
Boston University
OpenBU http://open.bu.edu
Theses & Dissertations Boston University Theses & Dissertations

2017

High performance communication
on reconfigurable clusters

https://hdl.handle.net/2144/27045
Boston University

BOSTON UNIVERSITY

COLLEGE OF ENGINEERING

Dissertation

HIGH PERFORMANCE COMMUNICATION ON

RECONFIGURABLE CLUSTERS

by

JIAYI SHENG

B.S., Fudan University, 2012

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

2017

c© 2017 by
JIAYI SHENG
All rights reserved

Approved by

First Reader

Martin C. Herbordt, Ph.D.
Professor of Electrical and Computer Engineering

Second Reader

Michel Kinsy, Ph.D.
Assistant Professor of Electrical and Computer Engineering

Third Reader

Ayse K. Coskun, Ph.D.
Associate Professor of Electrical and Computer Engineering

Fourth Reader

Adrian Caulfield, Ph.D.
Principal Research Hardware Development Engineer
Microsoft Research

Step after step the ladder is ascended.

George Herbert

iv

Acknowledgments

First and foremost, I want to thank my advisor, Prof. Martin Herbordt. During our

five-year collaboration, he has offered me limitless help on my research. I feel respected

because he has understood every single detail in my projects. I feel motivated because

he has helped me come up with numerous brilliant research ideas. I feel touched

because he has been thoughtful to my personal life. I feel honored and proud to have

him as my Ph.D. advisor in my life.

I also want to thank other members in my dissertation defense committee. Prof.

Michel Kinsy has helped me describe technical part of my dissertation more clearly

and precisely. Prof. Ayse Coskun has assisted me to organize the big picture of

my dissertation. Dr. Adrian Caulfield not only has offered invaluable three-month

guidance in summer 2016, but also has helped me address several technical issues in

my dissertation.

I sincerely thank my collaborators at the University of Florida, Prof. Alan George,

Prof. Herman Lam, and Dr. Abhijeet Lawande. Without their substantial work on

Novo-G#, I would not have my dissertation. Especially, I want to thank Dr. Abhijeet

Lawande. During the five years, he has provided me all sorts of help including emails,

documentation, code sharing, and even remote control to allow me to reproduce

his work on the BU side. His assistance is one of the fundamental factors in my

dissertation.

I am grateful to my supervisors at MediaTek, Inc, Dr. Yuan Lin and Dr. Henry

Cox. I feel fortunate to spend two fantastic summers with them. Dr. Henry Cox is

considerate and kind. He could always motivate and thrill me even if I made mistakes.

Dr. Yuan Lin is sharp and wise. He could steer me in the right directions and provide

me better research ideas.

I would also like to appreciate other professors at Boston University that help me

v

grow and make progress. I thank Prof. Douglas Densmore, Prof. David Starobinski,

and Prof. Richard West for their remarkable classes. I thank Prof. Roscoe Giles for

his great advice when I was his teaching assistant.

I am also grateful to my current CAAD lab mates, Chen Yang, Qingqing Xiong,

Ahmed Sanaulah, and Rushi Patel. They gave me plenty of research advice and

collaboration. I also want to thank the alumni including Tiansheng Zhang, Hao Chen,

Chao Chen, Jie Meng, Raphael Landaverde, Hansen Zhang, and Ben Humphries for

their help and encouragement.

Finally, I want to thank my family for their unconditional and limitless support

on my Ph.D. career. My dear maternal grandpa passed away in my Ph.D. fourth

year. I did not have the chance to go back to see him. I hope my Ph.D. degree could

make him smile in paradise.

The research that forms the basis of this dissertation has been partially funded

by NSF grants #CNS-1405695 and #CCF-1618303/7960, and through a grant from

Microsoft Research.

vi

HIGH PERFORMANCE COMMUNICATION ON

RECONFIGURABLE CLUSTERS

JIAYI SHENG

Boston University, College of Engineering, 2017

Major Professor: Martin C. Herbordt, PhD
Professor of Electrical and Computer Engineering

ABSTRACT

High Performance Computing (HPC) has matured to where it is an essential third

pillar, along with theory and experiment, in most domains of science and engineering.

Communication latency is a key factor that is limiting the performance of HPC, but

can be addressed by integrating communication into accelerators. This integration

allows accelerators to communicate with each other without CPU interactions, and

even bypassing the network stack. Field Programmable Gate Arrays (FPGAs) are

the accelerators that currently best integrate communication with computation. The

large number of Multi-gigabit Transceivers (MGTs) on most high-end FPGAs can

provide high-bandwidth and low-latency inter-FPGA connections. Additionally, the

reconfigurable FPGA fabric enables tight coupling between computation kernel and

network interface.

Our thesis is that an application-aware communication infrastructure for a multi-

FPGA system makes substantial progress in solving the HPC communication bottle-

neck. This dissertation aims to provide an application-aware solution for communica-

tion infrastructure for FPGA-centric clusters. Specifically, our solution demonstrates

application-awareness across multiple levels in the network stack, including low-level

vii

link protocols, router microarchitectures, routing algorithms, and applications.

We start by investigating the low-level link protocol and the impact of its latency

variance on performance. Our results demonstrate that, although some link jitter is

always present, we can still assume near-synchronous communication on an FPGA-

cluster. This provides the necessary condition for statically-scheduled routing. We

then propose two novel router microarchitectures for two different kinds of workloads:

a wormhole Virtual Channel (VC)-based router for workloads with dynamic commu-

nication, and a statically-scheduled Virtual Output Queueing (VOQ)-based router

for workloads with static communication. For the first (VC-based) router, we pro-

pose a framework that generates application-aware router configurations. Our results

show that, by adding application-awareness into router configuration, the network

performance of FPGA clusters can be substantially improved. For the second (VOQ-

based) router, we propose a novel offline collective routing algorithm. This shows a

significant advantage over a state-of-the-art collective routing algorithm.

We apply our communication infrastructure to a critical strong-scaling HPC ker-

nel, the 3D FFT. The experimental results demonstrate that the performance of our

design is faster than that on CPUs and GPUs by at least one order of magnitude

(achieving strong scaling for the target applications). Surprisingly, the FPGA cluster

performance is similar to that of an ASIC-cluster. We also implement the 3D FFT

on another multi-FPGA platform: the Microsoft Catapult II cloud. Its performance

is also comparable or superior to CPU and GPU HPC clusters. The second applica-

tion we investigate is Molecular Dynamics Simulation (MD). We model MD on both

FPGA clouds and clusters. We find that combining processing and general communi-

cation in the same device leads to extremely promising performance and the prospect

of MD simulations well into the us/day range with a commodity cloud.

viii

Contents

1 Introduction 1

2 Background and Context 12

2.1 Background . 12

2.2 Previous Work Related to Contributions 13

2.2.1 Previous FPGA Clusters and Interconnection Networks 14

2.2.2 Previous Work on FPGA System/User Interfaces 19

2.2.3 Previous Work of Router Architectures 20

2.2.4 Previous Work of Routing Algorithms 24

2.2.5 Previous Work on Applications on FPGA Clusters 26

3 Target System Architecture and Implementation 29

3.1 Design Choices of Multi-FPGA Systems 29

3.2 Background of Novo-G . 31

3.3 Architecture of Novo-G# . 32

3.4 Investigation of MGT Link Connections 33

3.4.1 Introduction of MGT link Protocol 33

3.4.2 Problem of Link Latency Variances and Clock Jitters 35

3.4.3 Latency and Jitter Measurements 37

3.4.4 Variation of Communication Latencies 37

3.4.5 Measurement of Clock Jitter 40

3.4.6 Case Study: 3D FFT . 41

3.4.7 Discussion . 42

ix

4 Network Architecture, Part 1: Router Design and Flow Control 44

4.1 Background and Assumptions . 44

4.2 Wormhole VC-based Router on FPGA Cluster 46

4.2.1 Classic Wormhole VC-based Router Microarchitecture 47

4.2.2 Proposed VC-based Router on Novo-G# 49

4.3 Proposed Statically-scheduled Collective Acceleration

Router on Novo-G# . 62

4.3.1 Table-based Routing . 62

4.3.2 Router Microarchitecture . 64

5 Network Design, Part 2: Routing Algorithms and Switch Arbitra-

tion Policies 70

5.1 Implemented Routing Algorithms and Switch Arbitration Policies for

Unicast workloads . 71

5.1.1 Implemented Routing Algorithms in Proposed VC-based Router 71

5.1.2 Implemented Switch Arbitration Policies in Proposed VC-based

Router . 75

5.1.3 Proposed Application-ware Framework to Generate Optimal

Router Configuration . 76

5.1.4 Evaluation . 81

5.1.5 Discussion . 91

5.2 Proposed Offline Collective Routing Algorithm in Proposed VOQ Router 92

5.2.1 Algorithm Details . 95

5.2.2 Algorithm Evaluation . 99

5.2.3 Discussion . 106

6 3D FFT on FPGA clusters 107

6.1 3D FFT Overview . 107

x

6.2 Implementation . 109

6.3 Experimental Results . 112

6.4 Discussion . 114

7 3D FFT and Implications for MD on FPGA Cloud 116

7.1 FPGA-centric Clouds and Clusters 117

7.1.1 Catapult II . 119

7.1.2 Novo-G# . 121

7.1.3 Methods . 122

7.2 FFTs and Molecular Dynamics . 122

7.2.1 FFT and FPGAs . 122

7.2.2 MD, FPGAs, and Strong Scaling 123

7.3 3D FFT on Catapult II and Novo-G# 124

7.3.1 3D FFT on Catapult II . 124

7.3.2 3D FFT Models for Catapult II and Novo-G# 128

7.4 Optimizing Performance with Contraction 134

7.4.1 Contraction Model . 134

7.4.2 Contraction Results . 137

7.5 MD Strong Scaling . 138

7.5.1 Models for MD performance estimation 138

7.5.2 Evaluation . 142

7.6 Discussion and Future Work . 145

8 Conclusion and Future Work 147

8.1 Conclusion . 147

8.2 Future Work . 149

8.2.1 Future Work on Inter-FPGA Links 149

8.2.2 Future Work on Inter-FPGA Communication Middleware . . . 150

xi

8.2.3 Future Work on Routing Algorithms 151

8.2.4 Future Work on Applications 151

References 153

Curriculum Vitae 177

xii

List of Tables

3.1 The comparison of characteristics between Interlaken and SerialLite III 36

3.2 The physical Characteristics of the Interlaken IP 39

3.3 The mean and variance of link latencies. All times in ns. 41

3.4 The clock jitter over four ProceV boards 41

3.5 The 3D FFT latency case study. 42

4.1 The comparison of hardware constraints between Novo-G# and NoC 47

4.2 The configuration of the reduction tree for different number of VCs

multiplexed on each physical channel with the optimal area consumption. 55

4.3 The resource utilization of two proposed router architecture (ring and

VOQ) on an Altera Stratix V 5SGSMD8 69

5.1 Seven different workloads to evaluate the VC-based router performance.

For tornado pattern, the XSIZE is the number of nodes on the X di-

mension. 82

5.2 Six different performance metrics . 82

5.3 The improvements of performance of optimal router configuration com-

pared with the average performance of all configurations on a 43 torus 93

5.4 The improvements of performance of optimal router configuration com-

pared with the average performance of all configurations on a 83 torus 93

5.5 The comparison between global optimal configuration and application-

aware optimal configuration. The percentage is calculated by geomean(|app−

global|/global). 94

xiii

5.6 The logic elements utilization of RPM router and OCR router on

4×4×4 torus network . 104

5.7 The memory consumption of routing tables (including multicast tables

and reduction tables) of OCR algorithm on 4×4×4 torus network . . 104

5.8 The requirements of worst-case buffer size (depth) of online routing

and offline routing for these three synthetic patterns, injection rate

here is 1 packet per node per cycle 105

6.1 The number of packets should be sent in each communication phase

and the size of packets . 112

6.2 The estimated latency of communication in microseconds for various

problems sizes and network sizes (BW: Bandwidth, LD: Link Delay) . 113

6.3 Altera FFT MegaCore latency and max number of IPs could fit on an

Altera Stratix V 5SGSMD8 . 113

6.4 Latency in microseconds for various problems sizes and network sizes 114

6.5 The results for various technologies and problem sizes. Anton is for

fixed point; other results are for single precision floating point. All

times are in microseconds. The release date is from corporate an-

nouncements of availability in quantity. Stratix-V times are our simu-

lation results. 115

7.1 The end-to-end latency on Catapult II for small packets. 120

7.2 The optimal contraction size for 3D FFT on FPGA cloud and cluster 137

7.3 The 3D FFT speedups by applying contraction. “in MD” means that

contraction overhead is hidden. 138

xiv

7.4 The comparison of MD performance in µs/day of best FPGA clouds

and clusters with the best of other technologies: (a) GROMACS on a

Xeon E5-2690 processor with an NVIDIA GTX TITAN GPU (Lindahl,

2013), (b) Desmond on 1,024 cores of a Xeon E5430 cluster (Chow

et al., 2008), (c) NAMD on 16,384 cores of Cray Jaguar XK6 (Sun

et al., 2012). For FPGAs “(#)” denotes nodes. 146

xv

List of Figures

2·1 Left side: a Gidel ProceV D8 board with MGT ports (J18), right side:

a FPGA cluster with 32 ProceV D8 boards 14

3·1 Three models for FPGA-based HPC systems. a) Standard HPC clus-

ter. b) FPGA clouds. c) FPGA clusters. 30

3·2 An example showing a 23 torus Novo-G# system 33

3·3 The structure of the Interlaken PHY IP core 34

3·4 Ping-Pong test to measure latency variation. 37

3·5 The setup for the ping-pong test . 39

3·6 The variations of end-to-end latency over time for four lanes 40

3·7 (a)The latency distribution comparison among four MGTs (b)The la-

tency distribution comparison between two Altera Stratix V boards . 40

4·1 The classic wormhole VC-based router microarchitecture 48

4·2 The classic Wormhole VC-based router pipeline 49

4·3 An example showing how VC-based flow control solves the blocking

issue of typical wormhole flow control 50

4·4 The proposed router microarchitecture on Novo-G# 51

4·5 Three ways of implementing the connection between the VC and switch.

(a) . 53

4·6 An example showing how multiplexing of multiple VCs on the same

physical channels causes extra blocking 53

xvi

4·7 (a)The conventional crossbar switch, (b)the proposed reduction-tree-

based switch . 54

4·8 Virtual channels divided into dateline classes to break the ring loop

in torus, (a) packets on the clockwise direction, (b) packets on the

counterclockwise direction . 56

4·9 Two methods to partition 8 buffers into 2 classes. 56

4·10 Six forbidden turns break all of dependency cycles in 3D-torus 59

4·11 An example of node-table routing . 63

4·12 (a) Unicast table entry format (b) multicast table entry format (c)

reduction table entry format . 63

4·13 (a) 7-node ring topology and (b) router microarchitecture for the ring

router . 65

4·14 VOQ router microarchitecture: (a) The VOQ router is connected by

seven input handlers and seven output handlers. (b) The input handler

has four stages: input buffer consumption, routing table lookup, multi-

cast table lookup, and virtual output queue allocation. (c) The output

handler has three stages: switch allocation, reduction table lookup,

and reduction table write-back. 67

4·15 (a) The classic four stage router pipeline and (b) our proposed seven

stage pipeline supporting mulitcast and reduction 68

5·1 The standard interface for modules in the cycle-accurate simulator . . 78

5·2 The comparison between the batch latency of the optimal configuration

with the average batch latencies of all configurations for different work-

loads on a 43 torus. From left to right in first row: 3H-NN, CUBE-NN,

bit complement; from left to right in second row: transpose, tornado,

all-to-all . 83

xvii

5·3 The comparison between the average latency of the optimal configu-

ration with the average performance of all configurations for different

workloads on a 43 torus. From left to right in first row: 3H-NN, CUBE-

NN, bit complement; from left to right in second row: transpose, tor-

nado, all-to-all . 84

5·4 The comparison between the worst-case latency of the optimal config-

uration with the average performance of all configurations for differ-

ent workloads on a 43 torus. From left to right in first row: 3H-NN,

CUBE-NN, bit complement; from left to right in second row: trans-

pose, tornado, all-to-all . 85

5·5 The comparison between the average receiving throughput of the op-

timal configuration with the average performance of all configurations

for different workloads on a 43 torus. From left to right in first row:

3H-NN, CUBE-NN, bit complement; from left to right in second row:

transpose, tornado, all-to-all . 86

5·6 The comparison between the maximum number of non-idle VCs of the

optimal configuration with the average performance of all configura-

tions for different workloads on a 43 torus. From left to right in first

row: 3H-NN, CUBE-NN, bit complement; from left to right in second

row: transpose, tornado, all-to-all . 87

5·7 The comparison between the batch latency of the optimal configura-

tion with the average batch latencies of all configurations for different

workloads on a 83 torus. From left to right: 3H-NN, CUBE-NN, bit

complement, transpose . 88

xviii

5·8 The comparison between the average latency of the optimal configu-

ration with the average performance of all configurations for different

workloads on a 83 torus. From left to right: 3H-NN, CUBE-NN, bit

complement, transpose . 89

5·9 The comparison between the worst-case latency of the optimal config-

uration with the average performance of all configurations for different

workloads on a 83 torus. From left to right: 3H-NN, CUBE-NN, bit

complement, transpose . 90

5·10 The comparison between the average receiving throughput of the op-

timal configuration with the average performance of all configurations

for different workloads on a 83 torus. From left to right: 3H-NN,

CUBE-NN, bit complement, transpose 91

5·11 The comparison between the maximum number of non-idle VCs of the

optimal configuration with the average performance of all configura-

tions for different workloads on a 83 torus. From left to right: 3H-NN,

CUBE-NN, bit complement, transpose 92

5·12 The histogram that plots the distribution of the fifteen router config-

urations being optimal for cube nearest neighbor workload 94

5·13 The histogram that plots the distribution of the fifteen router config-

urations being optimal for 3-hop diagonal nearest neighbor workload . 95

5·14 The histogram that plots the distribution of the fifteen router config-

urations being optimal for transpose workload 96

5·15 The histogram that plots the distribution of the fifteen router config-

urations being optimal for all-to-all workload 97

5·16 The histogram that plots the distribution of the fifteen router config-

urations being optimal for bit complement workload 98

xix

5·17 (a) unicast-based multicast (b) tree-based multicast (c) unicast-based

reduction (d) tree-based reduction . 99

5·18 (a) and (c) show routing decisions made by RPM, (b) and (d) show

those likely to result in improved performance. In (c) and (d), the

north and south links are more congested than the west and east links. 99

5·19 The partition evaluation of OCR algorithm. (a) partition along YZ

plane, (b) partition along XZ plane, (c) partition along XY plane . . 102

5·20 8 regions on a 2D plane, Region 0, 2, 4 and 6 are called corner regions.

Region 1, 3, 5 and 7 are called side regions. 103

5·21 The batched experiments with three typical benchmarks (all-to-all,

nearest neighbor, and bit rotation) for two kinds of network size: 4x4x4

and 8x8x8. 105

5·22 The average latency of multicast packets in 4× 4× 4 network 106

6·1 The generalized mapping 2n × 2n × 2n 3D FFT problem on 3D 2m ×

2m×2m torus network And data permutation pattern during two com-

munication phases (XY corner turn and YZ corner turn). 109

7·1 Three models for FPGA-based HPC systems. a) Standard HPC clus-

ter. b) Catapult II. c) Catapult I and Novo-G#. 118

7·2 The state transition graph for 3D FFT implementation on each Cata-

pult II node . 125

7·3 3D FFT implementation on each Catapult II node 127

7·4 Per node resource utilization on Catapult II: (a) ALMs (b)BRAMs . 128

7·5 The performance of 3D FFT on Catapult II 129

7·6 The breakdown of performance of 3D FFT on Catapult II into com-

munication and nonoverlapped computation. 130

7·7 The modeled FFT performance . 131

xx

7·8 The comparison of 3D FFT performance on different platforms 132

7·9 The network bandwidth sensitivity test for 3D FFT on FPGA cloud,

(a) 16 nodes, (b) 128 nodes, (c) 1024 nodes 133

7·10 The network bandwidth sensitivity test for 3D FFT on FPGA cluster,

(a) 16 nodes, (b) 128 nodes, (c) 1024 nodes 134

7·11 The network latency sensitivity test for 3D FFT on FPGA cloud, (a)

16 nodes, (b) 128 nodes, (c) 1024 nodes 135

7·12 The network latency sensitivity test for 3D FFT on FPGA cluster, (a)

16 nodes, (b) 128 nodes, (c) 1024 nodes 136

7·13 Short range communication: (a) c > r, (b) c < r 140

7·14 MD performance for uniform node design 143

7·15 MD performance for specialized node design 144

7·16 The MD performance bottleneck for (a) FPGA cloud and (b) FPGA

cluster (DNF means do-not-fit) . 145

xxi

List of Abbreviations

ASIC Application-Specific Integrated Circuits
ALM Adaptive Logic Module
API Application Programming Interface
CC Clock Cycle
CCAR Credit Count Adaptive Routing
COTS Commercial Off-The-Shelf
DOR Dimensional Ordering Routing
DPC Direct Programmable Communication
DSP Digital Signal Processor
FFT Fast Fourier Transform
FIFO First In First Out
FPGA Field-Programmable Gate Array
FSM Finite State Machine
HDL Hardware Description Language
IP Intellectual Property
LFSR Linear-feedback shift register
MD Molecular Dynamics
MGT Multi-Gigabit Transceiver
NoC Network on Chip
O1TURN Orthogonal One-turn Routing
OCR Offline Collective Routing Algorithm
OSI Open System Interconnection
PCS Physical Coding Sublayer
PHY physical layer of the OSI model
PMA Physical Medium Attachment
RLB Randomized Load Balance Routing
ROMM Randomized, Oblivious, Multi-phase, Minimal
RPM Recursive Partitioning Multicast Algorithm
RTL Register Transfer Level
VC Virtual Channel
VOQ Virtual Output Queue

xxii

Chapter 1

Introduction

Field programming gate arrays (FPGAs) are widely used Commercial Off-The-Shelf

(COTS) Integrated Circuits (ICs) whose logic is configurable, rather than being fixed

as in a Central Processing Unit (CPU) or Graphics Processing Unit (GPU). FPGAs

can be adapted to the application rather than the application being encoded for the

processor. In this way, applications can be run with high efficiency and low power.

On a chip, many thousands of memory elements and compute components can be

interconnected with an application-specific network; the expectation is that, for any

application, each of the compute components will then be able to perform useful work

most cycles. With other devices such as GPUs, getting such high utilizations is rare

outside certain application domains such as dense matrix operations (see, e.g. (Lee

et al., 2010)).

FPGAs have historically been used as glue logic. In the 1980s they became

large and complex enough to find niche applications, especially in signal process-

ing, where they could often replace Application-Specific Integrated Circuits (ASICs)

and Digital Signal Processors (DSPs). Another decade another core application, net-

work routers, is found. This domain led high-end FPGAs to have a capability still

unique among commodity ICs: many dedicated high-performance communication

ports. From around 2000 until 2015 around 70% of high-end FPGAs were used in

routers, 20% in signal and image processing, and the rest in a variety of applications

including ASIC verification, in-satellite computing, triggers for high-energy physics

1

2

experiments, finance computations (especially in high-frequency trading), and many

others. Several attempts were made to use FPGAs as accelerators for High Perfor-

mance Computing (HPC); these showed some promise, especially for bioinformatics,

but the emergence of GPUs around 2008 slowed this progress.

In the last two years, there has been a dramatic shift to FPGAs as central compute

components in large-scale systems. The primary motivation has been the need for

higher performance communication-related computation. In data centers, there has

been a tremendous increase in the need for encryption, compression, network stack

offload, and software-defined networking. Almost simultaneously several significant

events occurred. Altera was acquired by Intel, which then predicted that 30% of all

Cloud nodes would be equipped with FPGAs; IBM made a similar alliance with Xilinx

to enhance their IBM POWER-based systems; Microsoft started Project Catapult and

had been deploying FPGAs in a large fraction of their production servers; Amazon

has announced the availability of FPGAs as part of its compute services; and Baidu

is using large numbers of FPGAs in its datacenters for machine learning.

There are many reasons for this dramatic change. FPGAs blend the benefits of

ASICs and general-purpose processors. They can be used to implement circuits like

ASICs but also perform general-purpose computing like CPUs. FPGAs have the

potential for higher performance and lower power consumption than CPUs. They

offer lower non-recurrent engineering (NRE) costs, reduced development time, easier

debugging, and lower risk, compared with ASICs. FPGAs use a small fraction of the

power of GPUs and, in the latest generation, have a comparable computational (float-

ing point) capability. And FPGAs retain their unique capability as communication

processors.

This shift to FPGAs in the datacenter is having a ripple effect in all FPGA usage.

Development tools and support are improving; costs have come down dramatically so

3

that, across product lines, CPUs, GPUs, and FPGAs are now all comparably priced.

Besides the major companies already described, at least two dozen others are now

making NICs with user-programmable FPGAs, most prominently Mellanox.

HPC is also facing increasing difficulty due to communication performance, in

large part because of the continuation of Moore’s Law: per-chip computational capa-

bility has been increasing faster than the capability of moving data on/off chip and

through the network. As the gap between the speeds of the network and computing

devices keeps increasing, network latency and bandwidth have become the first-order

bottleneck of many applications. Applications that have been communication bound

are becoming more so, and even applications where communication was not previously

a limiting factor are becoming communication bound. All of this leads to problems in

scalability, the ability to productively map applications to larger numbers of compute

nodes. This is especially a problem with strong scaling, where the problem size is

fixed, but more compute resources are applied. For example, achieving strong scal-

ing of Molecular Dynamics (MD) simulations is particularly challenging. Part of the

calculation, that of the long-range force, requires global all-to-all communication. As

the cluster size increases, the packets must traverse longer distances while at the same

time the budget for communication time decreases (due to the application of more

nodes to the same amount of processing).

To summarize, FPGAs are promising as devices that can dramatically improve

HPC performance. They are low power, high performance, and have unique communi-

cation capability. And their configurable fabrics allow for tight coupling of computa-

tion and communication and for creating application-aware communication hardware.

Advancing the state-of-the-art of FPGA-centric HPC clusters, especially

by improving all aspects of communication, is the primary goal of this

thesis.

4

Before the recent wide-spread integration of FPGAs into cloud nodes, researchers

have been building multi-FPGA systems for many years (Mencer et al., 2009; Tsoi and

Luk, 2010; Baxter et al., 2007; Patel et al., 2006; Sass et al., 2007; Moore et al., 2012;

Kono et al., 2012; George et al., 2016). Some of the early work in FPGA clusters was

to exploit the economic advantage of replacing a large FPGA with several smaller

ones. For example, a designer could always buy the biggest existing FPGA to fit

their design. But the gain in on-chip resources does not increase linearly with the

monetary cost (Markettos et al., 2014). Also, resources like the number of external

memory interfaces and I/O pins do not scale with FPGA size often making multi-

FPGA systems better solutions. Most recent FPGA clusters more conventionally seek

to scale compute capability far beyond the capacity of single devices.

A multi-FPGA system has inherent advantages because FPGAs are the only

COTS component that has native communication support, high-compute capability,

low-power, and an installed application base at the same time (George et al., 2016).

FPGAs have multi-gigabit transceiver (MGT) ports that allow FPGAs communicate

with each other directly without passing through any other devices (Altera, 2014b;

Altera, 2015; Xilinx, 2009). The computation logic on the FPGA is tightly coupled

with network ports like MGTs. An MGT link could have an end-to-end latency as

short as 100 ns and bandwidth as high as 40 Gbps (Sheng et al., 2015).

Until very recently, inter-FPGA communication mechanisms could be placed into

one of two categories. In the first, the communication support only satisfies the re-

quirement of a single application. This approach loses the flexibility of being extend-

able to other applications. In the second, inter-FPGA communication mostly consists

of MPI primitives implemented using soft processors. This approach is generic; how-

ever, the software-based packetization and depacketization introduce high latency

overhead. Also, this approach does not make use of the tight coupling of commu-

5

nication and computation on FPGA. In summary, communication support on these

previous FPGA clusters has not addressed generality and efficiency at the same time.

The newly deployed Microsoft Catapult systems (Putnam et al., 2014; Caulfield

et al., 2016) address both generality and efficiency. It is deployed in general purpose

nodes in datacenters. It has in-FPGA hardware support for general communication

operations. That effort, however, differs from ours in several ways which emerge from

the difference in basic goals. Catapult is deployed to large datacenters and must con-

form to stringent datacenter requirements. The FPGAs are “bumps in the wire” in

the NIC, and there is likely to be a substantially fixed shell (set of system hardware)

not accessible to the user. Since the FPGAs retain a mission of supporting general

communication, even when the FPGAs are used for application processing, recon-

figurability is limited in both frequency and characteristics. In our target systems,

there substantially more flexibility, including the possibility of direct FPGA-FPGA

connections; also there will be the possibility of full integration of communication

and computation with a much lighter weight shell. This final point is that in our

target systems, nearly the entire FPGA fabric can be mapped into application-aware

configurations to support communication, computing in the network, and communi-

cation/application interfaces, which is a major point in this thesis.

Our thesis is that an application-aware communication infrastructure for a FPGA

cluster makes substantial progress in solving the HPC communication bottleneck

issue. In this dissertation, we are investigating how to build a complete application-

aware communication infrastructure for FPGA-clusters. We use the Novo-G#, with

64 FPGAs, as a testbed. The purpose of Novo-G# is to be both a production clus-

ter and community infrastructure, especially for research in issues related to direct,

inter-FPGA, communication. Our infrastructure, therefore, addresses generality and

efficiency simultaneously. Our work covers the issues across multiple levels of the

6

hardware/software stack, all the way from low-level link protocols, through router

architecture, routing algorithm, to application mapping and partitioning. A major

distinction with previous work is that each contribution of our dissertation is inte-

grated with application-awareness.

Any comprehensive investigation into communication for FPGA clusters must deal

with four levels of work.

• The first is how to connect FPGAs physically, which includes issues such as

choice of link protocol, dealing with timing issues, and mechanisms to interface

applications with the MGTs.

• The second is how to implement the infrastructure at the network layer, which

includes both router design and routing algorithms. It also includes support for

higher level functions such as collectives.

• The third is how to specify the user/system interface that allows users to in-

tegrate their applications with the communication infrastructure. With the

inherent reconfigurability of the FPGAs, it is desirable that the communication

infrastructure is adaptive to applications. The adaptiveness means the design

choices are flexible to meet different users’ requirements.

• The fourth is how to create, map, and run applications on this infrastructure;

this is essential for proof-of-concept, for validation, and for test. This is nec-

essary because of the relative paucity of production FPGA cluster applications

and because of the difficulty in porting existing applications to new, different

clusters.

We have made contributions for all four levels, which are listed below. This work

is being done in the context of creating the Novo-G# testbed based on a cluster of 64

7

FPGA nodes. All the results within 4-node scale are validated on a 4-node subsystem.

All the other results with large scale are simulated using cycle-accurate simulators.

1. Physical and Datalink Inter-FPGA Connections. We have explored sev-

eral MGT SerDes protocols that trade off various parameters; at the highest

level this involves latency versus support for essential link-level functions. We

have also measured the variance of MGT link latency. Our major contribution

at this level is that, to our best knowledge, ours is the first work that investi-

gates the impact of the MGT link latency variance on the performance of a real

application.

Our results show that the MGT link latency variance degrades the performance

in all cases. However, the degree of degradation is manageable. The impact of

this result is that, even relying solely on commercial link IP, we can model the

FPGA cluster as having near-synchronous flow. This allows us to use routing

methods, especially those involving application-aware and static scheduling,

that had been regarded as impossible for clusters with distributed nodes.

2. Communication Network Layer. The network layer design has two major

aspects: router microarchitecture and routing algorithms. We have made con-

tributions in both. We propose two router designs for two different workloads.

For applications dominated by dynamic communication pattern, we provide a

Virtual Channel (VC)-based router design and the flow control mechanism re-

lated to it. For applications which have only static communication pattern, we

extend the existing Virtual Output Queue (VOQ) router design with hardware

support for two collective functions (multicast and reduction).

Our general VC-based wormhole router is based on the de facto pipelined Net-

work on Chip (NoC) router design (Dally and Towles, 2004). We make sig-

nificant modifications to it due to the different hardware constraints between

8

FPGA clusters and NoCs. It supports five different dynamic-scheduled (online)

routing algorithms and three switch arbitration policies. It is easily extended

with additional routing algorithms and arbitration policies. Also, the entire

design is fully parameterized, which can satisfy users’ requirement with simpler

changes such as flit width and maximum packet size.

We also propose a VOQ router with hardware support for collective operations.

There are two major distinctions in this router. The first is that it extends the

canonical four-stage router pipeline to a seven-stage pipeline to support multi-

cast and reduction. The second distinction is that this router uses routing tables

instead of online dynamic routing computation logic. Among the advantages

of table-based routing is that it supports application-aware static-scheduled

routing. The idea behind static-scheduled routing is to use a prioriapplication

knowledge to address network congestion. Surprisingly, to our best knowledge,

there are no existing FPGA clusters that have used this method. Supporting

statically-scheduled application-aware routing requires not only a novel router

design but also new routing algorithms. We propose a new offline collective

routing (OCR) algorithm for collective operations, which reduces network con-

gestion and balances load on the network links (Sheng et al., 2017; Sheng et al.,

2016). We compare this algorithm with the state-of-the-art online dynamic

routing. Our results show that static-scheduled table-based routing has an ad-

vantage over online adaptive routing in most cases both in both communication

latency and hardware resource utilization.

3. On-FPGA User/System Interface. Lack of user-friendliness is a well-known

problem for FPGAs. A multi-FPGA system makes things even worse. There

have been some attempts to make progress on this topic, but little of that

work has been systematic. Mostly it has relied either on the use of softcore

9

processors (Peng et al., 2014; Schmidt et al., 2012) or on latency-insensitive (LI)

channels (Fleming et al., 2012). These approaches achieve generality, but at the

cost of significant performance degradation. None of them takes into account

application characteristics. Our approach differs in that it exposes the high-

speed communication interfaces while allowing for flexibility and optimizations.

In our VC-based wormhole router, we support five different routing algorithms

and three kinds of switch arbitration policies. Also, the number of virtual chan-

nels linked to a network port can range from 2 to 9. As a result, the configurable

router supports more than 100 different configurations. We find that there is no

universal optimal configuration for all workloads. In fact, even a single work-

load may have different optimization goals, such as latency, throughput, or area

cost, and thus a different preferred configuration. To address this problem, we

make several contributions. First, we provide a cycle-accurate simulator that

exactly matches the behavior of the RTL model. Second, we define a standard

for the interface among hardware modules. As long as new hardware compo-

nents follow this standard, we can quickly extend the router and simulator with

them. Third, with the help of this simulator, we implement a framework to help

users evaluate different router configurations for a given application, including

support of various optimization goals. This application-aware framework ex-

haustively searches all the possible router configurations and outputs the one

with the best performance for the selected metrics. Because of their inherent re-

configurability, FPGAs can quickly switch among different configurations. Our

results show that the application-aware configurations can achieve significant

improvements compared with the optimized router configuration without ap-

plying application-awareness.

4. Applications for Multi-FPGA Systems. Creating model applications is

10

crucial to this project. These are necessary for overall proof-of-concept and

to test work in the other areas. There are currently very few applications for

FPGA clusters, and these are generally not portable or publicly available. We

have therefore developed our own.

We have investigated which applications are particularly suitable for mapping

onto FPGA clusters (Meng et al., 2016), and find that the 3D FFT is a good

candidate. We fully implement the 3D FFT and use it as a case study to show

how an application is mapped onto our cluster and communication infrastruc-

ture. Also, as the FFT routing pattern is deterministic, we create a complete

tool flow to help map applications onto FPGA clusters with static routing sup-

port. Also, we implement the 3D FFT on another Multi-FPGA platform, the

Microsoft Catapult II (Caulfield et al., 2016). The architecture of the Microsoft

Catapult II cloud places the accelerator (FPGA) as a bump-in-the-wire on the

way to the network and thus promises a dramatic reduction in latency as lay-

ers of hardware and software are avoided. We then use various experiments

to build a model for performance over a range of parameters. We have shown

sensitivity to node count, problem size, and also predicted the relative benefit

of future network enhancements. We also compare the performance of 3D-FFT

implementation on Novo-G# and Catapult. The results not only show advan-

tages over all the other previous 3D FFTs on CPU, GPU, and FPGA but also

demonstrate comparable performance with 3D FFT on an ASIC cluster (Young

et al., 2009).

