
国立大学法人電気通信大学 / The University of Electro-Communications

Accelerating BLAST Computation on an
FPGA-enhanced PC Cluster

journal or
publication title

Proceedings of The Fourth International
Symposium on Computing and Networking

year 2016-11
URL http://id.nii.ac.jp/1438/00006993/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Creative Repository of Electro-Communications

https://core.ac.uk/display/147698758?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Accelerating BLAST Computation on an FPGA-enhanced PC Cluster

Masato Yoshimi, Celimuge Wu, Tsutomu Yoshinaga
Graduate School of Informatics and Engineering, University of Electro-Communications

Chofu, Tokyo, JAPAN 182-8585
Email: {yoshimi,clmg,yosinaga}@is.uec.ac.jp

Abstract—This paper introduces an FPGA-based scheme to
accelerate mpiBLAST, which is a parallel sequence alignment
algorithm for computational biology. Recent rapidly growing
biological databases for sequence alignment require high-
throughput storage and network rather than computing speed.
Our scheme utilizes a specialized hardware configured on an
FPGA-board which connects flash storage and other FPGA-
boards directly. The specialized hardware configured on the
FPGAs, we call a Data Stream Processing Engine (DSPE), take
a role for preprocessing to adjust data for high-performance
multi- and many- core processors simultaneously with offload-
ing system-calls for storage access and networking. DSPE
along the datapath achieves in-datapath computing which
applies operations for data streams passing through the FPGA.
Two functions in mpiBLAST are implemented using DSPE to
offload operations along the datapath. The first function is
database partitioning, which distributes the biological database
to multiple computing nodes before commencing the BLAST
processes. Using DSPE, we observe a 20-fold improvement in
computation time for the database partitioning operation. The
second function is an early part of the BLAST process that de-
termines the positions of sequences for more detailed computa-
tions. We implement IDP-BLAST (In-datapath BLAST), which
annotates positions in data streams from solid-state drives. We
show that IDP-BLAST accelerates the computation time of
the preprocess of BLAST by a factor of three hundred by
offloading heavy operations to the introduced special hardware.

Keywords-In-datapath Computing, Interconnected FPGA
boards, Flash storage, Computational Biology, BLAST

I. INTRODUCTION

The popularity of various web services and increasing use
of sensor technologies have led to massive amounts of data
being generated every day. Over the past decade or so, big
data applications have converted these vast quantities of data
into profitable commodities. Numerous organizations have
begun utilizing big data in application fields such as decision
making, risk management, and advertising. Several scientific
fields deal with such big data, e.g., computational biology,
atmospheric science, astronomy, and other interdisciplinary
research areas [1]. Notably, the combination of the scalable
computing framework of MapReduce [2] and distributed file
systems based on GFS [3] promotes the use of big data. In
addition, the scale of computing systems is also expanding,
enabling access to data in remote storage. The speed at
which the accumulated data are growing, which is much
faster than the advance of computational devices, requires
current computer systems to be redesigned.

Especially in the field of computational biology, the speed
of genomes accumulating database is faster than Moore’s
Law. The number of genomic sequences is doubling almost
every 12 months[4]. This factor means that we are required
to tackle with reconsidering the architecture of the comput-
ing system to improve the throughput to extract significant
data from massive amount of no importance data.

Several projects have explored novel computer systems
that can treat large amounts of data more efficiently [5] [6].
The key feature of these systems is the installation of field
programmable gate array (FPGA)-based dedicated hardware
that can be directly attached to the storage or network. The
FPGA not only permits part of the user functions to be
offloaded, but also allows Near Data Computing by filtering
the data before loading the main memory.

Our research group has proposed a computer system with
an FPGA-based, tightly coupled accelerator that connects
an FPGA to flash storage and a network. The hardware
module (Data Stream Processing Engine, DSPE) trims and
aggregates the data streams passing through the FPGA [7]
[8]. Even though the mechanism of in-datapath computing
has shown favorable performance compared to software-
based distributed frameworks, the evaluated applications
were simple, single clock-cycle operations for reading data
from storage to DRAM on the FPGA board. To increase the
availability of such a mechanism, more flexible operations
must be supported and performance evaluations conducted
on practical applications.

In this paper, we apply the computing mechanism for
mpiBLAST, which is an software-based parallel implemen-
tation of the sequence alignment for genomic data for PC-
Cluster. Even though several research reported FPGA-based
implementations to accelerate BLAST with an FPGA on a
single computing node, we extend the mechanism to PC-
Cluster utilizing direct connection among FPGA boards.

