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A B S T R A C T 

Background: Electrical impedance tomography (EIT) has gained considerable attention in the medical field for the diagnosis 

of lung-related diseases, owing to its non-invasive and real-time characteristics. However, due to the ill-posedness and 

underdetermined nature of the inverse problem in EIT, suboptimal reconstruction performance and reduced robustness against 

the measurement noise and modeling errors are common issues. 

Objectives: This study aims to mine the deep feature information from measurement voltages, acquired from the EIT sensor, 

to reconstruct the high-resolution conductivity distribution and enhance the robustness against the measurement noise and 

modeling errors using the deep learning method. 

Methods: A novel data-driven method named the structure-aware hybrid-fusion learning (SA-HFL) network is proposed. SA-

HFL is composed of three main components: a segmentation branch, a conductivity reconstruction branch, and a feature fusion 

module. These branches work in tandem to extract different feature information from the measurement voltage, which is then 

fused to reconstruct the conductivity distribution. The unique aspect of this network is its ability to utilize different features 

extracted from various branches to accomplish reconstruction objectives. To supervise the training of the network, we 

generated regular-shaped and lung-shaped EIT datasets through numerical calculations. 

Results: The simulations and three experiments demonstrate that the proposed SA-HFL exhibits superior performance in 

qualitative and quantitative analyses, compared with five cutting-edge deep learning networks and the optical image-guided 

group sparsity (IGGS) method. The evaluation metrics, relative error (RE), mean structural similarity index (MSSIM), and 

peak signal-to-noise ratio (PSNR), are improved by implementing the SA-HFL method. For the regular-shaped dataset, the 

values are 0.119 (RE), 0.9882 (MSSIM), and 31.03 (PSNR). For the lung-shaped dataset, the values are 0.257 (RE), 0.9151 

(MSSIM), and 18.67 (PSNR). Furthermore, the proposed network can be executed with appropriate parameters and efficient 

floating-point operations per second (FLOPs), concerning network complexity and inference speed. 

Conclusions: The reconstruction results indicate that fusing feature information from different branches enhances the accuracy 

of conductivity reconstruction in the EIT inverse problem. Moreover, the study shows that fusing different modalities of 

information to reconstruct the EIT conductivity distribution may be a future development direction. 
 

Keywords: Electrical impedance tomography, Lung disease diagnosis, Hybrid-fusion learning, Conductivity reconstruction 

and Robustness enhancement 

.    

1. Introduction 

Electrical impedance tomography (EIT) is an emerging and 

promising medical imaging modality that has rapidly developed 

over the past two decades [1–3]. Compared with computed 

tomography (CT) [4] and magnetic resonance imaging (MRI) 

[5], EIT provides the advantages of being radiation-free, non-

invasive and providing real-time imaging, enabling bedside 

assessment for patients [6]. As a result, it has gained significant 

attention in the diagnosis of various clinical diseases, 

particularly in the field of lung disease diagnosis [7,8]. EIT 

enables doctors to assess the respiratory conditions of patients 

by monitoring dynamic changes in the conductivity distribution 

of lung tissues. The presence of lesions in lung tissue would 

result in abnormal conductivity distribution within the affected 

areas, which aids in the diagnosis of various pulmonary 

diseases [9], such as pulmonary edema, pleural effusion, and 

pneumothorax.  

EIT measures boundary voltage through sensors placed on 

the surface of the chest and reconstructs the conductivity 

distribution in different regions of the lung by solving the 

inverse problem [10]. However, in the reconstruction process, 

EIT suffers from poor robustness and inaccurate reconstruction 

for the reasons of the nonlinear, highly ill-posed, and 

underdetermined nature of the EIT inverse problem [11,12]. 

This inherently ill-posed process means that even minor 

inaccuracies in measurements, or modeling errors can lead to 

substantial artifacts in the reconstructed conductivity 

distribution [13]. To cope with the problem, both iterative 
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optimization methods and noniterative methods are commonly 

employed. Despite the typically superior reconstruction results 

of iterative optimization methods, they present challenges in 

terms of imaging speed. On the other hand, while the imaging 

quality of noniterative methods may be limited, their imaging 

speed greatly surpasses that of the iterative methods. 

Representative iterative algorithms include total variation (TV) 

[14] and structure-aware sparse Bayesian learning (SA-SBL) 

[15]. For noniterative algorithms, Tikhonov [16] and Newton's 

one-step error reconstructor (NOSER) [17] are the state-of-the-

art methods. However, the nonlinear and underdetermined 

properties remain as significant obstacles in solving the EIT 

inverse problem, which to some extent, hinders its clinical 

applicability. 

Recently, deep learning methods have attracted much 

attention from scholars, proving to be an effective way to 

address the EIT problems mentioned above [18–21]. The 

purpose of deep learning-based methods is to minimize loss by 

finding the optimal weights and biases of the trained model. The 

“Image-to-image” deep learning method is a classic approach 

to tackling the EIT problem [22]. However, it does not fully 

utilize the information from EIT sensors. In contrast, the 

“Sequence-to-image” (data-driven) method seems to be more 

suitable for the EIT inverse problem, as it can fully utilize the 

original information obtained from the sensor array [19].  

Wu et al. established a nonlinear mapping between 

measurement voltages and conductivity distribution by 

integrating the convolutional neural network (CNN) with the 

radial basis function (RBF) [23]. However, the use of a fully 

connected layer at the end disrupts the spatial correlation of the 

conductivity distribution. Chen et al. proposed a novel fully 

connected-UNet (FC-UNet) for cell imaging [24]. Ren et al. 

introduced a two-stage deep learning (TSDL) structure, 

consisting of a pre-reconstruction block and a CNN post-

processing block, to reconstruct high-resolution lung images 

and improve robustness against modeling errors [25]. 

Additionally, various networks, such as the error-constraint 

network (Ec-Net) [26], improved LeNet [27] and the feed-

forward fully connected artificial neural network (FFFC-ANN) 

[28] have been applied to EIT for conductivity reconstruction. 