The second application we investigate is Molecular Dynamics (MD). MD is

an iterative application of Newtonian mechanics to ensembles of atoms and

molecules (particles). 3D FFT is an essential kernel to compute the electrostatic

forces, and it is on the critical path. We examine phased application elasticity,

11

i.e., the use of a reduced set of nodes for the 3D FFT in MD. We find that,

for the FFT phase within Molecular Dynamics, such contraction is beneficial

with a 13%-14% performance improvement. Turning to MD, we show how

this elasticity can be integrated into the existing data transformation to hide

its communication overhead and increase the performance benefit to 16%-29%.

Using these and other results, we model MD on FPGA-enhanced clouds and

clusters. We find that combining processing and general communication in the

same device leads to extremely promising performance and the prospect of MD

simulations well into us/day range with a commodity cloud.

The rest of dissertation is organized as follows. We start with context and related

work in Chapter 2. After that, the next several chapters follow roughly the outline

of the four levels of work. Chapter 3 describes how we build an FPGA-accelerated

hardware platform, including the network topology and the low-level link protocol.

Chapter 4 discusses the proposed flow control mechanism and router microarchitec-

tures, including our proposed VC-based wormhole router and VOQ collective accel-

eration router. Next, Chapter 5 describes routing algorithms and the framework that

produces application-aware router configurations. There follow Chapters 6 and 7

about our application case study on FPGA cluster and cloud. The final Chapter 8

summarizes the entire dissertation and discusses possible future work.

Chapter 2

Background and Context

In this chapter, we provide background and context for the work of this dissertation.

The overall areas of interprocessor communication and networks, HPC, and reconfig-

urable computing (RC), are all major branches of computer science and engineering

and are covered in general by standard references. Here we begin by stating some

open problems in HPC and how they are addressed by RC in general and current

generation RC devices (FPGAs) in specific. We then examine the major previous

work related to the four major contribution areas of the dissertation: connections,

routing, interfaces, and applications.

2.1 Background

HPC remains a critical aspect of nearly all branches of science and engineering. How-

ever, three major factors are limiting HPC performance: computational efficiency,

power density, and communication latency. All of these are addressed by increasing

heterogeneity in computing systems, but the last one in particular by integrating

communication into accelerators. This integration enables direct and programmable

communication (DPC) among compute components. By direct we mean both direct

accelerator-accelerator communication and direct communication between application

and network interface. By programmable we mean that the communication design is

flexible, in particular, that it can be optimized for both hardware and software, con-

cerning the application.

12

13

Current high-end FPGAs are all equipped with some number (generally dozens

or more) of high speed interfaces called Multigigabit Transceivers (MGT) (Altera,

2014b; Altera, 2015; Xilinx, 2009). In many production application the MGTs are

the communication interfaces used by the network router/switch. In FPGA-centric

clusters, MGTs are used to provide physical links among FPGAs that are high-

bandwidth and low-latency. Besides the MGTs, further DPC support is provided by

the FPGA’s configurable computational capability including the ability to configure

applications to transfer data directly to/from the MGTs. This tight coupling of

computing and communication provides great potential for solving communication

bottleneck issues using FPGAs. At the same time, FPGA is reprogrammable, which

means the protocol, routing policy, and switch design of FPGA clusters can all easily

be modified. We can therefore select the options with respect to applications such that

the best performance (or the least cost) is obtained as specified by user requirements.

Figure 2·1 shows a FPGA cluster equipped with MGT links.

Much of the work in this dissertation was developed by using, and to provide

infrastructure for, the Novo-G# cluster (George et al., 2016). The background and

system architecture of Novo-G# is described in section 3.2 and 3.3.

One of the end-goals of this thesis is to make the inter-FPGA communication of

the Novo-G# more efficient and easier to use.

2.2 Previous Work Related to Contributions

High performance communication is a very broad topic. It is a subset of the general

area of Networks characterized by the limitation of the communication scope to a

well-defined cluster of nodes. These HPC clusters are usually assumed to have much

reliable and secure communication than general networks allowing many more opti-

mizations to be applied. Even so, HPC communication is a vast area of research. In

14

Figure 2·1: Left side: a Gidel ProceV D8 board with MGT ports
(J18), right side: a FPGA cluster with 32 ProceV D8 boards

this section, we sample the work that is directly related to this dissertation. Each of

the four subsections corresponds roughly to one of contribution areas mentioned in

Chapter 1.

2.2.1 Previous FPGA Clusters and Interconnection Networks

Early FPGA Clusters and Interconnection Networks

Researchers have been using multiple FPGAs to implement applications for more

than twenty years. In the 1990s, many researchers used multiple FPGAs to do logic

emulation. This was largely due to limited resources on a single FPGA (Babb et al.,

1993; Hauck, 1995; Hauck et al., 1998; Shaw and Milne, 1992; Lan, 1995; Khalid,

1999). At that time, the MGT had not yet emerged. FPGAs were interconnected via

two kinds of approaches, either directly hard-wired through pins (Babb et al., 1993;

15

Shaw and Milne, 1992; Hauck, 1995; Hauck et al., 1998), or by using specialized

Field Programmable Interconnect Chips (FPIC)(Lan, 1995; Khalid, 1999). These

approaches were limited by the number and speed of the pins on FPGAs at that time.

Researchers came up with different approaches to use bandwidth on pins efficiently.

In (Babb et al., 1993), Babb et al. developed the virtual wire to multiplex pin

resources. Hauck et al. explored methods to optimize the pin and internal FPGA logic

usage based on mesh topology (Hauck, 1995; Hauck et al., 1998). FPIC was another

approach to overcome pin limitations. In (Lan, 1995) and (Khalid, 1999), authors

investigated methods to optimize the routing inside the FPIC by programming the

FPIC into a crossbar structure.

BEE

The Berkeley Emulation Engine (BEE) system grew out of the famous RAMP project

(Wawrzynek et al., 2007) and followed a similar approach. It interconnected 20

FPGAs through a mixture of FPIC and direct wiring (Chang et al., 2003). The BEE’s

main purpose was originally also logic emulation, specifically prototyping wireless

communication algorithms. The BEE’s successor design, BEE2, replaced the direct

inter-FPGA wirings with MGT links; this was one of the first multi-FPGA design with

MGT links (Chang et al., 2005). Together with better Digital Signal Processing (DSP)

function support on FPGAs, BEE2 achieved great performance on DSP applications.

It also achieved remarkable efficiency for multiprocessor system simulation in the

RAMP projects (Wawrzynek et al., 2007; Krasnov et al., 2007).

Projects related to BEE include (Abdellah-Medjadji et al., 2008), which designed

a multi-FPGA platform to emulate SoCs. The main limitation of these projects,

including BEE, is that they did not further optimize inter-FPGA communication,

perhaps because their applications did not have a communication bottleneck. Re-

searchers from UCSD used a more recent version of the BEE system, BEE3 (Davis

16

et al., 2009), to measure network performance of a cluster with 8 BEE3 enclosures

(Bunker and Swanson, 2013). Their primary contribution is measuring latency and

bandwidth of unicast communication for different topologies.

TMD

The Toronto Molecular Dynamics machine (TMD) was a multi-FPGA system with

MGT interconnections (Patel et al., 2006) developed at the University of Toronto. A

major application was Molecular Dynamic simulations. Arun et al. instantiated soft

processors on each FPGA and implemented a specialized MPI library called TMD-

MPI to handle inter-FPGA communication (Peng et al., 2014). While soft cores have

the potential for generality, they can cause high latency on critical paths.

Maxwell

Maxwell (Baxter et al., 2007) was a multi-FPGA system similar to TMD and devel-

oped at the University of Edinburgh. It contained 64 FPGA nodes organized in a

2D torus network with MGT interconnections. Similar to TMD, each FPGA had a

PowerPC soft core and an MPI library to facilitate inter-FPGA communication. The

main limitation again was that use of soft cores increases the latency on critical paths.

Also, collective operations on Maxwell needed to go through a CPU-based Ethernet

network. Another issue was that the MGT 2D-torus network could only handle basic

nearest neighbor one-to-one communication.

RCC

The reconfigurable computing cluster (RCC) project is a multi-FPGA cluster devel-

oped at UNC Charlotte by the Sass Group (Sass et al., 2007). All the FPGAs are

directly connected with MGT links. Besides that, they developed a configurable net-

work abstraction layer called AIREN to provide friendly and efficient on-chip and

17

off-chip network interfaces (Schmidt et al., 2012; Schmidt et al., 2009). Sass, et al.

also designed specialized hardware cores to offload MPI collective operation from

software (Gao et al., 2009; Gao et al., 2010).

COPACOBANA and CUBE

The Cost-Optimized Parallel Code Breaker (COPACOBANA) is a high-performance,

low-cost cluster consisting of 120 FPGAs (Guneysu et al., 2008) that is optimized

for code breaking tasks. For interconnection among FPGAs the designers went back

to a low-bandwidth 64-bit data bus. This design choice is appropriate because code

breaking has little need for communication among parallel computing components.

The CUBE is a 512-FPGA system developed by Imperial College London and the

Chinese University of Hong Kong (Mencer et al., 2009). They used 8 PCB boards,

each with 64 FPGAs. In one PCB, inter-FPGA communication is also done by a

64-bit data bus, and all the 64 FPGAs are connected into a systolic array. Similar to

COPACOBANA, the main use of this design is key search.

There are a few drawbacks in CUBE and COPACOBANA designs. First, the

data bus interconnection is much less flexible than MGT interconnection and its low

bandwidth cannot is not likely to satisfy communication requirements other than

those similar to code cracking. Also, in CUBE, the method of integration of 64

FPGAs into a single PCB board makes it very vulnerable to system failure because

a failure of one FPGA chip could break the entire board.

Axel

Researchers at Imperial College also did much work on mapping applications on het-

erogeneous clusters with a mixture of CPUs, FPGAs, and GPUs (Tsoi and Luk, 2010;

Anson et al., 2010). Their main focus was partitioning and mapping applications on

heterogeneous computing components to facilitate load balancing. Researchers of

18

Axel paid little effort into optimizing communication.

Zedwulf

Zedwulf is a 32-node multi-FPGA SoC. The inter-FPGA communication is imple-

mented by connecting all the 32 FPGAs via an Ethernet switch (Moorthy and Kapre,

2015). Although it is a good practice at multi-FPGA SoC implementation, the

Ethernet-based interconnection introduces much higher latency overhead than MGT

interconnection.

Catapult

The most significant FPGA application project of (at least) the last decade is Mi-

crosoft’s Catapult where they have integrated FPGAs into their data center nodes

(Putnam et al., 2014; Caulfield et al., 2016). In the first version (Putnam et al., 2014),

they connected 48 FPGAs in a rack into a 6×8 2D torus using MGT links. The MGT

links are mainly used to relay the pipelined data flow for their Bing search engine.

In the second version (Caulfield et al., 2016), they have removed the MGT secondary

networks because of the difficulty of scaling and maintaining cabling to datacenter

scale. The emphasis is more on the scalability of FPGAs in data centers, while we

concentrate on HPC clusters of directly connect FPGAs (rather than through network

routers), programmable interconnects, and application-aware communication.

Bluehive and other application-specific FPGA clusters

There have been many projects that have used multiple FPGAs to accelerate single

applications, including neural network Simulation (Bluehive) (Moore et al., 2012),

lattice Boltzmann computation (Kono et al., 2012), content-based image retrieval

(Liang et al., 2013), and stencil computation (Sano et al., 2014). All tuned inter-

FPGA communication for their particular applications. Our emphasis is on general

19

communication and methods of optimizing for many different applications.

Other Work on Inter-FPGA Communication

There is also previous works that investigated inter-FPGA communication without

necessarily building a cluster. In (Markettos et al., 2014), the authors developed a

new MGT link protocol called BlueLink, which demonstrated better area consump-

tion than a commercial protocol. However, in this work they did not show the latency

comparison against other commercial protocols besides Ethernet, which has high la-

tency because of its complexity. In (Jun et al., 2015), the authors used a standardized

way to the implement network and transport layers of inter-FPGA communication.

However, the packet-switching they adopted introduced high latency per hop be-

cause of long headers. Also, they did not investigate reducing networking congestion.

(Giordano and Aloisio, 2011; Giordano and Aloisio, 2012; Liu et al., 2014) investi-

gated techniques to achieve near fixed-latency inter-FPGA high-speed serial links.

It requires customized link protocol IP, however, which is beyond the scope of this

dissertation.

2.2.2 Previous Work on FPGA System/User Interfaces

Since the invention of FPGAs, users have been concerned about programmability.

Within the massive literature, the most closely related is that which addresses FPGA

middleware to simplify the programming model of FPGAs while keeping the efficiency

as high as possible.

Some of this work has targeted encapsulating FPGA kernels into OS processes,

such as BORPH (So and Brodersen, 2008). SPREAD (Wang et al., 2013) and Re-

conOS (Agne et al., 2014) targeted threads so that application development on an

FPGA-based system could rapidly cross the SW/HW boundaries. Other work pro-

vides a unified hierarchy for on-chip and off-chip memory of FPGA (Chung et al.,

20

2011; Weisz and Hoe, 2015). Yet other work provides better programmability, scala-

bility, and customization for MPSoCs built by multiple soft cores on FPGA (Yianna-

couras et al., 2006; Mahr et al., 2008; Unnikrishnan et al., 2009; Kritikos et al., 2012;

Skalicky et al., 2015).

There are only a studies that have provided middleware for inter-FPGA commu-

nication. TMD-MPI (Saldana and Chow, 2006) is a software-based communication

library that facilitates inter-FPGA communication for TMD system. They released

an improved version in 2014 (Peng et al., 2014) by offloading MPI Bcast and Reduce

into FPGA logic. Andrew, et al. made a similar effort in (Schmidt et al., 2012). There

are two issues in these studies. First, their systems are based on soft processors. The

packetizing and depacketizing on a soft processor causes huge overhead. Second, they

both offload MPI collective directives onto FPGA logic. However, neither of them

exposed the ability to modify collective routes to application users, which means

application knowledge cannot be used to reduce network congestion in their systems.

LEAP took another approach to providing middleware for inter-FPGA commu-

nication (Fleming et al., 2012; Fleming et al., 2014). They blurred the difference

between inter-FPGA and intra-FPGA communication using a concept called the La-

tency Insensitive (LI) Channel, which makes a multi-FPGA system look like a bigger

single FPGA. However, because of the LI channel, communication latency is not their

concern.

2.2.3 Previous Work of Router Architectures

The router is an essential component in almost all of the interconnection networks

including HPC clusters, datacenters, and NoCs. A vast literature discusses router de-

signs on all of these platforms. We give a high-level overview. (Feng, 1981) provides a

comprehensive survey for early router designs. (Karol et al., 1987; Hluchyj and Karol,

1988) did a thorough study of the performance of simple input queueing and output

21

queueing routers. Almost at the same time, (Tamir and Frazier, 1988) proposed the

Virtual Channel Queue (VOQ) router. (Dally, 1992; Dally and Aoki, 1993) then

proposed what has become the canonical wormhole VC-based router design and the

flow control related to it. Later Dally’s VC-based router design became a standard

for almost everyone. Researchers have since proposed additional techniques such as

speculation (Peh and Dally, 2001; Kim et al., 2006), look-ahead (Mullins et al., 2004;

Mullins et al., 2006), express VC (Kumar et al., 2007), and prediction (Matsutani

et al., 2009) to shorten the latency and optimize the throughput of the conventional

VC-based router. Almost all the state-of-the-art interconnection of big systems such

as Intel Ominipath (Birrittella et al., 2015), IBM BlueGene (Chen et al., 2011) use

VC-based routers.

Since we have designed two router architectures, the related work of router archi-

tectures are correspondingly divided into two subsections. We have already walked

through the milestones in the VC-based router designs, so in the first subsection,

we mostly concentrate on the previous VC-based routers implemented on FPGAs.

Compared with general VC-based routers, the amount of literature for collective ac-

celeration routers is vastly reduced. Therefore, in the second subsection, we do a

rather comprehensive survey of the existing collective acceleration routers.

Previous Work of Wormhole VC-based Routers on FPGAs

The FPGA community has also given a lot of effort on porting the VC-based router

design onto FPGAs. (Brebner and Levi, 2003; Marescaux et al., 2004; Kapre et al.,

2006) discussed the design choices of implementing a packet switching network on

FPGAs. They did not go into in-depth router design. CONNECT (Papamichael and

Hoe, 2012) is the first work that studied the differences in router implementation

between FPGAs and ASICs. CONNECT supported three kinds of router architec-

tures: simple input buffering, VC-based, and VOQ. The Authors in CONNECT

22

believed that the conventional pipelined router design is not appropriate for FPGA

NoCs because of longer wiring delay. The design philosophy of CONNECT rather is

to achieve minimal resource utilization while maintaining a moderate operating fre-

quency. (Huan and DeHon, 2012) proposed a design called split-merge NoC pipelined,

which is very different from the conventional design. It solves the long wiring delay

issue in (Papamichael and Hoe, 2012) but with higher area overhead. Heracles (Kinsy

et al., 2013) build a framework generate an entire NoC on FPGAs. Hoplite (Kapre

and Gray, 2015; Kapre and Gray, 2017) proposed a deflection router based on the

conventional router. Its main design goal is extremely high efficiency to facilitate

massive replication on a single chip.

To our best of knowledge, we are the first to implement wormhole VC-based rout-

ing on a network based on FPGA MGT links. All the previous multi-FPGA systems

either do not have routers or do not support VC-based routers. In the most recent

BEE-series work (Bunker and Swanson, 2013), its router design has no VC support.

TMD adopted fully connective topology to avoid routers (Patel et al., 2006), which

also limits the scaling of the network. Maxwell has no router support, which results

in that its network only supporting nearest neighbor patterns (Baxter et al., 2007).

The router on RCC is a simple crossbar switch with some buffering (Schmidt et al.,

2012), which has no VC support. The inter-node communication in COPACOBANA

is done on a 64-bit bus, which has no need for a router (Guneysu et al., 2008). In

CUBE, the FPGAs are organized in a systolic array-style (Mencer et al., 2009). Each

FPGA can only talk to nearest FPGAs. In Axel, the inter-FPGA communication is

mainly through the front-end Ethernet network (Tsoi and Luk, 2010). The back-end

network with MGT links has no router support. In Zedwulf, FPGAs communicate

purely through commodity Ethernet (Moorthy and Kapre, 2015). Few details are

publicly available about the Catapult I router (Putnam et al., 2014). However, its

23

flow control is virtual cut-through rather than wormhole. In Catapult II, the FPGAs

are bump-in-the-wire in a commodity network (Caulfield et al., 2016) with the routing

done by a commodity switch. In Bluehive, the router can only perform simple DOR

routing (Moore et al., 2012). There is no specific VC support. Other multi-FPGA

systems (Kono et al., 2012; Sano et al., 2014; Liang et al., 2013) work for only one

application; their inter-FPGA communication only supports systolic-array-style data

transfer. None supports general routing.

Later we describe versions of our router microarchitectures based on rings and

crossbars. Other researchers have looked at different router microarchitectures (Kim

et al., 2007). Intel (Intel, 2013) and IBM (Pham et al., 2006) also have used ring

topologies because compared with crossbars, they has linear area complexity and

easier flow control.

Previous Work of Collectives Routers

Several groups have studied, designed, and fabricated ASICs to support multicast

and reduction on NoCs (Jerger et al., 2008; Rodrigo et al., 2008; Samman et al.,

2008; Abad et al., 2009; Wang et al., 2009; Krishna et al., 2011; Krishna and Peh,

2014). However, all of them implemented their own dynamic adaptive routing logic

on their chips. None of them considers static-scheduled routing. Compared with

static-scheduled routing, an adaptive routing algorithm is unable to use the global

traffic information to help them make routing decisions.

Among these studies, (Krishna and Peh, 2014) has the best performance, achieving

single-cycle multicast. It requires special hardware support, which is impractical on

FPGA clusters. Among the other work, (Wang et al., 2009) and (Krishna et al., 2011)

have the best performance. The differences between these two are that (Wang et al.,

2009) only supports multicast, while (Krishna et al., 2011) supports both multicast

and reduction. In dynamic adaptive routing, different logic is needed to support both

24

multicast and reduction. In table-based routing, both multicast and reduction can

share the same set of routing tables; this is another benefit of statically-scheduled

routing. So we select (Wang et al., 2009) together with their algorithm (RPM) as our

baseline.

2.2.4 Previous Work of Routing Algorithms

Routing algorithms is another major area of computer research. There have been

multiple books (Dally and Towles, 2004; Duato et al., 2003; Leighton, 2014) and

thousands of papers published on this topic. (Bjerregaard and Mahadevan, 2006;

Agarwal et al., 2009) conduct two comprehensive surveys on the research topics about

state-of-the-art routing algorithms.

Routing algorithms can be categorized into two classes, unicast and collective.

Most literature emphasizes unicast routing algorithms. We sample five representative

routing algorithms and implement them on our proposed VC-based router. The five

routing algorithms are Dimensional Order Routing (DOR) (Sullivan and Bashkow,

1977), Randomized Oblivious Multi-phase Minimal Routing (ROMM)(Nesson and

Johnsson, 1995), Orthogonal One-turn Routing (O1TURN)(Seo et al., 2005), Ran-

domized Load Balance Routing (RLB)(Singh et al., 2002), Credit Count Adaptive

Routing (CCAR)(Kim et al., 2005a). The details are given in Chapter 5.

Compared with unicast routing algorithms, there are fewer collective routing al-

gorithms. They can also be divided into two parts: previous static-scheduled routing

algorithms and previous dynamic collective routing algorithms. We organize them

into two sections.

Previous Work of Statically-Scheduled Routing Algorithms

If communication patterns are static and known a priori, as is often the case, then

judicious routing can reduce congestion, latency, and the hardware required. This

25

routing method is often referred to as offline or statically scheduled routing. The

concept of offline routing is not new. As early as the 1980s and 1990s, there were

studies where routing decisions were preloaded into context memory to schedule the

routes in their systolic arrays (Kung, 1988; Borkar et al., 1990). After that when

2D-mesh topology became popular, the author in (Shoemaker et al., 1996) applied

offline routing into the 2D-mesh routing as well.

(Kinsy et al., 2009) is the first work that proposed an offline routing solution on

NoC, which mainly targeted at workloads with one-to-one communication. There are

a few previous studies that have compared offline static routing with online dynamic

routing on FPGAs (Laffely et al., 2001; Kapre et al., 2006; Kapre, 2016). There

are several limitations in these studies. First, they all mentioned context memory

for pre-computed routing decision causes a lot of overhead. However, none of them

uses efficient methods to compress it. Second, all of them explored offline routing

for one-to-one communication. None of them discussed offline routing for collective

operations. Third, communication in their papers remained on either SoC or NoC.

None of them studied multi-chip communication.

Previous Work of Dynamic Collective Routing Algorithms

Researchers have not been active on this topic for a while. The most popular time

for this topic was between 2000 to 2014, when the NoC emerged. There are several

representative studies: VCTM (Jerger et al., 2008), MRR (Abad et al., 2009), bLBDR

(Rodrigo et al., 2008), RPM (Wang et al., 2009), and whirl (Krishna et al., 2011).

RPM and whirl are the two algorithms with the best overall performance. Compared

with whirl, RPM saves more chip resources. RPM has been updated. (Wang et al.,

2011) modified it in order fit it into irregular networks. (Ebrahimi et al., 2014)

extended it from 2D-mesh NoCs to 3D stacked NoCs.

26

2.2.5 Previous Work on Applications on FPGA Clusters

We are interested in examining the strong-scaling of applications because this provides

the most extreme test of HPC communication. Any application with significant

communication reaches a strong scaling limit eventually as the problem size remains

fixed as it is distributed across an ever increasing number of nodes. Most previous

work, however, has focused either on non-communicated applications, or examined

weak scaling.

3D-FFT and Molecular Dynamics Simulations (MD) are the two applications we

mainly focused on. 3D-FFT is especially difficult to scale strongly because it requires

all-to-all communication no matter how it is partitioned and mapped. MD is well-

known as a computation-intensive application. However, it could also easily become

communication-bound because of two reasons. First, it has a 3D-FFT on its critical

path. Second, to compute short-range force, each node needs to distribute positions

of molecules to neighbor nodes and collect forces from neighbor nodes, which will

cause a substantial number of multicast and reduction operations in strong-scaling

scenarios.

Since we mainly study 3D FFT and MD in this dissertation, we examine the

related work about the implementation of them on FPGA in the next two subsections.

Previous Work of 3D FFTs on FPGAs

We now review previous work implementing 3D FFTs on FPGAs. In (Varma et al.,

2013), the authors focus on accelerating the 3D FFT by redesigning 1D FFT IP

using Hard Embedded Blocks (HEB). However, their 1D FFT IP is still slower than

the Altera’s IP. The authors in (Nidhi et al., 2013) reduce the data transfer time of

XY corner turn and YZ corner turn by using a runtime configuration method called

Coarse Grain Reconfigurable Architecture (CGRA). However, their approach does not

27

scale well. When the problem size increases, the running time increases exponentially.

In (Humphries et al., 2014), we provide an effective 3D FFT implementation on a

single FPGA. Preliminary work by one of the authors (Humphries, 2013) investigates

some switching issues in more depth but does not account for congestion. We have

extended that in this dissertation.

Previous Work on MD on FPGAs

(Wolinski et al., 2003) first did a preliminary attempt of implementing MD on FP-

GAs. In this work, only the motion update is implemented. (Scrofano and Prasanna,

2006) investigated the hardware/software co-design of MD on FPGAs. (Patel et al.,

2006) designed a Message Passing Interface (MPI) function library to facilitate the

communication of MD on FPGAs. (Phillips et al., 2007) proposed a novel architecture

called FLEX to support dynamic load balancing on an FPGA for MD.

BU CAAD lab has been focusing on advancing the state-of-the-art of MD on

FPGAs consistently for more than a decade. (Gu et al., 2006a) implemented MD

on a Xilinx Virtex-II board, which demonstrated a speedup up to 88×. (Gu et al.,

2006b; Gu et al., 2006c) integrated FPGA accelerated non-bonded forces calcula-

tion into ProtoMol MD code(Matthey et al., 2004). In (Gu and Herbordt, 2007),

multigrid computation, which is an essential part of long-range force calculation, was

implemented on FPGAs with a speed of 5× to 7×. In (Gu et al., 2008), the force

pipeline was extensively explored. (Chiu et al., 2008; Chiu and Herbordt, 2009) pro-

posed new methods of filtering and mapping particles onto different pipelines. (Chiu

and Herbordt, 2010; Chiu et al., 2011) systematically examined the design space of

the short-range force pipelines on FPGAs. (Khan and Herbordt, 2011) presented an

event-based decomposition to scale discrete molecular dynamics simulation. (Khan

and Herbordt, 2012) studied the communication requirements for MD on FPGA

clusters. (Herbordt, 2013) researched the approaches of the architecture/algorithm

28

codesign of MD processors. (Herbordt et al., 2007; Herbordt et al., 2008; Khan et al.,

2013; Vancourt and Herbordt, 2009) provide general overviews of these methods.

Chapter 3

Target System Architecture and

Implementation

In this chapter, we first discuss the design choices in building multi-FPGA systems.

We then introduce the background and give an overview of our multi-FPGA target

system. There follows our system architecture and design details. After that, we

describe our investigation on the impact of commercial IP on the jitter of inter-

FPGA communication. Finally, we discuss the impact of these results, especially on

routing statically scheduled communication.

3.1 Design Choices of Multi-FPGA Systems

In this section, we list the most prominent design choices of existing multi-FPGA

systems; these are described in Chapter 2.

1. Direct versus indirect Network A multi-FPGA network direct when the

router resides on the same chip as the processing unit. Otherwise, it is a indi-

rect network. Indirect networks send packets to commodity routers which per-

form the packet switching. Besides Catapult and Zedwulf, all the multi-FPGA

systems listed in Chapter 2, including Novo-G, are direct networks. Indirect

networks save the effort of designing routers, but also introduce significant la-

tency overhead.

29

30

2. Different Topologies The choice of topologies is flexible for multi-FPGA sys-

tems because current FPGAs have many MGT ports. It is more desirable to

have a high radix topology because of shorter diameter, but the drawback is

additional board and cabling complexity. (Bunker and Swanson, 2013) did an

excellent study on the impact of different topologies on performance. Novo-

G adopts the 3D-torus because it has high radix, matches well with physical

applications, and leads to reasonably priced FPGA boards.

3. Cloud versus cluster For multi-FPGA systems, cloud and cluster setups have

their own advantages. An illustration showing the differences is displayed in

Figure 3·1. In conventional HPC clusters, as shown in Figure 3·1(a), accelera-

tors communicate through their hosts, which introduces a long latency penalty.

FPGA clouds such as Catapult II (Caulfield et al., 2016) address this issue by

placing the FPGAs on the NIC as a bump-in-the-wire, which sits between the

commodity network and hosts. More details about FPGA clouds are in Chapter

7. FPGA clusters such as Novo-G take this a step further by interconnecting

FPGAs directly through MGT links; this is the approach for most multi-FPGA

systems mentioned in Chapter 2. While this leads to good cluster designs, the

additional cabling may not be viable in cloud datacenters.

Commodity
Network

NIC

CPU

ACC

NIC

CPU

ACC

(a)

Commodity
Network

NIC

CPU

ACC NIC

CPU

ACC

Commodity
Network

NIC

CPU

ACC

NIC

CPU

ACC

(c)(b)
Secondary Network

among ACCs

Figure 3·1: Three models for FPGA-based HPC systems. a) Standard
HPC cluster. b) FPGA clouds. c) FPGA clusters.

31

3.2 Background of Novo-G

Novo-G (George et al., 2011) began in 2009 as an effort to create a research cluster

using high-density FPGA boards to accelerate scientific applications. The original

machine began with a head node and 24 Linux servers, each featuring a quad-FPGA

board from Gidel (Gidel, 2016), for a total of 96 Altera Stratix III E260 FPGAs. Over

subsequent years, the machine has been upgraded annually and now stands at 192

Stratix III E260 FPGAs in 24 servers, 192 Stratix IV E530s in 12 servers, 64 Stratix

V GSMD8s in 16 servers, and the second set of 64 Stratix V GSMD8s in 16 servers

under construction. Each server features dual Intel Xeon multicore processors. Server

connectivity is provided by Gigabit Ethernet and DDR/QDR InfiniBand within the

system, and a 10 Gb/s connection to the Florida LambdaRail.

At the NSF Center for High-Performance Reconfigurable Computing (CHREC),

Novo-G has been used for a variety of application acceleration projects from the do-

mains of bioinformatics (Lam et al., 2013), image processing (Craciun et al., 2013),

and financial computing (Sridharan et al., 2012). The common factor among the

above applications is that they are embarrassingly parallel and can, therefore, scale

almost linearly with the available hardware resources. A greater challenge is acceler-

ating communication-intensive applications like Molecular Dynamics. Traditionally

such communication makes use of centralized networks such as Ethernet or InfiniBand

and entails multiple interactions between the FPGA and the host. The increased la-

tency and communication bottleneck in such applications emphasizes the need for a

better solution.

The Novo-G# system (George et al., 2016), which has been under development

for the last two years, features high-density Stratix V FPGAs connected directly into

a 3D torus network, enabling low latency and high-bandwidth communication among

the FPGAs. The hardware is supported by an easy-to-use, but efficient, protocol

32

stack that packetizes, routes, and buffers data, allowing communication-intensive,

multi-FPGA applications to be developed rapidly. CHREC has also recently added

support for OpenCL-based, multi-FPGA applications that can also utilize the inter-

FPGA communication links.

3.3 Architecture of Novo-G#

The Novo-G# system is part of our effort to create an FPGA cluster that can handle

communication-intensive applications. In keeping with that theme, the system fea-

tures ProceV boards, which are PCIe-based accelerator boards from Gidel populated

with Stratix V GSMD8 FPGAs from Altera. The GS-series devices are optimized

for high performance, high bandwidth applications with support for up to 36 on-chip

transceivers that can operate up to 12.5 Gbaud. Each FPGA is connected to two 8GB

DDR3 SODIMM and two 36-Mbit SRAM memory banks and communicates with the

host CPU via PCIe v3. Four FPGAs are housed in a 4U chassis with two Xeon E5-

2620V2 (Ivy Bridge) processors per server. The servers themselves are interconnected

via Gigabit Ethernet and QDR InfiniBand.

The boards from Gidel have a custom daughter board that allows external access

to 24 high-speed transceivers. The transceivers are grouped into six bidirectional

links, each link consisting of four parallel channels, enabling the construction of a

3D torus of arbitrary size. Physical connectivity between the boards is provided by

a COTS CXP-3QSFP+ split cable that allows each FPGA to be connected in six

different directions. Initial deployment of the Novo-G# system was completed in the

second half of 2014 with 32 Stratix V boards housed in eight chassis and supporting

up to a 23 torus, and an upgrade to 64 nodes (4 × 4 × 4 torus) was completed in

August 2015. Figure 3·2 shows how a 23 torus is formed in Novo-G#.

There are several obvious reasons why we chose the 3D-torus as our topology. First

33

CPU CPUQPI

DRAM

PCI Express FPGA1

DRAM

QSFP+

QSFP+

QSFP+

Q
SF

P+

Q
SF

P+

Q
SF

P+

FPGA0

DRAM

Q
SF

P+

Q
SF

P+

Q
SF

P+

PCI ExpressQSFP+

QSFP+

QSFP+

FPGA2

D
RA

M

Q
SF

P+

Q
SF

P+

Q
SF

P+

QSFP+

QSFP+

QSFP+

PC
I E

xp
re

ss

FPGA3

D
R

A
M

Q
SF

P+

Q
SF

P+

Q
SF

P+

QSFP+

QSFP+

QSFP+

PC
I E

xp
re

ss

CPU CPUQPI

DRAM

PCI Express FPGA7

DRAM

QSFP+

QSFP+

QSFP+

Q
SF

P+

Q
SF

P+

Q
SF

P+

FPGA6

DRAM

Q
SF

P+

Q
SF

P+

Q
SF

P+

PCI ExpressQSFP+

QSFP+

QSFP+

FPGA4

D
RA

M

Q
SF

P+

Q
SF

P+

Q
SF

P+

QSFP+

QSFP+

QSFP+

PC
I E

xp
re

ss

FPGA5

D
RA

M

Q
SF

P+

Q
SF

P+

Q
SF

P+
QSFP+

QSFP+

QSFP+

PC
I E

xp
re

ss
PC

I E
xp

re
ss

NIC

PC
I E

xp
re

ss

NIC

TOR

Ethernet

Ethernet

FPGA0 FPGA1

CPU

FPGA2 FPGA3

FPGA4 FPGA5

CPU

FPGA6 FPGA7

Figure 3·2: An example showing a 23 torus Novo-G# system

is that many scientific application operate in 3D space — 3D image processing, N-

body, and MD simulation — and so map naturally onto the 3D torus. Second is that

the 3D torus has a comparatively short network diameter, high bisection bandwidth,

and high connectivity.

3.4 Investigation of MGT Link Connections

3.4.1 Introduction of MGT link Protocol

The Altera Statix V has a large number of protocol-specific transceiver PHY IPs (Al-

tera, 2015). The protocol-specific transceiver PHYs configure the PMA and PCS to

implement a particular protocol. Among them, we pick Interlaken PHY (StremDSP,

2015) and SerialLite III (Altera, 2013). We select them because they are light-weight

34

and have both low-latency and high-throughput, which are the main needs of HPC

applications.

Interlaken PHY and SerailLite III are both based on the Interlaken protocol.

Interlaken is an open interconnect protocol that was developed by Cisco Systems and

Corina Systems in 2006. Its full version targets chip-to-chip packet transmission under

high-bandwidth requirement (Cortina and Cisco, 2008). However, its full version is

not suitable for low-latency communication. The first PHY IP we selected is the

Interlaken PHY IP core, which supports a lightweight version of Interlaken PHY

protocol. The Interlaken PHY IP core is a scalable, high-bandwidth and low-overhead

FPGA interconnection supported by both Altera and Xilinx FPGA device families

with an identical user interface.

