154 research outputs found

    Accelerating BLAST Computation on an FPGA-enhanced PC Cluster

    Get PDF
    This paper introduces an FPGA-based scheme to accelerate mpiBLAST, which is a parallel sequence alignment algorithm for computational biology. Recent rapidly growing biological databases for sequence alignment require highthroughput storage and network rather than computing speed. Our scheme utilizes a specialized hardware configured on an FPGA-board which connects flash storage and other FPGAboards directly. The specialized hardware configured on the FPGAs, we call a Data Stream Processing Engine (DSPE), take a role for preprocessing to adjust data for high-performance multi- and many- core processors simultaneously with offloading system-calls for storage access and networking. DSPE along the datapath achieves in-datapath computing which applies operations for data streams passing through the FPGA. Two functions in mpiBLAST are implemented using DSPE to offload operations along the datapath. The first function is database partitioning, which distributes the biological database to multiple computing nodes before commencing the BLAST processes. Using DSPE, we observe a 20-fold improvement in computation time for the database partitioning operation. The second function is an early part of the BLAST process that determines the positions of sequences for more detailed computations. We implement IDP-BLAST (In-datapath BLAST), which annotates positions in data streams from solid-state drives. We show that IDP-BLAST accelerates the computation time of the preprocess of BLAST by a factor of three hundred by offloading heavy operations to the introduced special hardware

    Software and Hardware Acceleration of the Genomic Motif Finding Tool PhyloNet

    Get PDF

    FPGAs in Bioinformatics: Implementation and Evaluation of Common Bioinformatics Algorithms in Reconfigurable Logic

    Get PDF
    Life. Much effort is taken to grant humanity a little insight in this fascinating and complex but fundamental topic. In order to understand the relations and to derive consequences humans have begun to sequence their genomes, i.e. to determine their DNA sequences to infer information, e.g. related to genetic diseases. The process of DNA sequencing as well as subsequent analysis presents a computational challenge for recent computing systems due to the large amounts of data alone. Runtimes of more than one day for analysis of simple datasets are common, even if the process is already run on a CPU cluster. This thesis shows how this general problem in the area of bioinformatics can be tackled with reconfigurable hardware, especially FPGAs. Three compute intensive problems are highlighted: sequence alignment, SNP interaction analysis and genotype imputation. In the area of sequence alignment the software BLASTp for protein database searches is exemplarily presented, implemented and evaluated.SNP interaction analysis is presented with three applications performing an exhaustive search for interactions including the corresponding statistical tests: BOOST, iLOCi and the mutual information measurement. All applications are implemented in FPGA-hardware and evaluated, resulting in an impressive speedup of more than in three orders of magnitude when compared to standard computers. The last topic of genotype imputation presents a two-step process composed of the phasing step and the actual imputation step. The focus lies on the phasing step which is targeted by the SHAPEIT2 application. SHAPEIT2 is discussed with its underlying mathematical methods in detail, and finally implemented and evaluated. A remarkable speedup of 46 is reached here as well

    High performance communication on reconfigurable clusters

    Get PDF
    High Performance Computing (HPC) has matured to where it is an essential third pillar, along with theory and experiment, in most domains of science and engineering. Communication latency is a key factor that is limiting the performance of HPC, but can be addressed by integrating communication into accelerators. This integration allows accelerators to communicate with each other without CPU interactions, and even bypassing the network stack. Field Programmable Gate Arrays (FPGAs) are the accelerators that currently best integrate communication with computation. The large number of Multi-gigabit Transceivers (MGTs) on most high-end FPGAs can provide high-bandwidth and low-latency inter-FPGA connections. Additionally, the reconfigurable FPGA fabric enables tight coupling between computation kernel and network interface. Our thesis is that an application-aware communication infrastructure for a multi-FPGA system makes substantial progress in solving the HPC communication bottleneck. This dissertation aims to provide an application-aware solution for communication infrastructure for FPGA-centric clusters. Specifically, our solution demonstrates application-awareness across multiple levels in the network stack, including low-level link protocols, router microarchitectures, routing algorithms, and applications. We start by investigating the low-level link protocol and the impact of its latency variance on performance. Our results demonstrate that, although some link jitter is always present, we can still assume near-synchronous communication on an FPGA-cluster. This provides the necessary condition for statically-scheduled routing. We then propose two novel router microarchitectures for two different kinds of workloads: a wormhole Virtual Channel (VC)-based router for workloads with dynamic communication, and a statically-scheduled Virtual Output Queueing (VOQ)-based router for workloads with static communication. For the first (VC-based) router, we propose a framework that generates application-aware router configurations. Our results show that, by adding application-awareness into router configuration, the network performance of FPGA clusters can be substantially improved. For the second (VOQ-based) router, we propose a novel offline collective routing algorithm. This shows a significant advantage over a state-of-the-art collective routing algorithm. We apply our communication infrastructure to a critical strong-scaling HPC kernel, the 3D FFT. The experimental results demonstrate that the performance of our design is faster than that on CPUs and GPUs by at least one order of magnitude (achieving strong scaling for the target applications). Surprisingly, the FPGA cluster performance is similar to that of an ASIC-cluster. We also implement the 3D FFT on another multi-FPGA platform: the Microsoft Catapult II cloud. Its performance is also comparable or superior to CPU and GPU HPC clusters. The second application we investigate is Molecular Dynamics Simulation (MD). We model MD on both FPGA clouds and clusters. We find that combining processing and general communication in the same device leads to extremely promising performance and the prospect of MD simulations well into the us/day range with a commodity cloud

