
RESEARCH Open Access

FPGA accelerator for protein secondary structure
prediction based on the GOR algorithm
Fei Xia*, Yong Dou, Guoqing Lei, Yusong Tan

From The Ninth Asia Pacific Bioinformatics Conference (APBC 2011)
Inchon, Korea. 11-14 January 2011

Abstract

Background: Protein is an important molecule that performs a wide range of functions in biological systems.
Recently, the protein folding attracts much more attention since the function of protein can be generally derived
from its molecular structure. The GOR algorithm is one of the most successful computational methods and has
been widely used as an efficient analysis tool to predict secondary structure from protein sequence. However, the
execution time is still intolerable with the steep growth in protein database. Recently, FPGA chips have emerged as
one promising application accelerator to accelerate bioinformatics algorithms by exploiting fine-grained custom
design.

Results: In this paper, we propose a complete fine-grained parallel hardware implementation on FPGA to
accelerate the GOR-IV package for 2D protein structure prediction. To improve computing efficiency, we partition
the parameter table into small segments and access them in parallel. We aggressively exploit data reuse schemes
to minimize the need for loading data from external memory. The whole computation structure is carefully
pipelined to overlap the sequence loading, computing and back-writing operations as much as possible. We
implemented a complete GOR desktop system based on an FPGA chip XC5VLX330.

Conclusions: The experimental results show a speedup factor of more than 430x over the original GOR-IV version
and 110x speedup over the optimized version with multi-thread SIMD implementation running on a PC platform
with AMD Phenom 9650 Quad CPU for 2D protein structure prediction. However, the power consumption is only
about 30% of that of current general-propose CPUs.

Introduction
Protein is an important molecule that performs a wide
range of functions in biological systems. The function of a
protein molecule generally can be derived from its tertiary
structure. Currently, the most structures are determined
by X-ray diffraction and protein nuclear magnetic reso-
nance (NMR). However, these methods are time consum-
ing and very expensive. With the exponential growth of
protein sequence database, such as the EMBL-EBI protein
database (UniProKB/TrEMBL), which has doubled in
size every 18~24 months for the last decade and now

it contains 10,867,798 sequence entries, comprising
3502326038 amino acids (protein sequence growth in
UniProtKB [1]). However, the number of known struc-
tures in the Protein Data-Base (PDB) is just more than
65,000 at present (protein structure growth in PDB [2]).
The gap between the number of known protein sequences
and structures in PDB continuously grows at an incredible
rate. Therefore, the prediction of protein structure and
function from amino acid sequence by computational
method becomes a most important problem in modern
molecular biology and bioinformatics. The prediction of
tertiary structure is one of the ultimate goals of protein
science. Some methods, such as the homology modeling
[3], protein fold recognition [4] or ab initio modeling [5]
have been presented for protein 3-Dimensional structure
prediction from amino acid sequence directly, but those

* Correspondence: xcyphoenix@nudt.edu.cn
National Laboratory for Parallel&Distributed Processing, Department of
Computer Science, National University of Defense Technology, ChangSha,
410073, China

Xia et al. BMC Bioinformatics 2011, 12(Suppl 1):S5
http://www.biomedcentral.com/1471-2105/12/S1/S5

© 2011 Xia et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/195041633?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:xcyphoenix@nudt.edu.cn
http://creativecommons.org/licenses/by/2.0


methods are too complex and unfeasible in some condi-
tions. Instead of predicting the full 3D structure directly, it
is much easier to predict fundamental elements of the sec-
ondary structure of proteins: a-helices, b-sheets, coils, and
turns. All these elements can be easily observed in protein
3D structures and this 2D structure knowledge can serve
as an input for protein tertiary structure prediction
successfully.
Several approaches have been developed for predicting

2D structure from amino acid sequence: the Chou-
Fasman [6], GOR (Garnier-Osguthorpe-Robson) method
[7][8], Hydrophobic-Polar (HP) model [9] and some
artificial intelligence methods such as neural networks
[10], machine learning [11], combine approaches [12]
and nearest neighboring methods [13]. The GOR algo-
rithm is one of the earliest and most successful method
for secondary structure prediction from protein
sequence. It is based on the information theory com-
bined with the Bayesian statistics. Although predicting
protein 2D structure using the GOR approach is effi-
cient in the classical sense, the execution time is still
intolerable with the steep growth in protein database.
For example, scanning of an input protein database with
88,448,646 amino acids on an AMD Phenom 9650
Quad CPU would take about 390s (6.5 minutes) and
would take more than 4300s (about 1.2 hours) to scan a
PDB with 1,207,406,759 residues using the GOR-IV soft-
ware package.