TX
	 F
IF
O
	

M
et
aF
ra
m
e	

Ge
ne

ra
to
r	

CR
C3

2	
Ge

ne
ra
to
r	

64
B/
67
B	

En
co
de

r	

Sc
ra
m
bl
er
	

67
:4
0	

Ge
ar
bo

x	

TX_PCS

RX
	 F
IF
O
	

W
or
d/
Bl
oc
k	

Sy
nc
hr
on

ize
r	

CR
C3

2	
Ve

rifi
er
	

64
B/
67
B	

De
co
de

r	

De
sc
ra
m
bl
er
	

40
:6
7	

Ge
ar
bo

x	

RX_PCS

Interlaken_PHY

Ch
an
ne

l	 B
on

di
ng
	 a
nd

	 A
lig
nm

en
t	 FPGA

SERDES

TX

RX

payloadIn

controlIn

payloadOut

controlOut

Figure 3·3: The structure of the Interlaken PHY IP core

The structure of the Interlaken PHY is displayed in the Figure 3·3. The transceiver

has a SerDes part, which is called Physical Medium Attachment(PMA). It links to

the serial links. The data rate on this link can go as high as 14.1 Gbps per lane. An-

other part is called the physical Coding sublayer(PCS), which processes the data in

front of the SerDes logic. This part is the kernel of the transceiver. The PCS includes

35

the TX/RX FIFO, MetaFrame generator, CRC32 generator, scrambler, 64B/67B En-

coder, and Gearbox. The gearbox in the PCS adjusts the PMA data width to a wider

PCS data width when the PCS is not two or four times the PMA width. For a se-

rial interface to distinguish work boundaries, an encoding method is required. In

Interlaken PHY, 64B/67B encoding is developed based on the IEEE 802.3 64B/66B

encoding (Cortina and Cisco, 2008). The scrambler aims to eliminate the error mul-

tiplication and guarantee bit transition density. On each lane, the CRC32 is provided

as a diagnostic tool on each lane to trace errors. The data in Interlaken PHY are

transferred in a frame-by-frame manner, which is called MetaFrame. One MetaFrame

is formed by MetaFrame generator including one synchronization word, one scrambler

word, one diagnostic word, one or more skip words, and the data payload. And the

TX/RX FIFOs are going to buffer the data traffic. On the other side, the Interlaken

PHY is connected to the user logic through the Avalon-ST interface.

The second PHY IP we selected is the SerialLite III Megacore. It is based on a

hardened Interlaken PHY IP core, and it provides the synchronizer among multiple

Interlaken PHY date lanes. This provides excellent scalability in the number of lanes

(Altera, 2013). However, compared with Interlaken, its synchronizer introduces an

extra delay on the data path and requires additional hardware resources. Table

3.1 gives a comparison of characteristics between Interlaken and SerialLite III. The

latency comes from our measurements when running them on the board. The resource

utilization comes from the report generated from Quartus II.

3.4.2 Problem of Link Latency Variances and Clock Jitters

The transceivers in the Novo-G# are based on the Interlaken-PHY IP core of the

Altera Stratix-V FPGA family (Altera, 2015). We use the Interlaken-PHY IP core to

implement the direct FPGA-FPGA communication. The Interlaken PHY IP core is a

lightweight, scalable, high-bandwidth, and low-overhead FPGA IP family supporting

36

Table 3.1: The comparison of characteristics between Interlaken and
SerialLite III

Attribute Interlaken SerialLite III

Data rate 10 Gbps 10 Gbps

End-to-end latency 176 ns 307 ns

Number of Lanes 4 4

ALMs 240 1080

ALMs used for memory 0 0

Combinational ALUTs 394 1380

Dedicated Logic Register 427 2525

I/O Registers 0 0

Block Memory Bits 0 0

DSP Blocks 0 0

both Altera and Xilinx FPGA devices.

When implementing applications on a single FPGA, the design is often easy to

synchronize. If we want to expand it to a large-scale cluster, this issue is more prob-

lematic. There is no global clock for all the nodes in one cluster. Therefore, two

identical computation kernels on two different nodes do not finish simultaneously.

For communication, the latencies on different physical links differ as well: transceiver

clock rates vary and cables have different lengths. The way to deal with these vari-

ances, or jitter, is through adding complexity to the communication mechanism such

as increased buffer sizes and throttling through flow control. These add overhead to

both resource utilization and link latency. What we investigate here is the nature of

this cost and how it affects application performance.

In general, the source of latency variations in SerDes devices resides in both se-

rial and parallel parts (Giordano and Aloisio, 2011). On the serial side, there is a

frequency multiplier from the input clock of the transmitter to the output clock of

the serial link. On the receiver side, a low-frequency clock is recovered from the high-

frequency signal on the serial link with a frequency divider. Potential phase change

37

happens during the frequency multiplication and division. Also, the phase change is

non-deterministic, which implies one source of the latency variation of the data trans-

fer on the link. Also, the cable lengths and the serial clock frequencies vary from link

to link. On the parallel side, the elastic FIFOs introduce another source of latency

variation. This variation is because latencies in the FIFOs are determined by the

distance between the read and write points assuming the reading and writing rates

are the same. The positions of these pointers, however, is affected by many factors;

these can be approximated as random if no dedicated mechanism is introduced.

3.4.3 Latency and Jitter Measurements

In an FPGA cluster there two primary forms of jitter: clock variation among different

nodes and variations of latencies among different links. We examine these in turn and

produce a simple model to be used as the basis for performing accurate simulations.

Tx serial

Rx serial

Tx serial

Rx serialMG
T

Tx parallel

Rx parallel

Monitor
MG

T

Traffic
generato

r

CMP

PLL
Ref clk

Rx parallel

Tx parallel

Figure 3·4: Ping-Pong test to measure latency variation.

3.4.4 Variation of Communication Latencies

The latency variations reside at four levels:

1. in one lane over time,

2. among different lanes of the same link,

38

3. among different links of the same FPGA chip, and

4. among different transceivers of the different FPGAs.

We performed experiments to obtain results for all four.

We use the classic ping-pong test illustrated in Figure 3·4. We validated by

examining the waveforms directly. The FPGA on the right has a traffic generator

which sends data to the MGT interface in a parallel format. At the same time, the

monitor creates and records a random value for the outbound data stream of the

transmitter. As data is transferred to the TX parallel port module, a counter in the

monitor is initialized. The data is then sent through the serial link to the FPGA on

the left side, after which the data is routed from that FPGA’s RX port to its TX

port and transmitted back again. The FPGA on the right side eventually receives

the return data, and a comparator checks it with the recorded sent data. Once that

happens, the counter in the monitor block stops. This mechanism is very accurate,

working on the frequency from one PLL.

The setup of the experiment is shown in 3·5. We deployed two FPGAs to deter-

mine the variation among the boards. For each board, two MGTs are configured with

Interlaken PHY IP to explore the difference among the MGTs on the same board.

Each MGT is configured with four lanes to discover the variations among the lanes

of the same link table. The physical characteristics for the Interlaken PHY IP are

shown in Table 3.2.

To explore level-one latency variation (single lane) we sample its latency 75 times

and plot the results (see Figure 3·6). We find that distribution appears to be random

with distribution TBD. The mean and variance are shown in Table 3.3. The level-

two variations are found by comparing the different lanes in the same transceiver.

The level-three variations exist in the differences between the two MGTs of the same

FPGA. The level-four variations can be identified by comparing the differences be-

39

tween FPGA0 and FPGA1. When we look at the variation over time for a single

lane, the maximum latency is about 40% larger than the minimum (on average). In

some extreme cases (Lane3 of the MGT1 on FPGA0), the maximum latency is close

to double of the minimum latency.

When we compare the difference among multiple lanes and boards, however, the

variation is relatively trivial compared to the fluctuation in the time dimension.

Table 3.2: The physical Characteristics of the Interlaken IP

Attribute # or rate

metaframe length 2048

Data rate 10Gbps

Number of Lanes 4

ALMs 240

AlMs used for memory 0

Combinational ALUTs 394

Dedicated Logic Register 427

I/O Registers 0

Block Memory Bits 0

DSP Blocks 0

Tx serial

Rx serial Tx serial

Rx serial

MGT
0

Tx parallel

Rx parallel

Rx parallel

Tx parallel

FPGA0 FPGA1

MGT
0

Tx serial Rx serial

MGT
1

MGT
1Rx serial Tx serial

Rx parallel

Tx parallel

Tx parallel

Rx parallel

Figure 3·5: The setup for the ping-pong test

40

110

130

150

170

190

210

1 11 21 31 41 51 61 71

E
n

d
-t

o
-e

n
d

 l
a
te

n
cy

 o
f

o
n

e
la

n
e

(n
s)

Experiments ID for MGT1 on FPGA0

FPGA0_MGT1_lane0 FPGA0_MGT1_lane1

FPGA0_MGT1_lane2 FPGA0_MGT1_lane3

140

160

180

200

220

1 11 21 31 41 51 61 71

E
n

d
-t

o
-e

n
d

 l
a
te

n
cy

 o
f

o
n

e
la

n
e

(n
s)

Experiments ID for MGT0 on FPGA0

FPGA0_MGT0_lane0 FPGA0_MGT0_lane1

FPGA0_MGT0_lane2 FPGA0_MGT0_lane3

140

160

180

200

220

1 11 21 31 41 51 61 71E
n

d
-t

o
-e

n
d

 l
a
te

n
cy

 o
f

o
n

e
la

n
e

(n
s)

Experiments ID for MGT1 on FPGA1

FPGA1_MGT1_lane0 FPGA1_MGT1_lane1

FPGA1_MGT1_lane2 FPGA1_MGT1_lane3

120

140

160

180

200

1 11 21 31 41 51 61 71E
n

d
-t

o
-e

n
d

 l
a
te

n
cy

 o
f

o
n

e
la

n
e

(n
s)

Experiments ID for MGT0 on FPGA1

FPGA1_MGT0_lane0 FPGA1_MGT0_lane1

FPGA1_MGT0_lane2 FPGA1_MGT0_lane3

Figure 3·6: The variations of end-to-end latency over time for four
lanes

0

20

40

60

80

100

120

140

144 152 160 168 176 184 192 200 208

C
o
u

n
t

End to End Latency (ns)

FPGA0 FPGA1

0

10

20

30

40

50

60

70

80

90

100

144 152 160 168 176 184 192 200 208

C
o
u

n
t

End to End Latency (ns)

FPGA0_MGT0 FPGA0_MGT1

FPGA1_MGT0 FPGA1_MGT1

(a) (b)

Figure 3·7: (a)The latency distribution comparison among four MGTs
(b)The latency distribution comparison between two Altera Stratix V
boards

Figure 3·7 gives us a different perspective with the (a) panel giving latency distri-

butions for different MGTs and the (b) panel different FPGAs. While not a perfect

fit, we use a Gaussian with a mean of 175.7ns and Standard Deviation of 12.34ns to

express its distribution.

3.4.5 Measurement of Clock Jitter

The clocks on the different boards do not have perfectly matched clock frequencies.

To measure the jitter, we use the output clock of a PLL at 250MHz as a reference to

gauge the frequency of clk0 signals of the four ProceV boards.

To make the experiment concrete, on the four boards we instantiate a single 16-

point 1D FFT IP. We run this module 1024 times on each and measure the execution

41

Table 3.3: The mean and variance of link latencies. All times in ns.

FPGA0 MGT0 MGT1

Lane 0 1 2 3 0 1 2 3

Avg 175.8 175.5 172.9 180.1 175.7 175.7 179.9 179.0

Min 152 144 156 156 148 152 160 112

Max 208 204 212 204 192 212 212 212

STD 13.4 12.5 11.2 11.3 10.6 12.5 15.5 15.5

FPGA1 MGT0 MGT1

Lane 0 1 2 3 0 1 2 3

Avg 171.8 179.8 172.5 175.4 170.6 173.9 173.9 173.5

Min 148 156 128 148 144 144 156 156

Max 204 208 204 204 200 224 200 200

STD 12.5 12.3 14.2 13.6 10.8 12.8 12.2 11.1

time with respect to the reference clock. The measured effective frequencies are shown

in Table 3.4. The difference between the longest and shortest cycle is 6 ps. WHile

this result appears to be trivial, it is actually significant for practical applications.

For example, for a 2563 FFT the number of clock cycles spent on the computation

will be around 1000. Then the jitter between two neighboring nodes could be as large

as 6 ns, which is in the same order of magnitude as the variation in link latency.

Table 3.4: The clock jitter over four ProceV boards

FPGA0 FPGA1 FPGA2 FPGA3

freq(MHz) 103.174 103.213 103.239 103.200

cycle(ns) 9.692 9.689 9.686 9.690

jitter (ps) 6 3 0 4

3.4.6 Case Study: 3D FFT

In the previous section, by conducting several simple experiments, we obtained an

estimate of link latency, the variation of link latency, and clock jitter. In this section,

we apply this information to the simulation of the 3D FFT. The detailed method

42

and implementation of 3D FFT are be presented in chapter 6. In this subsection, we

demonstrate the results and conclusions directly.

In our previous work (Sheng et al., 2014), our simulations assume fixed link la-

tency and do not take clock jitter into account. In this paper, we replace fixed link

latency with the various latencies that obey the Gaussian distribution and also add

the clock jitter into the simulation. Table 3.5 demonstrates the new FFT simulation

results and the comparison with the results that use fixed latency. Cluster size is

43, FPGA operating frequency is 150MHz, and the data type is the 32-bit floating

point. The right three columns have latencies in microseconds. “Fixed” denotes av-

erage latency with no variance, “Variable” denotes that variance has been modeled,

and “Ref” denotes previous results where we assumed (very conservatively) 100MHz

FPGA frequency and 500ns fixed link latency (Sheng et al., 2014).

Table 3.5: The 3D FFT latency case study.

fft size fixed variable reference

163 1.63 1.77 3.98

323 2.24 2.35 5.46

643 6.59 6.93 16.76

1283 38.51 40.17 101.11

We note that despite the apparently substantial variance, the two new results are

not that different. The reason behind is that the variation of the latency on the

physical links and the clock jitter are small when compared with the latency caused

by congestion. But still, the variation of physical links and clock jitter degrade the

performance for all cases because they increase the cost of synchronization.

3.4.7 Discussion

We have investigated variance in communication latency at various levels and clock

jitter among FPGAs. We are not aware of other studies on these topics. We find that

43

these quantities are significant and in the case of link variance, surprisingly large.

We also find, however, that the communication infrastructure based on the Altera

MGTs and the Interlaken PHY link IP is sufficient to make these variances and jitter

manageable.

The fact that there is substantial jitter has at least two effects: there must be

flow control between communication and application modules (already in place in

our case study) and the link protocol must have appropriate buffer sizes and flow

control mechanisms. This second effect means that the communication IP necessar-

ily cannot be too light-weight, which affects chip resources and latency. As we see

from Table 3.2 the chip resources needed are negligible. Latency, however, through

additional buffering and flow control, may be increased by nearly a factor of two over

a lighter weight alternative.

On the positive side, the current setup gives seamless communication; only simple

flow control and no additional buffering are needed on the application side, which

indicates the viability of particular modes of higher-level packet processing which

assume a synchronous flow model. These include offline routing and computation

within the network (see, e.g., (Herbordt and Swarztrauber, 2003)).

Chapter 4

Network Architecture, Part 1: Router

Design and Flow Control

This chapter describes the design choices in our router microarchitecture and its

related flow control mechanism. We have created two router microarchitectures for

two different workloads. The first router, which is described in section 4.2, mainly

targets the workloads with dynamic communication. It is based on the conventional

wormhole VC-based router (Dally and Towles, 2004); we assume credit-based flow

control. To meet the hardware constraints of the multi-FPGA system, we apply

several modifications in our router compared with the standard design.

Section 4.3 the router microarchitecture for workloads with static communication.

It also has a pipelined structure, but it is VOQ-based. Its main feature is the hard-

ware support for the collective operations. Its routing method is table-based, which

facilitates application-aware statically-scheduled routing.

4.1 Background and Assumptions

As we introduced in the Chapter 2, we are the first to describe the implementation

of a wormhole VC-based router on a multi-FPGA network built with MGT links. All

the previous wormhole VC-based FPGA routers are for NoCs. Also, all the routers in

the prior multi-FPGA systems are simple input buffering routers. Beyond the NoC

level, there are huge number of complex VC-based ASIC router designs (see (Chen

et al., 2011; Birrittella et al., 2015)). We narrow down the scope of VC-based routers

44

45

that are most likely to be cost-effective on FPGA clusters. We do this by observing

several properties of FPGA clusters and extrapolating their implications to constrain

the router design space.

The first assumption is that the user logic and the router are located on the same

FPGA chip. The reason why we make this assumption is that the co-location of user

logic and router is the key point to achieve the tight coupling of communication and

computation. The second assumption is that there is only one router per node. Extra

routers introduce both area and latency overhead. The parallelism benefits brought

by extra routers can be maintained by proper application logic design. The third

assumption is that the logic elements consumed by the router less than a quarter of

the entire chip. More area means more VCs and better routing algorithms can be

implemented in the router. However, we prefer more room is reserved for user’s logic.

We determine 25% as our budget because we find 25% is sufficient for our router

design to achieve good performance. The fourth assumption is that the maximum

operating frequency of the router is above 140MHz. The frequency provided by the

MGTs is about 70 MHz, so the frequency of the router should be multiple times of

that. If we use 70 MHz as the operating frequency of our router, we have to select

the 256-bit as the flit size, which results in over-budge router area. Therefore, 140

MHz is the best choice for the operating frequency.

Since the previous FPGA VC-based routers have all been for NoCs, we continue

our constraint of the design space by comparing the hardware characteristics of FPGA

clusters with FPGA NoCs. We give these and the impact of the differences in Table

4.1.

In FPGA NoCs, the topology is most often a 2D-mesh or torus; the topology

of clusters is much more flexible and generally higher dimension. For example, the

Novo-G# is a 3D-torus. This higher dimensionality causes the number router of the

46

FPGA cluster to have more ports than that of FPGA NoC. A further impact of the

difference in topology is that the more ports result in more complicated switch design.

The inter-node latency of FPGA clusters is 20-100 clock cycles while the that

of FPGA NoC is negligible. Because of the negligible latency in FPGA NoCs, (Pa-

pamichael and Hoe, 2012) argues that pipelined router design is not suitable for router

design of FPGA NoCs. On the FPGA cluster side, the long inter-node latency lets

one-or-two extra stages in the router pipeline become insignificant.

The phit size in FPGA cluster is determined by the FPGA fabric and the MGT

link IP, which is 256-bit. Typically, the flit size is bigger than phit size in NoC. If we

were to stick with the NoC policy, then the router would consumes too much area

because of the wide flit. Our decision is to use flit size smaller than phit size and

increase the operating frequency.

As we stated above, the number of routers per chip for FPGAs in clusters likey to

be one. In NoCs, we want to fit as many routers as possible. The bigger area budget

on the FPGA cluster allows more pipeline stages, more VCs, and more room for the

switch. Since in FPGA clusters, there are no global clocks, and the MGT links do

not provide specific backpressure signals, the credit-based flow control is the most

convenient way to synchronize the entire system and avoid packet drops.

4.2 Wormhole VC-based Router on FPGA Cluster

Since William Dally proposed Wormhole VC-based router in the early 1990s (Dally,

1992; Dally and Aoki, 1993), it has been well-studied for decades. In the following

subsection, we are going to give a brief walk-through of the classical wormhole VC-

based router microarchitecture.

47

Table 4.1: The comparison of hardware constraints between Novo-G#
and NoC

FPGA cluster FPGA NoC Impact

Topology 3D-torus 2D-mesh or torus More ports

of ports 6 4
More complicated

switch

Inter-node latency 20-100 CCs 1-3 CCs
Pipeline stage # is

unimportant

Phit size 256-bit <32-bit Flit size < Phit size

of routers/chip 1 >10
More room for
switch and VCs

global clocking No yes
Credit-based flow

control

4.2.1 Classic Wormhole VC-based Router Microarchitecture

Figure 4·1 shows the block diagram of the conventional pipelined VC-based router.

Each flit of a packet from the network arrives the router at an input unit. If it is a

head flit of the packet, the routing computation unit performs one routing algorithm

to determine the output port (or ports) where this packet should leave. Every input

unit contains a set of virtual channels. A VC holds the arriving flits until there are

available output ports to forward them. A VC also includes a finite state machine

(FSM) that keeps the state of each packet and manages the signals come from the

switch allocator.

After routing computation is performed on a packet, a VC is allocated to it by the

VC allocator. Later on, the switch allocation is done by the switch allocator when

multiple packets compete for a single output port simultaneously. The packet with

the highest priority is granted for switch traversal. After switch traversal, the packet

leaves the router from an output port.

Figure 4·2 shows a Gantt chart illustrating the pipelining of a classic virtual

channel router. The four pipeline stages are routing computation (RC), virtual-

48

X+

Y+

Z+

X-

Y-

Z-

VC
VC
VC
VC
VC
VC

switch

input unit

VC
VC
VC
VC
VC
VC

input unit

. . .

Routing
Computation

Unit

VC allocator

. . .

SW allocator

X+

Y+

Z+

X-

Y-

Z-

User logic

Routing
Computation

VC
allocation

Switch
allocation

Switch
Traversal

Figure 4·1: The classic wormhole VC-based router microarchitecture

channel allocation (VA), switch allocation (SA), and switch traversal (ST). Typically,

each flit of one packet only spends one clock cycle at every stage. The RC and

VA stages perform computation for the head flit only (once per packet). Body flits

traverse through the two stages without computation. The SA and ST stages operate

on every flit of the packet.Figure 4·2 shows a case where the packet advances through

the pipeline stages without any stalls.

The VC-based flow control has two kinds of benefits. First, it overcomes the

blocking problems of traditional wormhole flow control by allowing other packets to

use the channel bandwidth that would otherwise be left idle when a packet blocks.

One example illustrating comparing it with traditional non-VC routing is displayed

in Figure 4·3. The upper half shows a router example without VC. The head flit of

49

RC VA SA ST

SA ST

SA ST

SA ST

Cycle

Head flit

Body flit1
Body flit2

Tail flit

1 2 3 4 5 6 7

Figure 4·2: The classic Wormhole VC-based router pipeline

packet B is blocked at Node 2 because the downside port is not available. At this

point, packet A also would like to go from node 1 to node 3 while passing node 2. The

two channel p and q that the packet A would like to occupy is idle. However, it is

still blocked because packet B is blocked. In the down half of Figure 4·3, by splitting

channel P into two VCs, the blocking issue of packet A is solved. The second benefit

of VC-based flow control is it can solve the deadlock problem by breaking channel

dependency cycles. The details are described in next subsection.

4.2.2 Proposed VC-based Router on Novo-G#

Router Microarchitecture

The classical wormhole VC-based router microarchitecture is mostly studied on NoC.

However, the hardware constraints of an FPGA cluster like Novo-G# is very differ-

ent from those on NoC. Their differences are listed in Table 4.1. Because of these

disparities, our proposed router microarchitecture has several significant differences

from the classic one. Our design is illustrated in Figure 4·4.

The first significant difference is that there are two sets of asynchronous FIFOs at

the front and back ends. The Stratix V FPGA fabric constrains the phit size to be

256-bit and the parallel clock provided by MGT IP to be around 71 MHz. Usually,

50

A

B

Node 1

B

Node 2

VC

idle
chan p

Node 3

idle
chan q

Blocked

A
B

Node 1

B

Node 2

A chan p

Blocked

A

Node 3

Non-VC
Wormhole

VC-base
Wormhole chan q

Figure 4·3: An example showing how VC-based flow control solves
the blocking issue of typical wormhole flow control

flit size should be greater than phit size. However, if we select flit size larger than

256-bit, the router will consume an enormous amount of area on the FPGA. Also

the 71 MHz is too slow for current FPGA devices. We select 128-bits as our flit size.

This is natural since it leads to a better, but still conservative, clock frequency of 142

MHz. The two sets of asynchronous FIFOs at the front and back ends are used for

the data to cross the two clock domains.

The second noticeable difference is that there is no particular port for local in-

jection and ejection. In most NoC router designs, there is one extra port for local

traffic (besides the ports for all the bypass traffic). In our router, the packet is ejected

directly after the routing computation is done. Also, the packet is directly injected

into the output network link when bypass traffic is not occupying it. Figure 4·4 shows

the result: six injection and six ejection ports. There are three obvious benefits from

this design. First, this yields the highest possible offered injection throughput and

51

Async FIFO Route Comp X+

Async FIFO
Async FIFO
Async FIFO
Async FIFO
Async FIFO Route Comp

Y+
Z+
X-
Y-
Z-

.

User Logic

VC
VC
VC
VC
VC
VC

VC Allocator

VC
VC
VC
VC
VC
VC

switch

X+
Y+
Z+
X-
Y-
Z-

...

.
Async FIFO
Async FIFO
Async FIFO
Async FIFO
Async FIFO
Async FIFO

eject

eject

inject

inject

Figure 4·4: The proposed router microarchitecture on Novo-G#

can achieve the full outgoing bandwidth of each node. Second, the nearest neighbor

pattern can achieve ideal performance. “Ideal” means congestion-free and 100% uti-

lization of the link bandwidth. Third, the complexity of switch is reduced because

there are fewer ports. There are also drawbacks. One is that, if the user’s pattern does

not need full outgoing bandwidth, extra logic is required to help users to determine

which port to use for data injection. Another drawback is that the injection port

selection has to satisfy the requirement of the deadlock avoidance, which we discuss

later.

The routing algorithms in the routing computation stage are discussed in the

next chapter. The VC allocation policy we used here is round-robin. The VC is

implemented by a FIFO IP and a state machine.

The third difference is the connection between the VC and switch. There are

three possible implementations (Dally, 1992), which are illustrated in Figure 4·5. The

number of inputs and outputs that need to be switched increases when the number of

virtual channels multiplexed on each physical channel is increased. If all the virtual

channels are separately handled, as shown in Figure 4·5(c), the switch complexity

is increased dramatically, because it is quadratically related to the port number.

52

However, the area budget for the router on NoC is quite tight. The NoC always desires

to fit as many nodes as possible. Therefore, all the virtual channels multiplexed on the

same physical channel are multiplexed again before they are connected to switch, as

illustrated in Figure 4·5(a). In this manner, the switching complexity is not increased.

Most NoC VC-based routers follow this method to compact their router size. But

the compactness is not achieved by free. First, the input VC needs to be arbitrated

not only for an output port but also for access to the switch. Second, the VC that

is granted for switch traversal may block other VCs that are multiplexed from the

same physical channel. One example is shown in Figure 4·6(a). After the routing

computation, the output port of packet B is Y, which is idle. However, it cannot

advance because the VC of packet A is the one that is granted for switch traversal,

although it is blocked at output port X. In contrast, in Figure 4·6(b), this issue is

solved by connecting all VCs to switch directly. Figure 4·5(b) is an intermediate

solution. The switch provides separate inputs for all VCs and multiplexed outputs.

It simplifies the arbitration of VCs. Only one input VC competes for switch output

ports. However, the switch is still larger than the solution in Figure 4·5(a). But

again, in FPGA clusters we just need to fit one router per chip and so in this case is

affordable. So we adopt it as our router microarchitecture.

As we stated previously, our switch design provides separate inputs for all VCs

and multiplexed outputs. Let us assume there are N input ports (N = 6 in our case),

and each of them is multiplexed by M VCs. Then our switch is an M×N to N switch.

Conventionally the NoC router implements the switch using a crossbar structure as

shown Figure 4·7(a). If we also adopt this structure, it causes two problems. First,

it requires complex arbitration logic. Second, it cannot easily scale. As stated above,

the operating frequency must be higher than 142 MHz. When the number of VCs

multiplexed on each physical channel is greater than 4, it is almost impossible to meet

53

VC
VC
VC
VC
VC
VC

VC
VC
VC
VC
VC
VC

SW

VC
VC
VC
VC
VC
VC

VC
VC
VC
VC
VC
VC

SW

VC
VC
VC
VC
VC
VC

VC
VC
VC
VC
VC
VC

SW

(a) (b) (c)

Figure 4·5: Three ways of implementing the connection between the
VC and switch. (a)

VC
VC
VC

VC

VC
VC
VC
VC
VC
VC

SW

(a)

X

Y

A body A head

B head

blocked

idle

VC
VC
VC

VC

VC
VC
VC
VC
VC
VC

SW

(b)

A body

X

Y

blocked
A body

A head

B tail

B body

Figure 4·6: An example showing how multiplexing of multiple VCs
on the same physical channels causes extra blocking

this requirement.

To address this issue, we propose a reduction-tree-based switch. An M × N

reduction-tree-based switch is formed by having N M -to-1 reduction trees. Each

reduction tree is formed with multiple levels of 2-to-1 and 3-to-1 reducers. One

example of the proposed switch design is illustrated in Figure 4·7(b). This example

shows a 6 × 3 switch. Each input port is directed to one of the three reduction

trees based on their output port number (that is computed in the RC stage). Each

reduction tree in this example has two levels of reducers. The first level is two 3-to-1

54

reducers, and the second level is one 2-to-1 reducer. In each N-to-1 reducer, there is

one small FIFO with a depth of two for each of the N inputs. All N inputs compete

for a single output. Once the head flit of a packet is granted, all the following flits

are granted until the entire packet has passed this level of reducer. The input with

the highest priority is granted for the output. Each flit spends one clock cycle at each

level of reducer.

in0

in1

in2

in0

in1

in2

out 0 out 1 out 2

in0

in1

in2

in3

in4

in5

out0

out1

out2

(a) (b)

Figure 4·7: (a)The conventional crossbar switch, (b)the proposed
reduction-tree-based switch

The reason we only use 3-to-1 and 2-to-1 reducers to form the reduction tree is

that reducers equal to or larger than 4-to-1 cannot satisfy the Fmax requirement. In

Table 4.2, we list the configuration of the reduction tree for the different numbers

of VCs multiplexed on each physical channel with the optimal area consumption.

The first column is the number of VCs multiplexed on one physical channel. The

second column is the switch size (the number of input ports × the number of output

ports). The third column shows the types of reducers on each level. For example,

3 × 2 means, from input ports to output ports, the first level is built with 3-to-1

55

reducers; the second level is made with 2-to-1 reducers. The number of reducers on

each level can be easily computed. The fourth column is the how many ALMs are

used after synthesizing this router on an Altera Stratix V chip. The last column

is the percentage of ALMs used on the entire chip. We stop at 9 VCs per physical

channel because we believe 25 % of entire chip resource is the upper limit for a router.

Our results later show that 25% is sufficient for most workloads to achieve maximal

performance. Since each flit spends one clock cycle at each level of the reduction

tree, from Table 4.2, we can tell that the delay of our proposed switch is 2-5 cycles,

depending on how many VCs are multiplexed on a physical channel.

Table 4.2: The configuration of the reduction tree for different number
of VCs multiplexed on each physical channel with the optimal area
consumption.

VC # muxed on a phy ch switch size reduction tree configure ALMs area %

1 6× 6 3× 2 12980 5%

2 12× 6 3× 2× 2 18980 7%

3 18× 6 3× 3× 2 24860 9%

4 24× 6 3× 2× 2× 2 30980 12%

5 30× 6 3× 3× 2× 2 42470 16%

6 36× 6 3× 3× 2× 2 42470 16%

7 42× 6 3× 2× 2× 2× 2 54980 21%

8 48× 6 3× 2× 2× 2× 2 54980 21%

9 54× 6 3× 3× 3× 2 60500 23%

Deadlock Avoidance

Deadlock happens when a sequence of packets cannot make progress because they

are all waiting for other packets to release resources, and the resource dependency

relationship forms a loop (Dally and Towles, 2004). Deadlock is disastrous to a

network. Not only do the packets that are deadlocked never reach their destinations,

but also all the resources occupied by these packets are virtually removed from the

56

network.

The deadlock could happen in two ways in our 3D-torus network. We provide

deadlock avoidance techniques for both of them to make sure that the 3D-torus net-

work in Novo-G# is deadlock-free.

Node 3

V
C
0

V
C
1

Node 0

Node 2

V
C
1

V
C
0

VC1

VC0

VC0

VC1

Dateline

Node 1 Node 3

V
C
0

V
C
1

Node 0

Node 2

V
C
1

V
C
0

VC1

VC0

VC0

VC1

Dateline

Node 1

(a) (b)

Figure 4·8: Virtual channels divided into dateline classes to break the
ring loop in torus, (a) packets on the clockwise direction, (b) packets
on the counterclockwise direction

VC0 VC1 VC2 VC3 VC4 VC5 VC6 VC7

Class 0

Class 1

VC0 VC1 VC2 VC3 VC4 VC5 VC6 VC7

Class 0

Class 1

(a) (b)

Figure 4·9: Two methods to partition 8 buffers into 2 classes.

In torus networks, the wraparound link forms a ring at each dimension. The

authors in (Dally and Seitz, 1986; Dally and Seitz, 1987) propose that we can break

57

the resource dependency loop by applying VCs and the dateline technique. The

details are illustrated in Figure 4·8. All the VCs on each node are divided into two

classes. We set a dateline between Node 0 and 1. When the packets are injected

into the clockwise ring, they start in VC class 0. They are only allowed to use the

resources belong to the VC class 0 before crossing the dateline. After crossing the

dateline, they are only permitted to use the resources belong to VC class 1. The

routing algorithms adopted by us ensures that the packets will not cross the dateline

by twice. Therefore, by splitting VCs into two dateline classes, we can make sure

deadlock will not happen on the 1D rings of the 3D-torus network. Figure 4·8(b)

shows the case when the packets are injected into counterclockwise direction. The

packets that start from the VC class 1 are only allowed to use the resources belong

to the VC class 1 before crossing the dateline. After crossing the dateline, they are

only authorized to use the resources belong to the VC class 0.

When implementing the dateline technique, we set a VC class bit in the packet

header, which is a small overhead. Depending on whether the injection direction is

positive (X+, Y+, or Z+) or negative (X-, Y-, or Z-), the VC class bit is initialized to

be 0 or 1, respectively. The VC class bit is toggled only when the packet crosses the

dateline or changes dimension. When crossing the dateline, the VC class is toggled.

When changing dimension, the VC class bit is set to be 0 or 1, depending on whether

the new direction is positive or negative.

An obvious problem of dividing the VC channels into two classes is that it doubles

the buffer space required for VCs, while keeping the performance mostly unchanged.

However, most packets do not cross the dateline, which makes the utilization of the

two classes quite imbalanced. The load imbalance lets wastes the idle VCs. Our

method to address this problem is to overlap buffer space for the two classes (Dally

and Towles, 2004) (see Figure 4·9). In Figure 4·9(a), the first four buffers are assigned

58

to VC class 0 and the other four buffers are assigned to VC class 1. The imbalanced

distribution of the two VC classes results in oversubscribing the first four buffers

while (generally) starving last four buffer. In Figure 4·9(b), six out of eight buffers

are shared between two VC classes. Only the first and last buffers are exclusively

used by VC class 0 and 1, respectively. Although most of the buffers are shared

by both dateline classes, the correctness of the deadlock avoidance is not altered.

The fundamental idea behind maintaining deadlock freedom, despite having a cyclic

channel dependence graph, is to provide an escape path for every packet in a potential

dependency cycle. As long as the escape path is deadlock-free, packets can move

more freely throughout the network, possibly creating cyclic channel dependencies.

However, the existence of the escape route ensures that if packets ever get into trouble,

there still exists a deadlock-free path to their destination. Although the two VC

classes share most of the buffers, the two exclusive buffers ensure there is at least one

deadlock-free path, which will lead packets to their destinations.

59

Z+
Y+

X+

Forbidden turns:

Y- -> X+ Y- -> X-

Z- -> Y+

Z- -> Y-

Z- -> X+ Z- -> X-

Figure 4·10: Six forbidden turns break all of dependency cycles in
3D-torus

60

Another category of deadlock resides in the dependency loop across multiple di-

mensions. To solve this problem, we forbid six turning directions and so break all

the possible dependency loops. Figure 4·10 lists all the possible channel dependency

loops in the 3D-torus and shows how the six forbidden turns break all of these cycles.

The first two forbidden turns (Y- to X+ and Y- to X-) avoid the deadlock in XY

plane. The last four forbidden turns (Z- to X+, Z- to X-, Z- to Y+, and Z- to Y-)

ensure deadlock-free in YZ and XZ planes. The last four forbidden turns also define

our turn forbidding policy to be Z- last. After a packet goes into Z- direction, it

cannot turn anymore. The Z- last ensure that all the loops covering multiple 2-D

planes are broken because all the loops covering multiple 2-D planes must have an

edge on Z- direction.

Packet Formatting

The network based on our router design supports arbitrary size packets. To achieve

this, we support five types of flits: head flit, body flit, tail flit, single flit, and credit

flit. Usually a packet starts with a head flit, which is followed by several body flits,

and ended by a tail flit. If the packet has only a single flit, its flit type is single

flit. The credit flit is used to transfer credit information from downstream nodes to

upstream nodes.