Structure-aware dual-branch network (SADB-Net) [29] was 

proposed by Chen et al. in cell imaging. However, the 

information fusion method by the fully connected 

concatenation approach disrupts the spatial correlation of the 

conductivity distribution. Additionally, the inclusion of a pre-

training round further complicates the parameter adjustment 

process. Despite these efforts from scholars, there is still room 

for improving both reconstruction performance and robustness 

in EIT conductivity tasks. Conductivity reconstruction should 

be viewed as a downstream task of imaging reconstruction, 

focusing primarily on conductivity values rather than pixel 

recovery. Existing methodologies, such as [23,24,26–28], tend 

to create a direct mapping from voltage measurements to the 

conductivity distribution, omitting the intermediate binary 

maps. These approaches inevitably introduce errors during the 

training process.  

Inspired by the optical image-guided group sparse (IGGS) 

method [30], which employs photoelectric dual-modality for 

reconstruction, this paper aims to employ a single-modality 

approach to simulate dual-modal capabilities. Specifically, the 

paper seeks to decouple the structural information and 

conductivity distribution from the measured voltages. Using 

deep learning methods, feature extraction is performed on these 

decoupled data to reconstruct the conductivity distribution. We 

employ an intermediate branch dedicated to learning the binary 

masks from the given inputs by a specific loss function. These 

binary maps are then fused into the subsequent task of 

conductivity reconstruction. By incorporating this design, we 

maintain the integrity of the end-to-end machine learning 

training routine while introducing a supplementary objective to 

enhance the learning of signals through back-propagation. The 

contributions of our work are as follows, 

1. A structure-aware hybrid-fusion learning (SA-HFL) end-

to-end network is proposed to achieve high-resolution 

conductivity distribution reconstruction and enhance 

robustness against measurement noise and modeling errors. 

2. The proposed network enhances the EIT reconstruction by 

decoupling and extracting structural and conductivity 

information from measurement voltages, achieving structure 

preservation and accurate conductivity through specialized 

branches and the loss function. 

3. Compared to other advanced deep learning networks and 

the IGGS method, the SA-HFL demonstrates superior 

performance in terms of relative error, mean structural 

similarity index, and peak signal-to-noise ratio. 

4.  Preliminary results from both simulations and real-world 

experiments substantiate the feasibility and superior efficacy of 

the SA-HFL for practical EIT reconstruction tasks. 

In our work, an efficient dual branch structure-aware hybrid-

fusion learning (SA-HFL) network is proposed to establish the 

nonlinear mapping between the boundary voltages and medium 

distribution. The SA-HFL consists of a segmentation branch 

and a conductivity reconstruction branch. Each branch focuses 

on different features: the segmentation branch on structural 

features and the conductivity reconstruction branch on 

conductivity features, which are achieved by distinct loss 

functions. By fusing the differentiated feature information 

extracted from each branch, the results encapsulate more 

dimensional information, thereby achieving superior 

reconstruction performance and robustness against 

measurement noise and modeling errors. The effectiveness of 

the proposed network in reconstructing the conductivity 

distribution is demonstrated through simulations and three 

different experiments, where it is compared with five 

competitive deep learning and the IGGS methods.  

2. Method 

2.1 Mathematical Model of EIT 

In EIT, for a given bounded imaging domain Ω, when the 

excitation current I(x,y) is injected into the domain, the 

relationship between the conductivity distribution σ(x) and the 



 

3 

 

induced potential distribution u(x,y) can be obtained by the 

following complete electrode model (CEM) [31,32], that is, 

( ( , ) ( , )) 0, ,x y x y x y   σ u  (1) 

where the boundary conditions satisfy the following 
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where zl is the contact impedance, el is the l-th sensor on the 

boundary, L is the number of electrodes, which is 16 in the 

paper, and Ul and Il are the measurement voltage and excitation 

current on the l-th electrode respectively. In this work, the 

neighboring bipolar pattern is adopted, and the forward problem 

is solved using the finite element method (FEM) [33]. The 

working principle of the EIT system is shown in Fig. 1. 

In addition to the forward problem mentioned above, the 

inverse problem is also a critical step in EIT. The inverse 

problem, which aims to reconstruct the conductivity 

distribution from the boundary voltage, can be described by the 

following equation, 

( )F V σ e   (3) 

where F(·) is the nonlinear forward operator, V is the 

measurement voltage and e is the measurement noise. 

In the paper, the inverse problem is solved by the deep 

learning method, which can be expressed as follows,  

 
2

2
1

1
arg min Reg( )

N

EIT EI

k

Tf f
N





   ActV σ  (4) 

where fEIT is the EIT network function used to learn the network 

weights and biases between the measurement voltage V and the 

actual conductivity distribution σAct. Reg(θ) represents the 

regularization operation. N is the number of actual conductivity 

distribution σAct. 

 
Fig. 1. Adjacent excitation and measurement patterns of the EIT system. 

 

Fig. 2. Architecture of the Structure-Aware Hybrid-Fusion Learning Network. 
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2.2 The Architecture of the Structure-Aware Hybrid-Fusion 

Learning Network 

As shown in Fig. 2, the architecture of the SA-HFL consists 

of two branches: the segmentation branch, which is used to 

obtain the binary mask of the object, and the conductivity 

reconstruction branch, which is used to reconstruct the initial 

conductivity distribution. After the corresponding branch 

information is extracted, the two features are fused by 

concatenation operation, followed by a 1 × 1 convolution kernel 

to obtain the final conductivity distribution. 

2.2.1 Architecture of the segmentation branch 

This paper employs the visual attention network (VAN) 

[34] as the backbone for the segmentation branch. As depicted 

in Fig. 3, the architecture of this branch follows a hierarchical 

structure. The input, a 104 × 1 vector representing the 

measurement voltage, is passed through a 3228-dimension fully 

connected (FC) layer and a rectified linear unit (ReLU) 

activation function to yield an initial guess of the binary mask. 

To extract deeper features, the 3228 × 1 initial guess, 

augmented with additional padding, is reshaped into a 64 × 64 

two-dimensional feature map, followed by a downsampling 

layer with a stride of 4 and 3 VAN modules. In the direction of 

upsampling propagation, a binary mask is obtained using a 

combination of a 2 × 2 upsampling layer and a 1 × 1 convolution 

kernel. In the direction of downsampling, the aforementioned 

operations are repeated three times. 

Finally, binary masks that contain information from various 

depths and scales are derived. By concatenating these binary 

masks and utilizing a 1 × 1 convolutional kernel to adjust the 

channel count, the binary mask of the object, a 64 × 64 × 1 

matrix, can be obtained. The changes in the dimensions of the 

data matrix throughout this process are detailed in Table 1.  