Related works
To our knowledge, there is no parallel implementation
of the GOR algorithm running on general-purpose
CPUs or GPU platforms for protein 2D structure pre-
diction at present. However, high performance parallel
computers based on general-purpose microprocessors
are widely used to accelerate bioinformatics applications
such as pairwise/multiple sequence alignment, database
searching and RNA secondary structure prediction.
Kuo-Bin Li [14] explored a parallel approach to acceler-

ate ClustalW using MPI (Message Passing Interface) on
traditional parallel computers in 2002. This implementa-
tion achieves a speedup of 4.3x using 16 processors. In
[15], Christopher Dwan et al. presented a parallel imple-
mentation of the ClustalW package on the SGI Altix XE
Cluster with 32 CPUs. They reported the speedups of 7.2x
and 17.1x for DNA and protein alignment, respectively.
Yu-Lun Kuo et al. [16] implemented parallel mpiBLAST
(BLAST, Basic Local Alignment Search Tool) for database
searching application on a symmetric multiprocessors
(SMP) cluster which consists of 16 CPUs. The paper [15]
also introduced a parallel implementation for accelerating
the BLASTp algorithm for protein database searching and
they reported a 23.6x speedup over the NCBI BLAST ver-
sion for searching 1,000 protein sequences against the

“NR” dataset from NCBI, which consists of approximately
2GB of amino acid sequences. Large-scale supercomputers
like the IBM Blue Gene/L are also used to accelerate the
BLAST algorithm [17]. The system consisted of 4096
nodes, where each node consisted of two 700 MHz
PowerPC 440D processors and nearly linear speedups can
be achieved for large-scale database searching.
For RNA secondary structure prediction, Tan G. et al.

presented a parallel implementation of the Zuker algo-
rithm based on the MFE (minimal free energy) model
on PC cluster for single RNA sequence. They report a
19x speedup on a 32-processor system, DAWNING
4000 [18], and 8x on a cluster with 16 Opteron proces-
sors running at 2.2GHz, each with 3GB RAM [19].
In 2005, T. Liu et al. presented a parallel CYK/inside
algorithm between 3D matrix layers on two PC cluster
systems [20]. The implementation achieves a speedup of
16x using 20 2.0GHz Xeon CPUs on the PC cluster and
a speedup of 36x using 48 1.0GHz Alpha EV68 proces-
sors on the cluster of SMPs. Parallel efficiency on CPU
platform is greatly limited by the fine-grained bit-wise
operations, complicated data dependency and tight syn-
chronization. Thus, efficiently executing the bioinfor-
matics applications on a general-purpose computer or a
multi-core architecture becomes very awkward. More-
over, the use, maintenance and management costs of
large scale parallel computer systems are very high.
High performance parallel computers are too expensive
for many research institutes to use easily.
Recently, the use of FPGA (Field Programmable Gate-

Array) coprocessors has become a promising approach for
accelerating bioinformatics applications. The computa-
tional capability of FPGAs is increasing rapidly. The top
level FPGA chip from Xilinx Virtex 6 series contains
118560 slices, 38304 Kbits storage and more than 2000
DSP modules. However, its power consumption is less
than 30W. Additionally, the reconfigurability of FPGA
chips also enables algorithms to be implemented with dif-
ferent computing structures on the same hardware plat-
form. The possibility of using a combination of FPGAs
and general-purpose CPUs to accelerate bioinformatics
application has attracted much more attention. To the
best of our knowledge, there is no parallel FPGA imple-
mentation for accelerating the GOR algorithm at present.
However, Nilton B. Armstrong et al. [21] implemented
parallel 2D Hydrophobic-Polar (HP) model on Altera
FPGA EP2S15F484C3 for 2D structure prediction. In
2009, Advait Jain et al. [22] presented a parallel implemen-
tation of the Bhageerath [23] package for 3D structure
prediction based on FPGA chip and they achieved 5-fold
speedup over software version on general-purpose CPU.
In this paper, we propose a complete fine-grained par-

allel hardware implementation on FPGA to accelerate
the GOR-IV package for 2D protein structure prediction.

Xia et al. BMC Bioinformatics 2011, 12(Suppl 1):S5
http://www.biomedcentral.com/1471-2105/12/S1/S5

Page 2 of 9



For improving computing efficiency, we partition the
parameter table into small sections and access them in
parallel. We aggressively exploit data reuse schemes to
minimize the need for loading data from external mem-
ory. The whole computation structure is carefully pipe-
lined in order to overlap sequence load, computing and
back-writing operations as much as possible. We imple-
mented the complete GOR algorithm accelerator on a
single FPGA chip (XC5VLX330). The experimental
results show a factor of more than 430x speedup over the
GOR-IV software version and 110x speedup over the
optimized version with multi-thread SIMD implementa-
tion running on a PC platform with AMD Phenom 9650
Quad CPU for folding a protein dataset with 6,028,192
sequences, 1,207,406,759 amino acids. However, the
power consumption is only about 30% of that of the cur-
rent general purpose CPUs.

Overview of the GOR algorithm
The GOR program is one of the first major methods pro-
posed for protein secondary structure prediction from
sequence. The original version (GOR-I) was released in
1978 by Garnier, Osguthorpe and Robson. The basic idea
of the GOR method is the use of the information theory-
based and Bayesian statistics method to relate the amino
acid sequence to the protein secondary structure [24].
It takes into account not only the propensities of indivi-
dual amino acids to form particular secondary structures,
but also the conditional probability of the amino acid to
form a secondary structure given that its immediate
neighbors have already formed that structure [25].
In the past twenty years, the GOR method has been

improved by adopting larger structure databases and
more exact statistical model for computing information
function. The GOR-IV analyzes sequences to predict
alpha helix, beta sheet, turn, or random coil secondary
structure at each position based on 17-amino acid
sequence windows to consider the information of local
segment. Eight nearest neighboring residues on each side
are considered for a given residue and a database of 267
sequences with known secondary structure to calculate
the information function. The latest software version is
GOR-V, which is online at the web based protein second-
ary structure internet prediction server [26]. The most
crucial change was the inclusion of evolutionary informa-
tion using PSI-BLAST [27] to increase the information
content for improved discrimination among secondary
structures, which combines information theory, Bayesian
statistics and evolutionary information. It reaches (with
the full jack-knife procedure) an accuracy of prediction
Q3 of 73.5%.
After a careful survey, we chose the GOR-IV as

the candidate for fine-grained parallel implementation.