All kinds of flits have a flit-type field and a payload field. The payload field in

the credit flit contains the credit information of a downstream node; the payload

field in other flit types contains the payload data. A single or head flit also includes

the destination field, VC class field, and priority field. The priority field is used

when multiple packets are competing for the same output port. Its content might be

packet age, distance from the destination, or both. How the priority fields are used

to arbitrate packets is discussed in next chapter.

61

Credit-based Flow Control

When the buffer space on the downstream node is used up, the downstream node

must generate a backpressure signal to the upstream node to notify it to stop sending

data. We use credit-based flow control to manage the inter-node backpressure. The

implementation of credit-based flow control on Novo-G# is different from that in

conventional NoC.

First, the MGT link IP does not provide any functionality for backpressure. Also,

the credit information should be multiplexed into the normal data flow. In the previ-

ous subsection, we introduced a particular credit flit type for transferring credit from

downstream nodes to upstream nodes. Another undecided parameter is the frequency

of sending backpressure credit flits. In NoCs, the credit flit is usually piggybacked

on each data flit (Dally and Towles, 2004). Because the short inter-node latency on

NoC, this solution can ensure the upstream node is always aware of the most re-

cent credit information on neighboring nodes. The overhead is significant. Half of

the link bandwidth is consumed by sending credits. Since the inter-node latency in

Novo-G# is 20-100 cycles, it is impossible for the upstream nodes to be aware of the

real-time credit information on neighboring nodes. And we do not want to let the

credit consume too much valuable bandwidth resources. Therefore, in our design, we

sent one credit flit from downstream node to upstream node every 100 cycles. There

is a credit threshold used by upstream nodes to decide to send packets or not. The

threshold equals the link latency plus the 100. When the value of credits is lower than

this threshold, the upstream node stops sending. All the in-flight flits are guaranteed

buffer space.

62

4.3 Proposed Statically-scheduled Collective Acceleration

Router on Novo-G#

We have designed and implemented an entire solution for statically-scheduled (of-

fline) routing on an FPGA cluster. This solution includes a new router design that

supports both online and offline routing (simultaneously) and a new offline routing

algorithm for collectives. We assume that collective communication patterns have

been extracted from the application (as is done, e.g., in (Grossman et al., 2015)). We

then use our offline routing algorithm to build an optimized tree topology for each

collective operation. These are fed into scripts to generate the routing, multicast, and

reduction tables. Finally, the routing data are downloaded into the appropriate tables

within the routers. In the rest of this section, we describe the how we implement the

table-based routing and the router microarchitecture.

4.3.1 Table-based Routing

Table-based routing is a perfect fit in FPGA clusters because routing tables need to

be accessed very frequently and might be spread on multiple network ports. FPGA

has rich on-chip distributed block RAMs with fast access time, which is very suitable

to implement routing tables.

Table-based routing can be implemented in two ways: source routing and node-

table routing (Kinsy et al., 2013). Both are widely used in network routers (Kinsy

et al., 2013; Murali et al., 2007). Since source routing requires packets to carry table

indexes, which consumes extra bandwidth, we instead use node-table routing. There

the resident routing table preserves a table entry for each incoming packet (see Figure

4·11).

In this example, node A dispatches a multicast packet that carries three fields:

packet type, table index, and payload. The router routes the packet to either a

63

Processing

unit Exit

X+
1

Index

2

Idx:1 Payload

Multicast Table on

Local Port
X+

Node A

Y+

Y-

X- Exit

Y+

X+

Y+

0

1

2

Index

7

3

2

Node B

Payload

Exit

-X

+X

LOC

0

1

2

Index

4

1

0

Y+

Y-
Index: 2 Payload

Processing

unit

Index: 0 Payload

Exit

X-

Z+

0

2

Index

3

1

Node C Node D

X+ X-

Multicast

Type

Unicast

Y+ 1Unicast

Idx:2

Unicast Table on X-

Port

Unicast

Type
Unicast

Unicast

Unicast

UnicastPayloadIdx:1Unicast

Unicast Table on Y-

Port

Unicast Table on Local

Port

Type
Unicast

Unicast1 LOC 0

Unicast

Processing

unit

Type
Unicast

Unicast

Unicast

Index: 0 Payload

Figure 4·11: An example of node-table routing

unicast, multicast, or reduction table based on the packet type. In the corresponding

table, multicast in this example, the router looks up the table entry based on the

index field in the packet. The multicast table entry has slots for all of the six possible

fan outs.

Packet
Type

Exit Port Table Index on Next Node Priority

31 28 27 24 23 8 7 0

Number of
downstream

packets

Exit Port of
1st child

Table Index
on Next Node

of 1st child

Info for 6th
children

122 120 119 100 99 80 79 60 59 40 39 0

19 16 15 0
Number of

expected child
packets

Table Index
on Next Node

18 16 15 0

(a)

(b)

(c)

Info for 5th
child

Info for 4th
child

Info for 3rd
child

Info for 2nd
child

Info of 1st
child

20 19

Figure 4·12: (a) Unicast table entry format (b) multicast table entry
format (c) reduction table entry format

Figure 4·12 shows the data formats for the various types of table entries. In this

64

example, the multicast packet has two fan outs. For the first fan out, the multicast

table entry shows that it is a unicast packet, that it should be routed to the X+ port,

and that the table index for next node is 2. The router then generates a unicast-type

packet and routes it to the X+ port, whence it enters the X- port on node B. On

node B, since it is a unicast packet, the router will look up the entry in the unicast

rather than the multicast table. The table entry shows that this packet should be

routed to the Y+ port of node B. In the same manner, the router on Node B sends

the packet to the Y- port of Node D, at which point it is ejected. Similarly, for the

second branch, the packet is routed to the Y- port of Node C, where it is ejected.

4.3.2 Router Microarchitecture

We explored two kinds of router microarchitectures in this section: ring and Virtual

Output Queue (VOQ) router.

Ring Router

Rings have linear area cost and constant fan-in/fan-out and so have been adopted in

many small-scale, multicore architectures including the IBM Cell (Pham et al., 2006)

and Intel Xeon Phi (Intel, 2013). Here we use a seven-node ring topology based on a

light-weight ring-based router microarchitecture (Kim et al., 2007). We augment the

design by incorporating support for offline routing.

Since the design is a 3D-torus, there are six links for each node. As shown in Figure

4·13, on the chip there are seven routers, six to handle the internode communication

and one to deal with the traffic to and from the local processor. The seven routers are

connected with a bidirectional ring. The bidirectional ring is composed of two separate

bidirectional buses. One bus is the data bus managing the intranode communication.

The other is the control bus to handle the flow control including the generation of

back pressure (to the previous router when the FIFO in the next router is full). In

65

Router

Router Router

Router Router

Router

Router

+z -x +x

-z -y +y

Processing

unit

…
…

Packet Assembler

…
…

Routing Table

Dst Port # Priority

Ejector

Injector

Ejector

M
u

x
Mux

M
u

x

(a)

(b)

New index

Figure 4·13: (a) 7-node ring topology and (b) router microarchitec-
ture for the ring router

Figure 4·13, note that the two ports for the same dimension (e.g., +x and -x) are

placed next to each other. This setting is because most of the time the packet stays

on the same dimension.

Inside the router, there are three input FIFOs: one for injecting the packet either

from other nodes or the local processing unit, and two for input traffic from the two

different directions of the ring. These latter two FIFOs each contain a single register.

As we said before, we use table-based routing in our design. Packets outside the ring

include a short header which indexes the table in the next node. When injected into

a new node, the router looks up the entry corresponding to the index on the packet

66

header in the routing table. Besides the exit port number and index, the entry also

contains a priority field; this helps arbitrate contending packets. The priority policy

is currently farthest first. The router is flexible enough to support nearly arbitrary

and fine-grained policies.

After attaching a new tag to the incoming packet, the packet is routed on the

shortest path, clockwise or counterclockwise, to the exit port. If the packet has a

higher priority than a packet already in the ring, and the input FIFO in the next

router is not full, then the current router will deliver the packet to next router (and

so on), until the packet reaches the exit router. At the exit router, if the packet

has higher priority than the packet on the other direction which is going to exit at

the same router, it will leave this node first and be sent to the other adjacent node

through the MGT. If there is no congestion, the time spent on each router will be

one clock cycle. In general, each packet will spend 2-4 cycles on each node.

VOQ Router

The VOQ router is similar to the VC-based router. The main difference is how

virtual channels (queues) are organized. In the VC-based router, the packets from

every input port are allowed to be allocated by multiple VCs multiplexed on this port.

In VOQ router, all the virtual output queues multiplexed on every input port has

one-to-one mapping relationship with the all the output ports. So the packets from

every input port can only be allocated by one VOQ associated with the output port

that this packet will be routed. Because of this one-to-one mapping relationship, the

VOQ router has a much simpler switch than the VC-based router.

Our VOQ router architecture has a similar staged pipelined structure of the con-

ventional four-stage pipelined Virtual-Channel (VC) router (Dally and Towles, 2004).

By adding support for multicast and reduction, the four-stage pipeline is extended to

a seven-stage pipeline. Its architecture is illustrated in Figure 4·14.

67

Input

Handler

Input

Handler

Input

Handler

Local

Processing

Unit

+_

Priority-

based

Comparison

…
…

Packet Assembler

…
…

Routing table

Output

handler

Output

handler

Output

handler

`

…...

…...
…... …...

…...

…
...

…
...

Input

Handler
Output

handler

+x -x +z -z -y +y

+x -x +z -z -y +y

+_

+_+_

+_

+_

7 7 7

7

Mulitcast

unit 7

7

7

If multicast

packet

Input

buffer

Mux

Reduction

unit

If reduction

packet

Mux

(a)

(b) (c)

VC VC VC VC VC VC VC

Figure 4·14: VOQ router microarchitecture: (a) The VOQ router is
connected by seven input handlers and seven output handlers. (b) The
input handler has four stages: input buffer consumption, routing table
lookup, multicast table lookup, and virtual output queue allocation.
(c) The output handler has three stages: switch allocation, reduction
table lookup, and reduction table write-back.

Figure 4·15 shows the original and modified pipelines. The original pipeline has

four stages: routing computation (RC), virtual channel (queue) allocation (VA),

switch allocation (SA), switch traversal (ST). The first difference is that we divide

the RC stage into three stages: input buffer consumption (IC), routing table lookup

(RL), and multicast table lookup (ML). When a packet is injected into switch input

buffer, during the IC stage, we spend one cycle to fetch the flit from the buffer. We

examine its header, to obtain its routing table index; this is used during RL to find

the routing table entry. At that moment, the router knows whether the packet is

68

RC VA SA ST

ML VA SARLIC ReL ReW

(a)

(b)

Figure 4·15: (a) The classic four stage router pipeline and (b) our
proposed seven stage pipeline supporting mulitcast and reduction

multicast or not. If so, then during ML we look up its multicast table entry based

on the index from the routing table entry. The VA stage allocates VOQs to all the

multicast children that are generated during ML. If VA fails, the router creates back

pressure to stall the pipeline. In the SA stage, there might be multiple packets (up to

7) contending for the same output port. The packet with the highest priority, which

is determined during the RL stage, wins the arbitration. Our current priority scheme

is farthest-first.

Another difference between this VOQ router and the VC-based router is that we

divide ST stage into two stages: reduction table lookup (ReL) and reduction table

write-back (ReW). If the packet is not a reduction packet, it still traverses the last

two stages (a bypass is certainly an option). If the packet is a reduction packet, it is

routed to the reduction unit. We allocate one entry in the reduction table for each

reduction operation. During ReL, the reduction packet checks for its corresponding

entry and whether the expected number of downstream packets have arrived. If not,

then the reduction operation is executed and the reduction table entry updated. If

all the expected downstream packets have arrived, the reduction unit dispatches a

new packet and injects it into the upstream link.

Comparison Between Ring and VOQ Router

Regarding latency, the ring router can perform similarly to the VOQ only when

one-to-one communication is the primary communication operation. When collective

69

Table 4.3: The resource utilization of two proposed router architecture
(ring and VOQ) on an Altera Stratix V 5SGSMD8

Router Architecture # of Logic # of Registers

Ring 2485 3568

VOQ 3312 2672

operations, such as multicast and reduction, are the major workload, then the traffic

saturates the bandwidth of the ring quickly (because of packet duplication). So in

the next chapter we only use both ring and VOQ router in 3D FFT implementation

because there is no collective operation in 3D FFT. For collective workloads, we only

use the VOQ router.

We make a comparison of their area comparison on FPGA. The results are demon-

strated on table 4.3. For fairness, the VOQ router in this table does not have collective

hardware support. The results show that two routers have almost the same area con-

sumption, which are both trivial compared with the total logic resources on the chip.

Chapter 5

Network Design, Part 2: Routing

Algorithms and Switch Arbitration

Policies

The routing algorithms and switch arbitration policies of the two router microarchi-

tectures are different. For the VC-based router, proposed in section 4.2, we mainly

implement several kinds of existing general routing algorithms and switch arbitration

policies. These algorithms and policies are targeted for unicast workloads. We do,

however, make some modifications to adapt them to our network hardware. Details

and implementations are shown in sections 5.1.1 and 5.1.2.

We find there are no universal (optimal) routing algorithms and switch arbitration

policies. That is, for different workloads, the algorithms and policies that can pro-

vide the best performance are different. Because of the large number of alternatives

(including those for future study), we created a cycle-accurate simulator to evaluate

different combinations of these algorithms and policies; this is described in section

5.1.3. Based on this simulator, we propose a framework that can help users find the

best router configuration for their applications (described in section 5.1.3). We define

an interface standard for new router components, such as for routing computation

logic or switch arbitration. Users can easily include their new router components into

our framework as long as they conform to the interface standard.

For the statically-scheduled collective acceleration VOQ router in section 4.3, we

propose and implement a novel offline collective routing algorithm. The details and

70

71

evaluations of it are shown in section 5.2.

5.1 Implemented Routing Algorithms and Switch Arbitra-

tion Policies for Unicast workloads

For our proposed VC-based router, which is described in the previous chapter, we

implemented five routing algorithms and three arbitration policies for a total of 15

combinations. There are still an enormous amount of other algorithms and poli-

cies that we have not implemented. All of these algorithms and policies form a big

configuration space for our proposed VC-based router. For different workloads, it

is unknown which configuration is optimal. We propose a framework that is based

on a cycle-accurate simulator to search for an optimal router configuration given a

particular workload and evaluation metric.

In this section, we first introduce the five routing algorithms and three arbitration

policies we implemented. There follows the framework to search for an optimal router

configuration, including the implementation details of the cycle-accurate simulator.

Finally, we evaluate the framework by comparing the performance of the optimal

router configuration with the configuration that has the best average performance

over all the workloads tested.

5.1.1 Implemented Routing Algorithms in Proposed VC-based Router

We implement five routing algorithms in our proposed VC-based router for unicast

workloads. Four of them are oblivious algorithms. The remaining one is an adaptive

algorithm. All the oblivious algorithms can be implemented either dynamically, using

on-chip FPGA logics, or statically using routing tables. The adaptive algorithm can

only be implemented dynamically using on-chip FPGA logic. In this subsection, we

describe how this all works, how it ensures freedom from deadlock, and how it is

implemented in Novo-G#.

72

1. Dimensional Ordering Routing (DOR) The first routing algorithm is Di-

mensional Ordering Routing (DOR) (Sullivan and Bashkow, 1977; Glass and

Ni, 1992). In a 3D-torus, there are six possible DOR routing algorithms (XYZ,

XZY, YXZ, YZX, ZXY, and ZYX). In general, they have no difference in per-

formance. We arbitrarily select XYZ routing as our implementation. In XYZ

routing, all the packets must start from X dimension and are not allowed to

enter Y dimension links until their current position has the same X coordinates

as their destination. Then they are not authorized to enter Z dimension links

until their current position has the same X and Y coordinates as their destina-

tions. XYZ routing is an oblivious routing algorithm. Its rules can easily be

implemented in hardware with little cost. Many large-scale parallel systems use

it because of its simplicity.

2. Randomized, Oblivious, Multi-phase, Minimal Routing (ROMM) As

indicated by its name, ROMM is a class of randomized, oblivious, Multi-phase,

Minimal routing algorithms (Nesson and Johnsson, 1995). In a 2-D mesh,

ROMM routing randomly selects p intermediate nodes in the minimum sub

mesh constrained by source and destination. And the routes between the two

nodes are based on the DOR routing. The number of phases is determined

by the number of intermediate nodes. We make some modifications to original

ROMM to adapt it to 3D-torus network in Novo-G#.

The first modification is that the intermediate nodes are selected in the minimal

subcube (instead of submesh) constrained by the source and destination. The

second modification is that we have no constraints on the number of phases.

Whenever the packet arrives at an intermediate node, it has at most three pos-

sible routing directions because of the minimal-path constraint. The actual

routing decision is made among all the possible directions uniformly at random.

73

The third modification is that in conventional ROMM routing, p VCs are used

to avoid deadlock in a p-phase ROMM routing. Whenever the phase order is

increased by one, the VC order should increase by one as well. In our ROMM

routing implementation, we abandon this setting because we do not have a spe-

cific number of phases. Our deadlock avoidance is already defined in section

4.2.2. All the allowed routing directions have to conform the forbidden-turn

rules shown in Figure 4·10. ROMM routing is also an oblivious routing algo-

rithm. When implemented in hardware, it needs a 2-bit pseudo random number

generator at each routing computation unit, which can easily be implemented

using a 3-stage LFSR.

3. Orthogonal One-turn Routing (O1TURN) O1TURN is also a minimal,

oblivious routing algorithm. Authors in (Seo et al., 2005) claim O1TURN

can achieve near-optimal worst-case throughput. O1TURN is similar to DOR

routing. The difference is that DOR routing always uses one DOR path all the

time, while the O1TURN randomly select one of all the possible DOR routes.

For example, in a 3D-torus, there are up to six possible DOR routes: XYZ,

XZY, YXZ, YZX, ZXY, and ZYX. The O1TURN algorithm randomly selects

one from these six routes for each packet.

When implementing O1TURN on our proposed router, we need to implement

a 3-bit pseudo-random number generator at each routing computation unit.

Besides this, the packet head flit needs to contain an extra 3-bit field to represent

which route this packet is following. To ensure freedom from deadlock, if any

routes among those six violate the forbidden-turn rules (in Figure 4·10), it

should be removed from the list of O1TURN routes.

4. Randomized Load Balance Routing (RLB) RLB is a non-minimal, oblivi-

ous routing algorithm that offers a balance between locality and load balance in

74

torus networks (Singh et al., 2002). The RLB routing still follows DOR routing

pattern, first routes on X dimension, then Y dimension, finally Z dimension.

However, on each dimension, it does not follow the minimal routing. On each

dimension, the torus ring has two possible directions. Most of the time, only one

of the two routes of the two directions is minimal. RLB algorithm allows rout-

ing packets in both directions. Let us assume the number of nodes on one torus

ring is N , and the distance between destination and source is P . If P < N , the

probability that the packet is routed to the shorter path is (N − P)/N , while

the probability that it is routed to the longer path is P/N . It is evident that

the packet is still more likely to take the minimal path on each dimension.

The RLB routing meets the deadlock-free requirement automatically since it

takes XYZ routing. Since it is a non-minimal routing, it might have livelock

issue. Surprisingly, it is inherently livelock free. Once a route has been selected

for a packet, it monotonically advances along the route, reducing the number of

hops to the destination at each step. Since there is no incremental misrouting,

all packets reach their destinations after following a predetermined, bounded

number of hops (Singh et al., 2002). Implementing RLB routing is slightly

more complicated than XYZ routing. Compared with XYZ routing, it requires

an extra pseudo random number generator at each routing computation unit.

The width of the generator depends on the size of the network.

All the above four algorithms are oblivious routing algorithms. They can all be

implemented dynamically with small on-chip FPGA logic resources. They can

also be implemented statically with routing tables.

5. Credit Count Adaptive Routing Algorithm (CCAR) There is a vast

literature on different adaptive algorithms. Given the information of free and

allowed output ports, an output direction could be chosen randomly (Feng and

75

Shin, 1997) or based on the remaining hop count in each dimension (Badr and

Podar, 1989). An algorithm called NOTURN tries to avoid turns by following

a dimension until it is either exhausted or blocked (Glass and Ni, 1994). These

three algorithms are unaware of congestion information of neighboring nodes.

Therefore, they are inherently unable to deal with the unbalanced issue.

There are other algorithms gather the local/global congestion information be-

fore making routing decisions. (Dally and Aoki, 1993) counts the numbers of

idle VCs on neighboring nodes and route packet to the direction with the largest

number of VCs. If we want to implement this algorithm in our network, we need

extra logic to monitor the idle VC numbers. And additional bandwidth is con-

sumed to transfer this information to neighboring nodes. (Singh et al., 2003)

counts the available slots at the output buffers to determine routing decisions.

In our router design, we do not have output buffer. The Credit Count Adaptive

Routing Algorithm (CCAR) (Kim et al., 2005b) gathers the credit informa-

tion on neighboring nodes. The credit gathering mechanism already exists in

our credit-based flow control. All the routing computation logic we need to

implement is to find the direction with the most credits among all the legal

directions. The legal directions are the directions meets the forbidden turning

rules in Figure 4·10.

5.1.2 Implemented Switch Arbitration Policies in Proposed VC-based

Router

We design a switch based on multi-level reducers. Whenever two head flits from two

packets collide at the same reducer, a switch arbitration policy is needed to decide

which packet wins the arbitration. We implement three switch arbitration policies

in our proposed VC-based router. In this subsection, we describe how it works, and

how it is implemented in Novo-G# for each policy.

76

1. Farthest First (FF) Farthest first means the packet farthest from its desti-

nation has the highest priority. It is fairly easy to implement this policy. The

head flit of each packet already contains destination. The distance to the des-

tination could either be computed at each hop or carried along as one field in

the head flit. In our implementation, we create a particular field in every head

flit keeping the distance to the destination. Whenever the packet passes one

routing computation unit, this field is deducted by one. The width of this field

depends on the network size.

2. Oldest First (OF) Oldest first means the packet with the oldest age has the

highest priority. It is even easier to implement than FF. The head flit of each

packet should contain an age field. From our experiments, we find that 16-bit

age is sufficient for most workloads.

3. Mixed The mixed policy is a combination of FF and OF. The arbitration

starts with farthest first. If one packet’s age is higher than a threshold, it has

the higher priority than all the packets with ages lower than the threshold, no

matter how close it is from its destination. If multiple packets’ ages are greater

than the threshold, the one with the oldest age wins the arbitration. When

implementing this policy, we create both age and distance field in the head flit

of each packet.

5.1.3 Proposed Application-ware Framework to Generate Optimal

Router Configuration

As described in the previous two subsections, we implemented five routing algorithms

and three switch arbitration policies. These algorithms and policies form a search

space with fifteen different router configurations. For a given workload, the users

could have difficulty determining which configuration is optimal for their goals. Given

77

a workload and its evaluation metric, we propose a framework that can evaluate all

the possible configurations and produce the best one. This framework has good

extensibility with new algorithms and policies.

Proposed Extensible Cycle-accurate simulator

One key component of this framework is the cycle-accurate simulator. The cycle-

accurate simulator is implemented in C++. Every hardware module in the RTL

model has a corresponding class in the simulator. These classes are organized in the

same hierarchical structure as the RTL model. To give the cycle-accurate simulator

good scalability with new algorithms and policies, we define an interface standard for

all the hardware modules, which is illustrated in Figure 5·1. This figure shows that

each module has two interfaces: upstream and downstream. In the upstream interface,

the data in is a pointer pointing to the data out of the upstream module. The data

in latch is the dereference of that pointer. in avail is the backpressure boolean value

to the upstream module. When in avail becomes false, the upstream module should

hold the current data out until in avail becomes true. In the downstream interface,

data out is the data passed to the downstream module. out avail is a pointer pointing

to in avail from the downstream module. The out avail latch is the deference value

of that pointer. Similarly, if out avail is false, then data out should hold the current

value until out avail becomes true.

With the interface defined in Figure 5·1, we can conduct cycle-accurate simula-

tions simply with a producer-consumer model. Every module is both a producer and

consumer. Every clock cycle is divided into a consuming step and a producing step.

Correspondingly, every module has two important member procedures: consume and

produce. The pseudocode is illustrated in Algorithms 1 and 2. The pseudo code for

advancing a clock cycle is shown in Algorithm 3.

Before starting a simulation, all the modules call an initialization function, which

78

data_in *

in_avail

data_in_latch

out_avail* out_avail_latch

data_out

module

upstream interface downstream interface

Figure 5·1: The standard interface for modules in the cycle-accurate
simulator

Algorithm 1 Consume procedure of a module

1: procedure consume(void)
2: DataInLatch = ∗DataIn
3: OutAvailLatch = ∗OutAvail
4: for each submodules i in this module do
5: submodule[i].consume()
6: end for
7: Return
8: end procedure

connects all the modules in the same hierarchical structure as the HDL code. The

initialization mainly acquires a pointer copy of DataOut of the upstream module(s)

into the DataIn pointers of the current modules, and a pointer copy of InAvail of

the downstream module(s) into the OutAvail pointers of the current modules. It is

possible to have multiple upstream and downstream modules.

The initialization function is shown in the Algorithm 4. When a module calls

the initialization procedure, all submodules under it call the initialization procedure

recursively. As shown in Algorithm 3, each clock cycle advance is divided into two

steps. In the first, all the submodules under the top module call the consume pro-

cedures recursively. When calling the consume procedure as shown in Algorithm 1,

one module latches all the DataIn and the OutAvail. Then this module invokes the

consume procedures of all the submodules under it recursively. In the second step,

79

Algorithm 2 Produce procedure of a module

1: procedure produce(void)
2: for each submodules i in this module do
3: submodule[i].produce()
4: end for
5: LocalCompute(1)
6: updateInAvail
7: updateDataOut
8: Return
9: end procedure

all the submodules under the top module call the produce procedures recursively.

When calling the produce procedure as shown in Algorithm 2, one module invokes

the produce procedures of all the submodules under it recursively. Then the compu-

tation logic of this module advances by one cycle. Finally, InAvail and DataOut are

updated based on the computation results.

Algorithm 3 Procedure of advancing N clock cycles

1: procedure advance(N)
2: CycleCounter = 0
3: while CycleCounter < N do
4: for each submodules i in top-level module do
5: submodule[i].consume()
6: end for
7: for each submodules i in top-level module do
8: submodule[i].produce()
9: end for
10: CycleCounter = CycleCounter + 1
11: end while
12: Return
13: end procedure

The consumer-producer model not only guarantees the correctness of the data de-

pendency relationships of the RTL model, but also gives the cycle-accurate simulator

good extensibility and maintainability. In the future, the VC-based router might be

upgraded with better algorithms, policies, and perhaps even new architectures. As

80

Algorithm 4 Initialization procedure of of a module

1: procedure init(void)
2: Ptr ∗DataIn = &(UpstreamModule.DataOut)
3: Ptr ∗OutAvail = &(DownstreamModule.InAvail)
4: for each submodules i in this module do
5: submodule[i].init()
6: end for
7: Return
8: end procedure

long as the new module is implemented using the interface shown in Figure 5·1, the

cycle-accurate simulator can be extended with little additional effort. One extra ben-

efit of this consumer-producer model is that the simulation can easily be parallelized

into a multi-threaded version. The parallel version of Algorithm 3 is displayed in

Algorithm 5.

Algorithm 5 Procedure of advancing N clock cycles (parallel)

1: procedure AdvanceParallel(N)
2: CycleCounter = 0
3: while CycleCounter < N do
4: #pragma parallel for
5: for each submodules i in top-level module do
6: submodule[i].consume()
7: end for
8: all threads join here
9: #pragma parallel for
10: for each submodules i in top-level module do
11: submodule[i].produce()
12: end for
13: CycleCounter = CycleCounter + 1
14: end while
15: Return
16: end procedure

With this cycle-accurate simulator, we can exhaustively simulate all the possible

router configurations and find the one with the best performance.

81

5.1.4 Evaluation

In this subsection, we did two sets of evaluations. The first compares the performance

of the best configuration with the average performance of all the different configura-

tions. The second generates a histogram displaying the times of all of the optimal

configurations. In this subsection, we first introduce the experimental setup. And

then we present and analyze the results of the experiments.

Experimental Setup

We conduct experiments on seven different workloads, which are listed in Table 5.1.

All of these workloads appear frequently in applications. The NN and 3H-NN patterns

are often used in stencil computations. CUBE-NN is used in the MD short-range

force calculation. BC is important in many DSP applications. TRAN is often used in

image processing. All-to-all appears in the FFT. We test two different representative

network sizes: 4× 4× 4 and 8× 8× 8.

We evaluate six standard performance metrics, which are listed in Table 5.2. The

first five metrics are straightforward. The is explained as follows. When running the

experiments, the number of VCs on each input port is fixed to 9, which is the upper

limit of the VC-based router, because we would like the area consumption of the

router is lower than a quarter of the entire FPGA chip. The last metric in Table 5.2

measures the maximum number of non-idle VCs during the entire run. If this number

is lower than 9, this means we can reduce the number of VCs without impairing the

performance. In our design, the number of VCs affects not only the area consumption

of the input units but also the area of the switch. The last column of Table 4.2 shows

the relationship between the number of VCs and the area consumption of the router.

We can find the area consumption is about linear to the number of VCs, which means

the by evaluating this metric, we could significantly save the area consumption of the

82

router without any degradation in its performance.

Table 5.1: Seven different workloads to evaluate the VC-based router
performance. For tornado pattern, the XSIZE is the number of nodes
on the X dimension.

Workload Name abbr. Pattern

Nearest Neighbor NN (x,y,z)→(x+1,y,z),(x-1,y,z)...(x,y,z-1)

3-hop Diagonal Near-
est Neighbor

3H-NN
(x,y,z)→(x+1,y+1,z+1),(x+1,y+1,z-
1),(x+1,y-1,z+1)...(x-1,y-1,z-1)

Cube Nearest Neigh-
bor

CUBE-NN (x,y,z)→nodes⊂[x-1,x+1][y-1,y+1][z-1,z+1]

Bit Complement BC (x,y,z)→(bitcomplement(x,y,z))

Transpose TRAN (x,y,z)→(z,x,y)

Tornado TORN (x,y,z)→(x+XSIZE/2-1,y,z)

All-to-all ATA (x,y,z)→all the other nodes

Table 5.2: Six different performance metrics

Metric Name Description

Total Latency
The difference between the time-stamp of the last flit
is ejected and the first flit is injected

Average Latency The average latency of all the packets

Worst-case Latency The latency of the worst-case packet

Average Sending
Throughput

The average injected number of flits per node per cycle

Average Receiving
Throughput

The average ejecting number of flits per node per cycle

Maximum number of
non-idle VCs

The maximum number of VCs is not idle during the
entire run

Experimental Results

The first set of experiments is compares the performance of the optimal configuration

with the average performance of all configurations. The results for network 43 are

displayed in Figures 5·2, 5·3, 5·4, 5·5, and 5·6.

83

offered injection rate (flits/node/cycle)
0 1 2 3 4

to
ta

l l
at

en
cy

--
-c

yc
le

s

200

400

600

800

1000

1200

1400

1600

1800

2000
3-hop nearest neighbor---total latency

1kb best
1kb avg
2kb best
2kb avg
4kb best
4kb avg
8kb best
8kb avg
16kb best
16kb avg

offered injection rate (flits/node/cycle)
0 1 2 3 4 5 6

to
ta

l l
at

en
cy

--
-c

yc
le

s

0

1000

2000

3000

4000

5000

6000
cube nearest neighbor---total latency

1kb best
1kb avg
2kb best
2kb avg
4kb best
4kb avg
8kb best
8kb avg
16kb best
16kb avg

offered injection rate (flits/node/cycle)
0 0.2 0.4 0.6 0.8 1

to
ta

l l
at

en
cy

--
-c

yc
le

s

200

300

400

500

600

700

800

900

1000

1100
bit complement---total latency

1kb best
1kb avg
2kb best
2kb avg
4kb best
4kb avg
8kb best
8kb avg
16kb best
16kb avg

offered injection rate (flits/node/cycle)
0 0.2 0.4 0.6 0.8 1

to
ta

l l
at

en
cy

--
-c

yc
le

s

300

400

500

600

700

800

900

1000

1100

1200
transpose---total latency

1kb best
1kb avg
2kb best
2kb avg
4kb best
4kb avg
8kb best
8kb avg
16kb best
16kb avg

offered injection rate (flits/node/cycle)
0 0.2 0.4 0.6 0.8 1

to
ta

l l
at

en
cy

--
-c

yc
le

s

100

200

300

400

500

600

700

800

900
tornado---total latency

1kb best
1kb avg
2kb best
2kb avg
4kb best
4kb avg
8kb best
8kb avg
16kb best
16kb avg

offered injection rate (flits/node/cycle)
0 1 2 3 4 5 6

to
ta

l l
at

en
cy

--
-c

yc
le

s
0

1000

2000

3000

4000

5000

6000

7000

8000
all to all---total latency

1kb best
1kb avg
2kb best
2kb avg
4kb best
4kb avg
8kb best
8kb avg

Figure 5·2: The comparison between the batch latency of the optimal
configuration with the average batch latencies of all configurations for
different workloads on a 43 torus. From left to right in first row: 3H-NN,
CUBE-NN, bit complement; from left to right in second row: transpose,
tornado, all-to-all

We do not plot any results for the NN pattern it can trivially achieve 100%

bandwidth utilization on our router. So no matter which configuration we used,

the results will be the same. In the other six patterns, the results of the tornado

are also not interesting. The average and optimal performance are almost the same

because the pattern is again too simple. There are no turns so different routing

algorithms and policies do not alter the performance. So we did not plot the tornado

pattern results for 83. The 83 results are shown in Figure 5·7, Figure 5·8, Figure 5·9,

Figure5·10, and Figure 5·11. We notice that in the results of 83, there is no all-to-

all pattern, which is because the all-to-all pattern on 83 still takes too much time to

84

offered injection rate (flits/node/cycle)
0 1 2 3 4

av
g

la
te

nc
y-

--
cy

cl
es

290

300

310

320

330

340

350

360

370

380
3-hop nearest neighbor---avg latency

0.25kb best
0.25kb avg
0.5kb best
0.5kb avg
1kb best
1kb avg
2kb best
2kb avg
4kb best
4kb avg

offered injection rate (flits/node/cycle)
0 1 2 3 4 5 6

av
g

la
te

nc
y-

--
cy

cl
es

180

200

220

240

260

280

300

320

340

360
cube nearest neighbor---avg latency

0.25kb best
0.25kb avg
0.5kb best
0.5kb avg
1kb best
1kb avg
2kb best
2kb avg
4kb best
4kb avg

offered injection rate (flits/node/cycle)
0 0.2 0.4 0.6 0.8 1

av
g

la
te

nc
y-

--
cy

cl
es

290

300

310

320

330

340

350
bit complement---avg latency

0.25kb best
0.25kb avg
0.5kb best
0.5kb avg
1kb best
1kb avg
2kb best
2kb avg
4kb best
4kb avg

offered injection rate (flits/node/cycle)
0 0.2 0.4 0.6 0.8 1

av
g

la
te

nc
y-

--
cy

cl
es

300

310

320

330

340

350

360

370

380

390
transpose---avg latency

0.25kb best
0.25kb avg
0.5kb best
0.5kb avg
1kb best
1kb avg
2kb best
2kb avg
4kb best
4kb avg

offered injection rate (flits/node/cycle)
0 0.2 0.4 0.6 0.8 1

av
g

la
te

nc
y-

--
cy

cl
es

192

194

196

198

200

202

204

206

208

210
tornado---avg latency

0.25kb best
0.25kb avg
0.5kb best
0.5kb avg
1kb best
1kb avg
2kb best
2kb avg
4kb best
4kb avg

offered injection rate (flits/node/cycle)
0 1 2 3 4 5 6

av
g

la
te

nc
y-

--
cy

cl
es

250

300

350

400

450

500
all to all---avg latency

0.25kb best
0.25kb avg
0.5kb best
0.5kb avg
1kb best
1kb avg
2kb best
2kb avg

Figure 5·3: The comparison between the average latency of the op-
timal configuration with the average performance of all configurations
for different workloads on a 43 torus. From left to right in first row:
3H-NN, CUBE-NN, bit complement; from left to right in second row:
transpose, tornado, all-to-all

simulate (more than 500 destinations to send for each source). In all these figures, the

horizontal axis is the offered injection rate. The offered injection rate means the ideal

injection rate. It might be higher than the actual injection rate because the injection

port might have backpressured from the bypass traffic. The red lines represent the

average performance for all configurations. The blue lines represent the performance

of the optimal configuration. The lines with different marks represent the various

packet sizes.