There are two novelties in this paper. First is a mechanism
of partitioning database utilizing the direct data transmission
between the FPGA-boards. The genomic database is divided
and stored into each storage which is equipped on the FPGA-
boards via network between FPGA-boards for parallel com-
putation. Second, we propose a first-in-first-out (FIFO)-
based mechanism that permits DSPE pipelined operations
with a controller for solid-state drives (SSDs) to offload
an early part of mpiBLAST to reduce the computation

©2016 IEEE. Reprinted, with permission, from Masato Yoshimi, Celimuge Wu, and Tsutomu Yoshinaga, “Accelerating BLAST Computation on an FPGA-enhanced PC
Cluster” in Proc. of The Fourth International Symposium on Computing and Networking (CANDAR’16), Nov. 2016.



Figure 1. Computational step in BLAST

in the microprocessor. Through experimental evaluations,
we confirmed that our in-datapath computing accelerates
database partitioning by a factor of 20. Additionally, we also
confirmed that the overall computation time of mpiBLAST
by a factor of three by offloading preprocesses.

II. BLAST AND ACCELERATION TECHNIQUE

This section gives an overview of the BLAST algorithm
and various acceleration techniques using parallel computing
and specialized hardware.

A. Overview

BLAST (Basic Local Alignment Search Tool) is a fa-
mous algorithm for sequence alignment in bioinformatics.
Sequence alignment obtains the similarity score between
two sequences of nucleotides or proteins. BLAST is used
to extract similar sequence fragments by comparing a query
sequence with many sequences in a database. Although the
Needleman–Wunsch and Smith–Waterman algorithms can
be used for sequence alignment, rigorous algorithms are
computationally intensive. The advantage of BLAST is that
it drastically reduces the number of arithmetic operations
by introducing heuristics and statistics for bioinformatics
while maintaining accuracy. In this paper, we consider the
sequencing of a protein.

As shown in Fig. 1, BLAST performs four steps to
obtain the alignment between two sequences: (0) Generating
neighborhood words initializes the query sequence to fine-
grained letters to obtain the starting position of alignment,
(1) Word Matching searches for candidates of this starting
alignment, (2) Ungapped Extension trims the candidates by
rough alignment, and (3) Gapped Extension computes the
detailed alignment using the Smith–Waterman algorithm.

These steps reduce the number of operations by extracting
candidate sequences that are examined in more detail. In
this paper, BLAST is regarded as a hierarchical filtering
algorithm to reduce the computational load. Further details
on the BLAST algorithm can be found in [9].

In Step 0, the query sequence is converted to neighbor-
hood words, which is a list of k letters (k = 3 for pro-
tein sequence) satisfying the similarity score of some least
threshold T (= 12). After Step 0, the sequence alignments
from Steps 1–3 are repeated to filter the database sequences
according to the neighborhood words. Step 1 searches for
neighborhood words from the database sequence to obtain
Hits with respect to the start position for successive steps.
Step 2 (called Ungapped Extension) computes high-scoring
segment pairs (HSPs) from all Hits. These HSPs are rough
similarity scores used in Step 3. BLAST adopts a two-hit
method, whereby Step 2 is only executed for two seeds
that are within some specified distance of one another. The
resulting HSPs are sorted in order of their significance. In
Step 3, BLAST computes the detailed alignment, including
the gap, for each HSP using the Smith–Waterman algorithm.

B. Parallel computation for BLAST

There have been several studies on the parallelization of
BLAST to accelerate its performance [10] [11]. Ref. [11]
classified the parallelism of BLAST into three levels: a fine-
grained intra-query level, medium-grained intra-database
level, and coarse-grained inter-query level.

The easiest way to parallelize BLAST is at the coarse-
grained level by executing multiple BLAST processes of
individual queries for the same database simultaneously.
However, while such higher throughput may enhance the
efficiency of a computational system, the performance of a
single query should also be improved.

C. mpiBLAST

mpiBLAST[10], which is an MPI version of the well-
known NCBI-BLAST implementation, runs on a PC cluster
to exploit the medium-grained approach. BLAST can be
easily parallelized by partitioning the database into multiple
computing nodes, since the computation of each alignment is
independent. The developers of mpiBLAST focused on the
relationship between the length of the database sequences
and the computation time. mpiBLAST introduces a novel
partitioning method to distribute sub-database sequences to
each computing node for parallel execution, thus balancing
the computation time in each node.

III. RELATED WORK

A. Future Architecture for Data Centers

Computing platforms for big data analytics require good
performance and cost efficiency. Several industries have
announced projects to develop a new computing infras-
tructure for data centers [12] [13]. For example, Firebox



[14] is a next-generation computer architecture consisting
of multiple fine-grain components of SoCs and memory
modules connected to high-radix switches. The prototype for
this architecture, DIABLO, was developed using an FPGA-
based system. Intel has announced the Rack Scale Archi-
tecture based on a new concept of disaggregating computer
components into pooled processors, storage, and networking
resources [13]. The machine, proposed by Hewlett-Packard,
aims to utilize configurable fine-grained processing cores
and memory pools by connecting them with a photonic
network. They insist that future data centers require such
computer systems, and plan to release them by the 2020s
[12].