The kernel recursions, relationship and connotation in
this program have been explicated in detail from a view-
point of information theory and statistics algorithm by
[7], [8]. In this study, we will give a characteristic analy-
sis of the GOR-IV in fine-grained parallelism and hard-
ware acceleration aspect.
The GOR runs with a single protein sequence as input,

the kernel of the algorithm executes in three steps. First, it
predicts the 2D structure of the input protein sequence
based on the information theory combined with the Baye-
sian statistics. For each input amino acid, it computes
three probability values of fundamental conformation and
selects the largest one for judging the current amino acid
belongs to which one of the three secondary structure ele-
ments of protein: helix (H), extended(b-sheet) (E), or coil
(C). The latter two stages perform a scanning procedure
to correct the secondary structure generated by the first
stage. The GOR-IV gives the output consists of the protein
sequence and the predicted secondary structure in rows,
H=helix, E=extended or beta strand and C=coil with the
probability values for each secondary structure at each
amino acid position. Our study shows most of the execu-
tion time, over 99%, is spent in the first stage (the Predic
function). Therefore, how to execute the Predic function
quickly is critical to accelerate the GOR program.

Methods
System architecture
Our protein 2D structure prediction platform consists of
a reconfigurable algorithm accelerator and a host PC.
The accelerator receives input protein data stream of
length N with 5-bit binary encoding and a database of 267
sequences with known secondary structure (for computing
information function), then executes the 2D structure pre-
diction and correction and returns prediction results to
the host for display. The structure is shown in Figure 1.
The accelerating engine comprises one FPGA chip

(Virtex5 XC5VLX330), two DDRII modules, and a PCI-
E×8 interface to the host PC. Two DDRII SODIMMs
store Protein Data-Base (PDB) and prediction results
respectively, which are connected to the FPGA pad
directly, and the memory controller is implemented in
FPGA chip. The PCI-E interface is responsible for trans-
ferring the initial data (protein sequence database and
secondary structure database), the configure commands
(start and interrupt signals) and the final results between
the accelerator and the host. The effective bandwidth
reaches 1GB/s. The core of the GOR algorithm accelera-
tor is composed of a GOR Control Module, a GOR Com-
puting Pipeline and a Data Back-writing Controller. The
GOR Control Module is responsible for initializing the
Computing Pipeline, assigning protein sequence dynami-
cally to the Computing Pipeline. The Data Back-writing

Xia et al. BMC Bioinformatics 2011, 12(Suppl 1):S5
http://www.biomedcentral.com/1471-2105/12/S1/S5

Page 3 of 9



Controller is responsible for buffering protein sequence
and the predicted secondary structure and writing them
back to the external DRAM #2.
The GOR Computing Pipeline performs 2D structure

prediction of proteins, which consists of three sub-
modules. The first one, Prediction, is used to predict
preliminary secondary structure for each amino acid and
the latter two stages for correction. The Data Buffers
between adjoining stages are used for delivering middle
results. Three computation modules perform the com-
plete GOR algorithm procedure in data driven pipeline
mode. When the preliminary secondary structure of
sequence with ID #1 is generated by the Prediction
module, it will be delivered to the next stage right now
for result correction. The Prediction module will deal
with the next sequence with ID #2. The result generated
by the Correction1 (stage 2) module will be delivered to
the Correction2 by the Middle correction result buffer
for final correction. The final prediction result generated
by the Correction2 module is sent to the Data Back-
writing Controller and written back to external DRAM.
The first stage, predict module is augmented with a
local memory that consists of two parts: a ROM module
to store constants and a RAM block to store parameter
tables. Both of them are implemented by on-chip Block
RAMs. We also set some transitive registers between
adjoining sub-modules, invisible here, to deliver reusable
elements for pipelined computing.

FPGA implementation
Lookup parameter table in parallel
The prediction of fundamental conformation for each
amino acid involves looking up parameter tables (called
infor_pair and infor_dir in the GOR-IV package) to get
the conditional probability values obtained from experi-
mental methods. The tables are addressed by the residue
type and relative position of amino acids in current win-
dow with a fixed width of 17 residues.
To calculate three probability values of fundamental

structure of current amino acid, we first converse the
address according to the residue type and relative posi-
tion in computing window, then lookup the tables to
obtain the probability values. The number of query
operations for predicting 2D structure of a protein with
length N is 272×N and only one valid parameter is read
back for computing for each query operation. Addition-
ally, the address interval between adjacent two query
operations equals 21×21×136×8 Byte in infor_pair table
and the query order has no influence on final prediction
result since no data dependency exists in address con-
version. The serial look-up order implemented in the
GOR-IV software results in a great deal of small granu-
larity discontinuous memory access operation and
Cache missing. For parallel computation, centralized
tables will become the performance bottleneck. We have
to distribute the original parameter table (about 468 KB)
to 136 parts, each of which is stored in an on-chip Block