The backbone structure of the VAN module, as shown in 

Fig. 4 (a), comprises a cascade of components: a batch 

normalization (BN) layer, a 1 × 1 convolutional kernel, the 

Gaussian error linear unit (GELU) [35] activation function, the 

large kernel attention (LKA) module, a 1 × 1 convolution layer, 

a BN, a convolutional feed-forward network (CFF) [36] and a 

layer normalization layer [37].  

The GELU activation function is defined as follows,  

( ) [1 ( / 2)]GELU x x erf x    (5) 

where erf(·) is the Gauss error function. 

To address the computational burden posed by large 

convolution kernels while fully leveraging the benefits of the 

self-attention mechanism and large convolution kernels, such 

as local voltage information, large receptive fields, and 

dynamic processes, the LKA module utilizes the decomposition 

of large convolution kernels to capture long-range relations. 

 
Fig. 3. Architecture of the segmentation branch. 

 
(a) A stage of VAN 

 
(b) LKA 

Fig. 4. Module structure of the segmentation branch. (a) A stage of VAN, (b) 

Large Kernel Attention.  

Table 1 

The dimension changes of data matrix of the segmentation branch. 

Step Layers Output size 

Input 
3228 FC + ReLU + Padding + 

Reshape 
64 × 64 × 1 

2-1 4x Downsample + 3×VAN 
16 × 16 × 

32 

2-2 Upsample + 1× 1 Conv. 64 × 64 × 1 

3-1 2x Downsample + 3×VAN 8 × 8 × 64 

3-2 Upsample + 1× 1 Conv. 64 × 64 × 1 

4-1 2x Downsample + 5×VAN 4 × 4 × 160 

4-2 Upsample + 1× 1 Conv. 64 × 64 × 1 

5-1 2x Downsample + 2×VAN 2 × 2 × 256 

5-2 Upsample + 1× 1 Conv. 64 × 64 × 1 

Output Concatenate + 1× 1 Conv. 64 × 64 × 1 

*Height×Width×Channel 
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The structure of the LKA module, as shown in Fig. 4 (b), is 

constructed with a 5 × 5 depth-wise convolution (DW-Conv), a 

7 × 7 depth-wise dilation convolution (DW-D-Conv) with a 

dilation of 3, and a 1 × 1 convolutional kernel. The 

mathematical expression of the LKA module is as follows, 

11( ) ( - - ( - ( )))LKA F Conv DW D Conv DW Conv F F   (6) 

where the attention scores, i.e., the convolution operation 

results, represent the importance of different features, and F is 

the input feature map of the LKA module. Symbol  denotes 

the element-wise multiplication operation. It is worth noting 

that the LKA module achieves adaptability not only in the 

spatial dimension but also in the channel dimension. By 

incorporating the LKA module into the VAN architecture, it is 

possible to effectively extract local information and facilitate 

interactions between local and remote information, resulting in 

a better information extraction effect. 

2.2.2 Architecture of the conductivity reconstruction branch 

The design of the conductivity reconstruction branch takes 

inspiration from the UNet framework [38]. This branch is 

composed of an encoder and a decoder that have the ability to 

capture the conductivity information from the EIT sensor 

matrix. The progression of data dimensions and the structure of 

the network are depicted in Fig. 5. The input voltage undergoes 

an initial process through a fully connected layer with 4096 

dimensions, which is subsequently reshaped into a 64 × 64 × 1 

data matrix through a reshape operation. After the initial data 

preprocessing stage, the 64 × 64 × 1 matrix is passed through 

the UNet network. Finally, an initial estimation of the 

conductivity distribution is obtained.  

2.2.3 Feature fusion 

The segmentation branch and the conductivity 

reconstruction branch are tasked with learning the structural 

and conductivity information of the measured object, 

respectively. These two aspects are integrated via a channel-

wise concatenation operation. This amalgamated 64 × 64 × 2 

matrix is then subjected to fusion through a 1 × 1 convolution 

kernel, culminating in a final conductivity distribution 

following a clipping operation.  

By employing a hybrid information fusion approach, which 

combines the structure-aware features with conductivity 

distribution characteristics, the network is enabled to learn 

deeper and more scalable information. As a result, both the 

reconstruction capabilities and the robustness of the network 

are substantially enhanced. 

2.3 Loss function 

The total loss consists of three distinct parts: segmentation 

loss, conductivity reconstruction loss, and l2 regularization loss. 

The expression for the loss function is as follows, 
2

Total BBCE Cond    L L L   (7) 

here, ℒBBCE  represents the balanced binary cross-entropy 

(BBCE) [39], while ℒCond denotes the mean square error (MSE) 

loss. α is the weighting factor. 

For the segmentation branch, the definition of BBCE loss is 

given by, 

   

 
0

1 ;

            (1 ) 0 ;

BBCE j

j Y

j

j Y

, ln Pr y X ,

ln Pr y X ,









   

 





W w W w

W w

∣

∣

L s

 (8) 

where β represents the proportion of pixels at 0 in the total 

number of pixels. Y+ and Y0 denote the region of interest (ROI) 

and non-ROI label sets, respectively. j is the index that iterates 

over the spatial dimensions of conductivity distribution X. Pr 

(yj = 1| X; W, w) is the prediction probability of the object region, 

conversely, Pr (yj = 0| X; W, w) is the probability of the non-

object region. 

For the conductivity reconstruction branch, the loss 

function ℒCond is given by, 

21
N

Cond

i
N

  Act Recσ σL   (9) 

where N is the number of actual conductivity distribution σAct, 

which is 3228 in the work and σRec  is the reconstructed 

conductivity distribution. 

Finally, the third term of (7) is l2 regularization, which is 

adopted to address the problem of overfitting, and θ represents 

the trained parameters of the network. 

 
Fig. 5. Architecture of the conductivity reconstruction branch. 
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2.4 Quantitative analysis metrics 

In this paper, model parameters and floating-point 

operations per second (FLOPs) are utilized to quantitatively 

evaluate the total number of trainable parameters in the model 

and the computational complexity of the model, respectively.  

In addition, relative error (RE), mean structural similarity 

indices (MSSIM), and peak signal-to-noise ratio (PSNR) are 

adopted in the paper to quantitatively analyze the quality of the 

conductivity reconstruction performance, and RE is given by, 

RE



Rec Act

Act

σ σ

σ
  (10) 

A smaller RE indicates a better prediction result. 