Our approach is within the context of developing a novel
computer system by adopting specialized hardware. The
primary feature of our approach is to accelerate applications
by offloading part of the computation to the datapath of the
transmission among the main memory of the host-PC, the
flash storage, and the network.

B. FPGA-based Accelerators for Data-intensive Applica-
tions

There are several FPGA-based accelerators for big data.
IBM has released Netezza [5], which integrates a consider-
able number of blade servers as a data warehouse appliance.
Each server equips an FPGA between the main memory and
the storage to extract data without increasing the processor
load. Netezza compiles a user-defined query to distribute
commands, and discards unnecessary data before loading
from the storage. In [15], the authors adopted Netezza for
chromosomal microarray analysis. They confirmed that the
active disk mechanism of Netezza worked well compared to
parallel computation on a PC cluster and Hadoop.

The trend analysis and machine learning of big data
workloads, which involve the frequent scanning of all data,
have led engineers to develop near-data processing, i.e.,
performing computations near the data source. Adding com-
puting elements to the storage for offloading operations is a
valuable technique for next-generation storage [16] [17].

Several computing systems have been developed for spe-
cific applications [18] [6]. For instance, [18] reports a
computing system called BlueDBM to support DRAM on
FPGA boards that are directly attached to the network and
flash storage. This system was confirmed to maintain the
same performance as a PC cluster with a large amount
of main memory. Microsoft developed a computing system
called Catapult [6] that equips FPGA boards connected to
one another for their web service. The system executes each
sub-sequence of the PageRank operation in the manner of
a systolic array. These computing systems are currently in
the demonstration phase. Although these projects involve
various interconnected FPGAs, the novelty of our work is the
development of an acceleration methodology that not only
offloads whole computations to FPGAs, but also combines

Figure 2. A computing platform with In-datapath Computing

the computation with communication, as shown in Section
II.

C. FPGA-based Accelerators for BLAST

BLAST and related algorithms are regarded as primary
applications to be accelerated by dedicated hardware such as
FPGAs. A number of researchers have developed techniques
to offload part or all of an operation to BLAST.

Mercury BLAST [19] is a hardware implementation that
offloads the preprocessing step of BLAST to a single FPGA
board. Mercury BLAST offloads word matching and un-
gapped extension to the FPGA board database when reading
database sequences from magnetic disks in the style of
a systolic array. The host PC need only execute gapped
extension. Although the approach proposed in this paper (see
Section V-C) is similar to Mercury-BLAST, the underlying
computing scheme is different. We consider that in-datapath
computing with DSPE should not block the data stream from
the data source to maintain wire-speed. Since we can choose
various accelerators for data in the main memory, in-datapath
computing should not impede the speed at which data can
be accessed.

IV. IN-DATAPATH COMPUTING PLATFORM

A. Overview

This section describes in-datapath computing platform
we have proposed. Although our prototype environment
includes several proprietary modules, the scheme can port
to other FPGA boards.

Our research group has proposed an acceleration scheme
for data-intensive applications using an FPGA-based acceler-
ator [7]. Fig. 2 shows an example of the computing platform
with two computing nodes. In the scheme, we suppose that
PC clusters in which each node is equipped with an FPGA
board transfer data between storage and other nodes.

The proposed scheme has two advantages compared to
conventional many-core accelerators such as GPUs and the
Xeon Phi: (a) offloading part of the computation to the



Figure 3. An architecture implemented in APX series

FPGA when loading data from storage or network into
the main memory, and (b) direct data transmission between
FPGA boards without going through the main memory by
executing system calls in the host PCs. We refer to the
scheme of (a) as in-datapath computing, whereby hardware
modules configured in the FPGA apply operations in the
data stream.

B. DSPE: Data Stream Processing Engine

In previous work, we adopted the AVALDATA APX-880A
[20] FPGA board for an experimental proof of the scheme.
This FPGA board, whose specification is listed on the left of
Table I, equips four primary interfaces to the PCI Express,
DRAM, optical network, and flash storage. As shown in Fig.
2, a proprietary bus switch called AVAL-BUS interconnects
these interfaces, as in conventional bus systems provided
by FPGA vendors. The optical network connects multiple
FPGA boards to form a ring topology in the PC-cluster. The
data stored on the flash storage can be transferred directly
via the network by invoking Direct Memory Access (DMA)
controllers from the host PC.

We have proposed the DSPE mechanism shown in Fig. 3
for in-datapath computing [7]. Two types of DSPE can be
configured on the FPGA: (1) DSPE-S in front of the flash
storage, and (2) DSPE-D at the DRAM interface. We can
implement user logic according to the target application
to apply logical and arithmetic operations to data streams
passing through either DSPE. The user logic is controlled
by instructions stored in the local register array, which can
be accessed by the host PC via the PCI Express memory
space. Both the network and storage throughput are around
1 [GB/s] in the APX-880A.