FF
T"
KK

""
"U
Q
FK

O
O
u
"

%
4

Rtgfkevkqp"
Tguwnvu

Jquv"rtqeguuqt

Ogoqt{"ceeguu"tgswguv

Rtgfkevkqp

Eqpvtqn"Ukipcnu

Eqpvtqn"Ukipcnu

Eqpvtqn"Ukipcnu

Hkpcn"Rtgfkevkqp"Tguwnv

TC O

Rtqvgkp
Ugswgpegu

TQ O

Eqttgevkqp3"
Uvcig"4

Fc
vc
"D
w
hh

gt
u

Rtgnkokpct{"rtgf kevkqp"tguwnv Okffng"eqttgevkqp"tguwnv

Nqecn"ogoqt{

FF
T"
KK

""
"U
Q
FK

O
O
u"

%
3

Fc
vc
"D
w
hh

gt
u

Fc
vc
"D
w
hh

gt
u

Hkpcn"eqttgevkqp"tguwnv

Hkpcn"Rtgfkevkqp"Tguwnv

IQT"Eqorwvkpi"Rkrgnkp g

Eqttgevkqp4"
Uvcig"5

Fcvc"Dcem/ytkvkpi"Eqpvtqnngt

Jquv"Kpvgthceg

REK/G"Kpvgthceg"
Eqpvtqnngt

FF
T"
KK

"O
go

qt
{"
Eq

pv
tq
nn

gtRF D

Hkpcn"

Tguwnv

Figure 1 The structure of the GOR algorithm accelerator. This figure describes the structure of GOR algorithm accelerator. The accelerator
comprises one FPGA chip (Virtex5 XC5VLX330), two DDRII modules, and a PCI-E×8 interface to the host PC.

Xia et al. BMC Bioinformatics 2011, 12(Suppl 1):S5
http://www.biomedcentral.com/1471-2105/12/S1/S5

Page 4 of 9



RAM module with dual-port so that probability values
can be read without memory conflict. All the storage
modules are independent and 136 parameters can be
read out per cycle. Additionally, we transform the raw
data in probability tables from decimal fraction with
double precision into integer reducing data width from
64-bit to 32-bit without affecting accuracy. The storage
requirement and logic consumption is reduced by 50%
and 75%, respectively. We also designed multi-level
tree-like adder array to sum up 136 probability values in
a pipeline mode.
The task pipeline
Similar to the software version, the task pipeline in the
GOR-IV algorithm accelerator also comprises a prediction
stage and two correction stages as shown in Figure 2. We
implemented a competed computing pipeline to accelerate
the critical part, preliminary prediction, in the GOR pro-
gram since most of the execution time, more than 99%, is
spent in this stage. The core of the preliminary prediction
module is composed of five steps: Get_seq (get amino acid
code in protein sequence), Get_para (lookup parameter
table and get probability values of fundamental structure
in parallel), Acc_add (sum up multiple probability values
using multi-level tree-like adder array in a pipeline mode),

Normalize (compute the corresponding probability values
of three fundamental conformation and selects the largest
one), Get result (judge the fundamental conformation for
each amino acid). The Normalize module is also com-
posed of five sub-steps: Cordic (implement exponential
operation), Add, Div, Mul and Comp (implement 32-bit
float addition, division, multiplication and comparison
operation, respectively). The whole preliminary prediction
module is decomposed by 109 pipeline levels and the pre-
diction results are stored in the Data Buffers for back-end
correction processing.
Our experimental results show that the execution time

of the three stages in the GOR algorithm accelerator is
basically balanced generally. The first stage has powerful
computing capability as the parallel table look-up strategy
is adopted and there is no obvious performance bottleneck
in our pipeline architecture because the balance of pipeline
levels was carefully considered. Moreover, the overhead of
the prediction stage for an input protein sequence with
length N is fixed. However, because of the uncertain
execution time of back-end processing for correction,
which is closely related to the fundamental conformations
in preliminary prediction results, and the serial correction
procedure (only one fundamental conformation can be

Eqttgevkqp"3
Uvcig"4

Rtqvgkp

Rtgfkevkqp"
tguwnvu

Eqttgevkqp"3
Uvcig"4

Fc
vc
"D

w
hh

gt

Rtgnkokpct{"
rtgfkevkqp"tguwnvu

Fc
vc
"D
w
hh

gt

Fc
vc
"D

w
hh

gt
Fc
vc
"D
w
hh

gt

Eqttgevkqp"4
Uvcig"5

Eqttgevkqp"4
Uvcig"5

Fc
vc
"D

w
hh

gt
Fc
vc
"D
w
hh

gt

Rtgfkevkqp"
tguwnvu

Ugswgpeg"P

Igvaugs Igvarctc Ceeacf f Pqtocnk¦g Igvatguwnv

Eqtfke Cf f Fkx Own Eqor

Ugswgpegu

Okffng"
eqttgevkqp"tguwnvu

Hkpcn"
eqttgevkqp"tguwnvu

Ugswgpeg"P ?3

Ugswgpeg"P ?4

Rtgnkokpct{"
rtgfkevkqp"tguwnvu

Pqtocnk¦gf
tguwnvu

Htqo "
FTCO"%3

Vq"Fcvc"
Dcem/ytkvkp
Eqpvtqnngt

Figure 2 The task pipeline in the GOR algorithm accelerator. This figure describes the structure of the task pipeline in the GOR-IV algorithm
accelerator. It is comprises a prediction stage and two correction stages. Multiple parallel correction modules are adopted to improve back-end
processing capability.

