascade of pipelined operators. Furthermore, as nn-X has

no control flow, the output latency of the entire operation is simply equal to the combined

latencies of each individual operator.

6.2 Efficiency of Memory Accesses

An efficient design for routing memory accesses is important for large-scale processing

systems since such systems are often limited by memory bandwidth [26]. Processor caches

are generally small compared to the total size of the inputs, intermediates and outputs [27].

This requires a processor to initiate frequent memory accesses for data that is not cached.

On nn-X, the design of the local router within each collection combined with the memory

router allows for maximum utilization of each collection. Each collection can produce

one convolution output plane per memory access. With eight collections, eight results are

produced with four memory accesses (which are done in parallel), provided all eight can

be fed by data.

All collections can be guaranteed to be used because in a ConvNet because every input

is required to pass through multiple filters before an output is produced and the number of

filters is much larger than 8, which is the number of available collections. This guarantees

that for most of the process, all collections will be in use. If the number of filters is not a

multiple of eight, then in the last iteration, usage will not be 100%.

The convolution operation can be generalized as an N -to-M type as shown in figure 6.1.

This results in two possible cases when running a feed-forward network. nn-X efficiently

routes data in both cases.
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.......

...
1 M

Layer i Layer i+1

(a) 1-to-M convolution

...

...N M

Layer i Layer i+1

(b) N-to-M convolution

Fig. 6.1.: An example of 1-to-M and N -to-M convolution. These are the two most com-
monly encountered cases in ConvNets. A 2D diagram is used to visualize the relation
between the convolution layers for simplicity. Circles indicate convolutional planes. M

and N are 4 and 2 respectively.

6.2.1 N = 1 case

The N = 1 case, as demonstrated in figure 6.1(a), occurs when the network has one

input stream and M filters. This is typically found in the first layer of a ConvNet when

using a greyscale input image. Such a layer would produce M outputs and no intermediate

results. In nn-X, one input stream is routed to multiple collections by the memory router.

It is then processed by the collection’s operators before being routed back to the memory

router as one output of the current layer. The memory router then sends this output to

memory where it awaits its turn to be sent back in as an input to the next layer. This process

is repeated with different kernels in different collections to produce multiple outputs in

parallel as the input is routed to all eight collections at the same time. The outputs are

concatenated so that they can be sent out through the four HP ports without stalling any

collection.

For this case, we need only dM
C e memory accesses where M is the number of kernels

and C is the number of collections. In a general purpose processor, this would result in

3⇥M memory accesses, one access for each operator. Input images are generally large and

cannot fit in first level caches of general purpose processors. Usually they get loaded into
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the larger last level cache. While access to these caches is much faster than access to main

memory, it is still on the order of tens of clock cycles, depending on the architecture [28].

This results in performance that is not significantly lower than peak performance but is not

optimum either.

6.2.2 N > 1 case

The N > 1 case is typical of hidden layers where the multiple outputs generated by the

first layer are sent in as inputs. This case is shown in figure 6.1(b). In this case, the current

layer has N inputs, M outputs and N ⇥M filter kernels as shown in figure 6.1(b). N 2D

convolutions and their pixel-wise summation is required to generate one output.

Operator 
Blocks 

Operator 
Blocks 

Operator 
Blocks 

Router Router Router 

Fig. 6.2.: An example routing of a network producing one output from three inputs. The
input to each router comes from the memory router. The output of the left-most operator
block is a convolution (orange). It gets sent to the center collection where it is combined
with the convolution of the blue input stream to produce the purple stream as another in-
termediate. This stream gets sent to the collection on the right to get combined with the
convolution of the yellow input to produce the red result as the final output which is then
sent to memory. The connections between neighbors facilitate rapid data transfer between
collections.

Each collection has two bi-directional connections with its east and west neighbors.

These connections, illustrated in Figure 6.2, enable a collection to send a stream to either of

its neighbors without interrupting the memory router or the collection’s operators. As long

as a neighboring collection’s operator is available, the intermediate result produced does not
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need to be sent back to memory. It can be combined with another intermediate, effectively

reducing memory accesses by a factor of four (two intermediates being transferred back

and forth between memory and coprocessor).