To validate the applicability of the scheme, we have
reported two implementations: (1) simple word counting [7],
and (2) group-by aggregation [8]. Evaluations confirmed that
each application outperformed software-based distribution
frameworks by offloading the comparison of values and
accumulation of counters into the data stream of DSPE-S.

C. Motivation for Developing APX-7142

We encountered two problems with the previous APX-
880A: (1) the devices are no longer effective following

rapid progress in applications, and (2) the data granularity
restriction of 128 MB for accessing the storage of SD cards
is markedly different from conventional storage systems.

Moreover, previous evaluations [7] [8] did not confirm
the applicability of the scheme for three reasons. First, only
two operations are required by the host CPU—issuing an
operation to transfer data from flash storage to DRAM,
and reading results from the local register array. Second,
utilizing the network for in-datapath computing has not been
discussed, since both hardware modules are implemented on
the DSPE-S. In this paper, we use DSPE-D. Third, the im-
plementation of DSPE-S can accept operations that complete
within a clock cycle using the simple I/O protocol. Section
IV-E proposes an FIFO-based DSPE-S implementation in
which more flexible operations require multiple clock cycles.
Therefore, we developed a new hardware component in
which an FPGA board is used to accommodate in-datapath
computing.

We implement the in-datapath computing platform de-
scribed in Section IV-B into AVALDATA APX-7142 [21],
the specification of which is listed on the right of Table.I.
There are two primary features of APX-7142: (1) faster
overall data transfer due to the expanded bus-width, and (2)
an Serial Attached SCSI (SAS) connector that branches to
four SATA devices instead of multiple SD card slots.

D. SSD-based Flash Storage

Before designing an advanced DSPE-S, we must develop
a SATA controller to connect the APX-7142 with SSDs,
since the SAS connector of APX-7142 is essentially de-
signed to connect digital measurement instruments. To re-
duce the development cost, we use the SATA-CORE design,
a type of SATA2 (3 Gbps) interface [22] to connect off-chip
SATA devices.

Fig. 4 shows the architecture of a SATA controller man-
aged by the host PC. Two dual clock-in FIFOs act to buffer
the different operating frequencies of the SATA device (200

Table I
SPECIFICATION OF PROTOTYPE FPGA BOARDS

Product APX-880A APX-7142
FPGA Device Stratix IV GX Stratix V GX

EP4SGX230KF40C2 5SGXMA3K1F40C2N
runs at 125 MHz runs at 125 MHz

DRAM (DDR3) 533 MHz, 512 MB 800 MHz, 2.0 GB
Flash Storage 18 SD Cards×1 or 2 SAS connector

1.5 GB/s×2ch extends 4 SATA ports
two SDs for parity scratch build in this paper

unit to transfer 128[MB] 4[KB]
Network Proprietary GiGA CHANNEL

Optical token ring network
unit to transfer 16 [KB]

8.5 Gbps×2ch 14 Gbps ×2ch
PCIe I/F 2.0 Gen2×4 Lane 2.0 Gen2×8 Lane
Internal Bus Proprietary AVAL-bus

128 bits-width 256 bits-width



Figure 4. Architecture of a SATA controller

Figure 5. FIFO-based DSPE

MHz) and other hardware modules (125 MHz) in the FPGA.
The SATA controller also requires a mechanism controlled
by the host PC. We implement a scheme that triggers
the DMA transmission from or to the SATA device over
the SATA-CORE according to the address and block size
parameters in the local register array. Therefore, the host
PC instructs data transmission by configuring parameters in
the local register array via PCI Express.

The command controller handles the SATA protocol ac-
cording to instructions read from the instruction memory.
The DMA data-bus connects to AVAL-BUS separately, as
stated in Section IV-E.

E. DSPE with FIFO-based I/O

We propose an advanced DSPE with FIFO-based I/O to
embed user logic requiring multiple clock cycles. Fig. 4
shows the architecture of the FIFO-based DSPE-S, including
the SSD controllers explained in Section IV-D. DSPE-S for
APX-7142 implements three types of sub-controller and two
types of FIFO outside the user logic; the sub-controllers
arbitrate the input and output of the FIFOs according to the
data flow. The FIFO-based DSPE-S controls the user logic

to implement various operations by introducing FIFOs that
regulate the stream.

The FIFOs perform clock conversion and bit-width alter-
nation between SATA-COREs (32 bits × 4 at 200 MHz)
and AVAL-BUS in an FPGA (256 bits at 125 MHz). The
SATA-side FIFOs also have the ability to align data arriving
from four SSDs. Therefore, the data signals in DSPE-S
are connected to the AVAL-BUS. Units of 4 [KB] of data
communicate with the SSDs, since the controller accesses
all four SSDs simultaneously, even though the unit of data
is 1 [KB] for AVAL-BUS and a single SSD.