Xia et al. BMC Bioinformatics 2011, 12(Suppl 1):S5
http://www.biomedcentral.com/1471-2105/12/S1/S5

Page 5 of 9



computed per cycle), the back-end process capability can’t
catch up with the throughput of the prediction unit.
To solve the problem, we adopt the multi-channel

parallel correction method by duplicating several back-
end correction modules as shown in Figure 2. Because
each correction module accesses the Data Buffer con-
temporarily to get the amino acid characters and corre-
sponding 2D conformations, several Data Buffers copies
are set to buffer preliminary and middle results for post
processing. Thus, multiple sequences can be corrected
in parallel. The final prediction results generated by
each back-end process module are stored in individual
Data Buffer and written back to the external DRAM #2
with FCFS (First Come First Serve) strategy by the con-
trolling of the Data Back-writing Controller.
Figure 3 gives another view of the parallel execution

of the task pipeline in the GOR algorithm accelerator.
S1, S2, ..., Sn represent the sequence identifications in
protein database. In the execution space-time diagram,
we observe that there is no obvious load imbalance
among multiple processing stages. The pause overhead
for synchronizing multiple tasks is small compared
with computation time, and the overhead for data
loading and output is fully overlapped with pipelined
computation accept for the overhead for loading the
first sequence.

Results and discussion
Experimental environment
We implement the fine-grained parallel GOR-IV accel-
erator in an FPGA testbed. The testbed is mainly
composed of one large scale FPGA chip, Virtex5
XC5VLX330 from Xilinx, two 2GB DDRII SODIMM
modules, KVR 667D2S5/2G from Kingston and a PCI-
E×8 interface (implemented by V5 XC5VLX50T) to the
host computer. Specifically, our accelerator has the cap-
ability of global dynamic reconfigurability, which can be
reconfigured in 60ms. This means that the configuration
efficiency is improved by 2~3 orders of magnitude

compared to the conventional configuration methods
using a JTAG cable or other platform configuration
device for identical design. The software for protein 2D
structure prediction, GOR-IV, developed by J.Garnier,
D.Osguthorpe and B.Robson (downloaded from the
website http://abs.cit.nih.gov/gor/), runs on a desktop
computer with AMD Quad 9650 2.3GHz CPU and
3.0GB Memory at level O3 compiler optimization. We
also measure the software execution time on Intel
Core2 Duo E7400 CPU platform to verify the accelera-
tion of our approach.

FPGA resource usage
We place only one GOR algorithm accelerating engine
on FPGA chip, XC5VLX330 from Xilinx, to evaluate
the resource usage. As shown in Table 1, each acceler-
ating engine consumes 10040 Slices, 2 DSP48E mod-
ules and 159 Block RAMs (36Kbits each), sum to 5088
Kbits of memory, more than 55% (most of the them
are consumed by implementing parameter table for
protein prediction in stage1). However the proportion
of logic resource used is only 19%. Thus, the critical
constraint for accelerating the GOR package on FPGA
chip is not logic resource but memory capacity.
Experimental results show that our implementation
can reach a clock frequency of over 160MHz (post-
place & route not synthesize frequency) since there is
no obvious performance bottleneck in our computing
pipeline because of the balance of multiple processing
stages was carefully considered and the IO overhead
for external DRAM access will not become the limiting
factor. The synthetical results also show that at least
six GOR accelerating engines can be fitted on the new
generation FPGA chip with largest memory capacity,
XC6VSX475T currently. Assuming that hardware con-
tinues to improve by the Moore’s law, it is estimated
that more accelerating engines will fit on a single
FPGA chip and more remarkable speedup can be
achieved in two years.

U3

U3

U3

Fcvc"nqcfkpi

Rtgfkevkqp

Eqttgevkqp3

Eqttgevkqp4

Eqorwvkpi"qxgtjgcf Fcvc"qwvrwv"qxgtjgcf

U4

U3

Fcvc"nqcf"qxgtjgcf

Fcvc"qwvrwv

U4

U4

U4

U4

U5

U5

U5

U5

U5

;

;

; Up

Up

Up

Up

Up;

U3

Figure 3 The space-time diagram of the task pipeline in the GOR algorithm accelerator. This figure gives another view of the parallel
execution of the task pipeline in the GOR algorithm accelerator. S1, S2, ..., Sn represent the sequence identifications in protein database. The
overhead for data loading and output is fully overlapped with pipelined computation accept for the overhead for loading the first sequence.