    FPGAs in der Bioinformatik: Implementierung und Evaluierung bekannter bioinformatischer Algorithmen in rekonfigurierbarer Logik

    Get PDF
    Life. Much effort is taken to grant humanity a little insight in this fascinating and complex but fundamental topic. In order to understand the relations and to derive consequences humans have begun to sequence their genomes, i.e. to determine their DNA sequences to infer information, e.g. related to genetic diseases. The process of DNA sequencing as well as subsequent analysis presents a computational challenge for recent computing systems due to the large amounts of data alone. Runtimes of more than one day for analysis of simple datasets are common, even if the process is already run on a CPU cluster. This thesis shows how this general problem in the area of bioinformatics can be tackled with reconfigurable hardware, especially FPGAs. Three compute intensive problems are highlighted: sequence alignment, SNP interaction analysis and genotype imputation. In the area of sequence alignment the software BLASTp for protein database searches is exemplarily presented, implemented and evaluated. SNP interaction analysis is presented with three applications performing an exhaustive search for interactions including the corresponding statistical tests: BOOST, iLOCi and the mutual information measurement. All applications are implemented in FPGA-hardware and evaluated, resulting in an impressive speedup of more than in three orders of magnitude when compared to standard computers. The last topic of genotype imputation presents a two-step process composed of the phasing step and the actual imputation step. The focus lies on the phasing step which is targeted by the SHAPEIT2 application. SHAPEIT2 is discussed with its underlying mathematical methods in detail, and finally implemented and evaluated. A remarkable speedup of 46 is reached here as well.Das Leben. Sehr viel Aufwand wird getrieben um der Menschheit einen Einblick in dieses faszinierende und komplexe, aber fundamentale Thema zu erlauben. Um Zusammenhänge zu verstehen und Folgen ableiten zu können hat der Mensch begonnen sein Genom zu sequenzieren, d.h. seine DNA zu bestimmen um daraus Informationen, z.B. in Bezug auf Erbkrankheiten folgern zu können. Der Prozess der DNA-Sequenzierung sowie die darauffolgenden Analysen sind schon allein wegen der riesigen Datenmengen eine Herausforderung für aktuelle Rechensysteme. Laufzeiten von über einen Tag für die Analyse einfacher Datensätze sind üblich, selbst wenn der Prozess bereits auf einem Computercluster ausgeführt wird. Diese Arbeit zeigt, wie dieses gängige Problem im Bereich der Bioinformatik mit rekonfigurierbarer Hardware, speziell FPGAs, angegangen werden kann. Es werden drei rechenintensive Themengebiete hervorgehoben: Sequenzalignment, SNP-Interaktionsanalyse und Genotyp-Imputation. Beispielhaft wird im Bereich des Sequenzalignments die Software BLASTp für die Suche in Proteinsequenzdatenbanken vorgestellt, implementiert und evaluiert. Die SNP-Interaktionsanalyse wird mit drei Verfahren zur vollständigen Suche von Interaktionen inklusive des dazugehörigen statistischen Tests vorgestellt: BOOST, iLOCi und die Messung der Transinformation. Alle Verfahren werden auf FPGA-Hardware implementiert und evaluiert, mit einer bestechenden Beschleunigung im dreistelligen Bereich gegenüber Standard-Rechnern. Das letzte Gebiet der Genotyp-Imputierung ist ein zweiteiliges Verfahren bestehend aus dem Phasing und der eigentlichen Imputation. Der Schwerpunkt liegt im Phasing-Schritt, der mit dem SHAPEIT2-Tool adressiert wird. SHAPEIT2 wird ausführlich mit den zugrunde liegenden mathematischen Methoden diskutiert, und schließlich implementiert und evaluiert. Auch hier wird ein beachtlicher Speedup von 46 erreicht
    corecore