Furthermore, the definition of MSSIM is as follows, 

 

1

2 2

1

2

2 2

2

(2 )1
MSSIM

(

(

(

)

)

2 )

( ( ) )

r c

C

K C

Cov , C

Var Var C

 
 
  




  


Act_L Rec_L

Act_L Rec_L

Act_L Rec_L

Act_L Rec_L

σ σ

σ σ

σ σ

σ σ

   (11) 

where Cov(·) and Var(·) represent the mathematical operations 

for covariance and variance, respectively. σRec_L  is the local 

reconstructed conductivity distribution, while σAct_L denotes the 

local actual conductivity distribution. Furthermore, r and c are 

pixel position indexes within the conductivity distribution, and 

K denotes the number of local windows present in the 

conductivity distribution. The constants C1 and C2 are defined 

with values of 0.01 and 0.03. A value of MSSIM closer to 1 

indicates greater similarity between the actual and 

reconstructed conductivities. 

PSNR is used in the paper to measure the quality of the 

reconstructed conductivity distribution compared to its original 

version, 

 
2

10PSNR 10
MSE

( )M
log

ax
 

Actσ
 (12) 

where MSE is the mean squared error between the actual 

conductivity distribution and the reconstructed conductivity 

distribution, defined as follows, 

21
MSE

N

iN
  Act Recσ σ   (13) 

3. Training setup 

3.1 Data generation 

(1) Regular-shaped EIT dataset  

The regular-shaped EIT dataset comprises scenarios with 

one, two, and three circles, and inclusions are randomly 

distributed within the domain. Moreover, the dataset includes 

diverse combinations of circles and triangles, circles and 

squares, triangles and squares, as well as mixtures of all three 

shapes. Among them, squares and triangles have different 

rotation angles, 60° and 90° respectively. The inclusions are 

randomly assigned as either insulating or metallic materials, 

with conductances set to 0.001 S/m and 1 S/m, respectively. 

After obtaining the simulation data, the dataset is randomly 

divided into a training set and a test set at the ratio of 9:1. The 

size of the training set is 52200 and that of the test set is 5800.  

(2) Lung-shaped EIT dataset  

CT lung images of 18 patients are selected from the Cancer 

Imaging Archive (TCIA) open database as the basis for 

simulating boundary voltages for the lung-shaped EIT dataset. 

The steps for generating the dataset are illustrated in Fig. 6. 

After obtaining CT images, the global thresholding image 

segmentation algorithm is applied to extract the lung contours, 

which are then used to simulate normal lung and various 

 
Fig. 6. Generation of lung-shaped EIT dataset.  

 
Fig. 7. Examples for adopted forward and inverse FEM meshes. (a) Forward 

mesh consisting of 5598 domain and 288 boundary elements for circular 

model, (b) inverse mesh consisting of 3228 elements for circular model 
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pulmonary diseases: pulmonary edema, pleural effusion, and 

pneumothorax. Conductivity distribution varies for different 

lung diseases [9]. Through manual rigid transformation: 

scaling, rotation, and translation operations make the chest 

contour coincide with the circle or thorax domain in the x 

direction as much as possible, thereby merging the lungs into 

the model. In the pulmonary edema model, tissue lesions cause 

an imbalance in the generation and reflux of tissue fluid in the 

lungs, leading to abnormally high and uneven distribution of 

lung conductivity. Pleural effusion, the pathological 

accumulation of fluid in the pleural space, results in a high-

conductivity region within the lung [40]. In the pneumothorax 

model, the conductivity of the left or right lung is abnormal due 

to the presence of gas in the pleural cavity. As referenced in 

[41], the background conductivity is set to 0.48 S/m, while the 

conductivity of the lung area is set to 0.12 S/m. 

In accordance with the characteristics of different lung 

diseases, the conductivity of the ROI is linearly changed to 

construct the dataset. The sizes of the training set and test set 

are 22499 and 3476, respectively. The inputs of the dataset are 

boundary voltages and the labels are the conductivity 

distribution of the reconstructed area. In order to improve the 

robustness of the network, which is crucial for maintaining the 

stability of the network, training data are augmented 

appropriately. Gaussian white noise (GWN) is added in 

boundary voltages with a 45 dB signal-to-noise ratio (SNR). 

The joint simulation is executed based on COMSOL@ and 

MATLAB. Examples of the adopted forward and inverse FEM 

meshes are depicted in Fig. 7. For the forward problem of the 

circular homogeneous model, the mesh consists of 5598 domain 

and 288 boundary elements. For the inverse problem, the mesh 

consists of 3228 elements for the circular model.  

3.2 Data normalization 

To enhance the accuracy and speed of the training model, 

while simultaneously preventing the gradient explosion 

phenomenon in the deep learning training process, the 

measurement voltage and conductivity label could be pre-

normalized. Data pre-processing can mitigate the effects caused 

by data collection errors of the EIT system and improve the 

generalization ability of the model. The normalization process 

is as follows, 





 

Mea Ref
Norm

Ref

Act Ref
Norm

Ref

V V
V

V

σ σ
σ

σ

  (14) 

where VMea and σAct denote the measurement voltage and actual 

conductivity distribution when the targets are present; VRef and 

σRef denote the reference voltage and reference conductivity 

distribution in the case of a homogeneous medium; VNorm and 

σNorm are the voltage and conductivity distribution after 

normalization. The conductance of insulating materials is close 

to 0, which makes it difficult to distinguish when displayed after 

normalization. For this reason, it is mapped to 0.5. Metals are 

mapped to 1. 

3.3 Baseline and training setup 

In this study, we strive to conduct a thorough quantitative 

comparison between various methods to demonstrate the 

superior reconstruction capacity of our proposed network. To 

this end, we have selected five learning-based methods and one 

iterative bimodal fusion approach--IGGS method as 

benchmarks. The learning-based methods include Improved 

LeNet [27], CNN-RBF [23], UNet [38], Ec-net [26] and SADB-

Net [29]. These selected methods serve as six baselines for 

comparison, illuminating the advancements made by our 

proposed network in the context of existing state-of-the-art 

approaches. 