By looking at Figures 5·2 and 5·7, we find that the batch latency is drastically

reduced by increasing the injection rate, which is because by increasing the injection

85

offered injection rate (flits/node/cycle)
0 1 2 3 4

w
or

st
 c

as
e

la
te

nc
y-

--
cy

cl
es

200

300

400

500

600

700

800
3-hop nearest neighbor---worst case latency

0.25kb best
0.25kb avg
0.5kb best
0.5kb avg
1kb best
1kb avg
2kb best
2kb avg
4kb best
4kb avg

offered injection rate (flits/node/cycle)
0 1 2 3 4 5 6

w
or

st
 c

as
e

la
te

nc
y-

--
cy

cl
es

200

300

400

500

600

700

800

900

1000
cube nearest neighbor---worst case latency

0.25kb best
0.25kb avg
0.5kb best
0.5kb avg
1kb best
1kb avg
2kb best
2kb avg
4kb best
4kb avg

offered injection rate (flits/node/cycle)
0 0.2 0.4 0.6 0.8 1

w
or

st
 c

as
e

la
te

nc
y-

--
cy

cl
es

250

300

350

400

450

500

550

600

650
bit complement---worst case latency

0.25kb best
0.25kb avg
0.5kb best
0.5kb avg
1kb best
1kb avg
2kb best
2kb avg
4kb best
4kb avg

offered injection rate (flits/node/cycle)
0 0.2 0.4 0.6 0.8 1

w
or

st
 c

as
e

la
te

nc
y-

--
cy

cl
es

300

400

500

600

700

800

900

1000
transpose---worst case latency

0.25kb best
0.25kb avg
0.5kb best
0.5kb avg
1kb best
1kb avg
2kb best
2kb avg
4kb best
4kb avg

offered injection rate (flits/node/cycle)
0 0.2 0.4 0.6 0.8 1

w
or

st
 c

as
e

la
te

nc
y-

--
cy

cl
es

190

195

200

205

210

215

220

225
tornado---worst case latency

0.25kb best
0.25kb avg
0.5kb best
0.5kb avg
1kb best
1kb avg
2kb best
2kb avg
4kb best
4kb avg

offered injection rate (flits/node/cycle)
0 1 2 3 4 5 6

w
or

st
 c

as
e

la
te

nc
y-

--
cy

cl
es

500

600

700

800

900

1000

1100

1200

1300

1400
all to all---worst case latency

0.25kb best
0.25kb avg
0.5kb best
0.5kb avg
1kb best
1kb avg
2kb best
2kb avg

Figure 5·4: The comparison between the worst-case latency of the op-
timal configuration with the average performance of all configurations
for different workloads on a 43 torus. From left to right in first row:
3H-NN, CUBE-NN, bit complement; from left to right in second row:
transpose, tornado, all-to-all

ratio, the time to inject data into the network is drastically reduced. The injec-

tion time dominat the batch latency. In these two figures, we also find that the

improvements for the optimal configuration is more obvious for 3-hop diagonal near-

est neighbor, bit complement, and transpose. In the tornado, there are almost no

improvements, which is because the tornado is too simple as described above. In

CUBE-NN and all-to-all, the improvements are also not significant, which is because

they are both heavy workloads. The entire network is too congested so that there is

little room for better algorithms and policies to have a benefit.

By observing Figures 5·3, 5·4, 5·8, and 5·9, we can find that average and worst-

86

offered injection rate (flits/node/cycle)
0 1 2 3 4

av
g

rc
v

th
ru

pu
t-

--
fli

ts
/n

od
e/

cy
cl

e

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
3-hop nearest neighbor---avg rcv thruput

0.25kb best
0.25kb avg
0.5kb best
0.5kb avg
1kb best
1kb avg
2kb best
2kb avg
4kb best
4kb avg

offered injection rate (flits/node/cycle)
0 1 2 3 4 5 6

av
g

rc
v

th
ru

pu
t-

--
fli

ts
/n

od
e/

cy
cl

e

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
cube nearest neighbor---avg rcv thruput

0.25kb best
0.25kb avg
0.5kb best
0.5kb avg
1kb best
1kb avg
2kb best
2kb avg
4kb best
4kb avg

offered injection rate (flits/node/cycle)
0 0.2 0.4 0.6 0.8 1

av
g

rc
v

th
ru

pu
t-

--
fli

ts
/n

od
e/

cy
cl

e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
bit complement---avg rcv thruput

0.25kb best
0.25kb avg
0.5kb best
0.5kb avg
1kb best
1kb avg
2kb best
2kb avg
4kb best
4kb avg

offered injection rate (flits/node/cycle)
0 0.2 0.4 0.6 0.8 1

av
g

rc
v

th
ru

pu
t-

--
fli

ts
/n

od
e/

cy
cl

e

0

0.05

0.1

0.15

0.2

0.25

0.3
transpose---avg rcv thruput

0.25kb best
0.25kb avg
0.5kb best
0.5kb avg
1kb best
1kb avg
2kb best
2kb avg
4kb best
4kb avg

offered injection rate (flits/node/cycle)
0 0.2 0.4 0.6 0.8 1

av
g

rc
v

th
ru

pu
t-

--
fli

ts
/n

od
e/

cy
cl

e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
tornado---avg rcv thruput

0.25kb best
0.25kb avg
0.5kb best
0.5kb avg
1kb best
1kb avg
2kb best
2kb avg
4kb best
4kb avg

offered injection rate (flits/node/cycle)
0 1 2 3 4 5 6

av
g

rc
v

th
ru

pu
t-

--
fli

ts
/n

od
e/

cy
cl

e
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2
all to all---avg rcv thruput

0.25kb best
0.25kb avg
0.5kb best
0.5kb avg
1kb best
1kb avg
2kb best
2kb avg

Figure 5·5: The comparison between the average receiving through-
put of the optimal configuration with the average performance of all
configurations for different workloads on a 43 torus. From left to right
in first row: 3H-NN, CUBE-NN, bit complement; from left to right in
second row: transpose, tornado, all-to-all

case latency increases slowly until the injection rate reaches a saturation point, which

is a well-known and expected behavior. All the latency increases with the packet size,

which is expected as well. Similarly as with the batch latency, we can also find that

the improvement of the optimal configuration is more noticeable in the 3-hop diagonal

nearest neighbor, bit complement, and transpose. This is because these three patterns

are neither too lightly nor too heavily loaded. The better algorithms and policies have

sufficient room to find improvements. We also find that the improvements on worst-

case latency is much higher than the improvement on average latency: the worst-case

latencies are generally have much greater variance than the average latencies.

87

offered injection rate (flits/node/cycle)
0 1 2 3 4

m
ax

 u
se

d
V

C
 N

U
M

--
-

1

2

3

4

5

6

7
3-hop nearest neighbor---max used VC NUM

0.25kb best
0.25kb avg
0.5kb best
0.5kb avg
1kb best
1kb avg
2kb best
2kb avg
4kb best
4kb avg

offered injection rate (flits/node/cycle)
0 1 2 3 4 5 6

m
ax

 u
se

d
V

C
 N

U
M

--
-

1

2

3

4

5

6

7

8

9
cube nearest neighbor---max used VC NUM

0.25kb best
0.25kb avg
0.5kb best
0.5kb avg
1kb best
1kb avg
2kb best
2kb avg
4kb best
4kb avg

offered injection rate (flits/node/cycle)
0 0.2 0.4 0.6 0.8 1

m
ax

 u
se

d
V

C
 N

U
M

--
-

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6
bit complement---max used VC NUM

0.25kb best
0.25kb avg
0.5kb best
0.5kb avg
1kb best
1kb avg
2kb best
2kb avg
4kb best
4kb avg

offered injection rate (flits/node/cycle)
0 0.2 0.4 0.6 0.8 1

m
ax

 u
se

d
V

C
 N

U
M

--
-

1

2

3

4

5

6

7

8
transpose---max used VC NUM

0.25kb best
0.25kb avg
0.5kb best
0.5kb avg
1kb best
1kb avg
2kb best
2kb avg
4kb best
4kb avg

offered injection rate (flits/node/cycle)
0 0.2 0.4 0.6 0.8 1

m
ax

 u
se

d
V

C
 N

U
M

--
-

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35
tornado---max used VC NUM

0.25kb best
0.25kb avg
0.5kb best
0.5kb avg
1kb best
1kb avg
2kb best
2kb avg
4kb best
4kb avg

offered injection rate (flits/node/cycle)
0 1 2 3 4 5 6
m

ax
 u

se
d

V
C

 N
U

M
--

-
1

2

3

4

5

6

7

8

9
all to all---max used VC NUM

0.25kb best
0.25kb avg
0.5kb best
0.5kb avg
1kb best
1kb avg
2kb best
2kb avg

Figure 5·6: The comparison between the maximum number of non-
idle VCs of the optimal configuration with the average performance of
all configurations for different workloads on a 43 torus. From left to
right in first row: 3H-NN, CUBE-NN, bit complement; from left to
right in second row: transpose, tornado, all-to-all

In Figures 5·3 and 5·8 we find that the increasing slope of the throughput reduces

when the offered injection rate increases. In some cases, the curves even become a

plateau, which is because when the injection rate reaches a certain point, it saturates

the bandwidth of the entire network. Again the tornado pattern is an exception.

Because of its simplicity, the throughput increases almost linearly with the injection

rate. One interesting phenomenon is that in most cases, the throughput increases

with the packet size. This is because, in our network, the bypass traffic always has

higher throughput than the injection traffic, which means the user’s logic only allows

88

offered injection rate (flits/node/cycle)
0 1 2 3 4 5 6

to
ta

l l
at

en
cy

(c
yc

le
s)

0

500

1000

1500

2000

2500

3000
3-hop nearest neighbor---total latency

1kb best
1kb avg
2kb best
2kb avg
4kb best
4kb avg
8kb best
8kb avg
16kb best
16kb avg

offered injection rate (flits/node/cycle)
0 1 2 3 4

to
ta

l l
at

en
cy

(c
yc

le
s)

0

1000

2000

3000

4000

5000

6000

7000

8000
cube nearest neighbor---total latency

1kb best
1kb avg
2kb best
2kb avg
4kb best
4kb avg
8kb best
8kb avg
16kb best
16kb avg

offered injection rate (flits/node/cycle)
0 1 2 3 4 5 6

to
ta

l l
at

en
cy

(c
yc

le
s)

800

900

1000

1100

1200

1300

1400

1500
bit complement---total latency

1kb best
1kb avg
2kb best
2kb avg
4kb best
4kb avg
8kb best
8kb avg
16kb best
16kb avg

offered injection rate (flits/node/cycle)
0 0.2 0.4 0.6 0.8 1

to
ta

l l
at

en
cy

(c
yc

le
s)

600

800

1000

1200

1400

1600

1800

2000

2200
transpose---total latency

1kb best
1kb avg
2kb best
2kb avg
4kb best
4kb avg
8kb best
8kb avg
16kb best
16kb avg

Figure 5·7: The comparison between the batch latency of the optimal
configuration with the average batch latencies of all configurations for
different workloads on a 83 torus. From left to right: 3H-NN, CUBE-
NN, bit complement, transpose

injection of the packet when the output link has no bypass the traffic. Whenever the

user logic starts to inject, it is not allowed to be preempted by bypass traffic until

the tail flit is injected. Therefore, the large packet size provides a higher probability

for injection logic to occupy output link bandwidth.

From Figures 5·6 and 5·11, we find that the maximum number of non-idle VCs

increases with an increase in the injection rate, which matches our expectation. More

VCs are occupied when the network gets more congested. From these two figures, we

also observe that for most cases, 9 VCs are more than enough. From Table 4.2, we

observe that the router size is almost linear in the number of VCs. The framework

not only finds the configuration with the best performance, but can also compact the

router size by using the smallest sufficient number of VCs.

It is evident that, in most cases, the performance of the application-aware configu-

ration has significant improvement over the average performance of all configurations.

Tables 5.3 and 5.4 quantify the improvements for 43 and 83 networks, respectively.

The performance improvements are calculated by |opt−avg|/avg. The improvements

of the batch latency, average latency, worst-case latency, and throughput are all di-

89

offered injection rate (flits/node/cycle)
0 1 2 3 4 5 6

av
g

la
te

nc
y(

cy
cl

es
)

290

300

310

320

330

340

350

360

370
3-hop nearest neighbor---avg latency

0.25kb best
0.25kb avg
0.5kb best
0.5kb avg
1kb best
1kb avg
2kb best
2kb avg
4kb best
4kb avg

offered injection rate (flits/node/cycle)
0 1 2 3 4

av
g

la
te

nc
y(

cy
cl

es
)

190

200

210

220

230

240

250

260

270

280

290
cube nearest neighbor---avg latency

0.25kb best
0.25kb avg
0.5kb best
0.5kb avg
1kb best
1kb avg
2kb best
2kb avg
4kb best
4kb avg

offered injection rate (flits/node/cycle)
0 1 2 3 4 5 6

av
g

la
te

nc
y(

cy
cl

es
)

580

600

620

640

660

680

700

720
bit complement---avg latency

0.25kb best
0.25kb avg
0.5kb best
0.5kb avg
1kb best
1kb avg
2kb best
2kb avg
4kb best
4kb avg

offered injection rate (flits/node/cycle)
0 0.2 0.4 0.6 0.8 1

av
g

la
te

nc
y(

cy
cl

es
)

550

600

650

700

750

800

850
transpose---avg latency

0.25kb best
0.25kb avg
0.5kb best
0.5kb avg
1kb best
1kb avg
2kb best
2kb avg
4kb best
4kb avg

Figure 5·8: The comparison between the average latency of the opti-
mal configuration with the average performance of all configurations for
different workloads on a 83 torus. From left to right: 3H-NN, CUBE-
NN, bit complement, transpose

rectly calculated by the geometric mean of all of the data points shown in Figure 5·2

to 5·5 and 5·7 to 5·10. The improvements in area consumption are calculated by con-

verting the data points shown in Figures 5·6 and 5·11 into area consumption based on

the last column of Table 4.2. The results show that in the 43 torus, the optimal con-

figurations found by our proposed framework improve batch latency by 9%, average

latency by 3%, worst-case latency by 15%, throughput by 6%, and area consumption

of the router by 15%. The results also show that for the 83 torus, the found optimal

configurations by our framework improve batch latency by 23%, average latency by

6%, worst-case latency by 34%, throughput by 17%, and area consumption of the

router by 30%.

The five routing algorithms and three switch arbitration policies form fifteen dif-

ferent configurations. We count the times each configuration is optimal and plot them

in Figures 5·12, 5·13, 5·14, 5·15, and 5·16. From Figures 5·14 and 5·15, we find that

ROMM is obviously better than other routing algorithms for transpose and all-to-

all workloads. From Figure 5·16, we find that DOR is apparently the best routing

algorithm for bit-complement workloads. Figure 5·12 shows that for CUBE-NN work-

90

offered injection rate (flits/node/cycle)
0 1 2 3 4 5 6

w
or

st
 c

as
e

la
te

nc
y(

cy
cl

es
)

200

300

400

500

600

700

800

900
3-hop nearest neighbor---worst case latency

0.25kb best
0.25kb avg
0.5kb best
0.5kb avg
1kb best
1kb avg
2kb best
2kb avg
4kb best
4kb avg

offered injection rate (flits/node/cycle)
0 1 2 3 4

w
or

st
 c

as
e

la
te

nc
y(

cy
cl

es
)

200

300

400

500

600

700

800
cube nearest neighbor---worst case latency

0.25kb best
0.25kb avg
0.5kb best
0.5kb avg
1kb best
1kb avg
2kb best
2kb avg
4kb best
4kb avg

offered injection rate (flits/node/cycle)
0 1 2 3 4 5 6

w
or

st
 c

as
e

la
te

nc
y(

cy
cl

es
)

800

900

1000

1100

1200

1300

1400
bit complement---worst case latency

0.25kb best
0.25kb avg
0.5kb best
0.5kb avg
1kb best
1kb avg
2kb best
2kb avg
4kb best
4kb avg

offered injection rate (flits/node/cycle)
0 0.2 0.4 0.6 0.8 1

w
or

st
 c

as
e

la
te

nc
y(

cy
cl

es
)

600

800

1000

1200

1400

1600

1800

2000

2200
transpose---worst case latency

0.25kb best
0.25kb avg
0.5kb best
0.5kb avg
1kb best
1kb avg
2kb best
2kb avg
4kb best
4kb avg

Figure 5·9: The comparison between the worst-case latency of the
optimal configuration with the average performance of all configura-
tions for different workloads on a 83 torus. From left to right: 3H-NN,
CUBE-NN, bit complement, transpose

loads, with respect to the average latency, the adaptive routing algorithm with oldest-

first policy outperforms other configurations substantially. For CUBE-NN workloads,

the DOR routing with farthest-first achieves the best area consumption most of the

time. The same situation appears in the 3H-NN workloads. For other metrics and

3H-NN workloads, there are no obvious consistent best routing algorithms.

We conduct another experiment to find the configurations that have the best geo-

metric mean performance for all workloads. We refer to these configurations globally

optimal. We also find the configurations with the best geometric mean performance

for each individual metric. We refer to these configurations application-aware opti-

mal. We compare the global and application-aware optimal configuration in Table 5.5.

The results in this table are calculated by |app− global|/global. We observe that for

different metrics, the optimal configurations differ. The observation from Table 5.5 is

that the application-aware optimal configurations are better than the global-optimal

configurations for all the metrics, which means that application-awareness is essential

to achieving better communication performance on FPGA clusters. A golden global

router configuration is not enough. The application-aware router configurations gen-

91

offered injection rate (flits/node/cycle)
0 1 2 3 4 5 6

av
g

rc
v

th
ru

pu
t(

fli
ts

/n
od

e/
cy

cl
e)

0

0.5

1

1.5

2

2.5
3-hop nearest neighbor---avg rcv thruput

0.25kb best
0.25kb avg
0.5kb best
0.5kb avg
1kb best
1kb avg
2kb best
2kb avg
4kb best
4kb avg

offered injection rate (flits/node/cycle)
0 1 2 3 4

av
g

rc
v

th
ru

pu
t(

fli
ts

/n
od

e/
cy

cl
e)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
cube nearest neighbor---avg rcv thruput

0.25kb best
0.25kb avg
0.5kb best
0.5kb avg
1kb best
1kb avg
2kb best
2kb avg
4kb best
4kb avg

offered injection rate (flits/node/cycle)
0 1 2 3 4 5 6

av
g

rc
v

th
ru

pu
t(

fli
ts

/n
od

e/
cy

cl
e)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
bit complement---avg rcv thruput

0.25kb best
0.25kb avg
0.5kb best
0.5kb avg
1kb best
1kb avg
2kb best
2kb avg
4kb best
4kb avg

offered injection rate (flits/node/cycle)
0 0.2 0.4 0.6 0.8 1

av
g

rc
v

th
ru

pu
t(

fli
ts

/n
od

e/
cy

cl
e)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
transpose---avg rcv thruput

0.25kb best
0.25kb avg
0.5kb best
0.5kb avg
1kb best
1kb avg
2kb best
2kb avg
4kb best
4kb avg

Figure 5·10: The comparison between the average receiving through-
put of the optimal configuration with the average performance of all
configurations for different workloads on a 83 torus. From left to right:
3H-NN, CUBE-NN, bit complement, transpose

erated by our framework can substantially improve the communication performance

on FPGA clusters.

5.1.5 Discussion

In Chapter 4, we propose a wormhole VC-based router on Novo-G#. In this section,

we first describe the routing algorithms and switch arbitration policies implemented

on the router. We describe a cycle-accurate simulator we use to simulate the router

and the entire Novo-G# network based on the router. With the good extensibility

and maintainability of this simulator, we can propose a framework to search for the

optimal application-aware router configuration. Our results demonstrate that in 43

torus, the optimal configurations found by our proposed framework improve batch

latency by 9%, average latency by 3%, worst-case latency by 15%, throughput by

6%, and the area consumption of the router by 15%. The results also show that in

83 torus, the optimal configurations found by our proposed framework improve batch

latency by 23%, average latency by 6%, worst-case latency by 34%, throughput by

17%, and the area consumption of the router by 30%. Our results also show that by

92

offered injection rate (flits/node/cycle)
0 1 2 3 4 5 6

m
ax

 u
se

d
V

C
 N

U
M

()

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6
3-hop nearest neighbor---max used VC NUM

0.25kb best
0.25kb avg
0.5kb best
0.5kb avg
1kb best
1kb avg
2kb best
2kb avg
4kb best
4kb avg

offered injection rate (flits/node/cycle)
0 1 2 3 4

m
ax

 u
se

d
V

C
 N

U
M

()

1

2

3

4

5

6

7

8
cube nearest neighbor---max used VC NUM

0.25kb best
0.25kb avg
0.5kb best
0.5kb avg
1kb best
1kb avg
2kb best
2kb avg
4kb best
4kb avg

offered injection rate (flits/node/cycle)
0 1 2 3 4 5 6

m
ax

 u
se

d
V

C
 N

U
M

()

1

2

3

4

5

6

7

8

9
bit complement---max used VC NUM

0.25kb best
0.25kb avg
0.5kb best
0.5kb avg
1kb best
1kb avg
2kb best
2kb avg
4kb best
4kb avg

offered injection rate (flits/node/cycle)
0 0.2 0.4 0.6 0.8 1

m
ax

 u
se

d
V

C
 N

U
M

()

1

2

3

4

5

6

7

8

9
transpose---max used VC NUM

0.25kb best
0.25kb avg
0.5kb best
0.5kb avg
1kb best
1kb avg
2kb best
2kb avg
4kb best
4kb avg

Figure 5·11: The comparison between the maximum number of non-
idle VCs of the optimal configuration with the average performance of
all configurations for different workloads on a 83 torus. From left to
right: 3H-NN, CUBE-NN, bit complement, transpose

applying application-awareness provided by our framework, we reduce batch latency

by 6%, average latency by 2%, worst-case latency by 21%, router area size by 18%,

and improve throughput by 10%.

The current results are just a demo showing the potential of this framework. The

framework can easily be extended with new routing algorithms, switch arbitration

policies, and even new router microarchitectures.

Currently, the framework uses exhaustive search to find the optimal configuration

because of there is only 15 configurations. With larger design spaces, a more efficient

search algorithm is needed. Also, the simulator needs to be implemented into a

multi-threaded version. In this work, we only propose pseudocode for it, as shown in

Algorithm 5.

5.2 Proposed Offline Collective Routing Algorithm in Pro-

posed VOQ Router

We develop a novel offline collective routing algorithm. Together with proposed

statically-scheduled collective acceleration router, we form an entirely new communi-

93

Table 5.3: The improvements of performance of optimal router con-
figuration compared with the average performance of all configurations
on a 43 torus

Pattern Total Latency Avg Latency Worst Latency Throughput Area

3H-NN 16% 5% 25% 12% 13%

CUBE-NN 9% 4% 22% 5% 17%

BitComple 18% 5% 23% 2% 10%

Transpose 8% 3% 12% 11% 15%

Tornado 0% 0% 0% 0% 0%

All to all 5% 4% 11% 5% 26%

Average 9% 3% 15% 6% 13%

Table 5.4: The improvements of performance of optimal router con-
figuration compared with the average performance of all configurations
on a 83 torus

Pattern Total Latency Avg Latency Worst Latency Throughput Area

3H-NN 34% 8% 46% 18% 28%

CUBE-NN 24% 6% 43% 14% 25%

BitComple 16% 6% 25% 19% 39%

Transpose 20% 5% 25% 17% 27%

Average 23% 6% 34% 17% 30%

cation infrastructure to support offline collective routing. Our contributions include

following:

• We propose and implement an entirely new communication infrastructure to

support offline routing, which includes a new router design that supports both

online and offline routing (simultaneously) and a new offline routing algorithm

for collectives.

• We find that, compared with a state-of-the-art online router architecture, our

Proposed VOQ router architecture saves FPGA logic resources while only re-

quiring slightly more on-chip memory.

94

metrics
total latency avg latency worst case latency thruput max nonidle VC NUM

pe
rc

en
t

0

5

10

15

20

25

30
Cube neareast neighbor

DOR-FF
DOR-OF
DOR-MIX

ROMM-FF
ROMM-OF
ROMM-MIX

RCA-FF
RCA-OF
RCA-MIX

O1TURN-FF
O1TURN-OF
O1TURN-MIX

RLB-FF
RLB-OF
RLB-MIX

Figure 5·12: The histogram that plots the distribution of the fifteen
router configurations being optimal for cube nearest neighbor workload

Table 5.5: The comparison between global optimal configuration and
application-aware optimal configuration. The percentage is calculated
by geomean(|app− global|/global).

Total Latency Avg Latency Worst Latency Throughput Area

Avg Ben-
efit

6% 2% 21% 10% 18%

• We discover that a priori knowledge of communication can also be used to

reduce buffer sizes and enable higher bandwidth utilization.

• Our experimental results demonstrate that, when compared with a state-of-

the-art online routing algorithm, our new offline routing algorithm reduces the

latency of multicast by 15% and of reduction by 4%.

In the rest of this section, we first propose and describe a novel offline collective

routing (OCR) algorithm. Then, from multiple aspects, we evaluate OCR by com-

paring it with a representative online collective algorithm called RPM. Finally, we

present results.

95

metrics
total latency avg latency worst case latency thruput max nonidle VC NUM

pe
rc

en
t

0

5

10

15

20

25

30
3-hop diagonal nearest neighbor

DOR-FF
DOR-OF
DOR-MIX

ROMM-FF
ROMM-OF
ROMM-MIX

RCA-FF
RCA-OF
RCA-MIX

O1TURN-FF
O1TURN-OF
O1TURN-MIX

RLB-FF
RLB-OF
RLB-MIX

Figure 5·13: The histogram that plots the distribution of the fifteen
router configurations being optimal for 3-hop diagonal nearest neighbor
workload

5.2.1 Algorithm Details

Collective operations can be implemented either with unicast or multicast (see Figure

5·17). Figures 5·17 (a) and (c) show multicast and reduction using unicasts. All the

packets are unicast but share the same source (or destination). Figure 5·17 (b) and (d)

show multicast and reduction based on a tree topology; the communication burden

is obviously drastically reduced.

Tree-based collective routing algorithms have been much studied recently (Jerger

et al., 2008; Abad et al., 2009; Wang et al., 2009; Krishna et al., 2011). Recursive

Partition Multicast (RPM) in (Wang et al., 2009) appears to be the leading such

algorithm. Developed for Networks-on-Chip, RPM only works for 2D meshes. Here,

we extend RPM to deal with both multicast and reduction on a 3D torus; we also

enhance the original algorithm for 2D.

RPM provides a solution to generate the multicast pattern recursively on a 2D-

mesh network. Their goal is to build a multicast tree that maximally reuses network

96

metrics
total latency avg latency worst case latency thruput max nonidle VC NUM

pe
rc

en
t

0

5

10

15

20

25

30
transpose

DOR-FF
DOR-OF
DOR-MIX

ROMM-FF
ROMM-OF
ROMM-MIX

RCA-FF
RCA-OF
RCA-MIX

O1TURN-FF
O1TURN-OF
O1TURN-MIX

RLB-FF
RLB-OF
RLB-MIX

Figure 5·14: The histogram that plots the distribution of the fifteen
router configurations being optimal for transpose workload

links. We found, however, that there are two places in the algorithm that can be

improved (see Figure 5·18).

In (a) and (b), dst0 is northeast of src, and dst1 is southeast. The best multicast

routing decision is first to send the packet east and then let this node distribute

packets to dst0 and dst1 (as in (b)). RPM, however, sets North always to have the

highest priority. The packet first goes north and then east to dst0; this does not

reuse the east link. In Figure (c) and (d), the two routing decisions have the same

reusability of links. However, the north and south links are less congested than the

west and east links, indicating that the routing decision made in (d) is preferred to

the one in (c). RPM makes these suboptimal decisions because it does not account

for link congestion and because of the policy giving priority to the north link.

Our new offline collective algorithm addresses these two drawbacks in RPM, and

also extends it to tori and 3D. We call our algorithm offline collective routing (OCR).

Pseudo code for OCR is shown in Algorithm 6. The first step is to determine the

dimensionality of the topology. If 1D, then multicast routing is immediate. The

97

metrics
total latency avg latency worst case latency thruput max nonidle VC NUM

pe
rc

en
t

0

5

10

15

20

25

30

35
all to all

DOR-FF
DOR-OF
DOR-MIX

ROMM-FF
ROMM-OF
ROMM-MIX

RCA-FF
RCA-OF
RCA-MIX

O1TURN-FF
O1TURN-OF
O1TURN-MIX

RLB-FF
RLB-OF
RLB-MIX

Figure 5·15: The histogram that plots the distribution of the fifteen
router configurations being optimal for all-to-all workload

algorithm for the 2D is described below. If 3D, then the next step is to find an

optimal partition. Three options are corresponding to the number of dimensions. If

the space is a 3D torus, we can always partition it into three parts because every

node can be viewed as the center of the network.

As illustrated in Figure 5·19, we partition the space along three dimensions. We

then count the number of outbound links exiting the source to all the destinations for

each kind of partition. In this example, the partition along the YZ plane requires only

one outbound link, while the partition along the XZ and XY planes need two and

three links respectively. It is apparent that the partition along YZ plane is the best

partition method in this example. If there is more than one partition that has the

minimal number of outbound links, we then select the one that results in a smaller

variance in the loads on the six outbound links. If the partitions are still tied, we

use a global round robin pointer. After we find the best partition, we partition the

entire space into three parts: up space, middle plane and down space and distribute

the destinations into the three subspaces depending on their coordinates. For the up

98

metrics
total latency avg latency worst case latency thruput max nonidle VC NUM

pe
rc

en
t

0

5

10

15

20

25

30

35
bit complement

DOR-FF
DOR-OF
DOR-MIX

ROMM-FF
ROMM-OF
ROMM-MIX

RCA-FF
RCA-OF
RCA-MIX

O1TURN-FF
O1TURN-OF
O1TURN-MIX

RLB-FF
RLB-OF
RLB-MIX

Figure 5·16: The histogram that plots the distribution of the fifteen
router configurations being optimal for bit complement workload

and down space, we call the 3D OCR algorithm recursively. For the middle plane, we

call the modified 2D OCR algorithm.

The 2D OCR algorithm is similar to RPM. As shown in Figure 5·20, we also

partition the 2D space into eight regions depending on the source location. If the

space is 2D, we can always find the eight regions since the source node could always

be the center of the torus. We call regions 0,2,4,6 corner regions and regions 1,3,5,7

side regions. In the 2D plane, one source has at most four fan-outs, which means we

can have at most four partitions among the eight regions. One corner region must

merge with either one of its two adjacent side regions. The first step is to count the

number of nodes in all eight regions. The next step is to determine whether to enable

the links in the north, south, west and east directions and to determine which side

region each corner region should merge with.

Algorithm 7 shows that the algorithm for the north link, south link, and region

0. The merge direction of each corner region depends first of all on whether there

are nodes in region 1, 2, 6 and 8, and second load on the north and east links. In

99

(a) (b) (c) (d)

Figure 5·17: (a) unicast-based multicast (b) tree-based multicast (c)
unicast-based reduction (d) tree-based reduction

dst
0

Src

dst
1

dst
0

Src

dst
1

dst
0

dst
1

Src

dst
2

dst
3

dst
0

dst
1

Src

dst
2

dst
3

N

S
E

W
N

S
E

W
N

S
E

W

N

S
E

W

(a) (b) (d)(c)

Figure 5·18: (a) and (c) show routing decisions made by RPM, (b)
and (d) show those likely to result in improved performance. In (c) and
(d), the north and south links are more congested than the west and
east links.

the next step, the plane and the destination list are partitioned into up to four parts.

The 2D OCR algorithm is called recursively for the four parts until they become 1D

spaces.

5.2.2 Algorithm Evaluation

In this section, we compare our OCR-based offline solution with an online routing

solution based on RPM.

100

Algorithm 6 The pseudo Code of Offline Collective Routing algorithm in a 3D torus
space (OCR3D)

procedure OCR3D(Src, DstList, Space)
if dimension(Space) == 1 then . if space is 1D

multicast(Src,DstList, Space) . multicast directly
else if dimension(Space) == 2 then . if space is 2D

OCR2D(Src,DstList, Space) . call OCR2D
else if (thendimension(Space) == 3) . if space is 3D

BestPartition = EvalPartition(Src,DstList, Space) . select best among
partition along xy, yz, and xz plane

[SrcA, SrcB] = PartitionSrc(Src,BestPartition)
[DstListA,DstListP lane,DstListB] = PartDst(DstList, BestPartition)
[SpaceA, SpaceP lane, SpaceB] = PartitionSpace(Space, BestPartition)
OCR3D(SrcA,DstListA, SpaceA)
OCR2D(Src,DstListP lane, SpaceP lane)
OCR3D(SrcB,DstListB, SpaceB)

end if
Return

end procedure

Experimental Setup

Our target system is theNovo-G# as described in Chapter 3. Each board contains an

Altera Stratix V 5GSMD8 chip and supports six links that use the FPGA’s Multigi-

gabit Transceivers (MGT). Each MGT link has a bandwidth of 40Gbps and latency

of 175 ns. All the boards run at 156.25 MHz, the same as the MGTs. We have two

router designs, including one that supports just the online RPM routing logic and

another with the OCR-based design described previously. We are currently targeting

43 and 83 clusters. Designs are coded in Verilog and synthesized with Quartus II 14.1.

Currently, all paths in the routers are 256 bits to match the parallel I/O of the

MGTs (256:1 ratio of frequencies). Modest tuning will allow us to double the op-

erating frequency of the routers, and so halve the path widths and therefore the

resources used. Smaller designs are also possible but result in the MGTs being used

sub-optimally.

101

Algorithm 7 Part of the Pseudo Code of OCR2D algorithm for region0, north link
and east link

procedure OCR2D(Src, DstList, Plane)
if SearchNode(DstList, region1) then . if dst is in region0

enable(LinkNorth)
end if
if SearchNode(DstList, region7) then . if dst is in region7

enable(LinkEast)
end if
if SearchNode(DstList, region0) then . if dst is in region0

if IsEnable(LinkNorth)&&IsDisable(LinkEast) then
merge(region0, region1)

else if IsDisable(LinkNorth)&&IsEnable(LinkEast) then
merge(region0, region7)

else if IsEnable(LinkNorth)&&IsEnable(LinkEast) then
if LinkNorth.load > LinkEast.load then

merge(region0, region7)
else

merge(region0, region1)
end if

else . both north and east link are disabled
if region2.has(DstList)&&!region6.has(DstList) then

enable(LinkNorth)
merge(region0, region1)

else if !region2.has(DstList)&®ion6.has(DstList) then
enable(LinkEast)
merge(region0, region7)

else
if LinkNorth.load > LinkEast.load then

merge(region0, region7)
else

merge(region0, region1)
end if

end if
end if

end if
end procedure

102

src

dst1

dst0

dst3

dst2

+z

-z
-y

+y

+x
-x src

+z

-z
-y

+y

+x
-xdst0

dst3

dst2

dst1 src

+z

-z
-y

+y

+x
-x

dst0

dst1

dst2

dst3

(a) (b) (c)

Figure 5·19: The partition evaluation of OCR algorithm. (a) partition
along YZ plane, (b) partition along XZ plane, (c) partition along XY
plane

We use one-sided communication over MGT links rather than handshake commu-

nication. One reason is that the in-flight latency is already much longer than the

latency in the router (175ns versus about 45ns). To avoid packet drop, we must en-

sure that the buffers are sufficiently big. For online routing, the input buffer must

always be bigger than the worst-case requirement. For offline routing, however, we

can select the buffer size that satisfies the requirements for a specific application. The

buffer size is also reduced because the routing algorithm balances the link load.

Designs have been tested and validated on a four node subsystem; performance

results below are from ModelSim simulations. We have run experiments using three

synthetic communication pattern: random, bit-rotation, and nearest neighbor. More

details are given below.

Hardware Cost

Basic resource utilization is shown in Table 5.6. We find that the offline router can

save 5% of chip area by eliminating the routing computation logic. We measure the

table sizes required by OCR algorithm for three typical collective patterns (see Table

103

Src

region0region1region2

region3

region4 region5 region6

region7

N

S

EW

Figure 5·20: 8 regions on a 2D plane, Region 0, 2, 4 and 6 are called
corner regions. Region 1, 3, 5 and 7 are called side regions.