We also implemented software libraries to invoke DMA
transmissions between interfaces. The FIFO-based interface
of DSPE-S and software implementations make in-datapath
computing possible. The architecture can be embedded in
DSPE-S, as well as in the network and DRAM using similar
FIFO-based flow control. Since the current development
version of the driver for APX-7142 cannot access SSDs
directly from the host PC, data streams from or to the SSDs
are buffered in the DRAM on the APX-7142. Although
the throughput to access storage is halved, the software
development is still progressing.

V. IMPLEMENTATION

A. Overview

In this section, we propose a mechanism to accelerate
mpiBLAST utilizing in-datapath computing on our FPGA-
boards. We focus on two computational features of mpi-
BLAST: (1) time required to partitioning the database, and
(2) computationally intensive operation of obtaining the start
of Ungapped Extension. All hardware is implemented in
VHDL and we executed synthesis and Place& Routes by
Altera Quartus II versions of which are shown in Table IV.

B. Database Partitioning

Even though the database partitioning runs only once in
advance of the computation, the time taken is not negligible,
since the database is continually growing.

Table II gives examples of the computation time re-
quired for database partitioning using mpiformatdb on the
computing environments listed in Tables III and IV. The
computation time in Table II is derived by subtracting the
time required for formatdb from the total time of mpifor-
matdb, since formatdb includes several format conversions
not related to distributed operation. Database partitioning
is a heavy CPU-bound operation, as the computational
throughputs in Table II are less than one-twentieth of the
I/O throughput of RAID0-SSDs. Even though these two
databases are comparatively small, times of the order of
several minutes may degrade the availability to use of
parallel computing for mpiBLAST.

The in-datapath computing scheme is applied to accelerate
the partitioning and distribute the mpiBLAST database by
offloading the partitioning methodology of mpiformatdb.



Figure 6. Database partitioning by distributing the database

Suppose that a computing node holds the database in the
flash storage of the FPGA board. The sender node parti-
tions the database and distributes the sub-database to other
receiver nodes.

We designed the operation flow shown in Fig. 6, which is
an example of a PC cluster consisting of a sender node and
three receiver nodes. At the start of partitioning, the sender
node sends the database to the ring network. The data is
partitioned and taken to the receiver nodes. We implemented
two hardware modules, DSPE-S and DSPE-D, to offload
this process and achieve the database partitioning shown in
Figs. 7 and 8.

The sender module modifies the database read from the
flash storage and sends it to the GIGA channel. As shown
in Fig. 7, the DSPE-S module at the output of the storage
detects and modifies the head of each database sequence
to indicate a receiver node ID. The module also sends a
counter representing the total size of the database sequences
to each receiver. The receiver node ID is determined by the
minimum value of the counter. The sender module also adds
padding to adjust the data size transferred through the GIGA
channel.

The receiver module at the input from the GIGA channel

Table II
SOFTWARE-BASED TIME TO DATABASE PARTITIONING

DB name Size [GB] Time [s] Throughput [GB/s]
est_human 5.157 133.9 0.0385
gss 27.973 640.7 0.0437

Table III
SPECIFICATIONS OF COMPUTING SYSTEM

No. of Node 4
Product Name DELL Precision Workstation

T5610 D01T
CPU Intel Xeon E5-2630 2.60GHz

(6C12T)
Memory four 4 GB DDR3 16.0 GB
Network Broadcom NetXtreme 10Gbps

on board Ethernet 1Gbps
SSD Crucial CT480M500SSD1

×2(RAID0) 960GB
HDD Seagate ST2000DM001 2.0TB

Figure 7. The sender module of database partitioning

Figure 8. The receiver module for storing sub-database

also detects the head of each query and filters data with an
ID that is equal to that of the receiver node. The filtered
sequences are stored in the flash storage by passing through
the DRAM.

These two modules reduce the computational load of
scanning the database for partitioning and distribution by
packing computations into the data-path between sender and
receiver.

C. IDP-BLAST

After dividing the database, each computing node starts
BLAST. In the BLAST algorithm, the first two steps can be
executed while reading database sequences.