For the deep learning methods, the Adam optimizer is 

employed. The maximum training epoch is set to 100, with an 

exponential decay of 0.98 applied at each epoch. The l2 

regularization parameter is set to 1×10-5. For the SADB-Net, 

the same supervision strategy mentioned in [29] is adopted. The 

disparate data convergence attributes of the network call for 

distinct training durations for each dataset. Thus, the lung-

shaped dataset undergoes pre-training for 30 epochs, while the 

regular-shaped dataset undergoes 50 epochs. The initial 

learning rates (LRs) for different networks have been 

determined through a meticulous manual search of parameters, 

the outcomes of which are detailed in the simulations and 

experimental results. The hyperparameters for the iterative 

approach IGGS are determined empirically. For all phantoms, 

the reconstruction results of the Tikhonov method with a 0.001 

regularization factor are chosen as the initial point. The 

maximum number of iterations is set to 100, with a stopping 

tolerance of 1×10-7. The optimization problem is addressed by 

utilizing the Accelerated Alternating Direction Method of 

Multipliers (A-ADMM). Additionally, the penalty parameters: 

η1 and η2, and multiplier update step lengths: ε1 and ε2, are 

selected based on the specific cases and they are detailed in the 

simulation and experiment section. 

4. Simulation results and analysis 

In this section, five competitive deep-learning networks and 

the IGGS method are selected as baselines to conduct a 

comprehensive evaluation. Both case study and whole test set 

analysis for the regular-shaped and lung-shaped EIT datasets 

are carried out. Furthermore, the robustness of the proposed 

SA-HFL against the measurement noise and modeling errors is 

examined. To assess the complexity of the networks, the model 

parameters and FLOPS are presented. Moreover, BBCE 

combined with MSE loss and solely MSE loss are employed to 

investigate the influence of weighted loss on conductivity 

distribution reconstruction performance. 

4.1 Simulation results of regular-shaped EIT dataset 

1)  Case Study 

Fig. 8 illustrates six representative cases along with their 

corresponding metrics.  
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In IGGS reconstructions, penalty parameters η1 and η2 as 

well as multiplier update step lengths ε1 and ε2 are set differently 

across various cases. For Cases 1 and 5, both η parameters are 

set to 0.0046 and both ε parameters are optimized to 0.504. In 

Cases 2 and 6, the η parameters are set to 0.004, with ε1 and ε2 

parameters chosen as 1.46×10-4 and 0.1226, respectively. For 

Case 3, the η parameters take a value of 0.014, while ε 

parameters are set to 0.0319. 

All methods are capable of reconstructing the targets. 

However, qualitative analysis indicates that the proposed SA-

HFL exhibits minimal artifacts and precise object positions. 

Moreover, the three metrics employed also demonstrate 

superior performance among the six cases. By balancing BBCE 

and MSE loss, the SA-HFL effectively extracts the structural 

information and conductivity information of the target during 

training, so as to achieve accurate high-resolution conductivity 

reconstruction.  

For Improved LeNet, CNN-RBF, Ec-Net, and SADB-Net, 

the lack of an encoder-decoder structure limits their capability 

to efficiently compress and reconstruct information, leading to 

suboptimal quality in conductivity reconstruction. The encoder-

decoder architecture plays a crucial role in effectively 

integrating depth information from voltage data with shallow 

information, enabling more efficient extraction of EIT sensor 

information. Moreover, for Improved LeNet, CNN-RBF, and 

SADB-Net networks, the fully connected structure disrupts the 

spatial correlation between conductivity distribution. Besides, 

inadequate pre-training epochs and the inappropriate learning 

rate for the SADB-Net can result in the presence of gaps or 

holes in the reconstructed image. The reconstruction 

performance of UNet is suboptimal compared to the proposed 

network, largely because it lacks a segmentation branch for 

extracting structural information of the target. Moreover, IGGS 

underperforms when compared to SADB-Net, mainly due to the 

limitations of its linear model in solving the inverse problem 

itself. 

In the regular-shaped EIT dataset, it is worth noting that a 

specific mapping is employed to assess metrics with the IGGS 

method due to its ability to reconstruct relative negative values. 

Specifically, a ground truth value of 0.5 is mapped to -1 for the 

comparison. 

2)  Test Set Analysis 

The quantitative analysis results of the entire test set are 

listed in Table 2. The latter part denotes the standard error (SE), 

which is utilized to evaluate the uncertainty in the estimation of 

the mean. The table clearly demonstrates that the SA-HFL 

outperforms other methods in terms of RE, MSSIM, and PSNR. 

Specifically, the values are 0.119 ± 0.001, 0.9882 ± 0.0002, and 

31.03 ± 0.05, respectively. When compared to the suboptimal 

UNet network, the SA-HFL exhibits a remarkable improvement 

with a 27.9% decrease in RE, a 0.7% increase in MSSIM, and 

an 11.2% increase in PSNR. 

 
Fig. 8. Case analysis for the reconstruction of regular-shaped conductivity 

distribution under different methods. 

Table 2 

Average evaluation metrics for noiseless, regular-shaped data under different 

deep learning methods. 

Methods RE MSSIM PSNR 

Improved LeNet 
[27] 

0.486 ± 0.001 0.8147 ± 0.0013 18.01 ± 0.02 

CNN-RBF [23] 0.313 ± 0.001 0.9346 ± 0.0004 21.79 ± 0.02 

UNet [38] 0.165 ± 0.001 0.9809 ± 0.0003 27.90 ± 0.04 

Ec-net [26] 0.221 ± 0.001 0.9659 ± 0.0004 25.19 ± 0.04 

SADB-Net [29] 0.284 ± 0.001 0.9532 ± 0.0003 22.72 ± 0.03 

SA-HFL 0.119 ± 0.001 0.9882 ± 0.0002 31.03 ± 0.05 

Average ± standard error. 

 

Fig. 9. Robustness analysis with respect to different SNR levels under different 

deep learning methods for the regular-shaped dataset. (a) RE, (b) MSSIM, (c) 

PSNR. 
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3)  Robustness Analysis 

A. Robustness Analysis to Measurement Noise: To assess 

the robustness of the proposed SA-HFL against measurement 

noise, GWN is incorporated into the boundary voltages of the 

test set at SNRs of 80 dB, 60 dB, 40 dB, and 20 dB. Results 

against SNRs for different methods are presented in Fig. 9. As 

the SNR decreases from infinity to 20 dB, all methods show a 

declining trend in terms of MSSIM and PSNR, while exhibiting 

an increasing trend in RE. The proposed algorithm 

demonstrates superior performance within a noise level range 

of 80 to 40 dB. However, a significant decline in performance 

metrics is observed for all methods when the noise level drops 

to 20 dB. In this scenario, the SADB-Net approach outperforms 

all others, relegating our method to a close second. This relative 

underperformance is primarily attributable to the absence of 

diverse noise levels in our training dataset, which compromises 

the predictive accuracy of the model under high-noise 

conditions. 