In contrast, general purpose processors’ performance suffers greatly in this step because

of the sheer volume of intermediates produced. As all intermediates will not fit in any of

the on-chip caches, only some intermediates are cached. This results in frequent cache

misses and memory accesses which causes significant drop in processor performance. For

example, a 256 ⇥ 256 intermediate is 256 kilobytes in size when represented in IEEE 754

floating point numbers and a ConvNet’s hidden layers can produce over a hundred such

intermediates. In contrast, last level caches of even high performance server processors are

a few tens of megabytes in size.
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7. FUTURE WORK AND CONCLUSION

7.1 Future Work

Future work on the nn-X accelerator will revolve around two design points. The per-

formance of the accelerator increases linearly with frequency. This is due to the pipelined

nature of the operators which produce one output per clock cycle. If the clock frequency

was higher, the throughput would increase. This can be achieved by running the operators

at a frequency faster than that of the rest of the coprocessor. As long as the operators are

fed with data, the accelerator throughput will increase.

The primary means for doing this is by increasing the memory bus width to 64-bits.

Since the coprocessor uses 16-bit data words, this allows for both concatenation and pack-

ing of data. With a faster clock, data from the operators is available faster than it can be sent

to memory. Two of these data words can be packed into one 32-bit data word. Then, two

such 32-bit packets from two collections can be concatenated together to form one output

packet which is sent to memory. This will work provided the operators are clocked at a

frequency that is at most twice of the frequency at which the packer is clocked. Above this,

there will be no benefit because the outputs will not be removed fast enough and would re-

quire the operators to stall which effectively reduces their frequency to twice the frequency

of the packer. Since power consumption linearly increases with clock frequency, the per-

formance per watt metric of this new architecture would need to be tested to ensure that it

is not lower than the architecture described in this document.

The second area for improvement is within the convolution engine. Currently, regard-

less of the size of the convolution kernel, the engine can only perform convolution with a

single kernel. For example, a convolution engine with a maximum possible convolution of

size of 10⇥ 10 requires 100 multiple-accumulate (MAC) units. However, if such a convo-

lution engine is performing a 5⇥ 5 convolution, only 25 of those MAC units are used. This
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will result in a performance that is only 25% of the theoretical maximum, while consuming

just as much power.

These other MAC units can be used if 4 such 5 ⇥ 5 convolutions can be performed in

one convolution engine. This would require the MAC units to be able to be used globally

as one kernel or be broken down into smaller units. This presents the challenge that one

convolution produces one stream. Multiple convolutions in one collection will produce

multiple streams which would need to be sent efficiently to memory without stalling any

other resource (or itself) or be stored in an on-chip cache.

7.2 Conclusion

In this thesis, we presented the case for designing a specialized hardware architecture

targeted to accelerating convolutional neural networks (ConvNets). ConvNets are used in

synthetic vision systems because of their versatility and as such, are suitable for a variety

of vision tasks. These models are inherently parallel and can be accelerated on custom

data-parallel architectures to give a low powered mobile system capable of achieving high

performance.

We then presented the nn-X architecture. nn-X is a low powered coprocessor that can

be installed alongside any mobile system. The architecture comprises the three main math-

ematical operators used in ConvNets - the two dimensional convolution operator, the max-

pooling operator and the non-linear operator. These operators are bundled together into

processing elements called collections. An efficient routing network is used to deliver high

performance by optimally utilizing the available hardware resources. We also described the

supporting hardware used to complete the nn-X architecture and interface it with the host

processor.

Finally, we demonstrated the performance of nn-X on a single-layer neural network, a

network trained to detect faces and a network understanding objects in a road scene. nn-X

was faster than embedded processing systems in all applications while consuming signifi-

cantly lower power. The system was prototyped on a programmable logic array using the
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Xilinx Zynq ZC706 platform. nn-X was tested to be at least 3.5 times faster than other

embedded solutions in performance per unit power and over 3 times faster in raw perfor-

mance. These results make nn-X an excellent candidate as an embedded convolutional

neural network accelerator.
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