Ref. [11] and our evaluation in Table VII indicate that the
detection of Hits occupies 70–80% of the computation time
of BLAST. The in-datapath computing mechanism proposed
in this paper offloads the early BLAST computations to

Table IV
OPERATING SYSTEM AND SOFTWARE INSTALLATION

OS CentOS 6.6
kernel-2.6.32-504.16.2.el6.x86_64

SW Compiler gcc-4.4.7 boost-1.57.0 OpenMPI-1.8.1
-m64 -O3 -fopenmp

HW CAD Altera Quartus II
10.1sp1 for APX-880A

13.1 for APX-7142
BLAST NCBI-BLAST-2.2.30

mpiBLAST-1.6.0



the DSPE-S (which we refer to as In-Datapath BLAST, or
IDP-BLAST). We offload the functions of Word matching
and the former part of Ungapped Extension, which can
be implemented as hardware and computed at wire-speed.
Although Ref. [19] implemented similar functions in FPGA-
based hardware, they did not consider wire-speed compu-
tation, because the input throughput was much less than
the computing speed under their assumption that the storage
format is magnetic disks.

We implemented IDP-BLAST as the DSPE-S from the
flash storage, the architecture of which is shown in Fig. 9,
to offload the detection of Hits.

The feature of our implementation is that a computation
matrix for obtaining the hit positions is introduced instead
of the Generating Neighborhood word. Since a large hash
table is required to store neighborhood words, and the time
required to search the hash table is uncertain, another im-
plementation is needed to achieve wire-speed computation.
We adopted an FPGA parallelism mechanism that distributes
the computation of field programmable logic by matching
the query sequence to database sequences directly. Although
this idea suppresses the length of the query sequence in an
FPGA, adopting a more fine-grained approach, such as that
in Ref. [11], relaxes this restriction.

IDP-BLAST consists of a BLOSUM table, an adders
and filters matrix, and a hit detection matrix, as shown in
Fig. 9. The first matrix returns a score between a query
letter and a letter of a database that has flowed from the flash
storage. The second matrix calculates the similarity score by
adding three letters, and filters scores that are larger than the
threshold (T = 12). The third matrix further filters the Hits
using the two-hit method. The hardware detects hits from
database sequences and sets the position of the Hit within
the data. We assume each letter is 8-bits wide to embed the
index into the vacant bits of the data.

This computation is pipelined for three stages so as not
to block the data stream from the SSDs. Therefore, the
host PC can derive the Hit position at the same time as
reading the database from the database sequence. Before
implementation, we fixed the maximum query length to 512.
This is considered practical, and is much longer than other
FPGA-based implementations [23].

VI. EVALUATION

A. Evaluation Environment

We evaluated the resource utilization and performance
improvement in two implementations of BLAST. Database
partitioning was evaluated using APX-880A, and IDP-
BLAST was examined with APX-7142. Different hardware
environments were used because of the degree of perfection
required for networking with APX-7142. However, the per-
formance can be compared, as the throughputs between the
flash storage are similar in each case.

Figure 9. Detecting the Hit position

B. Resource Utilization

1) Database Partitioning: The logic resources consumed
by the DSPEs for the database partitioning described in
Section V-B are listed in Table V. The Sender and Receiver
modules can be implemented with relatively small logic
resources, and this further extends the user logic in the early
computations of BLAST.

2) IDP-BLAST: Table VI lists the logic resources re-
quired for the DSPE hardware, including IDP-BLAST, de-
scribed in Section V-C with the SATA controller in Section
IV-E. Note that the FPGA generation of APX-7142 is

Table V
LOGIC RESOURCES FOR PARTITIONING MODULES IN APX-880A

Capacity Proposed Sender Receiver
Logic [%]
Utilization 100 64 — —
Combinational
ALUTs 182400 74910 2892 271
Memory
ALUTs 91200 750 0 0
Dedicated
Logic Reg. 182400 80843 1738 386
Block RAM
[Kb] 14283 5073 114 0



different from the database partitioning in Section VI-B1.
The results in Table VI offer two perspectives. The

SSD controller explained in Section IV-E is comparatively
small for extending the user logic in DSPE, even though it
configures several FIFOs. In contrast, IDP-BLAST occupies
larger resources because of the massive amount of adders
and comparators.

C. Performance of In-datapath Computing

1) Database Partitioning: We evaluated the computation
time of database partitioning for two types of databases.
The results are presented in Table III. Fig. 10 compares the
performance of mpiBLAST on the PC cluster with that of
our hardware for database partitioning. For both databases,
the computation times achieved by the proposed method are
a factor of 20 faster than those given by the conventional
PC cluster. As the feature of in-datapath computing achieves
computations with data transfer, we calculated the through-
put of database partitioning according to:

est_human 5.157[GB]/4.9[s] = 1.061[GB/s] (1)
gss 28.2[GB]/26.6[s] = 1.060[GB/s] (2)

Our computing system can partition and distribute the
databases with a throughput of over 1.0 GB/s. This through-
put is almost the same as the read performance of the flash
storage of APX-880A [7]. Even though the networking and
writing to storage throughputs are faster than this result, we
have confirmed that database partitioning can be achieved
by in-datapath computing using the hardware described in
Section V-B. The hardware structure of the partitioning can
be ported to other FPGA boards such as APX-7142, the
hardware does not depend on any specific features of APX-
880A.