Fig. 10 presents the reconstruction results for Case 5 across 

varying noise levels. A discernible declining trend in image 

reconstruction quality is observed as noise levels increase. 

Nonetheless, both quantitative and qualitative analyses 

substantiate that the proposed SA-HFL method outperforms 

other competing approaches. 

B. Robustness Analysis to Electrode Movement: Electrode 

movement is a primary source of modeling errors. To evaluate 

the robustness of various methods against electrode movement, 

tests are conducted based on Case 6 in which electrodes are 

rotated either clockwise or counterclockwise by an angular 

distance equal to 5% of the angle between adjacent electrodes. 

The electrode displacements and corresponding reconstruction 

results under different methods are displayed in Fig. 11. The 

position of the original electrode is represented by the red 

dotted line. In scenarios involving one to three electrode 

movements, the proposed method demonstrates superior 

performance over other deep learning methods and the IGGS 

method. Specifically, the proposed method yields reductions in 

RE of 10.5%, 21.2%, and 22.4% in the above three cases, 

compared to the next best method, UNet. 

This finding indicates that deep-learning based 

reconstruction techniques effectively compensate for modeling 

errors caused by electrode movement. Additionally, the 

proposed method demonstrates superior robustness to such 

errors compared to other approaches. 

C. Robustness Analysis to Domain Deformation: Domain 

deformation serves as another primary source of modeling 

errors. Fig. 12 illustrates the robustness of various methods 

against domain deformation based on Case 4. In this figure, the 

numbers in the first column represent the scaling ratios along 

the x and y axes of the circular domain, respectively. Both 

qualitative and quantitative analyses suggest that the proposed 

SA-HFL method surpasses other approaches, even though the 

 
Fig. 10. Reconstruction of regular-shaped phantoms with different noise levels. 

 

 
Fig. 11. Reconstruction of regular-shaped phantoms with electrode movements. 

 
 

 
Fig. 12. Reconstruction of regular-shaped phantoms with domain deformation. 
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domain deformation can affect the reconstruction results. This 

suggests that SA-HFL effectively compensates for 

measurement errors induced by domain deformation, exhibiting 

superior robustness against domain deformation in comparison 

to other methods. 

4.2 Simulation results of lung-shaped EIT dataset 

1)  Case Study 

Five representative reconstruction results are shown in Fig. 

13, where cases 7 to 11 correspond to a normal lung, three lung 

diseases, and a different lung shape. For the IGGS 

reconstruction results presented in Cases 7-11, the penalty 

parameters η1 and η2 are set as 0.012 and 0.004, respectively. 

The update step lengths for the multipliers, ε1, and ε2, are 

optimized as 3.4×10-3 and 3.4×10-3. 

The analysis results of the lung-shaped dataset are 

consistent with those of the regular-shaped dataset, further 

demonstrating the superior performance of the proposed SA-

HFL in both quantitative and qualitative analyses. 

The disparities in conductivity reconstruction performance 

can be attributed to variations in network depths and learning 

capabilities. Overall, the proposed SA-HFL surpasses other 

deep learning methods in both quantitative analyses, 

encompassing RE, MSSIM, and PSNR, and qualitative analysis, 

including the presence of artifacts and visual disparities 

compared to the ground truth. The SA-HFL demonstrates its 

potential in capturing and reflecting lung diseases in the 

reconstructed images. 

 
Fig. 13. Case analysis for the reconstruction of lung-shaped conductivity distribution under different methods. 
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It should be mentioned that to facilitate the comparison, the 

conductivity reconstruction results have been mapped between 

0 and 1. Therefore, the lung images depicted in Fig. 13 represent 

relative conductivity. The absolute conductivity values are 

provided on the left side of the figure. 

2)  Test Set Analysis 

The quantitative analysis results of the test set are presented 

in Table 3, with the best results highlighted in bold. The 

proposed SA-HFL outperforms other methods in terms of RE, 

MSSIM, and PSNR, achieving a value of 0.257 ±  0.001, 

0.9151 ± 0.0004, and 18.67 ± 0.04, respectively. 

3)  Robustness Analysis 

A. Robustness Analysis to Measurement Noise: Similarly, 

80 dB, 60 dB, 40 dB, and 20 dB SNRs are added to the 

measurement voltages in the lung-shaped EIT dataset. The 

robustness analysis results against SNRs for different methods 

are presented in Fig. 14. As the SNR decreases from infinity to 

20 dB, all methods show a declining trend in terms of MSSIM 

and PSNR, while exhibiting an increasing trend in RE. 

However, all methods demonstrate a certain level of robustness 

against the SNR, particularly the proposed SA-HFL, which 

maintains the highest conductivity reconstruction capability 

even at lower SNR levels. This suggests that the hybrid-fusion 

learning network effectively leverages multi-scale information, 

including structural and conductivity distribution information, 

from different branches. This approach mitigates the issue of 

limited informative features extracted by single-branch 

networks, resulting in improved reconstruction performance 

and enhanced robustness to measurement noise in the training 

model.  

The reconstruction results for Case 10 under different noise 

levels are displayed in Fig. 15. The figure clearly indicates that 

although the quality of image reconstruction shows a 

deteriorating trend as noise levels increase, the proposed 

method still outperforms other methods in terms of RE, 

MSSIM, and PSNR metrics. 

B. Robustness Analysis to Electrode Movement: Using Case 

7 as a basis, the outcomes of the robustness against electrode 

movements are shown in Fig. 16 and 17. Specifically, Fig. 16 

adheres to the same test protocol used for robustness analysis 

with the regular-shaped dataset, wherein electrodes are rotated 

either clockwise or counterclockwise with an angular shift that 

is 5% of the angular distance between neighboring electrodes. 

In real medical applications, the placement of EIT electrodes 

may not always strictly follow clinical guidelines. To account 

for such scenarios, a robustness analysis involving larger 

electrode movements is conducted for the lung-shaped EIT 

dataset and the results are presented in Fig. 17. In the case of 

single-electrode movement, the electrode is rotated by an 

angular distance of 22.2% between the electrodes. For cases 

involving the movement of two or three electrodes, the angular 

rotation distance is set at 11.1%. Based on the quantitative 

analysis presented in Fig. 16 and 17, the evaluation metrics for 

the proposed network outperform those of competing methods. 