Xia et al. BMC Bioinformatics 2011, 12(Suppl 1):S5
http://www.biomedcentral.com/1471-2105/12/S1/S5

Page 6 of 9

http://abs.cit.nih.gov/gor/


Performance compared to the GOR-IV software
We verify the correctness of our implementation in two
steps. First, we verify the functional correctness of the
hardware using software emulation with ModelSim SE
6.2h EDA tool. Then, we scan protein database on our
testbed to compare the computational results with the
ones produced by pure software to verify the correctness
of the prediction results generated by our accelerator.
We test four protein databases with different scale:
gbenv6.fsa_aa (8,296 sequences, 1,772,705 amino acids),
gbcon113.fsa_aa (10,774 sequences, 5,526,602 AAs),
rsnc.0525.2010.faa (274,827 sequences, 88,448,646
AAs), and env_nr (6,028,192 sequences, 1,207,406,759
AAs), downloaded from the NCBI ftp server (ftp://ftp.
ncbi.nih.gov/ncbi-asn1/protein_fasta), using hardware
and software solutions respectively. The experimental
results show that both the GOR-IV program and our
fine-grained parallel GOR algorithm accelerator produce
identical prediction results. To our knowledge, there is
no parallel software version of the GOR package run-
ning on multi-processor or multi-core platforms and
there is no parallel hardware implementation on FPGA
or GPUs at present. Thus, we have to compare the per-
formance to general-purpose CPUs.

Speedup
Taking the AMD Phenom 9650 Quad CPU as the base,
we compare the execution times and speedups among
three different platforms, including two general-purpose
computers and our GOR algorithm accelerator. The
execution time on FPGA accelerator includes the com-
putation time, the time for sending the protein data-
bases and taking results back to the host for display.
Despite the variation in CPU type, clock frequency,
main memory capacity, second-level cache capacity and
operate system versions, the two general-purpose com-
puters exhibit similar performance for an input protein
database. As shown in Table 2, the Intel E7400 CPU
shows a slight advantage over AMD Phenom 9650,
achieving about 1.3x~1.5x speedup. It partially because
the frequency of E7400 CPU is higher than AMD Phe-
nom 9650 and the current GOR package has not been
parallelized based on multi-core processor platforms for
an input protein sequence at present. Thus, the perfor-
mance of the GOR package running on a Quad-CPU is
similar to Dual-Core CPUs.
However, the FPGA accelerator exhibits a significant

speedup over the GOR-IV package running on AMD

Quad-Core CPU for four protein databases. From Table
2, we observed that the accelerations relative to software
version range from 66.8-fold (for the gbenv6.fsa_aa) to
439.2-fold (for the largest PDB, env_nr). Even compared
to the Intel Core2 Duo E7400 CPU, a speedup factor of
more than 320x over the GOR-IV program can be
achieved for the largest PDB with 6,028,192 sequences
and 1,207,406,759 amino acids. Moreover, there is no
data dependency in the multiple task of executing pro-
tein 2D structure prediction with different queries. Pro-
tein folding with multiple sequences, called inter-task
parallelization or coarse-grained parallelization, can be
performed independently. The only shared data are the
parameter tables. Multiple sequence folding tasks can be
distributed to multi-core CPU platforms to utilize com-
puting resources efficiently. These implementations
focus on database partitioning and load balance, instead
of the parallelism of structure prediction for a single
query. We implemented the multi-core GOR version
with Multi-thread SIMD optimization on AMD Quad-
Core CPU and four sequences can be executed in paral-
lel at a time. We gain about 3.9x speedup over the naive
GOR-IV version on quad-core CPU platforms. Thus,
even compared to the optimized GOR version based on
multi-core CPU, FPGA accelerator still achieved over
110x speedups for the largest PDB, env_nr. Further-
more, we can implement six accelerating engines on a
FPGA chip XC6VSX475T and an average speedup of
more than 600x can be achieved compared to the opti-
mized GOR software implementation.

Power consumption
We measured the average power consumption using a
pincer galvanometer (equipment type HIOKI3290) in
three steps. First, we measured the current consumed by
the host PC on idle condition without FPGA accelerator.
Second, we measured the current consumed by the
entire prototype system configured with FPGA accelera-
tor working in computing state. We can obtain the cur-
rent used by the accelerator by subtracting the values
from the two conditions. The power consumption can
be computed using the expression of voltage×current×-
power coefficient.
We compare the power consumption ratio among the

three different computing platforms. The average power
consumption of the AMD Phenom 9650 and Intel Duo-
core E7400 ranges from 65W to 95W [28]. However,
our fine-grained GOR algorithm accelerator consumes

Table 1 FPGA utilization summary

FPGA Engines Slices /(%) Memory /(%) DSP /(%) Frequency

XC5VLX330 One 10040 /(19%) 159 /(55%) 2 /(1%) 166 MHz

XC6VSX475T Six 49880 /(67%) 932 /(88%) 12 /(1%) 166 MHz

Xia et al. BMC Bioinformatics 2011, 12(Suppl 1):S5
http://www.biomedcentral.com/1471-2105/12/S1/S5

Page 7 of 9



about 20W as measured by a galvanometer, saving more
than 70%. We also computed the entire system power
consumption of protein structure predicting platform
with or without FPGA accelerator by measuring the
electrical current of host computer. Experimental results
show that the average power consumption of the AMD
platform is about 135W when running the original
GOR-IV program. The average power consumption of
calculating platform configured with one FPGA accel-
erator is less than 155W, increases only 15%, however,
the computational power is improved by more than
400x. Hence, considering the high performance and low
power consumption of FPGA chips for accelerating sec-
ondary prediction application of protein, we believe the
application-specific fine-grained parallel accelerator pro-
totype provides a promising solution over the general-
purpose implementations.