5.7. For all three cases, the routing tables consume at most 1.17% of the total on-

chip memory. We observe that reduction requires much larger tables than multicast,

which is because that we need separate table entries for the different packets in

the reduction to buffer temporary results. One reason why routing table sizes for

multicast operations are small is that since the communication pattern is fixed. All

the packets with the same paths could share a single routing table entry.

Table 5.8 compares the empirically determined worst-case buffer sizes of online

and offline routing for the three patterns. The results of Table III show that offline

routing can be expected to save around 20% to 30% input buffer size. Two other

factors increase the advantage of the offline design. First, in a production design, the

online buffers would need to be somewhat larger to deal with worst case scenarios.

And second, while the offline buffer can be sized per application, the online account

for the worst case across all applications. An alternative for the online design is to

use backpressure, but this substantially increases latency.

Another advantage of offline routing is the packet size. In online broadcast, the

packet header has to contain entire destination list, while the offline packet header

104

only needs to carry a table index in the header. For a network has N nodes, the

online routing header needs to have N bits, while the offline routing header needs

only logN bits.

Table 5.6: The logic elements utilization of RPM router and OCR
router on 4×4×4 torus network

RPM online router OCR offline router

ALMs 56177 40895

utilization percent 21% 16%

Table 5.7: The memory consumption of routing tables (including mul-
ticast tables and reduction tables) of OCR algorithm on 4×4×4 torus
network

Pattern operation table size(bits) percentage

All-to-all multicast 6968 0.013%

All-to-all reduction 61.7K 1.17%

Bit Rotation multicast 1122 0.002%

Bit Rotation reduction 10K 0.19%

Nearest Neighbor multicast 2928 0.005%

Nearest Neighbor reduction 25.5K 0.485%

Latencies

We measure latency with two types of loads, batch and continuous. For batch, each

node transmits a fixed number of collective packets; latency is the time from when

the first packet is sent until the last packet is received. For continuous, each node

generates collective with a particular injection rate; latency is the average packet

latency.

Figure 5·21 shows the results for batched experiments (speedup of offline versus

online). We apply three typical benchmarks (all-to-all, nearest neighbor, and bit

rotation) for two network size: 4 × 4 × 4 and 8 × 8 × 8. For nearest neighbor in

105

Table 5.8: The requirements of worst-case buffer size (depth) of online
routing and offline routing for these three synthetic patterns, injection
rate here is 1 packet per node per cycle

operations online routing offline routing

All-to-all multicast 1532 1132

All-to-all reduction 367 288

Bit Rotation multicast 91 57

Bit Rotation reduction 1 1

Nearest neighbor multicast 277 157

Nearest neighbor reduction 14 9

1.00

1.05

1.10

1.15

1.20

1.25

all-to-all

multicast

nearest

neighbor

multicast

bit

rotation

multicast

multicast

geometric

mean

all-to-all

reduction

nearest

neighbor

reduction

bit

rotation

reduction

reduction

geometric

mean

4x4x4 8x8x8

Figure 5·21: The batched experiments with three typical benchmarks
(all-to-all, nearest neighbor, and bit rotation) for two kinds of network
size: 4x4x4 and 8x8x8.

the 4 × 4 × 4 network, each source node communicates with nearest 26 neighbors

(33 − 1); in the 8× 8× 8 network, each source node communicates with the nearest

124 neighbors (53− 1). The patch size is set to 64 packets and injection rate is set to

1 packet per cycle per node. The results show that for the multicast operation, the

latency of the offline routing solution is in all cases better than online routing with

a geometric mean of over 15% for multicast and 4% for reduction. For the reduction

operation, the improvement is limited by the fact that each node injects at most one

packet per cycle but can consume more than one.

Figure 5·22 shows the results for the continuous multicast experiments. We add

106

0 0.05 0.1

la
te

nc
y(

ns
)

0

2000

4000

6000

8000
all-to-all

0 0.1 0.2 0.3
1000

2000

3000

4000

5000
random (nodes ratio=0.5)

Injection rate (packtes/cycle/node)
0 0.5 1

1200

1400

1600

1800

2000
random (nodes ratio=0.2)

0 0.5 1
0

1000

2000

3000

4000
nearest neighbor

0 0.5 1
450

500

550

600

650

700
bit rotation

online routing
offline routing

Figure 5·22: The average latency of multicast packets in 4 × 4 × 4
network

two patterns; these are similar to all-to-all, but with a subset of destinations selected

at random. We note that unloaded latency is maintained for higher loads for the

offline design. Also, the offline design results in better average latency in nearly all

cases. The exception is the nearest neighbor pattern. This is because that pattern is

already symmetric and balanced leaving little room for improvement.

5.2.3 Discussion

In this section, we describe a complete communication infrastructure to support offline

(statically scheduled) routing of collective communication on FPGA-centric clusters.

We use table-based routing and a new router design. We propose a new offline collec-

tive routing (OCR) algorithm that takes advantage of knowledge of communication

patterns to load balance network links and reduce congestion. The experiments show

that this offline routing solution has significantly better performance and lower hard-

ware cost than a state-of-the-art online routing solution. The OCR algorithm is not

optimal; however, the infrastructure described supports improvements as they are

developed with no change in design.

Chapter 6

3D FFT on FPGA clusters

One application we have implemented on our Nove-G# system and its infrastructure

is the 3D FFT. In this chapter, we first give an overview of the 3D FFT. We then

give implementation details on the Novo-G#. After that, we present our experimental

results and compare them with results from previous work. We end this chapter with

some discussion.

6.1 3D FFT Overview

The three dimensional Fast Fourier Transform (3D FFT) is essential to numerous

applications in diverse domains. In Molecular Dynamics (MD) simulations the 3D

FFT reduces the complexity of computing the long range interactions. In molecular

docking, the 3D FFT computes the scores for ranking the different conformations of

molecular complexes (Katchalski-Katzir et al., 1992; Vancourt et al., 2004; Vancourt

and Herbordt, 2005; VanCourt et al., 2006). In imaging, the 3D FFT accelerates

algorithms that decrease scan time (Kim et al., 2011).

Particularly interesting to this work is when the 3D FFT is both on the critical

path and operating in a fixed sized problem domain, i.e., when strong scaling is

needed. An example is MD simulations of biomolecules. These often have from a

few 10s of thousands to a few 100s of thousands of particles and need to execute

for E+9 to E+15 timesteps (fs) and beyond. The non-FFT part of the computation

scales well and takes roughly 1s per timestep per CPU core. With a 1K core cluster,

107

108

the non-FFT MD simulation of a protein takes about 10 days for 1us simulated time

(E+9 timesteps). To get into the ms range requires, e.g., 100K cores and 100 days.

The problem is that, as the cluster size increases, and while the problem size remains

fixed, the compute time per timestep necessarily decreases. In these examples, they

are 1ms and 10 us, respectively.

These calculations define the time budget for the 3D FFT in protein simula-

tion: preferably in the us range of compute time for FFT sizes of from 163 to 1283

(Sukhwani and , 2008; Sukhwani and Herbordt, 2010; Young et al., 2009). Given

the communication latencies of commodity networks, achieving these numbers poses a

substantial challenge. The two ways to address the problem are to reduce the number

of communicating nodes, e.g., by using accelerators and reducing the communication

latency. In conventional clusters these are generally in conflict: accelerators must

traverse extra hops to cooperate. This problem was solved by DE Shaw by building

a dedicated ASIC-based computer, Anton (Shaw et al., 2008).

The 3D FFT data can be viewed as a cube of points, where each point represents

a point of data in an FFT calculation. A N3 point 3D FFT can be expressed as

Equation 6.1.

F (kx, ky, kz) =
N−1∑
z=0

N−1∑
y=0

N−1∑
x=0

f(x, y, z)W xkx
N W

yky
N W zkz

N (6.1)

where WN = e−i
2π
N .

In practice, the 3D FFT is calculated by decomposing it into 1D FFTs computed

successively in each dimension. Since the 3D FFT has N3 data points, each of the

three dimensions requires N2 N-point 1D FFTs for a total of 3N2 1D FFT calcu-

lations. By convention, the 1D FFTs are first computed on the x dimension, then

on the y dimension, and last on the z dimension. Each dimension must wait for the

previous dimension to finish before it can start.

109

6.2 Implementation

In this section, we describe (i) the framework to generalize the communication pattern

for the 3D FFT, (ii) the problem decomposition and data mapping, and (iii) a formula

to estimate the latencies for various 3D FFTs ranging from 163 to 1283

As described in the background section, the N3 3D-FFT can be decomposed into

three phases, one per dimension. Each phase involves N2 N-point 1D-FFTs. Between

each pair of phases, there exists a communication phase to transpose the whole 3D

array to get the data ready for the 1D-FFT on the next dimension. Following (Young

et al., 2009), we refer to the communication phase between X and Y as the XY corner

turn and between Y and Z as the YZ corner turn. In (Young et al., 2009), the authors

summarize the communication pattern of XY corner turn and YZ corner turn for two

specific cases: 323 FFT and 643 FFT on 3D-torus network with 83 nodes. In our

work, we extend these two patterns to a general case of 2n × 2n × 2n 3D FFT on a

3D torus network of2m × 2m × 2m nodes (see Figure 6·1).

Original data (3D array):

 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
Initial Mapping:

(̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) ̅̅
When :

After X-fold:

(̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
After X compute and XY corner turn:

(̅̅ ̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
After Y compute and YZ corner turn:

(̅̅ ̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅) ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

When :

After X-fold:

(̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
After X compute and XY corner turn:

(̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) ̅̅ ̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
After Y compute and YZ corner turn:

(̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

 Figure 6·1: The generalized mapping 2n×2n×2n 3D FFT problem on
3D 2m × 2m × 2m torus network And data permutation pattern during
two communication phases (XY corner turn and YZ corner turn).

In Figure 6·1, the first two lines show the most straightforward mapping of N3

110

data points onto an M3 torus cube, where N = 2n and M = 2m. There are then two

cases for the permutation patterns: n < 2m and n ≥ 2m. Both of them require that

3m ≤ 2n, which guarantees that there is at least one 1D FFT on one node, which

is because there are23m nodes in total and 22n 1D FFTs in each dimension, which

means there are 22n−3m 1D FFTs per node.

In Figure 6·1, there is a communication phase called X-fold, which takes place

before computing the X dimension FFTs. This step transposes data from the initial

mapping to get ready for this computation. In our design, this step is done offline, so

the X-fold phase in Figure 6·1 does not cost any clock cycles. The permutations for

the XY and YZ corner turns are also shown in Figure 6·1. Each expression determines

the exact location of each datum on the network and has five overscored terms. The

first three terms (in the parentheses) are binary expressions of the coordinates of the

node that the data belongs to. The fourth term denotes the index of the 22n−3m 1D

FFTs in that node. The fifth term indicates the index of the 2n points of the 1D FFT

input data on that node.

We now illustrate how the permutations work (XY corner turns, and YZ corner

turns). Let n = 6 and m = 3.

Binary expression for data (11,47,19)

= x5x4x3x2x1x0, y5y4y3y2y1y0, z5z4z3z2z1z0

= (001011)2, (101111)2, (010011)2

= 11, 47, 19

Initial Mapping:

(x5x4x3, y5y4y3, z5z4z3)

= (001)2, (101)2, (010)2

= 1, 5, 2

111

After X fold:

(z2z1z0, y5y4y3, z5z4z3), y2y1y0, x5x4x3x2x1x0

= ((011)2, (101)2, (010)2), (111)2, (001011)2

= (3, 5, 2), 7, 11

After XY corner turn:

(z2z1z0, x5x4x3, z5z4z3), x2x1x0, y5y4y3y2y1y0

= ((011)2, (001)2, (010)2), (011)2, (101111)2

= (3, 1, 2), 3, 47

After YZ corner turn:

(y2y1y0, x5x4x3, y5y4y3), x2x1x0, z5z4z3z2z1z0

= ((111)2, (001)2, (101)2), (011)2, (010011)2

= (7, 1, 5), 3, 19

This example shows data movements when mapping a 643 3D FFT onto an 83

torus. The original X, Y, and Z indexes for this datum are 11, 47, and 19 respec-

tively. It is mapped to the node whose coordinates are (1,5,2). After the X-fold, the

coordinate of the node becomes (3,5,2), and the data is mapped to the 7th 1D FFT

IP. The relative address of this data on this IP is 11. In our design, the X-fold is done

offline, therefore physically the initial location of this data is the 11th slot on the 7th

IP on Node(3,5,2). After the XY corner turn, the datum is sent to the 47th slot on

the 3rd IP on the Node(3,1,2). Finally, the YZ corner turn puts the data on the 19th

data slot on the 3rd IP on the Node(7,1,5). Based on this generalized permutation

pattern, we can derive the number of packets that are transmitted during each phase

and how large each packet is. These are displayed in Table 6.1.

112

Table 6.1: The number of packets should be sent in each communica-
tion phase and the size of packets

Turn FFT Size Torus Size condition packets/node Data/packet

xy turn 23n 23m 2m > n 23m−n 22n−3m

xy turn 23n 23m 2m ≤ n 2m 22n−3m

yz turn 23n 23m 2m > n 2n 22n−3m

yz turn 23n 23m 2m ≤ n 22m 22n−3m

To get a better sense of what would be the best network size for any particular

3D FFT, we created a generalized formula to estimate the latency of the entire 3D

FFT computation. As the entire process can be decomposed into computations and

communications, we can look at these two parts separately.

The computation latency is straightforward and can be easily found in Altera doc-

umentation (Altera, 2014a). The communication on the 3D torus is more complicated

than the computation: the breakdown of the estimate of the communication latency

is shown in Table 6.2. Since the data throughput is limited by the bandwidth of the

MGTs, we need to account for the time to output all the data on one node, which

is calculated using the total number of data points per node and the bandwidth of

the internode links. Based on the general case above, the number of points per node

should be 23n−3m. The delay on the links is another important factor of the overall

latency and is calculated based on the length of the longest path in the generalized

routing pattern described above.

6.3 Experimental Results

We built a cycle-accurate simulator to gather experimental results for our design.

The simulator is configured with real parameters based on the capabilities of current

FPGA devices. The torus size in this paper is restricted to 83 and 43, both of which

are actual configurations in state-of-the-art technologies. Each node in the torus

113

Table 6.2: The estimated latency of communication in microseconds
for various problems sizes and network sizes (BW: Bandwidth, LD: Link
Delay)

Turn FFT Size Torus Size Conditions Estimation Formula

xy turn 23n 23m 2m > n 23n−3m

BW
+ (22m−n−1 + 2m−1)× LD

xy turn 23n 23m 2m ≤ n 23n−3m

BW
+ (2m−1)× LD

yz turn 23n 23m 2m > n 23n−3m

BW
+ (2m)× LD

yz turn 23n 23m 2m ≤ n 23n−3m

BW
+ (2m)× LD

contains an FPGA. Each FPGA has a network switch and a local processing unit.

Each processing unit includes some 1D FFT IPs; this number is determined by the

FFT size and the chip area. The 1D FFT IPs we adopted in our design are generated

using Altera FFT MegaCore (Altera, 2014a). Latency and the maximum number of

IPs that fit on a high-end Altera FPGA are shown in Table 6.3. The Altera FFT IP

has the best latency in streaming mode: for an N point 1D FFT, the latency cycles

is N cycles. The FFT computation latency becomes trivial because of this streaming

mode. Once data is produced from FFT IP, it is ready to be sent into the network.

In this manner, most of the computation latency is hidden behind communication

latency.

Table 6.3: Altera FFT MegaCore latency and max number of IPs
could fit on an Altera Stratix V 5SGSMD8

1D FFT Size Latency (cycles) DSP Blocks Used Max # of IPs per node

16 16 8 75

32 32 16 41

64 64 16 41

128 128 24 31

256 256 24 31

The performance results gathered after simulations are displayed in Table 6.4. We

simulated two kinds of routers, ring, and VOQ, which are both mentioned in chapter

114

Table 6.4: Latency in microseconds for various problems sizes and
network sizes

FFT Size Network Size # of FFT IP per Node Latency

163 43 4 3.86us

323 43 4 5.30us

643 83 16 9.32us

1283 83 16 25.72us

4. Their results are very close to each other. So we did not specify in Table 6.4.

Problem sizes ranging from 163 to 1283 were simulated. We pick the best network

size for each problem size. For FFT sizes of 1283 (and larger), congestion becomes

critical (see Table 6.2), but also allows for the table based scheme to show most

benefit.

In Table 6.5, we compare our results with results from CPUs, GPUs, ASICs, and

other FPGA implementations. Except for ASIC(Anton) all are for single sockets.

We find that communication overhead does not overwhelm the calculation and that

performance of our design is faster than performance on CPUs and GPUs by at least

one order of magnitude (achieving strong scaling for the target applications). Also,

the FPGA cluster performance is similar to that of Anton (Young et al., 2009). For

the 643 FFT, the presented design is faster than Anton (Young et al., 2009) by about

30%.

6.4 Discussion

In this section, we present a design of mapping 3D FFTs onto an FPGA-based cluster

with a 3D torus, direct connections between FPGAs, and offline routing. Even with

extremely conservative assumptions, we demonstrate strong scaling and comparable

results with Anton. The main reason why our 3D FFT implementation could achieve

similar performance to Anton is that although our network is not as fast as that

115

Table 6.5: The results for various technologies and problem sizes.
Anton is for fixed point; other results are for single precision floating
point. All times are in microseconds. The release date is from corpo-
rate announcements of availability in quantity. Stratix-V times are our
simulation results.

Implementation Technology Performance in µs

Tech. Make Model Parallelism 163 323 643

2008 era technology

CPU Intel Nehalem 4 cores 38 116 983

GPU NVIDIA Tesla 240 SPs 54 66 257

FPGA Altera Stratix-III single FPGA 4.5 DNFit DNFit

ASIC DE Shaw Anton 512 PEs Not Av. 4 13

2012 era technology

CPU Intel Sandy Bridge 8 cores 22 55 288

GPU NVIDIA Kepler 2688 SPXs 25 29 92

FPGA Xilinx Virtex-7 single FPGA 3.6 21 216

FPGA Altera Stratix-V 512 FPGAs 3.86 5.30 9.32

of Anton, the streaming FFT IP is directly connected to the network switch, which

enables the FFT computation is almost entirely hidden behind the communication.

Our results directly prove the advantage of the tight coupling of communication and

computation on FPGA. The overall conclusion is to demonstrate the viability of

FPGA clusters for long timescale MD simulations of even modest sized proteins.

Chapter 7

3D FFT and Implications for MD on

FPGA Cloud

FPGAs are currently unique in how they combine compute and general communica-

tion resources in a commodity device. This feature has led to new cloud and cluster

architectures where the FPGA is both the accelerator and the communication device,

the latter as part of the router or the NIC or as a bump-in-the-wire. For clouds so

enhanced, such as Microsoft Catapult (Caulfield et al., 2016), there is the promise of

cost-effectively executing HPC applications in a commodity data center that otherwise

would require a dedicated (if not proprietary) network to scale efficiently. Here we

explore this possibility through the implementation of a well-known communication-

bound application, the 3D FFT. We then show the implications of these results on

Molecular Dynamics (MD). Contributions are as follows.

• We believe this study to be the first for a communication-bound HPC appli-

cation, the 3D FFT, on Catapult 2. We use the results from our testbed to

create a model for performance of the 3D FFT on large-scale clouds. We re-

peat this for FPGA-centric clusters, using the Novo-G# as our testbed. We use

these models to determine the sensitivity of performance to prospective network

enhancements.

• We introduce the idea of phased application elasticity, which is based on the

observation that some HPC applications run in phases and that those phases

116

117

may differ in scalability. We show that for the 3D FFT, elasticity can improve

performance by 13%-14%. Specifically for Molecular Dynamics, the contraction

and expansion communication can be merged with the data transform from

physical to FFT spaces to completely hide the overhead, which results in the

benefit rising to 16%-29%.

• Using these and published results on MD hardware implementations, we build

a model for MD performance for likely FPGA clouds and clusters. We propose

two different MD designs, one where the nodes are uniform and one where they

are specialized. Finally, we present roofline graphs for current FPGA cluster

and cloud architectures showing, over a range of problem sizes and node counts,

where the bottlenecks lie.

Two of the most important results are as follows. For FFTs, performance is

competitive with (at least) HPC technologies with CPUs and GPUs. For MD also,

performance is projected to be competitive with throughput well into the range of

microseconds/day. Perhaps the most important consequence is showing the efficacy of

running communication-bound HPC applications in a commodity cloud if that cloud

is enhanced with FPGAs in a bump-in-the-wire architecture.

7.1 FPGA-centric Clouds and Clusters

Basic device characteristics. FPGAs are COTS computing devices whose logic is

configurable, rather than fixed as in a CPU or GPU, and so can be adapted to the

application to obtain extremely high efficiency. Modern FPGAs have thousands of

“hard” ASIC blocks–ALUs, FP Units, and Memories (Block RAMS or BRAMs)–that

can be combined into independent parallel pipelines. Since on-chip communication is

configurable, there is no logical restriction on the connections among these pipelines,

although there are obvious physical limitations. FPGAs run at a fraction of the

118

Commodity
Network

NIC

CPU

ACC

NIC

CPU

ACC

(a)

Commodity
Network

NIC

CPU

ACC NIC

CPU

ACC

Commodity
Network

NIC

CPU

ACC

NIC

CPU

ACC

(c)(b)
Secondary Network

among ACCs

Figure 7·1: Three models for FPGA-based HPC systems. a) Standard
HPC cluster. b) Catapult II. c) Catapult I and Novo-G#.

operating frequency of CPUs and GPUs, typically around 200MHz, but also draw a

fraction of the power, with 25W per device being typical in production settings (see,

e.g., (Putnam et al., 2014)). Configuration times are commonly in the 100s of ms;

the implication is that FPGAs are flexible at the level of swapping applications, but

are less likely to be reconfigured during a task.

FPGA performance metrics. Creating an HPC application for FPGAs requires

creating the parallel, communicating pipelines where most cycles produce results. The

best design will maximize the parallelism (number of pipelines) and the operating

frequency (by simplifying interconnects). Maximizing parallelism means minimizing

the resources used per pipeline. A primary metric is, therefore, the count of the

various resources used in design: generic logic (ALMs), memory blocks (BRAMs),

and arithmetic units (DSPs).

FPGAs are hybrid accelerators/routers. FPGAs have long been central to

high-end commercial routers; the latest FPGAs have on the order of 100 100Gbs

transceivers. For HPC, this co-location enables direct and programmable intercon-

nects. Direct enables FPGA-FPGA and FPGA-network connections and so the by-

passing of CPU, NIC, device memory, and most of the software stack. Programma-

bility enables (i) data transfers to proceed with high efficiency even under substantial

loads (e.g., through static scheduling), and (ii) in-network processing, such as for

119

collectives. These methods are also used by the ASIC-based Anton 2 (Shaw et al.,

2014) and in high-frequency trading (Arista, 2013).

FPGA programming. FPGAs are programmed with a combination of HDL code

(e.g., OpenCL or Verilog) and IP (function) blocks, often provided by the FPGA

vendor. Because of configuration times, load balancing among modules is of particular

importance; all should be active most of the time. Also, in FPGA-based HPC systems,

parts of the FPGA will be preconfigured with network and memory interfaces and

other system support (the shell). The shell takes from 10% to 50% of the FPGA

resources (Caulfield et al., 2016; George et al., 2016).

Three models for FPGA-based HPC systems are shown in Figure 7·1: (a) stan-

dard accelerator as coprocessor, (b) accelerators additionally communicate directly

through the primary network from a forward position ahead of the NIC (bump in the

wire) and (c) accelerators instead additionally communicate directly with each other

through a secondary network with the accelerators also performing NIC and routing

functions.

7.1.1 Catapult II

We have two specific target systems. The first is the Catapult system from Microsoft

(see (Caulfield et al., 2016) and Figure 7·1b). We refer to this as Catapult II to

distinguish it from the earlier and substantially different Catapult design (see below

and (Putnam et al., 2014)).

Deployment and scale. We used a 32-node testbed (two racks) to generate results.

The Catapult II system has the potential to achieve datacenter scale (Caulfield et al.,

2016). We model larger systems using communication data presented in (Caulfield

et al., 2016) and validated here independently.

Node architecture. Each node has one FPGA and two Intel Xeon CPUs. Each

FPGA is connected to one 4 GB DDR3-1600 DRAM and two independent PCIe Gen

120

3 x8 duplex connections for an aggregate bandwidth of 16 GB/s between the CPU

and FPGA. There is also a 256 Mb Flash chip holds the known-good golden image

for the FPGA that is loaded on power-on, as well as one application image.

FPGA board-level architecture. The FPGA board is designed by Microsoft and

added to the PCIe expansion slot in a production server SKU. To satisfy the con-

straints of hardware accelerators for datacenters, the FPGAs are placed as a network-

side “bump-in-the-wire.” FPGAs sit between the NIC and the top-of-rack switch

(ToR).

FPGAs are Altera Stratix V D5s, with 172.6K ALMs of programmable logic (28nm

process), which is roughly 60% the capacity of a top-of-the line FPGA such as is used

in the Novo-G# (see below).

System support. Each FPGA is partitioned into two parts: application logic (role)

and the common I/O and board-specific logic (shell). The components of the shell

include Ethernet MACs and PHYs, ER, and LTL. The shell also provides a tap for

FPGA roles to inject, inspect, and alter the network traffic as needed, such as when

encrypting network flows. The shell takes about 44% of the chip resources.

FPGA communication interface. Applications send packets to the Elastic Router

(ER), which handles inter-node communication via a virtual channel. The ER for-

wards packets to a Lightweight Transport Layer (LTL) engine, which uses UDP for

frame encapsulation and IP for routing packets across the datacenter network.

Communication bandwidth. There is a single Ethernet interface with a bandwidth

of 40Gpbs.

Communication latency. See Table 7.1.

Table 7.1: The end-to-end latency on Catapult II for small packets.

Number of nodes < 24 < 1000 >= 1000

Latency(us) 2 5 10

121

7.1.2 Novo-G#

The second particular target system is the Novo-G# (George et al., 2016). The overall

architecture is shown in Figure 7·1c and is similar to the original Catapult (Putnam

et al., 2014) as well as various other FPGA-centric clusters (Sass et al., 2007; Bunker

and Swanson, 2013). The details of its system architecture is already described in

section 3.2 and 3.3. The brief introduction is listed below.

Deployment and scale. There are currently two identical copies of the Novo-G#,

each with 64 nodes configured in 43 3D tori (as the secondary network). The primary

networks are Gigabit Ethernet and QDR InfiniBand.

Nodes architecture. Each node has one FPGA and two Xeon E5-2620V2 proces-

sors. Each FPGA is connected to two 8GB DDR3 SODIMM and two 36-Mbit SRAM

memory banks and communicates with the local CPUs via PCIe v3.

FPGAs. The accelerator boards are from Gidel and populated with Stratix V

GSMD8 FPGAs from Altera (28nm process). The GS-series devices are optimized

for high performance, high bandwidth applications with support for up to 36 on-chip

transceivers that can operate up to 12.5 Gbaud.

On-FPGA system support. The shell has memory and communication interfaces

and complete general routing logic. The shell uses < 10% of chip resources.

FPGA communication interface. Applications send packets directly to each other

through the secondary network.

Communication bandwidth. Besides the interface to the CPU, each FPGA has six

bidirectional links, each with 40Gbps bandwidth for 480Gbps aggregate bandwidth.

Communication latency. Point-to-point latency is 175ns. Per hop switching time

latency within each intermediate FPGA is just a few cycles (< 20ns), unless the

network is very heavily loaded.

Network programmability. The Novo-G# supports table-based routing which

122

facilitates static scheduling to balance load and minimize collisions, which is especially

useful for 3D FFTs (Young et al., 2009; Sheng et al., 2014; Lawande et al., 2016) and

for routing collectives in MD (Grossman et al., 2015).

7.1.3 Methods

We describe methods used to program the two target systems, Catapult II and the

Novo-G#. For both we use Verilog and IP from the Altera Megacore Library (Altera,

2014a). Also for both, we use Altera Quartus II v15.0 for synthesis and place-and-

route and ModelSim for simulations (behavioral and post-fitting). For Catapult II we

use the Microsoft Catapult II tool set to configure the FPGAs. System interfaces are

through the shell as described above. For Novo-G#, we use the Gidel ProcWizard

tools to generate the framework (shell) and to configure the FPGAs.

7.2 FFTs and Molecular Dynamics

7.2.1 FFT and FPGAs

The input to a 3D FFT an N3 cube of points. For fine-grained parallel implementa-

tions (Lawande et al., 2016; Sheng et al., 2014; Young et al., 2009), the 3D FFT is

decomposed into 1D FFTs which are computed successively in each dimension. Each

of the three dimensions requires N2 N-point 1D FFTs for a total of 3N2 1D FFT

calculations. Each dimension computation waits for the completion of the previous

dimension computation before proceeding.

The 1D FFTs are implemented using vendor IP blocks of size N . The vendor IPs

are extremely efficient being maximally tuned to the particular target device. The IPs

used here (Altera, 2014a) are single precision floating point, have streaming inputs

and outputs of one element per cycle, order (unshuffle) the output stream, and have

a latency of N cycles. For N = 64, the maximum number of IPs that can fit on one

123

node in Catapult II is 12; for the Novo-G# it is 64.

A constraint on performance is the finite number of BRAMs. Each IP demands

one datum per cycle, which requires that data are distributed across BRAMs such

that there are no collisions between IP streams. For a single FPGA and likely N ,

this is possible only in 1 and 2 dimensions, but not for 3. This problem is solved with

an internal routing network (crossbar). The result of this design is that for a single

FPGA, given N and I IPs, the 3D FFT is computed in roughly 3N + 3N3/I cycles.

For clusters there is an analogous data ordering problem that is solved by per-

forming a cluster-wide transpose (see, e.g., (Lawande et al., 2016; Sheng et al., 2014;

Young et al., 2009)). The latency of the 3D FFT, therefore, has an additional term

that is a function of communication performance, which, in turn, is a function of

network and the number of processors P .

7.2.2 MD, FPGAs, and Strong Scaling

MD is an iterative application of Newtonian mechanics to ensembles of atoms and

molecules (particles). MD simulations proceed in iterations consisting of two phases,

force computation, and motion integration; since motion integration is < 1% of com-

putation and requires little communication, we ignore it. The force computation itself

has two phases, range-limited and long range. For the range-limited, each particle

interacts with all particles within a cut-off radius (generally from 9A to 12A) which

reduces the complexity of this phase from N2/2 to roughly 500N . Various methods

are used to effect this reduction including cell and neighbor lists (in software) and cell

lists and distance filtering (in hardware). The long-range force computation, using,

e.g., PME, requires multiple steps (Phillips et al., 2002): (i) mapping charges to a

grid, (ii) scattering data for efficient Fourier space computation, (iii) 3D FFT, (iv)

gathering data back into physical space, and (v) applying forces to the particles. The

remaining computations include bonded forces and data movement, but require less

124

< 1% of communication and computation.

Hardware implementations of MD have been studied with the Anton series of

ASIC-based systems (Grossman et al., 2015; Shaw et al., 2007; Shaw et al., 2014;

Young et al., 2009) and numerous single FPGA studies (e.g., (Alam et al., 2007; Chiu

and Herbordt, 2010; Scrofano et al., 2008)). Details of range-limited pipelines can be

found in (Shaw et al., 2007; Chiu and Herbordt, 2010), range-limited communication

in (Grossman et al., 2015), and the 3D FFT in (Young et al., 2009).

Roughly 90% of the FLOPs are used for computing the range-limited force. Com-

munication bandwidth is more even between long range and range-limited phases.

But the crucial point is that the long range force requires global communication while

the range-limited only local. This is what leads to the difficulty in strong scaling MD,

especially for smaller simulation sizes such as used to simulate protein folding. We

illustrate this idea as follows. It is critical to simulate reality into the ms regime.

With standard timesteps of 2E-15s, this requires E12 timesteps. To complete these

in say, one week (100 µs simulated time per day), each timestep must be computed

in roughly 2-5 µs of real time, depending on other assumptions. For any problem

size, global communication at this time scale becomes extremely challenging with

increasing P .

7.3 3D FFT on Catapult II and Novo-G#

7.3.1 3D FFT on Catapult II

An overview of FFT implementations on FPGA-based systems was given above; there

are three phases of N2 per-dimension 1D FFTs separated by corner turns. Figure

7·2 shows the state transition diagram of the 3D FFT on Catapult II. All nodes start

in the IDLE state. Data and routing tables are loaded into each node after which

they enter a wait state. We designate one node as head node; its primary purpose

125

is to multicast start to the other nodes. After receiving start, nodes compute the

X dimension 1D FFTs and then group data into packets and transmit them (the

XY corner turn). In parallel, a monitor on each node starts tracking data arrivals.

When all expected Y dimension data have arrived, the node begins the Y dimension

computation. The flow works similarly for Z dimension. After X, Y, and Z have

completed, data are written back, and nodes return to the wait state.

IDLE
SYNCIN
G_TO_
START

Initial data and
permutation
tables loaded
done X_COMPUTE

and XY_TURN

Head node
multicast small
packets to all
other nodes to
sync

Y_COMPUTE
and YZ_TURN

Z_COMPUTE
and ZX_TURN

WRITE
BACK

All the data for Y
compute is received

All the data for
Z compute is
received

All the data for
next iteration
of X compute
is received

Write back
done

Figure 7·2: The state transition graph for 3D FFT implementation
on each Catapult II node

The design for each Catapult II node is shown in Figure 7·3. Recall the 3D FFT

has three communication phases: XY corner turn, YZ corner turn, and ZX corner

turn. So we instantiate two sets of RAMs to store the temporary results of the three

phases. During the XY and ZX corner turns, data is read from RAM set 0 and written

to RAM set 1. During the YZ corner turn, data is read from RAM set 1 and written

to RAM set 0. After data are read from the RAM, they are streamed into several

1D FFT IPs. After the data are streamed out from the FFT IPs, they are tagged by

a precomputed permutation routing header. Each permutation header contains the

routing information for each datum. This includes the destination node ID, the RAM

slice ID, and the RAM address. If the destination is local, then the data is routed to

126

the internal crossbar and back to the other set of local RAMs. Otherwise, the data

are routed to the external crossbar and then to the network interface. An FSM on

each node controls the data flow.

One important design parameter is the number of 1D FFT IPs per node. On

Catapult II, there are two types of constraints: chip resources (ALMs, BRAMs, DSPs)

and network bandwidth. By examining the resource consumption of the FFT IPs for

different problem sizes (N), we can determine that for common N , the number of

FFT IPs that should be placed in one Catapult II node is four. The reasoning is

as follows. First, four FFT IPs fit for all cases. Second, each FFT IP produces one

datum per cycle, which is 85 bits wide. The bandwidth of the network interface on

each Catapult II node is 256 bits per cycle. This means that three 1D FFT IPs can

saturate the network bandwidth and more IPs per node do not improve performance.

We select 4 IPs per node for convenience.

We have parameterized our design for various FFT sizes N and numbers of nodes

P . For our experiments we have run FFTs with N = 16, 32, 64, and 128 on a 32

node testbed. Figure 7·4 shows the resource utilization for different problem sizes;

this includes all FFT logic (IP router, and control logic) as well as the shell. We

find that only ALMs and BRAMs are significant. Assuming the maximum 4 IPs per

node, the consumption of ALMs increases slightly with N but remains below 65%.

For BRAMs, for each N the number required BRAMs decreases with P as the data

are distributed. For N = 16 and N = 32, all data fit in a single node. For N = 64

we need at least 2 nodes, for N = 128, at least 16 nodes.

Measured performance is displayed in Figures 7·5 and 7·6. In the rest of this

subsection, we make basic observations. In the next subsection, we build a model

and discuss scalability and sensitivity to architectural parameters. Single-node per-

formance is better than 2-node performance. This is because the bandwidth of the

127

slice0

slice1

slice2

slice3

slice0

slice1

slice2

slice3

FSM

0

1

2

3

m
u

x

Internal
Crossbar

External
Crossbar

XY turn perm table

YZ turn perm table

ZX turn perm table

Data
ram set0

Data
ram set1 YZ turn

ZX turn

XY turn

Data RAM set 0 Data RAM set 1

MUX

FFT IP

Tagged Data

Input
Buffer

Output
Buffer

Network

Figure 7·3: 3D FFT implementation on each Catapult II node

internal crossbar is much higher than the bandwidth of the network interface. Per-

formance improves with P ≥ 4. However when P > 16 for N = 16, 32, and 64 the

benefit diminishes. Missing data points (for N = 32 and 64) require off-chip transfers

and are less likely to be of practical interest.