The average RE across the six cases decreased by 9.6% relative 

to the second-best performing method, while the MSSIM 

increased by 2.4% and the PSNR improved by 4.8%. 

Table 3 

Average evaluation metrics for noiseless, lung-shaped data under different deep 

learning methods. 

Methods RE MSSIM PSNR 

Improved 

LeNet 
0.309 ± 0.002 0.8708 ± 0.0008 17.14 ± 0.04 

CNN-RBF  0.277 ± 0.001 0.8916 ± 0.0007 18.04 ± 0.04 

UNet 0.275 ± 0.001 0.9032 ± 0.0005 18.07 ± 0.03 

Ec-net  0.273 ± 0.001 0.9002 ± 0.0005 18.15 ± 0.04 

SADB-Net 0.289 ± 0.001 0.8830 ± 0.0007 17.62 ± 0.04 

SA-HFL 0.257 ± 0.001 0.9151 ± 0.0004  18.67 ± 0.04 

Average ± standard error. 

 
Fig. 14. Robustness analysis with respect to different SNR levels under 

different deep learning methods for the lung-shaped dataset.  (a) RE, (b) 

MSSIM, (c) PSNR. 

 
Fig. 15. Reconstruction of lung-shaped phantoms with different noise levels. 
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C. Robustness Analysis to Domain Deformation: Similarly, 

a robustness analysis for domain deformation on the lung-

shaped dataset under various deep learning methods is 

conducted. The results are presented in Fig. 18, and the 

conclusions drawn are in alignment with those from the regular-

shaped dataset analysis. 

4)  Thorax Domain 

To evaluate the performance of networks for the shape of 

the thorax domain, a specialized EIT dataset is created. This 

dataset features 18 lung shapes, with each case corresponding 

to a normal lung condition. The training set comprises 7,056 

samples, while the test set contains 882. The reconstruction 

results for selected cases are illustrated in Fig. 19. For these 

cases, the metrics of the proposed SA-HFL surpass those 

achieved by other deep learning results and the IGGS method. 

For the IGGS method, the penalty parameters η1 and η2 are 

configured as 0.08 and 0.02, respectively. Additionally, the 

multiplier update step lengths, ε1, and ε2, are chosen as 1×10-3 

and 0.025.  

Table 4 lists the average evaluation metrics for noise-free, 

lung-shaped data in the thorax domain, benchmarked against 

various deep learning methodologies and the IGGS method. 

Our proposed network excels in all metrics, registering a RE of 

0.252 ± 0.001, an MSSIM of 9128 ± 0.0008, and a PSNR of 

15.61 ± 0.05. These results substantiate that our proposed 

network not only performs optimally in the circular domain but 

also demonstrates superior results in the thoracic domain.  

4.3 Model parameters and FLOPS 

The model parameters and FLOPs are listed in Table 5 to 

assess the complexity of different networks. Although the 

proposed SA-HFL does not achieve optimal results in terms of 

 
Fig. 16. Reconstruction of lung-shaped phantoms with electrode movements. 

 
Fig. 17. Reconstruction of lung-shaped phantoms with greater electrode 

movement offsets. 

 
Fig. 18. Reconstruction of lung-shaped phantoms with domain deformation. 

 
Fig. 19. Case analysis for the reconstruction of lung-shaped conductivity 

distribution for the thorax domain under different methods. σ1=0.48 S/m, 

σ2=0.12 S/m 

Table 4 

Average evaluation metrics for noiseless, lung-shaped data in the thorax 

domain under different deep learning methods. 

Methods RE MSSIM PSNR 

Improved LeNet  0.313 ± 0.002 0.8746 ± 0.0014 13.83 ± 0.07 

CNN-RBF 0.297 ± 0.001 0.8846 ± 0.0011 14.22 ± 0.05 

UNet  0.269 ± 0.001 0.9081 ± 0.0007 15.03 ± 0.04 

Ec-net 0.274 ± 0.001 0.9011 ± 0.0008 14.87 ± 0.04 

SADB-Net 0.338 ± 0.002 0.8429 ± 0.0022 13.17 ± 0.07 

SA-HFL 0.252 ± 0.001 0.9128 ± 0.0008 15.61 ± 0.05 

Average ± standard error. 
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these metrics, the metrics are moderately ranked, suggesting 

that the SA-HFL strikes a suitable balance between the number 

of parameters and network complexity. 

Among the baseline models, the Ec-net has the fewest 

parameters, totaling 0.45 million, while the Improved LeNet 

model achieves the lowest FLOPs, with 0.0157 billion floating-

point operations. Furthermore, except the IGGS iterative 

method, which costs 0.0197s to reconstruct the conductivity 

distribution, all methods managed to achieve a frame rate of 40 

frames per second (fps) on a Windows laptop. As for the 

proposed SA-HFL method, it was able to achieve 49.5 fps, 

which is fast enough for real-time inference [42].  

4.4 Different loss functions 

In the paper, different loss functions, including weighted 

BBCE and MSE, as well as only MSE, are utilized to evaluate 

the impact of the combined loss function on the conductivity 

reconstruction performance in the two EIT datasets. The 

average metrics are presented in the Fig. 20. 

 From the paper, it is evident that when employing only the 

MSE as the loss function, the RE increases from 0.119 to 0.139 

on the regular-shaped dataset and from 0.257 to 0.266 on the 

lung-shaped dataset, in comparison to the weighted loss 

function. Additionally, the MSSIM decreases from 0.9882 to 

0.9851 and from 0.9151 to 0.9092, respectively. Moreover, the 

PSNR exhibits a decline from 31.03 to 29.65 on the regular-

shaped dataset and from 18.67 to 18.37 on the lung-shaped 

dataset. This reveals that in the EIT reconstruction task, the 

structural information and conductivity information of the 

reconstruction target can be fused through the weighted loss 

function, thereby improving the accuracy of reconstruction. 

5. Experimental results and analysis 

5.1 Experiment setup  

To assess the performance of the proposed network and its 

ability to practice application for lung ventilation, data from 

three distinct EIT experiments were utilized. 