Conclusion and discussion
Proteins are complex macro-molecules that perform
vital functions in biological systems. Nowadays, the pro-
tein folding problem has become a central research
interest in modern molecular biology. Although the pre-
diction of 3D structure is the ultimate goals, the 2D
structure prediction from protein sequence is still a
more feasible intermediate step in this direction. The
GOR method based on information theory and Bayesian
statistics is one of the earliest and most successful meth-
ods in 2D structure prediction. Although predicting pro-
tein 2D structure using the GOR approach is efficient in
the classical sense, the execution time is still intolerable
with the steep growth in protein database.
In this work, we propose a complete fine-grained par-

allel hardware implementation on FPGA to accelerate
the GOR-IV package for 2D protein structure predic-
tion. To improve computing efficiency, we partition the
parameter table into small sections and access them in
parallel. We aggressively exploit data reuse schemes to
minimize the need for loading data from external mem-
ory. The whole computation structure is carefully pipe-
lined in order to overlap sequence load, computing
and back-writing operations as much as possible.

We implemented the complete GOR desktop system
based on a single FPGA chip (XC5VLX330). The experi-
mental results show a factor of more than 430x over the
original GOR-IV version and 110x speedup over the
optimized version with multi-thread SIMD implementa-
tion running on a PC platform with AMD Phenom
9650 Quad CPU for scanning the whole protein data-
base with 1,207,406,759 amino acids. Moreover, we esti-
mated that an average speedup of more than 600x can
be achieved on a FPGA chip XC6VSX475T by fitting six
computing engines compared to optimized GOR ver-
sion. However, the power consumption is only about
30% of that of current general-propose CPUs.
To the best of our knowledge, our design is the first

FPGA implementation for accelerating the protein fold-
ing based on the GOR algorithm at present. Considering
the significant performance improvement on FPGA
chips, we believe that the application-specific fine-
grained scheme implemented in our accelerator proto-
type provides significant advantages over general-purpose
schemes for protein folding application. Moreover, our
FPGA algorithm accelerator not only suggests a huge
potential performance for parallelizing 3D structure pre-
diction of protein but also can be applied to a desktop
computing platform to resolve other large-scale bioinfor-
matics and computational biology applications.

Acknowledgements
We would like to thank the researchers who provided access,
documentation and installation assistance for the GOR software. This work is
partially sponsored by the National High Technology Research and
Development Program of China (2008AA01A201) and NSFC (60633050,
60833004).
This article has been published as part of BMC Bioinformatics Volume 12
Supplement 1, 2011: Selected articles from the Ninth Asia Pacific
Bioinformatics Conference (APBC 2011). The full contents of the supplement
are available online at http://www.biomedcentral.com/1471-2105/12?
issue=S1.

Authors’ contributions
Fei Xia carried out the fine-grained parallel GOR algorithm, participated in
the characteristics analysis of the GOR algorithm and drafted the manuscript.
Yong Dou conceived of the study, and participated in its design and helped
to draft the manuscript. Guoqing Lei participated in the analysis of original
GOR-IV package, hardware implementation and performance & power
consumption measurement. YuSong Tan participated in the discussion of

Table 2 Experiment results of execution time (s) and speedup (Sp) on different platforms for four protein databases
with different scale

Test Platforms gbenv6.fsa_aa gbcon113.fsa_aa rsnc.0525.2010.faa env_nr

Time Speedup Time Speedup Time Speedup Time Speedup

AMD(1) 8.02 1 24.81 1 392.81 1 4308.66 1

Intel(2) 5.11 1.56 16.28 1.52 270.66 1.45 3161.54 1.36

FPGA(3) 0.12 66.8 0.14 177.2 0.91 430.6 9.81 439.2

The hardware experimental environment of different platforms are listed as follows.

AMD(1): Phenom 9650 Quad CPU, 2.3GHz, 3.0GB memory;

Intel(2): Core2 Duo E7400 CPU, 2.8GHz, 3.0GB memory;

FPGA(3): XC5VLX330 FPGA chip, 166MHz, 4.0GB memory.

Xia et al. BMC Bioinformatics 2011, 12(Suppl 1):S5
http://www.biomedcentral.com/1471-2105/12/S1/S5

Page 8 of 9

http://www.biomedcentral.com/1471-2105/12?issue=S1
http://www.biomedcentral.com/1471-2105/12?issue=S1


the study and correctness verification. All authors read and approved the
final manuscript.

Competing interests
The authors declare that they have no competing interests.

Published: 15 February 2011

References
1. The growth of the protein sequence in UniProtKB/TrEMBL - Current

Release Statistics. [http://www.ebi.ac.uk/uniprot/TrEMBLstats/].
2. Yearly growth of total structures in the Protein Data Bank (PDB).

[http://www.pdb.org/pdb/statistics/contentGrowthChart.do?
contecnt=totaln&seqid=100].

3. Sanchez R, Sali A: Corparative protein structure modeling in genomics.
J. Comput. Phys 1999, 151:388-401.

4. Jones DT, Taylor WR, Thornton JM: A new approach to protein fold
recognition. Nature 1992, 358:86-89.

5. Bowie JU, Eisenberg D: An evolutionary approach to folding small alpha-
helical proteins that uses sequence information and an empirical
guiding fitness function. Proceedings of the National Academy of Sciences of
the United States of America 1994, 91:4436-4440.

6. Chou P, Fasman G: Prediction of protein conformation. Biopolymers 1974,
13:211-215.

7. Garnier J, Osguthorpe DJ, Robson B: Analysis and implications of simple
methods for predicting the secondary structure of globular proteins.
J. Mol. Biol 1978, 120:97-120.