The implementation overlaps communication and computation; data streaming

from the IPs is directed to the network interface. A small part of the computa-

tion latency cannot be hidden. Figure 7·6 shows the total communication time and

the marginal (nonoverlapped) computation time. In Catapult II, the communication

latency has two parts, transmission, and time-of-flight. Transmission latency is pro-

128

0

20

40

60

80

100

1 2 4 8 16 32

u
ti

liz
at

io
n

 in
 %

number of nodes

(b)

16^3

32^3

64^3

128^3
58

60

62

64

66

16^3 32^3 64^3 128^3

u
ti

liz
at

io
n

 in
 %

FFT size

(a)

Figure 7·4: Per node resource utilization on Catapult II: (a) ALMs
(b)BRAMs

portional to the number of bytes. Time-of-flight includes packet formation and so is

proportional to the number of flits in the packet. As a result communication time

increases for N = 16, P = 16 and N = 32, P = 32.

7.3.2 3D FFT Models for Catapult II and Novo-G#

Based on empirical results from the previous section and other published studies

(Young et al., 2009; Sheng et al., 2014; Lawande et al., 2016), we have created models

for 3D FFT performance at larger scale for both FPGA clouds and clusters.

In both architectures, because the computation latency is almost entirely hidden,

Latency = 3×Latencycornerturn. The corner turn latency has two components, trans-

mission and time-of-flight. The transmission latency is the data size divided by the

effective bandwidth. The time-of-flight latency is the number of flits times the latency

to send one flit:

Latencycloudcornerturn =
N3 · datalength · (P − 1)

p ·BWcloud

+

Latencyoneflit ·
N3 · datalength
P 2 · flitsize

(7.1)

where N is the FFT size, P is the number of nodes, and datalength is the data size

129

1 2 4 8 16 32
16^3 32.8 76.6 57.1 21.5 21.6 23.4
32^3 250.4 1169.4 431.8 175.3 29.3 35.1
64^3 4761.5 8478.4 1895.2 725.7 607.3
128^3 17678 2606.5

1E+1

1E+2

1E+3

1E+4

1E+5

la
te

nc
y

(u
s)

number of nodes

Figure 7·5: The performance of 3D FFT on Catapult II

in bits, including tag and payload. In our design, data is 85 bits. BWcloud is the

effective bandwidth, which depends on the number of 1D FFT IPs instantiated on

each node. For example, if a large number of nodes is used, the number of IPs on

each node might be smaller than 3, which would result in less than the maximum

bandwidth being used. The term P−1
P

in Equation 7.1 accounts for nodes not sending

data to themselves.

For the Novo-G# cluster, the corner turn latency again has transmission and

time-of-flight terms with transmission latency equal to the data size divided by the

effective bandwidth. Time-of-flight, however, is as you would expect on a cluster, i.e.,

proportional to the number of hops:

Latencyclustercornerturn =
N3·datalength

P
· P−1

P

BWcluster

+

3× Latencyonehop · 2blog2 P/3c−1
(7.2)

130

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

2 4 8 16 32

la
te

nc
y

in
 u

s

number of nodes

16^3 Comm.

16^3 Comp.

32^3 Comm.

32^3 Comp.

64^3 Comm.

64^3 Comp.

128^3 Comm.

128^3 Comp.

Figure 7·6: The breakdown of performance of 3D FFT on Catapult
II into communication and nonoverlapped computation.

N , P , datalength, and BWcluster are all as before. Recall that each Novo-G# node

has 6 duplex 40 Gpbs links. We therefore need 18 FFT IPs to saturate the bandwidth.

In many cases, the number of IPs on each node is smaller than 18. 2blog2N/3c−1 is the

network diameter.

Figure 7·7 shows modeled performance of the 3D FFT for both cloud and cluster

for various N and P . We make the following observations. (i) For very small N and

P , a single node may be best. This is because the bandwidth of internal crossbar is

higher than the bandwidth of one network interface, and small FFT sizes are easy to

fit on a single FPGA. (ii) For bigger N , increasing P improves performance until a

plateau is reached. As expected this is reached earlier for smaller N . The reasons (for

these particular architectures) are, first, because of increased network latency, and,

second, because too many nodes result in too few FFT IPs in one node so that the

bandwidth of each node is not fully used. (iii) Even for small problem size (N = 32),

performance continues to improve up to a surprisingly large number of nodes: 32 for

the cloud and 128 for the cluster. (iv) Performance on clusters has a 1-2 order of

magnitude advantage over the cloud. This is mostly because the cluster has much

shorter time-of-flight latency, but also because there are 3 to 4 times as many IPs per

131

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

number of nodes

la
te

nc
y(

us
)

163 FFT on cloud

323 FFT on cloud

643 FFT on cloud

1283 FFT on cloud

163 FFT on cluster

323 FFT on cluster

643 FFT on cluster

1283 FFT on cluster

Figure 7·7: The modeled FFT performance

node.

Figure 7·8 compares performance across architectures including ASICs (Anton),

CPUs, and GPUs as well as the FPGA clouds and clusters (from Figure 7·7). Each

data point represents the best performance recorded for any P for that particular N

(and architecture), i.e., the limit of strong scaling for that problem size N . Perfect

scaling would be a horizontal line.

Data points for “ASICs” are for Anton (Young et al., 2009); performance for

Anton II is certainly better, but we know of no published results. Because of the

difficulty in scaling (which is the primary motivation for this work), results for CPUs

and GPUs for small FFTs (N ≤ 64) are rarely available. The ones we found are

dated and inferior to those run obtained on recent workstations.

The CPU data points for N = 16, 32, and 64 are from our measurements on an

132

fft size
101 102 103

la
te

nc
y(

us
)

100

101

102

103

104

FPGA cloud
FPGA cluster
CPU
GPU
ASIC

Figure 7·8: The comparison of 3D FFT performance on different
platforms

Intel Xeon E5-2680 CPU with eight cores by running MKL. The CPU data points

for N = 128 and 256 are from FFTW on 4K cores of a BlueGene/Q FERMI cluster

(Guarrasi et al., 2014). The CPU data point N = 512 is from P3DFFT on 262144

cores of the BlueGene/Q at the Julich Research Center (Pippig, 2013). The CPU

data point N = 1024 is from 262152 cores on the K computer (Jung et al., 2016).

The GPU data points for N = 16, 32, and 64 are from our measurements on a

Nvidia Tesla K20c running CuFFT. The data points N = 128 and 256 come from

measurements on a GeForce GTX 570GPU (Abdellah et al., 2012). For these last

points, performance on new GPU clusters coupled with NVLink is likely to improve

performance, perhaps by an order of magnitude. This, however, does not change the

overall trend.

133

Overall, we observe the well-known difficulty in scaling the 3D FFT. We also note

that the FPGA cluster and cloud perform well. This is mainly because these architec-

tures have dedicated high-bandwidth and low-latency inter-accelerator interconnect,

which is critical to communication-bound applications.

For the rest of this section, we present results concerning architectural exploration,

in particular with respect to sensitivity of performance of the two FPGA architectures

to variations in latency and bandwidth. Figures 7·9 and 7·10 show results from a

bandwidth sensitivity test based on our model. Latency is fixed to current values.

For FPGA clouds, the current 40-Gbps bandwidth is sufficient; the FPGA would

need to be upgraded for there to be a benefit. Decreasing bandwidth to < 10Gbps

results in linear performance degradation. For FPGA clusters, for small FFT sizes

(N < 32), the current 40-Gbps bandwidth is sufficient (given the current FPGAs).

But for big FFT size, higher bandwidth is effective.

0.1 100 101 102 103

T
ot

al
 L

at
en

cy
(u

s)

101

102

 103

104

105

106

current BW

(a)

bandwidth (Gbps)
0.1 100 101 102 103

101

102

 103

104

105

106

current BW

(b)

0.1 100 101 102 103
101

102

 103

104

105

106

current BW

(c)

163 FFT 323 FFT 643 FFT 1283 FFT 2563 FFT

Figure 7·9: The network bandwidth sensitivity test for 3D FFT on
FPGA cloud, (a) 16 nodes, (b) 128 nodes, (c) 1024 nodes

Figures 7·11 and 7·12 show results from a latency sensitivity test. Bandwidth

is fixed to current values. For FPGA clouds, current end-to-end latency is shown

in Table 7.1. From Figure 7·11, we see that in all cases performance is sensitive to

134

0.1 100 101 102 103

T
ot

al
 L

at
en

cy
(u

s)

101

102

 103

104

105

current BW

(a)

bandwidth (Gbps)
0.1 100 101 102 103

101

102

 103

104

105

current BW

(b)

0.1 100 101 102 103

101

102

 103

104

105

current BW

(c)

163 FFT 323 FFT 643 FFT 1283 FFT 2563 FFT

Figure 7·10: The network bandwidth sensitivity test for 3D FFT on
FPGA cluster, (a) 16 nodes, (b) 128 nodes, (c) 1024 nodes

latency down to the current minimum of 2µs. Larger networks are more sensitive,

benefitting from reduced latency down to 0.1µs. For FPGA clusters, current per

hop latency (0.2µs) can satisfy the need of big FFT sizes (N > 128); performance

is currently bound by the network bandwidth. But for smaller FFT sizes there is

sensitivity to the network latency.

We also observe that when increasing the network latency, FFT performance on

FPGA clusters converges for different FFT sizes, while FFT performance on FPGA

clouds does not. This is because time-of-flight latency for the FPGA cloud is linear

in the number of flits, while for the FPGA cluster it is a constant.

7.4 Optimizing Performance with Contraction

7.4.1 Contraction Model

Some applications have multiple phases each with different scalability. That is, it is

possible for the maximum useful number of nodes P to be different for the different

phases. This is true in MD: the range-limited and bonded force computations require

only local communication, and so scale well, while the long-range force computation

135

0.01 0.1 100 101 102

T
ot

al
 L

at
en

cy
(u

s)

0.1

1

101

102

 103

104

105

106

current latency

(a)

latency (us)
0.01 0.1 100 101 102

0.1

1

101

102

 103

104

105

106

current latency

(b)

0.01 0.1 100 101 102
0.1

1

101

102

 103

104

105

106

current latency

(c)

163 FFT 323 FFT 643 FFT 1283 FFT 2563 FFT

Figure 7·11: The network latency sensitivity test for 3D FFT on
FPGA cloud, (a) 16 nodes, (b) 128 nodes, (c) 1024 nodes

(with the 3D FFT) does not. For the 3D FFT, each N has an optimal P : too few

nodes and not enough parallelism is applied; too many nodes and the application

becomes unnecessarily communication bound. It is therefore plausible in MD for

P nodes to be used for one phase and a subset with < P nodes to be used for

another. The prospect is particularly promising for FPGA accelerators because of

their configuration time: Fewer FPGAs configured to do the 3D FFT means more

FPGAs to do other work.

To summarize: elasticity of phased applications using contraction and expansion

can improve performance of certain HPC applications. The method requires that, at

the end of the “P” phase, data be transferred to the subset “< P” (contraction). After

the “< P” phase, data are returned to the original nodes (expansion). Apparently,

the benefit of using fewer nodes must outweigh the overhead of the expansions and

contractions.

It is also likely, however, that much of the overhead communication can be hidden.

That is because the transition from one phase to another, e.g., range limited to

long range, is itself likely to require data movement. In MD we see that all of the

136

0.01 0.1 100 101 102

T
ot

al
 L

at
en

cy
(u

s)

0.1

1

101

102

 103

104

current latency

(a)

latency (us)
0.01 0.1 100 101 102

0.1

1

101

102

 103

104

current latency

(b)

0.01 0.1 100 101 102
0.1

1

101

102

 103

104

current latency

(c)

163 FFT 323 FFT 643 FFT 1283 FFT 2563 FFT

Figure 7·12: The network latency sensitivity test for 3D FFT on
FPGA cluster, (a) 16 nodes, (b) 128 nodes, (c) 1024 nodes

communication overhead of expansion and contraction is hidden.

Expansions and contractions are mirror inverses with similar latency. For FPGA

clouds, the contraction latency is

Latencycontractioncloud =
N3·datalength

P

BWcloud

+

Latencyoneflit ·
N3 · datalength/P 2

flitsize

(7.3)

Most of the variables are the same as in Equation 7.1. But P is the number of nodes

after contraction and BWcloud is the raw cloud bandwidth (40Gbps). The latency

spent on the corner turn is the same as in Equation 7.1. For FPGA clusters, the

contraction latency is

Latencycontractioncluster =
N3·datalength

P

BWcluster

+

3× Latencyonehop · 2blog2 P/3c−1
(7.4)

The equation is analogous to the previous except for the difference in raw bandwidth

(240Gbps) and the term for network diameter.

137

7.4.2 Contraction Results

We again model the 3D FFT on FPGA clouds and clusters, this time with contraction.

We find that we can always find an optimal PFFT to run the FFT. If PFFT is too

large, then the corner turn latency is significant, and the bandwidth cannot be fully

utilized. If PFFT is too small, the contraction/expansion latency becomes too large

because of the limited fan-in bandwidth of the FFT nodes limit on IPs. Table 7.2

shows the optimal contraction size for different 3D FFT sizes on FPGA clouds and

clusters.

Table 7.2: The optimal contraction size for 3D FFT on FPGA cloud
and cluster

FFT size Best contraction size for cloud Best contraction size for cluster

83 1 1

163 16 32

323 512 32

643 512 256

1283 512 2048

2563 8192 2048

Table 7.3 shows the performance benefits of contraction, geometric means of 13%

and 14% for cloud and cluster architectures respectively. The benefits are greater

for smaller problem sizes because performance at this level is bounded by network

latency. For larger problem sizes, the main bottleneck is the per node bandwidth on

each node.

For MD, the contraction and expansion latencies can be entirely hidden for the

PFFT . This is because there is already communication required to set up and tear

down the FFT: the transformation from physical to FFT spaces and vice versa. The

MD-specific results are also shown in Table 7.3. The geometric means are 16% and

29% for cloud and cluster architectures, respectively.

138

Table 7.3: The 3D FFT speedups by applying contraction. “in MD”
means that contraction overhead is hidden.

FFT size cloud cloud in MD cluster cluster in MD

83 1.45 1.33 1.37 2.00

163 1.21 1.45 1.14 1.26

323 1.09 1.11 1.15 1.31

643 1.11 1.14 1.12 1.24

1283 1.01 1 1.06 1.10

2563 1 1 1.01 1.02

Geo Mean 1.13 1.16 1.14 1.29

7.5 MD Strong Scaling

Complete implementation of MD into FPGA cloud or cluster (for an Anton-like sys-

tem) is still work in progress, but we can accurately model the performance of such

systems using published results of hardware implementations (e.g., from DE Shaw

and various FPGA projects cited earlier).

7.5.1 Models for MD performance estimation

In this section, we model complete MD, including integration of the 3D FFT for

FPGA clouds and clusters. Long-range and range-limited force computations both

require two kinds of resources, bandwidth, and on-chip resources. We propose two

designs. In the first, all nodes are uniform. Each FPGA is configured so that all

parts of the computation are supported. In the second, FPGAs are specialized, some

for range-limited (including mapping) and some for long range. Specialized uses the

contraction method from the previous section.

The range-limited force must be computed every iteration while the long-range

force is generally computed every other iteration. So latency per MD iteration can

139

be expressed as

LatencyMD = max(0.5× LatencyLongRange,

LatencyShortRange)
(7.5)

The long-range force computation latency can be expressed as

LatencyLongRange = Latencychargemapping+

Latency3DFFT

(7.6)

For the 3D FFT and the uniform design we use Equations 7.1 and 7.2. Otherwise we

use Equations 7.3 and 7.4. Charge mapping latency can be expressed as

Latencychargemapping =
N/P

chargemappingthroughput
(7.7)

where N is the number of particles and P is the number of nodes. Other work shows

that chargemappingthroughput is 450 particles per cycle.

The range-limited latency is determined by the larger of the latencies for compu-

tation and communication. This can be expressed as

LatencyShortRange = max(LatencyShortRangeComp,

LatencyShortRangeComm)
(7.8)

The computation latency of the range-limited force is determined by the number

of range-limited force pipelines that can fit on one node and the number of forces that

can be evaluated per force pipeline. Each force pipeline evaluates one range-limited

force per clock cycle; the latency (pipeline depth) is around 100 cycles. For each

particle, we need to evaluate the range-limited force between it and the other particles

within a cut-off radius r. According to Newton’s 3rd Law, we need to evaluate only

half that number. Let the side length of cube that each node holds be c, then the

140

number of particles held by one node is D · (c
r
)3, where D is the number of particle

in the volume r3. The latency of the range-limited force can then be expressed as

LatencyShortRangeComp = T (
2

3
π ·D2 · (c

r
)3/K + 100) (7.9)

where T is the clock cycle time, and K is the number of force pipelines that can fit on

one node. Since each force pipeline takes about 10K ALMs, the maximum number of

force pipelines that can fit on a Catapult II node is 8 and on a Novo-G# node is 20.

But the actual value of K depends on the ALM allocation between long-range and

range-limited. For the specialized design, K equals the maximum. For the uniform

design, K depends on the left space after the FFT IPs are mapped.

Home
node

c

r

Neighbor
0

Neighbor
1

Neighbor
2

Neighbor
3

(a)

Home
node

r
c

(b)

Figure 7·13: Short range communication: (a) c > r, (b) c < r

To prepare for the range-limited computation, each node must acquire positions

of all the particles from neighboring nodes that are within the cut-off of the particles

it holds. This is illustrated in Figure 7·13. Based on N3L, we only need to acquire

positions of particles within half of the cut-off radius. After the range-limited forces

are computed, they need to be distributed back to the outside particles. So there

are two phases of collective communication: particle position multicast and range-

limited force collection. These two communication phases are the inverse of each

141

other so (with hardware support) their latencies are similar. The range-limited force

communication latency can be expressed as

LatencyShortRangeComm = 2× LatencyMulticast (7.10)

The particle position multicast latency is different for FPGA clusters and clouds.

But they both can be expressed as

LatencyMulticast =
128×MulticastParticleNum

BW

+Latencyonthefly

(7.11)

Each position datum is 128 bits. In order to compute the number of particle to

be multicast, we need to compute D times the volume of a shell with r/2 thickness

outside a c3 cube, which can be expressed as

MulticastParticleNum = D · (8Vcorner + 12Vside + 6Vface)

= D · (8π
6

(
r

2
)3 + 12c

π

4
(
r

2
)2 + 6c2

r

2
)

(7.12)

For FPGA clouds, the BW equals the allocated bandwidth. But for FPGA clus-

ters, the allocated bandwidth is shared among multiple nodes (because of the multi-

cast pattern), which can be estimated using

BWcluster =
BWallocated

(8π
6
(r
2
)3 + 12cπ

4
(r
2
)2 + 6c2 r

2
)/c3

(7.13)

where BWallocated is the allocated bandwidth for the range-limited force. In the uni-

form design, it equals to the total bandwidth (240 Gbps) minus the bandwidth al-

located for long-range force computation. For the specialized design, it equals to the

total bandwidth (240 Gbps).

The time-of-flight latency for the FPGA cloud is linear in the number of flits in

142

the largest packet, which can be expressed as

Latencyonthefly =

Latencyoneflit

⌊
128(c/r)2D
2·flitsize

⌋
, if c

r
≥ 0.5

Latencyoneflit

⌊
128(c/r)3D
flitsize

⌋
, otherwise

(7.14)

The time-of-flight latency for FPGA clusters is linear in the number of hops on

the longest path, which can be expressed as

Latencyonthefly = 3× Latencyonehop ·
⌈

r

2
√

3c

⌉
(7.15)

7.5.2 Evaluation

Figure 7·14 shows the resulting performance estimate for the uniform design. To

generate the data points, for each N and P we sweep through the different allocation

ratios of bandwidth and ALMs between long-range and range-limited components.

All the data points in Figure 7·14 are based on the best allocation ratios. We find

that, on each node, to balance the speed of long-range and range-limited phases, the

number of 1D FFT IPs per nodes can be as small as one, and the allocated bandwidth

for long-range communication can be as small as 5% of the total bandwidth. For this

design, clusters are on average about 2.1× faster than clouds.

An important result is the range of strong scaling, that is, for a given problem

size N , the cluster size P at which there is no longer performance benefit to adding

nodes. In Figure 7·14, we see that for very small problem sizes (N = 10K) this point

is reached at around 256 nodes. For medium sized problems (N = 250K), this point

is greater than 4K nodes.

Figure 7·15 shows the resulting performance for the specialized design. Again, all

the data points in Figure 7·15 are based on best allocation ratios for each case, but

this time at the level of the node rather than resources within the node. Here average

cluster performance is near 3× that of cloud performance. The somewhat larger ratio

143

number of particles
104 105 106 107

si
m

ul
at

io
n

tim
e

pe
r

da
y(

us
)

10-4

10-3

10-2

10-1

100

101

102

4096 node cluster
4096 nodes cloud
1024 node cluster
1024 node cloud
256 node cluster
256 node cloud
64 node cluster
64 node cloud
16 node cluster
16 node cloud

Figure 7·14: MD performance for uniform node design

for this design reflects the better ability of the cluster to build subnetworks. Strong

scaling numbers are similar to those of the uniform design.

We compare the two designs on FPGA clusters and clouds. On average, the

specialized design is 13% faster on FPGA clusters and 3% faster on clouds. The main

reason is that specialized uses resources more efficiently. In the uniform design, there

must be at least one 1D FFT IP on each node. For small problem sizes, many FFT IPs

stay idle. Also, in the specialized design, we contract the range-limited and long-range

computations to two smaller networks, which results in shorter time-of-flight.

We now explore strong scaling in more detail. From Figures 7·14 and 7·15, we

see that MD performance on FPGA clouds and clusters can maintain strong scaling

as long as the number of particles per node is > 100: at that point performance is

mainly bound by range-limited force computation. When particles per node < 100,

it is not clear whether performance is bound by network bandwidth or latency. So

we examine the performance bottlenecks for different problem sizes and number of

144

number of particles
104 105 106 107

si
m

ul
at

io
n

tim
e

pe
r

da
y(

us
)

10-3

10-2

10-1

100

101

102

4096 node cluster
4096 nodes cloud
1024 node cluster
1024 node cloud
256 node cluster
256 node cloud
64 node cluster
64 node cloud
16 node cluster
16 node cloud

Figure 7·15: MD performance for specialized node design

nodes; results are plotted in Figure 7·16.

Figure 7·16 gives a roofline graph. When the number of particles per node is

more than 100, MD performance on both FPGA cloud and cluster is bounded by

the short range force computation time. When the number of particles per node is

less than 100, MD performance on FPGA cloud is bound by the short-range force

communication latency. On FPGA clusters, when the number of particles per node

is less than 100, and the total number of particles is over 200K, MD performance is

bounded by the communication latency of 3D FFT. When the number of particles

per node is less than 100, and the total number of particles is fewer than 200K, MD

performance is bounded by the range-limited communication latency, specifically by

the effect of network bandwidth.

In Table 7.4, we compare the MD performance derived from this model with that

of other technologies. It shows that MD performance on FPGA clusters and clouds

is faster than state-of-the-art CPU and GPU performance by an order of magnitude

145

10K

20K

50K

100K

200K

500K

1M

2M

5M

10M

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
K

2
K

4
K

8
K

1
6

K

3
2

K

6
4

K

(a)

DNF

DNF

Short Range
Compute Bound

Network
Latency
Bound

10K

20K

50K

100K

200K

500K

1M

2M

5M

10M

1 2 4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2

1
K

2
K

4
K

8
K

1
6

K

3
2

K

6
4

K

(b)

Short Range
Compute Bound

DNF

Bandwidth
Bound

FFT
Bound

DNF

N
u

m
b

e
r

o
f

P
ar

ti
cl

e
s

N
u

m
b

e
r

o
f

P
ar

ti
cl

e
s

Number of Nodes

Number of Nodes

Figure 7·16: The MD performance bottleneck for (a) FPGA cloud
and (b) FPGA cluster (DNF means do-not-fit)

in all cases. The performance of Anton 2 is shown for reference.

7.6 Discussion and Future Work

A well-known limitation of HPC in the cloud is the commodity network which tends

not to perform well for communication-bound HPC applications. Because of their

unique combination of capabilities, FPGA-enhanced clouds such as Catapult II offer

a mechanism to address this limitation. In this study, we describe the implementation

of a communication-bound application, the 3D FFT, on Catapult II. We believe this to

146

Table 7.4: The comparison of MD performance in µs/day of best
FPGA clouds and clusters with the best of other technologies: (a)
GROMACS on a Xeon E5-2690 processor with an NVIDIA GTX TI-
TAN GPU (Lindahl, 2013), (b) Desmond on 1,024 cores of a Xeon
E5430 cluster (Chow et al., 2008), (c) NAMD on 16,384 cores of Cray
Jaguar XK6 (Sun et al., 2012). For FPGAs “(#)” denotes nodes.

N FPGA cloud FPGA cluster Anton2 CPU or GPU

13K 14.7 (4K) 17.7 (256) 85.8 1.1 (a)

100K 13.9 (4K) 17.8 (2K) 59.4 0.29(b)

1M 4.3 (8K) 2.9 (2K) 9.5 0.035 (c)

be the first such implementation. We find that performance is competitive with, if not

superior to, HPC clusters with dedicated networks. We also describe implementations

of the 3D FFT on FPGA clusters. Another result introduces the idea of phased

elasticity. When applied to FFTs within MD we note performance benefits averaging

16% and 29%. Finally, we present two MD designs and show through an empirically

derived performance model that MD on FPGA clouds is also likely to be competitive

with MD run on HPC clusters.

We have reason to be confident in the quality of our models. They are derived from

post-place-and-route timing and area results which are generally within a few percent

of the implementation. We note that some of the comparisons are with somewhat

dated technology. But we also note that the FPGA technology used is similarly dated,

if not more so. For this reason, we have tried to be careful with our conclusions.

Chapter 8

Conclusion and Future Work

In this chapter, we first state our conclusion and then propose potential future work.

8.1 Conclusion

In this dissertation, we have explored several aspects of building communication in-

frastructure for FPGA-centric cluster. We first investigate jitter of MGT link latency

and clocks of multiple FPGAs; we then evaluate their impact on performance. Our

results show that the communication infrastructure based on MGTs and its IP is suf-

ficient to make these jitters manageable. It requires only simple flow control and little

or no additional buffering on the application side. We can assume a near-synchronous

model of multi-FPGA communication, which simplifies the statically scheduled rout-

ing design.

We also propose two different router microarchitectures for workloads with dy-

namic and static communication patterns, respectively. The first router is based on

the classical wormhole VC-based router (Dally and Towles, 2004). We modify as

determined by hardware constraints of FPGA clusters. There are four significant dif-

ferences between our router and the canonical router. First, we use a flit size which

is smaller than the phit size to meet the timing requirement. Second, we have mul-

tiple injection and ejection ports, which offers maximum injection rates. Third, we

connect VCs to the switch directly, which reduces the chances of packet blocking.

Fourth, we have a reduction-tree-based scalable switch design, which can meet the

147

148

timing requirement. The second router microarchitecture is the statically-scheduled

collective router. This router is a Virtual Output Queue (VOQ) router with hard-

ware support for multicast and reduction operations. It uses routing tables to enable

statically-scheduled routing.

For both routers we implement a sets of routing algorithms and arbitration poli-

cies. For the VC-based router, we currently support five of the most commonly used

routing algorithms and three switch arbitration policies. Besides that, we designed

a cycle-accurate simulator to simulate the routers and the entire Novo-G# network

based on the routers. We also proposed a framework to search for the optimal router

configuration among the fifteen possible configurations. Our results show that in 83

torus, the optimal configurations can improve batch latency by 23%, average latency

by 6%, worst-case latency by 34%, throughput by 17%, and the area consumption

of the router by 30% in average. Our results also show that our application-aware

router configurations reduce batch latency by 6%, average latency by 2%, worst-case

latency by 21%, router area size by 18%, and improve throughput by 10%. For the

statically-scheduled collective acceleration router, we developed an offline collective

routing (OCR) algorithm. Compared with a state-of-the-art online routing algorithm,

our algorithm reduces the latency of multicast by 15% and of reduction by 4%. We

also find that a priori knowledge of communication can be used to reduce buffer sizes

and enable higher bandwidth utilization.

We applied our communication infrastructure to the 3D FFT. The experimental

results demonstrate that communication overhead does not overwhelm the calculation

and that performance of our design is faster than performance on CPUs and GPUs by

at least one order of magnitude (achieving strong scaling for the target applications

through large cluster sizes). Also, the FPGA cluster performance is similar to that

of Anton (Young et al., 2009). For the 643 FFT, the presented design is faster than

149

Anton (Young et al., 2009) by about 30%.

We also implemented the 3D FFT on a second multi-FPGA platform: the Mi-

crosoft Catapult II FPGA cloud (Caulfield et al., 2016). We described the imple-

mentation of the 3D FFT on Catapult II. We believe this to be the first such imple-

mentation. We find that performance is competitive with, if not superior to, HPC

clusters with dedicated networks. Another result introduces the idea of phased elas-

ticity. When applied to FFTs within MD, we observe performance benefits averaging

16% and 29% for two different scenarios. Finally, we present two MD designs and

show through an empirically derived performance model that MD on FPGA clouds

is also likely to be competitive with MD run on HPC clusters. Our modeled results

demonstrate that MD on FPGA clusters/clouds can achieve more than one order of

magnitude advantage than CPUs and GPUs, and can fill in the gap between ASIC

and CPUs/GPUs.

8.2 Future Work

Recall our framework of the four levels of work in constructing state-of-the-art of

FPGA clusters. Overall, the future work encompasses what remains in making the

Novo-G# a usable high performance cluster, plus finishing particular research inves-

tigations already described.

8.2.1 Future Work on Inter-FPGA Links

Currently, the two link protocols (SerialLite III and Interlaken) still have high latency

variance. If we would like to achieve more efficient statically-scheduled routing, we

would like the latency to be more deterministic and predictable. (Liu et al., 2014;

Giordano and Aloisio, 2011; Giordano and Aloisio, 2012) have researched how to

implement inter-FPGA links with small variance. However, they used different FPGA

150

devices, and much additional effort is needed to port their solutions to our FPGA

cluster.

8.2.2 Future Work on Inter-FPGA Communication Middleware

So far the work on middleware has been limited to the framework that searches for the

optimal router configuration. It is still incomplete and inconvenient. The goal of the

remaining work on middleware is to benefit programmability and performance at the

same time. We have come up with a step-by-step plan to implement this middleware.

• Implement a basic wrapper that hides all the status signals of MGT IP from user

applications. This basic wrapper should just expose a simple FIFO interface.

• Unify the two router microarchitectures into a single design. This is straight-

forward because they have similar pipelined architectures. Integrate the unified

router into the basic wrapper.

• Extend the router specification framework to support collective workloads. Part

of this involves finding a more better selection algorithm than the current ex-

haustive search. The cycle-accurate simulator needs to be implemented in a

multi-threaded version.

• Integrate the DRAM controller into the wrapper and also encapsulate its r/w

interface into a simple FIFO-like interface.

• Connect this wrapper to the PCIe controller so that application users could

directly access network and DRAM by APIs from CPU side. Also, application

developers could load routing tables using API as well.

• Design an autotuner with GUI that automates the entire flow. It accepts three

kinds of configuration specifications from users: the type of application, the

151

number of nodes, and the size of the application. This program could gener-

ate an entire set of codes to run the application including HDL code for the

wrapper and the application logic, Quartus project files to compile this project,

the software code that contains APIs to execute this application, and the op-

timal router configuration. This program should be able to support several

applications that have been well-studied.

Upon completion, our middleware would truly benefit programmability and per-

formance at the same time.

8.2.3 Future Work on Routing Algorithms

We have proposed and implemented an offline collective routing algorithm. But for

unicast operations, we currently use the existing algorithms from previous studies

(Kinsy et al., 2009). A statically-scheduled congestion-free routing algorithm is also

needed for unicast operations.

In our OCR algorithm, we mainly focused on the optimization of the routing paths.

However, there is another dimension we have not explored, which is the ordering of

packets. In (Kapre, 2016), the algorithm delays packets to reduce network congestion.

But they do not utilize any application knowledge, and their routing algorithms are

as simple as DOR.

8.2.4 Future Work on Applications

We will apply our work to other applications besides the 3D FFT. One important

application is other parts of the Molecular Dynamics simulations. MD simulation

has two main kinds of communication pattern. One is the all-to-all communication

pattern like the 3D FFT. A second is the collective operations among neighboring

nodes. There are many trade-offs worth exploration to accelerate simultaneously

the two kinds of patterns. Besides MD, other applications are also throttled by

152

communication (Asanovic et al., 2006). An advantage of our middleware is that

we could always switch to the best routing configurations for different applications

because of the inherent reconfigurability of FPGA.

References

Abad, P., Puente, V., and Gregorio, J. (2009). Mrr: Enabling fully adaptive multicast

routing for cmp interconnection networks. In Proceedings of the International

Symposium on High-Performance Computer Architecture (HPCA), pages 355–366.

IEEE.

Abdellah, M., Saleh, S., Eldeib, A., and Shaarawi, A. (2012). High performance

multi-dimensional (2D/3D) FFT-shift implementation on graphics processing units

(GPUs). In Proceedings of the Cairo International Biomedical Engineering Con-

ference, pages 171–174. IEEE.

Abdellah-Medjadji, K., Senouci, B., and Petrot, F. (2008). Large Scale On-Chip

Networks : An Accurate Multi-FPGA Emulation Platform. In Proceedings of the

EUROMICRO Conference on Digital System Design Architectures, Methods and

Tools (DSD), pages 3–9.

Agarwal, A., Iskander, C., and Shankar, R. (2009). Survey of network on chip (noc)

architectures & contributions. Journal of engineering, Computing and Architec-

ture, 3(1):21–27.

Agne, A., Happe, M., Keller, A., Lubbers, E., Plattner, B., Platzner, M., and Plessl,

C. (2014). Reconos: An operating system approach for reconfigurable computing.

IEEE Micro, 34:60–71.

Alam, S. R., Agarwal, P. K., Smith, M. C., Vetter, J. S., and Caliga, D. (2007).

Using fpga devices to accelerate biomolecular simulations. Computer, 40(3).

153

154

Altera (2013). SerialLite III Streaming MegaCore Function User Guide. Altera.

Altera (2014a). FFT MegaCore Function: User Guide. Altera.

Altera (2014b). Stratix V Device Handbook volume2: Transceivers. Altera.

Altera (2015). Altera Transceiver PHY IP Core User Guide. Altera.

Anson, H., Thomas, D., Tsoi, K., and Luk, W. (2010). Dynamic scheduling monte-

carlo framework for multi-accelerator heterogeneous clusters. In Proceedings of the

International Conference on Field-Programmable Technology (FPT), pages 233–

240. IEEE.

Arista (2013). Arista Products. Arista Networks, Inc.

Asanovic, K., Bodik, R., Catanzaro, B., Gebis, J., Husbands, P., Keutzer, K., Pat-

terson, D., Plishker, W., Shalf, J., Williams, S., and et. al. (2006). The landscape

of parallel computing research: A view from berkeley. Technical report, Tech-

nical Report UCB/EECS-2006-183, EECS Department, University of California,

Berkeley.

Babb, J., Tessier., R., and Agarwal, A. (1993). Virtual wires: Overcoming pin

limitations in fpga-based logic emulators. In Proceedings of the IEEE Workshop

on FPGAs for Custom Computing Machines (FCCM), pages 142–151. IEEE.

Badr, H. and Podar, S. (1989). An optimal shortest-path routing policy for net-

work computers with regular mesh-connected topologies. IEEE Transactions on

Computers, 38(10):1362–1371.

Baxter, R., Booth, S., Bull, M., and et al. (2007). Maxwell - a 64 FPGA Supercom-

puter. In Proceedings of the NASA/ESA Conference on Adaptive Hardware and

Systems (AHS), pages 287–294.

155

Birrittella, M. S., Debbage, M., Huggahalli, R., Kunz, J., Lovett, T., Rimmer, T.,

Underwood, K. D., and Zak, R. C. (2015). Intel omni-path architecture: Enabling

scalable, high performance fabrics. In IEEE Symposium on High-Performance

Interconnects (HOTI), pages 1–9. IEEE.

Bjerregaard, T. and Mahadevan, S. (2006). A survey of research and practices of

network-on-chip. ACM Computing Surveys (CSUR), 38(1):1.

Borkar, S., Cohn, R., Cox, G., Gross, T., Kung, H., Lam, M., Levine, M., Moore, B.,

Moore, W., Peterson, C., and et. al. (1990). Supporting systolic and memory com-

munication in iwarp. In Proceedings of the ACM/IEEE International Symposium

on Computer Architecture (ISCA).