2) IDP-BLAST: The performance of IDP-BLAST is the
same as the throughput reading from the SSD to the host PC,
as the hit positions are obtained when the database sequences
are read from the SSD as described in Section V-C.

To evaluate the performance of IDP-BLAST, we consid-
ered the env_nr database provided by NCBI. Table VII lists

Table VI
LOGIC RESOURCES FOR IDP-BLAST IN APX-7142

Capacity Proposed SSD ctrl. IDP-BLAST
Logic [%]
Utilization 100 75 — —
Combinational
ALUTs 128300 95778 7047.6 35042.5
Memory
ALUTs 64150 1068 0 0
Dedicated
Logic Reg. 128300 93933 7860 18692
Block RAM
[Kb] 19140 4182 81.4 64

Figure 10. Performance of database partitioning

the profile of a node of Table III. The env_nr database con-
tains some 6.5 M sequences and has a size of approximately
1.29 [GB].

The total computation time for BLAST was about 948.47
[s], and Table VII indicates that word matching occupied
over 70% of the computation time. Although BLAST ex-
ecutes several complex and flexible functions, accelerating
the word matching step will improve the overall computation
time.

Fig. 11 shows the throughput of data transfer among
the main memory of the host PC, DRAM, and SSDs for
APX-7142 configured with the DSPE-S described in Section
V-C. The throughput between the host PC and SSDs is
halved by the development version of the driver. However,
the throughput can be improved to around 1 [GB/s] by
upgrading the SATA-CORE from SATA2 to SATA3 and
enhancing the driver.

The performance of IDP-BLAST is enhanced by offload-
ing the BlastAaWordFinder function to APX-7142. Even
though the ratio of computation time used by this function
varies depending on the database sequences, it typically
occupies 70–80% of the computation time. IDP-BLAST
replaces the time required to execute this function with the
time taken to read database sequences from the SSDs. The
performance of IDP-BLAST is the same as the throughput

Table VII
PROFILES OF BLAST FOR ENV_NR

% Time seconds calls function
70.86 665.56 19658001 BlastAaWordFinder
10.76 101.02 29807943 s_BlastSmallAaScanSubject
9.15 85.91 13314650 s_OutOfFrameGappedAlign
7.66 71.94 5335264 Blast_SemiGappedAlign
0.67 6.30 83866 ALIGN_EX



Figure 11. Throughput of SSDs for APX-7142

reading from the SSD to the host PC, as the hit positions
are obtained when the database sequences are read from the
SSD, as described in Section V-C.

The computation times for env_nr in Table VII are derived
from:

(948.47[s] − 665.56[GB]) + (1.29[GB]/600[MB])
= 282.91 + 2.15 = 295.06[s] (3)

We have confirmed that introducing IDP-BLAST ac-
celerates the word matching step by a factor of around
665.56/2.15 = 309.562, with few constraints on practical
applications. The constraint that limits the length of the
query sequence can be overcome by dividing the query
sequence into fragments, as described in Ref. [11]. Finally,
IDP-BLAST reduces the overall computation time by a
factor of:

948.47[s]/295.06[s] = 3.214 (4)

Each host PC only finds hit positions and executes the
latter part of ungapped extension and gapped extension after
reading the database sequences. These remaining processes
could also be offloaded to other many- or multi-core ac-
celerators. Since a lot of researches can be applied to the
DSPE-based implementation to accelerate gapped extention
by FPGA or other many-core processors, over 300 times
acceleration for by FPGA-based wire-speed computation
of preprocess of BLAST contributes reducing the load of
processsor and the computational time.

VII. CONCLUSION

In this paper, we introduced the acceleration hardware
for mpiBLAST, which is a software-based parallel sequence

alignment algorithm for computational biology. The hard-
ware is configured on the FPGA-boards we are developing to
adopt in-datapath computing for two parts of computing on
mpiBLAST, database partitioning and preprocess of BLAST.
Utilizing an in-datapath computing mechanism enables the
scanning of data and the tagging and sequence alignment
processes to be offloaded. We found that database parti-
tioning and distribution results in acceleration by a factor
of 20, and that IDP-BLAST offers threefold acceleration
compared to computations on a conventional PC cluster. The
latter hardware, which accelerates the ungapped extension
of BLAST over 300 times, can be combined to other
acceleration technique for gapped extension we do not focus
on the paper.

In future work, we will further examine two approaches:
the first extends the application area of in-datapath comput-
ing to data processing systems such as distributed databases,
and the second involves integrating the individual implemen-
tations of BLAST presented in this paper for more practical
uses in computational biology.

ACKNOWLEDGMENT

This work was partially supported by JSPS KAKENHI
26330061 and 63003088.