In the first experiment, the open-source 2D EIT dataset was 

employed to scrutinize the reconstruction efficacy of the 

proposed network [43]. The frequency range for the KIT4 EIT 

system could range from 1 kHz to 120 kHz, with the system 

comprising five layers, each equipped with 16 electrodes. The 

EIT system demonstrated maximum and minimum SNR of 97.5 

dB and 59.3 dB respectively, achieving a frame rate of 31.25 

fps. Furthermore, in assessing the stability of the system, a five-

hour-long measurement of a resistive object revealed that the 

changes in voltage corresponded to the order of the noise level 

[44]. The dataset was obtained from a circular tank with a radius 

of 14cm, outfitted with 16 uniformly distributed electrodes. The 

tank was filled with tap water to a height of 7cm, which 

possessed a conductivity of 0.06 S/m. An excitation current 

characterized by a magnitude of 2mA and a frequency of 1kHz 

was applied. A variety of regular-shaped inclusions, both 

metallic and insulated, were placed in the water tank. 

The second experiment utilized the Edinburgh EIT system. 

The Edinburgh EIT system has 32 electrode interfaces and 

operates within a frequency range of 10 kHz to 1 MHz. The 

maximum and minimum SNR recorded were 82.82 dB and 

45.51 dB respectively, with the system achieving a maximum 

frame rate of 546 fps at 625 kHz in serial mode. Importantly, 

the EIT system demonstrated robust performance in both 2D 

and 3D time-difference and frequency-difference imaging. 

More detailed information is described in [45]. In the 

experiment, a non-conductive cylinder crafted from black resin 

was placed in a miniature EIT sensor, measuring 7 mm in height 

and 15 mm in diameter. The frequency of the excitation current 

was set at 10 kHz, and the amplitude of the injected current was 

approximately 1.5 mA peak to peak. The background 

conductivity was set at 1.898 S/m.  

The third experiment utilized EIT data from healthy human 

shallow breathing, obtained from EIDORS, an open EIT 

community. 

5.2 Experimental results  

The reconstruction results for the first experiment are 

presented in Fig. 21, where the MSSIM for six test cases is also 

included. When compared to the IGGS method and other deep 

learning methods, the SA-HFL method exhibits fewer artifacts 

and offers superior accuracy in imaging the target, as evidenced 

by the improved MSSIM metric. As the last layer of Improved 

Table 5 

Parameters and flops for different models.  

Methods Parameters (M) FLOPs (G) 

Improved LeNet  7.42 0.0157 

CNN-RBF 3.98 0.047 

UNet 2.38 1.335 

Ec-net 0.45 0.134 

SADB-Net 48.19 5.416 

SA-HFL 6.56 1.487 

 
Fig. 20. Average metrics under different loss functions. (a) RE, (b) MSSIM, (c) 

PSNR. 
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LeNet, CNN-RBF, and SADB-Net utilizes a fully connected 

layer, this disrupts the spatial correlation of the conductivity 

distribution, which leads to the generation of artifacts and sub-

optimal reconstruction quality. Furthermore, the SADB-Net 

network employs LeNet as its information extraction 

component. Due to the inherent shallowness of this architecture, 

it yields sub-optimal reconstruction quality. The performance 

of Ec-net and UNet, in terms of reconstruction results, 

demonstrates slight underperformance when compared with the 

proposed network, due to their no utilization of the binary mask 

information in the data. In contrast, the proposed SA-HFL 

learns the structural information of the data by combining 

BBCE and MSE as the weighted loss function, therefore 

enhancing the learning efficacy.  

Fig. 22 presents the results of the second experiment. Given 

the complexity of the manufacturing process of the miniature 

EIT sensor, the data collected are more susceptible to external 

interference. This leads to the appearance of blue spots in some 

reconstructed images. Despite this limitation, it is evident that 

the proposed SA-HFL outperforms other networks in terms of 

reconstruction quality. For Case 21, IGGS achieves a 

marginally higher MSSIM compared to SA-HFL. This superior 

performance of IGGS is primarily attributed to the 

incorporation of strong optical image prior information.  

However, even in the absence of an optical image, SA-HFL is 

still capable of accurately reconstructing the position of the 

resin and outperforms other deep learning methods in terms of 

the MSSIM metric. 

All parameter settings for the IGGS method are listed in 

Table 6. 

To validate the clinical applicability of the proposed method, 

real healthy human lung EIT data in our third experiment are 

employed. The corresponding results are illustrated in Fig. 23. 

As a benchmark for assessing the respiratory state, the 

 

Fig. 21. Reconstruction results of six test cases in the first experiment. 

Table 6 

Parameter settings for the experiment results of the IGGS method.  

Case 
Penalty parameters: 

η1 and η2 

Multiplier update 

step lengths: ε1 and 
ε2 

Case 14, 15, 20, 21 0.016, 0.016 0.089, 0.089 

Case 16, 17, 18 0.04, 0.04 0.0168, 0.0168 

Case 19 2×10-4, 2×10-4 3×10-5, 0.0168 
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Tikhonov regularization method was utilized, with the 

regularization parameter set as 0.005. As evidenced by the 

results presented in Fig. 23, our proposed algorithm 

demonstrates its efficacy by reconstructing the shape of the lung. 

Furthermore, the observed changes in respiratory state are 

found to be in close agreement with those obtained via the 

Tikhonov method, substantiating the applicability of our 

method to real human lung data. 

Three experimental studies have provided evidence for the 

effectiveness and superiority of the EIT method when 

combined with deep learning, opening up possibilities for 

medical imaging. 

6. Conclusion 

In this study, a supervised SA-HFL deep learning method 

was proposed to reconstruct high-resolution conductivity and 

improve robustness against measurement noise and modeling 

errors. Through simulations and experiments, the effectiveness 

of the network was proven and compared with five deep 

learning methods and the optical image-guided group sparsity 

(IGGS) method. The evaluation metrics (RE, MSSIM, and 

PSNR) clearly improved with the SA-HFL method, with values 

of 0.119, 0.9882, and 31.03 for the regular-shaped dataset, and 

0.257, 0.9151, and 18.67 for the lung-shaped dataset, 

respectively. The results also highlight the significant 

enhancement in reconstruction accuracy achieved by fusing 

structural information and conductivity information of the 

reconstructed object using a weighted loss function. This study 

explores the application of combining EIT with deep learning 

for lung reconstruction, expanding the potential of EIT in 

medicine. Future research will focus on advancing 3D EIT 

reconstruction techniques for lung imaging. 
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