8. Garnier J, Gibrat JF, Robson B: GOR method for predicting protein
secondary structure from amino acid sequence. Methods Enzymol 1996,
266:540-553.

9. Dill KA: Principles of protein folding - a perspective from simple exact
models. Protein Sci 1995, 4:561-602.

10. Cuff JA, Barton GJ: Application of enhanced multiple sequence alignment
profiles to improve protein secondary structure. Proteins: Struct. Funct.
Genet 2000, 40:502-511.

11. King RD, Sternberg MJE: A machine learning approach for the prediction
of protein secondary structure. J. Mol. Biol 1990, 216:441-457.

12. Biou V, Gibrat JF, Levin JM, Robson B, Garnier J: Secondary structure
prediction: combination of three different methods. Protein Eng 1988,
2:185-191.

13. Salzberg S, Cost S: Predicting protein secondary structure with a nearest-
neighbor algorithm. J. Mol. Biol 1992, 227:371-374.

14. Li KB: ClustalW-MPI: ClustalW analysis using distributed and parallel
computing. Bioinformatics 2003, 19(12):1585-1586.

15. Dwan C: Bioinformatics Benchmarks on the SGI Altix XE Cluster. The
technical report from BioTeam Inc 2007, 1-13.

16. Kuo YL, Yang CT: Apply Parallel Bioinformatics Applications on Linux PC
Clusters. Tunghai Science 2003, 5:125-141.

17. Rangwala H: Massively Parallel BLAST for the Blue Gene/L. Proceedings of
High Availability and Performance Computing Workshop 2005, 199:133-154.

18. Tan G: An optimized and efficiently parallelized dynamic programming
for rna secondary structure prediction. Journal of Software 2006,
17(7):1501-1509.

19. Tan G: Locality and parallelism optimization for dynamic programming
algorithm in bioinformatics. Proceedings of ACM/IEEE International
Conference on SuperComputing (SC’06) 2006.

20. Liu T, Schmidt B: Parallel RNA secondary structure prediction using
stochastic context-free grammars. Concurrency Computat.: Pract. Exper
2005, 17:1669-1685.

21. Nilton B: Reconfigurable Computing for Accelerating Protein Folding
Simulations. Proceedings of IEEE International Workshop on Reconfigurable
Computing: Architectures, Tools and Applications (ARC’07) 2007, LNCS
4419:314-325.

22. Advait J: FPGA Accelerator for Protein Structure Prediction Algorithms. In
Proceedings of IEEE 5th Southern Conference on Programmable Logic (SPL’09).
Butterworth-Heinemann;VOR, Stoneham 2009:123-128.

23. Jayaram B: Bhageerath : An energy based web enabled computer
software suite for limiting the search space of tertiary structures of small
globular proteins. Nucleic Acids Res 2006, 34:6195-6204.

24. Kloczkowski A: Protein secondary structure prediction based on the GOR
algorithm incorporating multiple sequence alignment information.
Polymer 2002, 43:441-449.

25. The GOR method. [http://en.wikipedia.org/wiki/GORnmethod].
26. The GOR-V web Server. [http://abs.cit.nih.gov/gor/].
27. Altschul : Gapped BLAST and PSI-BLAST: a new generation of protein

database search programs. Nucleic Acids Res 1997, 25(17):3389-3402.
28. General Purpose Microprocessor Power Dissipation Statistic, 2010.

[http://en.wikipedia.org/wiki/List_f_CPU_power_dissipation].

doi:10.1186/1471-2105-12-S1-S5
Cite this article as: Xia et al.: FPGA accelerator for protein secondary
structure prediction based on the GOR algorithm. BMC Bioinformatics
2011 12(Suppl 1):S5.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Xia et al. BMC Bioinformatics 2011, 12(Suppl 1):S5
http://www.biomedcentral.com/1471-2105/12/S1/S5

Page 9 of 9

http://www.ebi.ac.uk/uniprot/TrEMBLstats/
http://www.pdb.org/pdb/statistics/contentGrowthChart.do?contecnt=totaln&seqid=100
http://www.pdb.org/pdb/statistics/contentGrowthChart.do?contecnt=totaln&seqid=100
http://www.ncbi.nlm.nih.gov/pubmed/1614539?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1614539?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8183927?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8183927?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8183927?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/642007?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/642007?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8743705?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8743705?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7613459?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7613459?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2254939?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2254939?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3237683?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3237683?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1404357?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1404357?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12912844?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12912844?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17090600?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17090600?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17090600?dopt=Abstract
http://en.wikipedia.org/wiki/GORnmethod
http://abs.cit.nih.gov/gor/
http://www.ncbi.nlm.nih.gov/pubmed/9254694?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9254694?dopt=Abstract
http://en.wikipedia.org/wiki/List_f_CPU_power_dissipation

	Abstract
	Background
	Results
	Conclusions

	Introduction
	Related works
	Overview of the GOR algorithm
	Methods
	System architecture
	FPGA implementation
	Lookup parameter table in parallel
	The task pipeline


	Results and discussion
	Experimental environment
	FPGA resource usage
	Performance compared to the GOR-IV software
	Speedup
	Power consumption

	Conclusion and discussion
	Acknowledgements
	Authors' contributions
	Competing interests
	References

