543 research outputs found

    Accelerated Structure-Aware Sparse Bayesian Learning for 3D Electrical Impedance Tomography

    Get PDF

    Image Reconstruction of Electrical Impedance Tomography Based on Optical Image-Guided Group Sparsity

    Get PDF

    Data-Analytics Modeling of Electrical Impedance Measurements for Cell Culture Monitoring

    Get PDF
    High-throughput data analysis challenges in laboratory automation and lab-on-a-chip devices’ applications are continuously increasing. In cell culture monitoring, specifically, the electrical cell-substrate impedance sensing technique (ECIS), has been extensively used for a wide variety of applications. One of the main drawbacks of ECIS is the need for implementing complex electrical models to decode the electrical performance of the full system composed by the electrodes, medium, and cells. In this work we present a new approach for the analysis of data and the prediction of a specific biological parameter, the fill-factor of a cell culture, based on a polynomial regression, data-analytic model. The method was successfully applied to a specific ECIS circuit and two different cell cultures, N2A (a mouse neuroblastoma cell line) and myoblasts. The data-analytic modeling approach can be used in the decoding of electrical impedance measurements of different cell lines, provided a representative volume of data from the cell culture growth is available, sorting out the difficulties traditionally found in the implementation of electrical models. This can be of particular importance for the design of control algorithms for cell cultures in tissue engineering protocols, and labs-on-a-chip and wearable devices applicationsEspaña, Ministerio de Ciencia e Innovación y Universidades project RTI2018-093512-B-C2

    Multi-modal Image Reconstruction of Electrical Impedance Tomography Using Kernel Method

    Get PDF

    Electrical Impedance Tomography Guided by Digital Twins and Deep Learning for Lung Monitoring

    Get PDF
    In recent years, there has been an increasing interest in applying electrical impedance tomography (EIT) in lung monitoring due to its advantages of being noninvasive, nonionizing, real time, and functional imaging with no harmful side effects. However, the EIT images reconstructed by traditional algorithms suffer from low spatial resolution. This article proposes a novel EIT-based lung monitoring scheme by using a 3-D digital twin lung model and a deep learning-based image reconstruction algorithm. Unlike the static numerical or experimental simulations used in other data-driven EIT imaging methods, our digital twin lung model incorporates the biomechanical and electrical properties of the lung to generate a more realistic and dynamic dataset. Additionally, the image reconstruction network (IR-Net) is used to learn the prior information in the dataset and accurately reconstruct the conductivity variation within the lungs during respiration. The results indicate that EIT using a guided digital twin and deep learning-based image reconstruction has better accuracy and anti-noise performance compared to traditional EIT. The proposed EIT imaging framework provides a new idea for efficiently creating labeled EIT data and has potential to be used in various data-driven methods for electrical biomedical imaging.</p

    Electrical Impedance Tomography Guided by Digital Twins and Deep Learning for Lung Monitoring

    Get PDF
    In recent years, there has been an increasing interest in applying electrical impedance tomography (EIT) in lung monitoring due to its advantages of being noninvasive, nonionizing, real time, and functional imaging with no harmful side effects. However, the EIT images reconstructed by traditional algorithms suffer from low spatial resolution. This article proposes a novel EIT-based lung monitoring scheme by using a 3-D digital twin lung model and a deep learning-based image reconstruction algorithm. Unlike the static numerical or experimental simulations used in other data-driven EIT imaging methods, our digital twin lung model incorporates the biomechanical and electrical properties of the lung to generate a more realistic and dynamic dataset. Additionally, the image reconstruction network (IR-Net) is used to learn the prior information in the dataset and accurately reconstruct the conductivity variation within the lungs during respiration. The results indicate that EIT using a guided digital twin and deep learning-based image reconstruction has better accuracy and anti-noise performance compared to traditional EIT. The proposed EIT imaging framework provides a new idea for efficiently creating labeled EIT data and has potential to be used in various data-driven methods for electrical biomedical imaging.</p

    Review on electrical impedance tomography: Artificial intelligence methods and its applications

    Full text link
    © 2019 by the authors. Electrical impedance tomography (EIT) has been a hot topic among researchers for the last 30 years. It is a new imaging method and has evolved over the last few decades. By injecting a small amount of current, the electrical properties of tissues are determined and measurements of the resulting voltages are taken. By using a reconstructing algorithm these voltages then transformed into a tomographic image. EIT contains no identified threats and as compared to magnetic resonance imaging (MRI) and computed tomography (CT) scans (imaging techniques), it is cheaper in cost as well. In this paper, a comprehensive review of efforts and advancements undertaken and achieved in recent work to improve this technology and the role of artificial intelligence to solve this non-linear, ill-posed problem are presented. In addition, a review of EIT clinical based applications has also been presented
    corecore