REFERENCES

[1] C. P. Chen and C.-Y. Zhang, “Data-intensive applications,
challenges, techniques and technologies: A survey on big
data,” Information Sciences, vol. 275, pp. 314 – 347, 2014.

[2] J. Dean and S. Ghemawat, “Mapreduce: Simplified data
processing on large clusters,” in Proceedings of the 6th
Conference on Symposium on Opearting Systems Design &
Implementation, 2004, pp. 137–149.

[3] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file
system,” in Proceedings of the Nineteenth ACM Symposium
on Operating Systems Principles, 2003, pp. 29–43.

[4] F. Meyer, “Genome sequencing vs. moore ’s law: Cyber
challenges for the next decade,” CTWatch Quarterly, vol. 2,
no. 3, pp. 20–22, 2006.

[5] G. S. Davidson, K. W. Boyack, R. A. Zacharski, S. C.
Helmreich, and J. R. Cowie, “Data-centric computing with
the netezza architecture,” SANDIA REPORT, pp. 1–24, Apr.
2006.

[6] A. Putnam et al., “A reconfigurable fabric for accelerating
large-scale datacenter services,” in 41st Annual International
Symposium on Computer Architecture (ISCA), 2014.

[7] M. Yoshimi, R. Kudo, Y. Oge, Y. Terada, H. Irie, and
T. Yoshinaga, “An FPGA-based Tightly Coupled Accelerator
for Data-intensive Applications,” in IEEE 8th International
Symposium on Embedded Multicore/Many-core SoCs, 2014,
pp. 289–296.



[8] ——, “Accelerating OLAP workload on interconnected FP-
GAs with Flash storage,” in Proceedings of 2nd International
Workshop on Computer Systems and Architectures(CSA’14),
2014, pp. 1–7.

[9] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J.
Lipman, “Basic local alignment search tool,” Journal of
Molecular Biology, vol. 215, no. 3, pp. 403–410, Oct 1990.

[10] A. E. Darling, L. Carey, and W. chun Feng, “The design,
implementation, and evaluation of mpiblast,” in The HPC
Revolution, 2003.

[11] K. Mahadik, S. Chaterji, B. Zhou, M. Kulkarni, and
S. Bagchi, “Orion: Scaling genomic sequence matching with
fine-grained parallelization,” in SC, 2014.

[12] M. Whitman and M. Fink, “Hp labs: The future technology,”
HP Discover Las Vegas, 2014.

[13] J. Kyathsandra and E. Dahlen, “Intel rack scale architecture
overview,” INTEROP, May. 2013.

[14] K. Asanović and D. Patterson, “Firebox: A hardware building
block for 2020 warehouse-scale computers,” in 12th USENIX
Conference on File and Storage Technologies, Feb. 2014.

[15] J. A. Delmerico, N. A. Byrnes, A. E. Bruno, M. D. Jones,
S. M. Gallo, and V. Chaudhary, “Comparing the performance
of clusters, hadoop, and active disks on microarray correlation
computations,” in Proceedings of International Conference on
High Performance Computing, 2009, pp. 378–387.

[16] S. Cho, C. Park, H. Oh, S. Kim, Y. Yi, and G. R. Ganger,
“Active disk meets flash: A case for intelligent ssds,” in
Proceedings of the 27th International Conference on Super-
computing, 2013, pp. 91–102.

[17] S. Kim, H. Oh, C. Park, S. Cho, and S.-W. Lee, “Fast,
Energy Efficient Scan inside Flash Memory SSDs,” in Second
International Workshop on Accelerating Data Management
Systems (ADMS), 2011, pp. 1–8.

[18] S.-W. Jun, M. Liu, S. Lee, J. Hicks, J. Annkcorn, M. King,
S. Xu, and Arvind, “Bluedbm: An appliance for big data
analytics,” in Proceedings of the 40th Annual International
Symposium on Computer Architecture, 2015, pp. 1–13.

[19] J. Lancaster, J. Buhler, and R. D. Chamberlain, “Acceleration
of ungapped extension in mercury blast,” Microprocessors &
Microsystems, vol. 33, no. 4, pp. 281–289, 2009.

[20] AVAL DATA, “APX880,” https://www.avaldata.co.jp/
english_08/products/giga/tera_storage/apx880.html, 2011.

[21] ——, “APX7142,” 2014.

[22] H. Sugahara, The fundamentals of Serial ATA and Implemen-
tation on an FPGA (in Japanese), ser. Tech I. CQ Publishing
Co.,Ltd., 2010, vol. 44.

[23] S. Ishikawa, A. Tanaka, and T. Miyazaki, “Accelerating blast
algorithm using an fpga (in japanese),” Journal of Information
Processing Society of Japan, vol. 55, no. 3, pp. 1167–1176,
Mar. 2014.