Brebner, G. and Levi, D. (2003). Networking on chip with platform fpgas. In Pro-

ceedings of the International Conference on Field-Programmable Technology (FPT),

pages 13–20. IEEE.

Bunker, T. and Swanson, S. (2013). Latency-Optimized Networks for Clustering

FPGAs. In Proceedings of the IEEE Symposium on Field-Programmable Custom

Computing Machines (FCCM), pages 129–136.

Caulfield, A., Chung, E., Putnam, A., and et al. (2016). A cloud-scale accelera-

tion architecture. In Proceedings of the IEEE/ACM International Symposium on

Microarchitecture (MICRO), pages 13–24.

Chang, C., Kuusilinna, K., Richards, B., and Brodersen, R. (2003). Implementation

of bee: A real-time large-scale hardware emulation engine. In Proceedings of

the ACM/SIGDA International Symposium on Field Programmable Gate Arrays

(FPGA), FPGA ’03, pages 91–99, New York, NY, USA. ACM.

156

Chang, C., Wawrzynek, J., and Brodersen, R. (2005). Bee2: A high-end reconfig-

urable computing system. IEEE Design and Test of Computers, 2005:114–125.

Chen, D., Eisley, N. A., Heidelberger, P., Senger, R. M., Sugawara, Y., Kumar, S.,

Salapura, V., Satterfield, D. L., Steinmacher-Burow, B., and Parker, J. J. (2011).

The ibm blue gene/q interconnection network and message unit. In Proceedings of

the International Conference for High Performance Computing, Networking, Stor-

age and Analysis (SC), pages 1–10. IEEE.

Chiu, M., Herbordt, M., and Langhammer, M. (2008). Performance potential of

molecular dynamics simulations on high performance reconfigurable computing

systems. In Proceedings of the High Performance Reconfigurable Technology and

Applications.

Chiu, M. and Herbordt, M. C. (2009). Efficient particle-pair filtering for acceleration

of molecular dynamics simulation. In Proceedings of the International Conference

on Field Programmable Logic and Applications (FPL), pages 345–352. IEEE.

Chiu, M. and Herbordt, M. C. (2010). Molecular dynamics simulations on high-

performance reconfigurable computing systems. ACM Transactions on Reconfig-

urable Technology and Systems (TRETS), 3(4):23.

Chiu, M., Khan, M. A., and Herbordt, M. C. (2011). Efficient calculation of pairwise

nonbonded forces. In Proceedings of the IEEE Symposium on Field-Programmable

Custom Computing Machines (FCCM), pages 73–76. IEEE.

Chow, E., Rendleman, C., Bowers, K., Dror, R., Hughes, D., Gullingsrud, J., Sac-

erdoti, F., and Shaw, D. (2008). Desmond performance on a cluster of multicore

processors. DE Shaw Research DESRES/TR–2008-01.

157

Chung, E., Hoe, J., and Mai, K. (2011). CoRAM: an In-Fabric Memory Architecture

for FPGA-based Computing. In Proceedings of the ACM/SIGDA International

Symposium on Field Programmable Gate Arrays (FPGA), pages 97–106.

Cortina and Cisco (2008). Interlaken Protocol Definition v1.2. Cortina Systems Inc.

and Cisco Systems Inc.

Craciun, S., Wang, G., George, A., Lam, H., and Principe, J. (2013). A scalable rc

architecture for mean-shift clustering. In Proceedings of the IEEE International

Conference on Application-Specific Systems, Architectures and Processors, pages

370–374. IEEE.

Dally, W. (1992). Virtual-channel flow control. IEEE transactions on Parallel and

Distributed Systems (TPDS), 3(2):194–205.

Dally, W. and Aoki, H. (1993). Deadlock-free adaptive routing in multicomputer

networks using virtual channels. IEEE transactions on Parallel and Distributed

Systems (TPDS), 4(4):466–475.

Dally, W. and Seitz, C. (1986). The torus routing chip. Distributed computing,

1(4):187–196.

Dally, W. and Seitz, C. (1987). Deadlock-free message routing in multiprocessor

interconnection networks. IEEE Transactions on computers, 100(5):547–553.

Dally, W. and Towles, B. (2004). Principles and practices of interconnection net-

works. Elsevier.

Davis, J., Thacker, C., Chang, C., and Thacker, C. (2009). Bee3: Revitalizing

computer architecture research. Technical report, Microsoft Research.

158

Duato, J., Yalamanchili, S., and Ni, L. M. (2003). Interconnection networks: an

engineering approach. Morgan Kaufmann.

Ebrahimi, M., Daneshtalab, M., Liljeberg, P., Plosila, J., Flich, J., and Tenhunen,

H. (2014). Path-based partitioning methods for 3d networks-on-chip with minimal

adaptive routing. IEEE Transactions on Computers, 63(3):718–733.

Feng, T.-y. (1981). A survey of interconnection networks. Computer, 14(12):12–27.

Feng, W. and Shin, K. (1997). Impact of selection functions on routing algorithm per-

formance in multicomputer networks. In Proceedings of International Conference

on Supercomputing (SC), pages 132–139. ACM.

Fleming, K., Adler, M., Pellauer, M., Parashar, A., Mithal, A., and Emer, J. (2012).

Leveraging latency-insensitivity to ease multiple fpga design. In Proceedings of

the ACM/SIGDA international symposium on Field Programmable Gate Arrays

(FPGA), pages 175–184. ACM.

Fleming, K., Yang, H., Adler, M., and Emer, J. (2014). The leap fpga operating

system. In Proceedings of the International Conference on Field Programmable

Logic and Applications (FPL), pages 1–8. IEEE.

Gao, S., Schmidt, A., and Sass, R. (2009). Hardware implementation of mpi barrier

on an fpga cluster. In Proceedings of the International Conference on Field Pro-

grammable Logic and Applications (FPL), pages 12–17. IEEE.

Gao, S., Schmidt, A., and Sass, R. (2010). Impact of reconfigurable hardware on

accelerating mpi reduce. In Proceedings of the International Conference on Field-

Programmable Technology (FPT), pages 29–36. IEEE.

George, A., Herbordt, M., Lam, H., Lawande, A., Sheng, J., and Yang, C. (2016).

Novo-G#: Large-Scale Reconfigurable Computing with Direct and Programmable

159

Interconnects. In Proceedings of the IEEE High Performance Extreme Computing

Conference (HPEC).

George, A., Lam, H., and Stitt, G. (2011). Novo-g: At the forefront of scalable

reconfigurable supercomputing. Computing in Science and Engineering, 13(1):82–

86.

Gidel (2016). Gidel Products. Gidel.

Giordano, R. and Aloisio, A. (2011). Fixed-latency, multi-gigabit serial links with

xilinx fpgas. IEEE Transactions on Nuclear Science, 58(1):194–201.

Giordano, R. and Aloisio, A. (2012). Protocol-Independent, Fixed Latency Links

with FPGA-Embedded SerDeses. Journal of Instrumentation, 7(1).

Glass, C. and Ni, L. (1992). The turn model for adaptive routing. In Proceedings

of the International Symposium on Computer Architecture (ISCA), pages 278–287.

IEEE.

Glass, C. and Ni, L. (1994). The turn model for adaptive routing. Journal of the

ACM (JACM), 41(5):874–902.

Grossman, J., Towles, B., Greskamp, B., and Shaw, D. (2015). Filtering, reductions

and synchronization in the anton 2 network. In Proceedings of the IEEE Inter-

national Parallel and Distributed Processing Symposium (IPDPS), pages 860–870.

IEEE.

Gu, Y. and Herbordt, M. C. (2007). Fpga-based multigrid computation for molec-

ular dynamics simulations. In Proceedings of the IEEE Symposium on Field-

Programmable Custom Computing Machines (FCCM), pages 117–126. IEEE.

160

Gu, Y., VanCourt, T., and Herbordt, M. C. (2006a). Accelerating molecular dy-

namics simulations with configurable circuits. IEEE Proceedings-Computers and

Digital Techniques, 153(3):189–195.

Gu, Y., VanCourt, T., and Herbordt, M. C. (2006b). Improved interpolation and

system integration for FPGA-based molecular dynamics simulations. In Proceed-

ings of the International Conference on Field Programmable Logic and Applications

(FPL), pages 1–8. IEEE.

Gu, Y., VanCourt, T., and Herbordt, M. C. (2006c). Integrating FPGA accelera-

tion into the protomol molecular dynamics code: Preliminary report. In Proceed-

ings of the IEEE Symposium on Field-Programmable Custom Computing Machines

(FCCM), pages 315–316. IEEE.

Gu, Y., VanCourt, T., and Herbordt, M. C. (2008). Explicit design of FPGA-based

coprocessors for short-range force computation in molecular dynamics simulations.

Parallel Computing, 34(4-5):261–271.

Guarrasi, M., Erbacci, G., and Emerson, A. (2014). Auto-tuning of the fftw library

for massively parallel supercomputers. PRACE white paper, 1.

Guneysu, T., Kasper, T., Novotny, M., Paar, C., and Rupp, A. (2008). Cryptanalysis

with copacobana. IEEE Transactions on Computers (TC), 2008:1498–1513.

Hauck, S. (1995). Multi-FPGA Systems. PhD thesis, University of Washington,

Seattle, WA, USA. UMI Order No. GAX96-16615.

Hauck, S., Borriello, G., and Ebeling, C. (1998). Mesh routing topologies for multi-

fpga systems. IEEE Transactions on Very Large Scale Integration (TVLSI) Sys-

tems, 6(3):400–408.

161

Herbordt, M. and Swarztrauber, P. (2003). Towards Scalable Multicomputer Com-

munication through Offline Routing. Technical Report TR2003-01, ECE Dept,

Boston University.

Herbordt, M. C. (2013). Architecture/algorithm codesign of molecular dynamics

processors. In Proceedings of the Asilomar Conference on Signals, Systems and

Computers, pages 1442–1446. IEEE.

Herbordt, M. C., Gu, Y., VanCourt, T., Model, J., Sukhwani, B., and Chiu, M.

(2008). Computing models for fpga-based accelerators. Computing in Science &

Engineering, 10(6):35–45.

Herbordt, M. C., VanCourt, T., Gu, Y., Sukhwani, B., Conti, A., Model, J., and

DiSabello, D. (2007). Achieving high performance with FPGA-based computing.

IEEE Computer, 40(3):42–49.

Hluchyj, M. G. and Karol, M. J. (1988). Queueing in high-performance packet

switching. IEEE Journal on selected Areas in Communications, 6(9):1587–1597.

Huan, Y. and DeHon, A. (2012). Fpga optimized packet-switched noc using split

and merge primitives. In Proceedings of the International Conference on Field-

Programmable Technology (FPT), pages 47–52. IEEE.

Humphries, B. (2013). Using Offline Routing to Implement a Low Latency 3D FFT

in a Multinode FPGA System. Master’s thesis, Department of Electrical and

Computer Engineering, Boston University.

Humphries, B., Zhang, H., Sheng, J., Landaverde, R., and Herbordt, M. C. (2014).

3d ffts on a single fpga. In Proceedings of the IEEE International Symposium on

Field-Programmable Custom Computing Machines (FCCM), pages 68–71. IEEE.

162

Intel (2013). Intel Xeon Phi System Software Developer’s Guide. Intel.

Jerger, N., Peh, L., and Lipasti, M. (2008). Virtual circuit tree multicasting: A

case for on-chip hardware multicast support. In Proceedings of the International

Symposium on Computer Architecture (ISCA), pages 229–240. IEEE.

Jun, S., Liu, M., Xu, S., and Arvind (2015). A Transport-Layer Network for Dis-

tributed FPGA Platforms. In Proceedings of the International Conference on Field

Programmable Logic and Applications (FPL), pages 1–4.

Jung, J., Kobayashi, C., Imamura, T., and Sugita, Y. (2016). Parallel Implemen-

tation of 3D FFT with Volumetric Decomposition Schemes for Efficient Molecular

Dynamics Simulations. Computer Physics Communications, 200:57–65.

Kapre, N. (2016). Marathon: Statically-scheduled conflict-free routing on fpga

overlay nocs. In Proceedings of the IEEE International Symposium on Field-

Programmable Custom Computing Machines (FCCM), pages 156–163. IEEE.

Kapre, N. and Gray, J. (2015). Hoplite: Building austere overlay nocs for fpgas.

In Proceedings of the International Conference on Field Programmable Logic and

Applications (FPL), pages 1–8. IEEE.

Kapre, N. and Gray, J. (2017). Hoplite: A deflection-routed directional torus noc for

fpgas. ACM Transactions on Reconfigurable Technology and Systems (TRETS),

10(2):14.

Kapre, N., Mehta, N., Rubin, R., Barnor, H., Wilson, M., Wrighton, M., and De-

Hon, A. (2006). Packet switched vs. time multiplexed fpga overlay networks. In

Proceedings of the International Symposium on Field-Programmable Custom Com-

puting Machines (FCCM), pages 205–216. IEEE.

163

Karol, M., Hluchyj, M., and Morgan, S. (1987). Input versus output queueing on a

space-division packet switch. IEEE Transactions on communications, 35(12):1347–

1356.

Katchalski-Katzir, E., Shariv, I., Eisenstein, M., Friesem, A., Aflalo, C., and Vakser,

I. (1992). Molecular surface recognition: Determination of geometric fit between

proteins and their ligands by correlation techniques. Proceedings of the National

Academy of Sciences, 89(6):2195–2199.

Khalid, M. (1999). Routing Architecture and Layout Synthesis for Multi-FPGA Sys-

tems. PhD thesis, Department of Electrical and Computer Engineering, University

of Toronto.

Khan, M. and Herbordt, M. (2012). Communication requirements for fpga-centric

molecular dynamics. In Proceedings of the Symposium on Application Accelerators

for High Performance Computing (SAAHPC).

Khan, M. A., Chiu, M., and Herbordt, M. C. (2013). Fpga-accelerated molecular

dynamics. In Benkrid, K. and Vanderbauwhede, W., editors, High Performance

Computing Using FPGAs, pages 105–135. Springer Verlag.

Khan, M. A. and Herbordt, M. C. (2011). Parallel discrete molecular dynamics

simulation with speculation and in-order commitment. Journal of computational

physics, 230(17):6563–6582.

Kim, D., Trzasko, J., Smelyanskiy, M., Haider, C., Dubey, P., and Manduca, A.

(2011). High-performance 3d compressive sensing mri reconstruction using many-

core architectures. Journal of Biomedical Imaging, 2011:2.

Kim, J., Balfour, J., and Dally, W. (2007). Flattened butterfly topology for on-

chip networks. In Proceedings of the IEEE/ACM International Symposium on

164

Microarchitecture (MICRO), pages 172–182. IEEE Computer Society.

Kim, J., Dally, W.and Towles, B., and Gupta, A. (2005a). Microarchitecture of a

high-radix router. ACM SIGARCH Computer Architecture News, 33(2):420–431.

Kim, J., Nicopoulos, C., and Park, D. (2006). A gracefully degrading and energy-

efficient modular router architecture for on-chip networks. In Proceedings of the

International Symposium on Computer Architecture (ISCA), pages 4–15. IEEE.

Kim, J., Park, D., Theocharides, T., Vijaykrishnan, N., and Das, C. (2005b). A low

latency router supporting adaptivity for on-chip interconnects. In Proceedings of

the Design Automation Conference (DAC), pages 559–564. ACM.

Kinsy, M. A., Cho, M. H., Wen, T., Suh, E., Van Dijk, M., and Devadas, S. (2009).

Application-aware deadlock-free oblivious routing. In Proceedings of the Interna-

tional Symposium on Computer Architecture (ISCA), pages 208–219. IEEE.

Kinsy, M. A., Pellauer, M., and Devadas, S. (2013). Heracles: A tool for fast

rtl-based design space exploration of multicore processors. In Proceedings of

the ACM/SIGDA International Symposium on Field Programmable Gate Arrays

(FPGA), pages 125–134. ACM.

Kono, Y., Sano, K., and Yamamoto, S. (2012). Scalability Analysis of Tightly-

Coupled FPGA-Cluster for Lattice Boltzmann Computation. In Proceedings of

the International Conference on Field Programmable Logic and Applications (FPL),

pages 120–127.

Krasnov, A., Schultz, A., Wawrzynek, J., Gibeling, G., and Droz, P. (2007). RAMP

BLUE: A Message-Passing Manycore System in FPGAs. In Proceedings of the

International Conference on Field Programmable Logic and Applications (FPL),

pages 54–61.

165

Krishna, T. and Peh, L. (2014). Single-cycle collective communication over a shared

network fabric. In Proceedings of the International Symposium on Networks-on-

Chip (NOCS), pages 1–8. IEEE.

Krishna, T., Peh, L., Beckmann, B., and Reinhardt, S. (2011). Towards the ideal

on-chip fabric for 1-to-many and many-to-1 communication. In Proceedings of

the IEEE/ACM International Symposium on Microarchitecture (MICRO), pages

71–82. ACM.

Kritikos, W., Schmidt, A., Sass, R., Anderson, E., and French, M. (2012). Red-

sharc: a programming model and on-chip network for multi-core systems on a

programmable chip. International Journal of Reconfigurable Computing (IJRC),

2012:1–11.

Kumar, A., Peh, L.-S., Kundu, P., and Jha, N. K. (2007). Express virtual channels:

towards the ideal interconnection fabric. ACM SIGARCH Computer Architecture

News, 35(2):150–161.

Kung, H. (1988). Systolic communication. In Proceedings of the International

Conference on Systolic Arrays, pages 695–703. IEEE.

Laffely, A., Liang, J., Jain, P., Burleson, W., and Tessier, R. (2001). Adaptive

systems on a chip (asoc) for low-power signal processing. In Proceedings of the

Asilomar Conference on Signals, Systems and Computers, volume 2, pages 1217–

1221. IEEE.

Lam, B., Pascoe, C., Schaecher, S., Lam, H., and George, A. (2013). Bsw: Fpga-

accelerated blast-wrapped smith-waterman aligner. In Proceedings of the Inter-

national Conference on Reconfigurable Computing and FPGAs (ReConFig), pages

1–7. IEEE.

166

Lan, H. (1995). Architecture and Computer-aided Design Tools for a Field pro-

grammable Multi-chip Module. PhD thesis, Stanford University, Stanford, CA,

USA. AAI9602912.

Lawande, A. G., George, A. D., and Lam, H. (2016). Novo-g#: a multidimensional

torus-based reconfigurable cluster for molecular dynamics. Concurrency and Com-

putation: Practice and Experience, 28(8):2374–2393.

Lee, V. W., Kim, C., Chhugani, J., Deisher, M., Kim, D., Nguyen, A. D., Satish, N.,

Smelyanskiy, M., Chennupaty, S., Hammarlund, P., et al. (2010). Debunking the

100x gpu vs. cpu myth: an evaluation of throughput computing on cpu and gpu.

ACM SIGARCH computer architecture news, 38(3):451–460.

Leighton, F. T. (2014). Introduction to parallel algorithms and architectures: Arrays·

trees· hypercubes. Elsevier.

Liang, C., Wu, C., Zhou, X., Cao, W., Wang, S., and Wang, L. (2013). An fpga-

cluster-accelerated match engine for content-based image retrieval. In Proceedings

of the International Conference on Field-Programmable Technology (FPT), pages

422–425.

Lindahl, E. (2013). Evolutions & Revolutions in Peta- and Exascale Biomolecular

Simulation. In Proceedings of the Conference on Scientific Computing.

Liu, X., Deng, Q., and Wang, Z. (2014). Design and FPGA Implementation of High-

Speed, Fixed-Latency Serial Transceivers. IEEE Transactions on Nuclear Science,

61(1).

Mahr, P., Lorchner, C., Ishebabi, H., and Bobda, C. (2008). SoC-MPI: A Flexible

Message Passing Library for Multiprocessor Systems-on-Chips. In Proceedings of

167

the International Conference on Reconfigurable Computing and FPGAs (ReCon-

Fig), pages 187–192.

Marescaux, T., Nollet, V., Mignolet, J.-Y., Bartic, A., Moffat, W., Avasare, P., Coene,

P., Verkest, D., Vernalde, S., and Lauwereins, R. (2004). Run-time support for

heterogeneous multitasking on reconfigurable socs. Integration, the VLSI journal,

38(1):107–130.

Markettos, A., Fox, P., Moore, S., and Moore, A. (2014). Interconnect for Commodity

FPGA Clusters: Standardized or Customized? In Proceedings of the International

Conference on Field Programmable Logic and Applications (FPL), pages 1–8.

Matsutani, H., Koibuchi, M., Amano, H., and Yoshinaga, T. (2009). Prediction

router: Yet another low latency on-chip router architecture. In Proceedings of the

International Symposium on High-Performance Computer Architecture (HPCA),

pages 367–378. IEEE.

Matthey, T., Cickovski, T., Hampton, S., Ko, A., Ma, Q., Nyerges, M., Raeder, T.,

Slabach, T., and Izaguirre, J. A. (2004). Protomol, an object-oriented framework

for prototyping novel algorithms for molecular dynamics. ACM Transactions on

Mathematical Software (TOMS), 30(3):237–265.

Mencer, O., Tsoi, K., Craimer, S., T.Todman, Luk, W., Wong, M., and Leong, P.

(2009). Cube: A 512-fpga cluster. In Proceedings of the Southern Conference on

Programmable Logic (SPL), pages 1–3.

Meng, J., Llamośı, E., Kaplan, F., Zhang, C., Sheng, J., Herbordt, M., Schirner,

G., and Coskun, A. K. (2016). Communication and cooling aware job allocation

in data centers for communication-intensive workloads. Journal of Parallel and

Distributed Computing (JPDC), 96:181–193.

168

Moore, S., Fox, P., Marsh, S., Markettos, A., and Mujumdar, A. (2012). Bluehive-

a field-programable custom computing machine for extreme-scale real-time neural

network simulation. In Proceedings of the IEEE Symposium on Field-Programmable

Custom Computing Machines (FCCM), pages 133–140. IEEE.

Moorthy, P. and Kapre, N. (2015). Zedwulf: Power-performance tradeoffs of a

32-node zynq soc cluster. In Proceedings of the IEEE Symposium on Field-

Programmable Custom Computing Machines (FCCM), pages 68–75. IEEE.

Mullins, R., West, A., and Moore, S. (2004). Low-latency virtual-channel routers for

on-chip networks. ACM SIGARCH Computer Architecture News, 32(2):188.

Mullins, R., West, A., and Moore, S. (2006). The design and implementation of a

low-latency on-chip network. In Proceedings of the Asia and South Pacific Design

Automation Conference (ASP-DAC), pages 164–169. IEEE Press.

Murali, S., Atienza, D., Benini, L., and De Micheli, G. (2007). A method for routing

packets across multiple paths in nocs with in-order delivery and fault-tolerance

gaurantees. VLSi DeSign, 2007.

Nesson, T. and Johnsson, S. (1995). ROMM routing on mesh and torus networks.

In Proceedings of the ACM Symposium on Parallel Algorithms and Architectures

(SPAA), pages 275–286.

Nidhi, U., Paul, K., Hemani, A., and Kumar, A. (2013). High performance 3d-fft

implementation. In Proceedings of the IEEE International Symposium on Circuits

and Systems (ISCAS), pages 2227–2230. IEEE.

Papamichael, M. and Hoe, J. (2012). Connect: Re-examining conventional wisdom

for designing nocs in the context of fpgas. In Proceedings of the ACM/SIGDA

169

International Symposium on Field Programmable Gate Arrays (FPGA), pages 37–

46. ACM.

Patel, A., Madill, C., Saldana, M., Comis, C., Pomes, R., and Chowl, P. (2006). A

Scalable FPGA-Based Multiprocessor. In Proceedings of the IEEE Symposium on

Field-Programmable Custom Computing Machines (FCCM), pages 111–120.

Peh, L. and Dally, W. (2001). A delay model and speculative architecture for

pipelined routers. In Proceedings of the International Symposium on High Per-

formance Computer Architecture (HPCA), pages 255–266. IEEE.

Peng, Y., Saldana, M., Madill, C., Zou, X., and Chow, P. (2014). Benefits of adding

hardware support for broadcast and reduce operations in mpsoc applications. ACM

Transactions on Reconfigurable Technology and Systems (TRETS), 7(3):17.

Pham, D., Aipperspach, T., Boerstler, D., and et al. (2006). Overview of the

architecture, circuit design, and physical implementation of a first-generation cell

processor. IEEE Journal of Solid-State Circuits (JSSC), 41(1):179–196.

Phillips, J., Areno, M., Rogers, C., Dasu, A., and Eames, B. (2007). A reconfigurable

load balancing architecture for molecular dynamics. In Proceedings of the IEEE

International Parallel and Distributed Processing Symposium (IPDPS), pages 1–6.

IEEE.

Phillips, J. C., Zheng, G., Kumar, S., and Kalé, L. V. (2002). Namd: Biomolec-

ular simulation on thousands of processors. In Proceedings of the ACM/IEEE

Conference on Supercomputing, pages 36–36. IEEE.

Pippig, M. (2013). Pfft: An extension of fftw to massively parallel architectures.

SIAM Journal on Scientific Computing, 35(3):C213–C236.

170

Putnam, A., Caulfield, A., Chung, E., Chiou, D., and et al. (2014). A reconfig-

urable fabric for accelerating large-scale datacenter services. In Proceeding of the

ACM/IEEE International Symposium on Computer Architecuture (ISCA), pages

13–24.

Rodrigo, S., Flich, J., Duato, J., and Hummel, M. (2008). Efficient unicast and multi-

cast support for cmps. In Proceedings of the IEEE/ACM International Symposium

on Microarchitecture (MICRO), pages 364–375. IEEE Computer Society.

Saldana, M. and Chow, P. (2006). TMD-MPI: An MPI Implementation for Multiple

Processors Across Multiple FPGAs. In Proceedings of the International Conference

on Field Programmable Logic and Applications (FPL), pages 1–6.

Samman, F. A., Hollstein, T., and Glesner, M. (2008). Multicast parallel pipeline

router architecture for network-on-chip. In Proceedings of the conference on De-

sign, automation and test in Europe (DATE), pages 1396–1401. ACM.

Sano, K., Hatsuda, Y., and Yamamoto, S. (2014). Multi-fpga accelerator for scalable

stencil computation with constant memory bandwidth. IEEE Transactions on

Parallel and Distributed Systems (TPDS), 25(3):695–705.

Sass, R., Kritikos, W., Schmidt, A., Beeravolu, S., and et al. (2007). Reconfigurable

computing cluster (rcc) project: Investigating the feasibility of fpga-based petas-

cale computing. In Proceedings of the IEEE Symposium on Field-Programmable

Custom Computing Machines (FCCM), pages 127–138.

Schmidt, A., Kritikos, W., Gao, S., and Sass, R. (2012). An evaluation of an in-

tegrated on-chip/off-chip network for high-performance reconfigurable computing.

International Journal of Reconfigurable Computing (IJRC), 2012.

171

Schmidt, A., Kritikos, W., Sharma, R., and Sass, R. (2009). Airen: A novel integra-

tion of on-chip and off-chip fpga networks. In Proceedings of the IEEE International

Symposium on Field Programmable Custom Computing Machines, pages 271–274.

IEEE.

Scrofano, R., Gokhale, M. B., Trouw, F., and Prasanna, V. K. (2008). Accelerating

molecular dynamics simulations with reconfigurable computers. IEEE Transac-

tions on Parallel and Distributed Systems (TPDS), 19(6):764–778.

Scrofano, R. and Prasanna, V. K. (2006). Preliminary investigation of advanced

electrostatics in molecular dynamics on reconfigurable computers. In Proceedings

of the ACM/IEEE conference on Supercomputing, page 90. ACM.

Seo, D., Ali, A., Lim, W., Rafique, N., and Thottethodi, M. (2005). Near-optimal

worst-case throughput routing for two-dimensional mesh networks. In Proceedings

of the International Symposium on Computer Architecture (ISCA), pages 432–443.

IEEE Computer Society.

Shaw, D., Deneroff, M., Dror, R., Kuskin, J., Larson, R., Salmon, J., Young, C., Bat-

son, B., Bowers, K., Chao, J., and et. al. (2008). Anton, a special-purpose machine

for molecular dynamics simulation. Communications of the ACM, 51(7):91–97.

Shaw, D., Grossman, J., Bank, J. A., Batson, B., Butts, J. A., Chao, J. C., Deneroff,

M. M., Dror, R. O., Even, A., Fenton, C. H., et al. (2014). Anton 2: Raising the

bar for performance and programmability in a special-purpose molecular dynamics

supercomputer. In Proceedings of the International Conference for High Perfor-

mance Computing, Networking, Storage and Analysis (SC), pages 41–53. IEEE

Press.

Shaw, D. E., Deneroff, M. M., Dror, R. O., Kuskin, J. S., Larson, R. H., Salmon,

172

J. K., Young, C., Batson, B., Bowers, K. J., Chao, J. C., et al. (2007). Anton,

a special-purpose machine for molecular dynamics simulation. ACM SIGARCH

Computer Architecture News, 35(2):1–12.

Shaw, P. and Milne, G. (1992). A highly parallel fpga-based machine and its formal

verification. In Proceedings of the International Workshop on Field Programmable

Logic and Applications (FPL), pages 162–173. Springer.

Sheng, J., Humphries, B., Zhang, H., and Herbordt, M. (2014). Design of 3d ffts

with fpga clusters. In Proceedings of the High Performance Extreme Computing

Conference (HPEC), pages 1–6. IEEE.

Sheng, J., Xiong, Q., Yang, C., and Herbordt, M. C. (2016). Application-aware

collective communication. In Proceedings of the IEEE International Symposium on

Field-Programmable Custom Computing Machines (FCCM), pages 197–197. IEEE.

Sheng, J., Xiong, Q., Yang, C., and Herbordt, M. C. (2017). Collective communica-

tion on fpga clusters with static scheduling. ACM SIGARCH Computer Architec-

ture News, 44(4):2–7.

Sheng, J., Yang, C., and Herbordt, M. (2015). Towards Low-Latency Communica-

tion on FPGA Clusters with 3D FFT Case Study. In Proceedings of the Interna-

tional Symposium on Highly Efficient Accelerators and Reconfigurable Technologies

(HEART).

Shoemaker, D., Honor, F., Metcalf, C., and Ward, S. (1996). Numesh: An archi-

tecture optimized for scheduled communication. The Journal of Supercomputing,

10(3):285–302.

Singh, A., Dally, W., Gupta, A., and Towles, B. (2003). Goal: a load-balanced

adaptive routing algorithm for torus networks. Proceedings of the International

173

Symposium on Computer Architecture (ISCA), 31(2):194–205.

Singh, A., Dally, W., Towles, B., and Gupta, A. (2002). Locality-preserving random-

ized oblivious routing on torus networks. In Proceedings of the ACM Symposium

on Parallel Algorithms and Architectures (SPAA), pages 9–13. ACM.

Skalicky, S., Schmidt, A., Lopez, S., and French, M. (2015). A Unified Hard-

ware/Software MPSoC System Construction and Run-Time Framework. In Pro-

ceedings of the Design, Automation and Test in Europe Conference and Exhibition

(DATE), pages 301–304.

So, H. and Brodersen, R. (2008). A unified hardware/software runtime environ-

ment for fpga-based reconfigurable computers using borph. ACM Transactions on

Embedded Computing Systems (TECS), 7:14:1–14:28.

Sridharan, R., Cooke, G., Hill, K., Lam, H., and George, A. (2012). Fpga-based

reconfigurable computing for pricing multi-asset barrier options. In Proceedings

of the Symposium on Application Accelerators in High Performance Computing

(SAAHPC), pages 34–43. IEEE.

StremDSP (2015). Interlaken PHY Datasheet. StremDSP LLC.

Sukhwani, B. and , M. C. (2008). Acceleration of a Production Rigid Molecule Dock-

ing Code. In Proceedings of the International Conference on Field Programmable

Logic and Applications (FPL), pages 341–346.

Sukhwani, B. and Herbordt, M. (2010). Fpga acceleration of rigid-molecule docking

codes. IET Computers & Digital Techniques, 4(3):184–195.

Sullivan, H. and Bashkow, T. R. (1977). A large scale, homogeneous, fully distributed

parallel machine, i. In Proceedings of the International Symposium on Computer

Architecture (ISCA), pages 105–117. ACM.

174

Sun, Y., Zheng, G., Mei, C., Bohm, E., Phillips, J., Kalé, L., and Jones, T. (2012).

Optimizing Fine-Grained Communication in a Biomolecular Simulation Applica-

tion on Cray XK6. In Proceedings of the International Conference for High Per-

formance Computing, Networking, Storage and Analysis (SC).

Tamir, Y. and Frazier, G. (1988). High-performance multiqueue buffers for vlsi com-

munication switches. In Proceedings of the International Symposium on Computer

Architecture (ISCA), pages 343–354. IEEE.

Tsoi, K. and Luk, W. (2010). Axel: A heterogeneous cluster with fpgas and gpus. In

Proceedings of the ACM/SIGDA International Symposium on Field Programmable

Gate Arrays (FPGA), pages 115–124.

Unnikrishnan, D., Zhao, J., and Tessier, R. (2009). Application-Specific Customiza-

tion and Scalability of Soft Multiprocessors. In Proceedings of the IEEE Interna-

tional Symposium on Field-Programmable Custom Computing Machines (FCCM),

pages 123–130.

Vancourt, T., Gu, Y., and Herbordt, M. C. (2004). FPGA acceleration of rigid

molecule interactions. In Proceedings of the International Conference on Field

Programmable Logic and Applications (FPL).

VanCourt, T., Gu, Y., Mundada, V., and Herbordt, M. (2006). Rigid molecule

docking: Fpga reconfiguration for alternative force laws. EURASIP Journal on

Advances in Signal Processing, 2006(1):1–10.

Vancourt, T. and Herbordt, M. C. (2005). Three dimensional template correlation:

Object recognition in 3D voxel data. In Proceedings of Computer Architectures for

Machine Perception, pages 153–158.

175

Vancourt, T. and Herbordt, M. C. (2009). Elements of high-performance reconfig-

urable computing. Advances in Computers, 75:113–157.

Varma, B. S. C., Paul, K., and Balakrishnan, M. (2013). Accelerating 3d-fft using

hard embedded blocks in fpgas. In Proceedings of the International Conference

on VLSI Design and International Conference on Embedded Systems, pages 92–97.

IEEE.

Wang, L., Jin, Y., Kim, H., and Kim, E. J. (2009). Recursive partitioning multi-

cast: A bandwidth-efficient routing for networks-on-chip. In Proceedings of the

ACM/IEEE International Symposium on Networks-on-Chip (NOCS), pages 64–73.

IEEE Computer Society.

Wang, X., Yang, M., Jiang, Y., and Liu, P. (2011). On an efficient noc multicast-

ing scheme in support of multiple applications running on irregular sub-networks.

Microprocessors and Microsystems, 35(2):119–129.

Wang, Y., Zhou, X., Wang, L., Yan, J., Luk, W., Peng, C., and Tong, J. (2013).

Spread: A streaming-based partially reconfigurable architecture and programming

model. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

21(12):2179–2192.

Wawrzynek, J., Patterson, D., Oskin, M., Lu, S., Kozyrakis, C., Hoe, J., Chiou, D.,

and Asanovic, K. (2007). Ramp: Research accelerator for multiple processors.

IEEE Micro, 27(2):46–57.

Weisz, G. and Hoe, J. (2015). CoRAM++: Supporting Data-Structure-Specific

Memory Interfaces for FPGA Computing. In Proceedings of the International

Conference on Field Programmable Logic and Applications (FPL), pages 1–8.

176

Wolinski, C., Trouw, F. R., and Gokhale, M. (2003). A preliminary study of molecu-

lar dynamics on reconfigurable computers. Technical report, Los Alamos National

Laboratory.

Xilinx (2009). Virtex-5 FPGA RocketIO GTP Transceiver. Xilinx.

Yiannacouras, P., Steffan, J., and Rose, J. (2006). Application-Specific Customiza-

tion of Soft Processor Microarchitecture. In Proceedings of the ACM/SIGDA Inter-

national Symposium on Field Programmable Gate Arrays (FPGA), pages 201–210.

Young, C., Bank, J., Dror, R., Grossman, J., Salmon, J., and Shaw, D. (2009). A

32x32x32, spatially distributed 3d fft in four microseconds on anton. In Proceed-

ings of the Conference on High Performance Computing Networking, Storage and

Analysis (SC), pages 1–11. IEEE.

CURRICULUM VITAE

178

179

180

181

