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Accelerated Structure-Aware Sparse Bayesian
Learning for 3D Electrical Impedance Tomography
Shengheng Liu, Member, IEEE, Hancong Wu, Student Member, IEEE, Yongming Huang, Senior Member, IEEE,

Yunjie Yang, Member, IEEE, and Jiabin Jia, Member, IEEE

Abstract—In this work, we consider the reconstruction of
three-dimensional (3D) conductivity distribution using electrical
impedance tomography (EIT) technique. A high-resolution and
efficient algorithm is developed to solve the EIT inverse problem.
The presented algorithm is extended upon a recently proposed
novel EIT reconstruction approach based on structure-aware
sparse Bayesian learning (SA-SBL). The correlation between
proximal layers in the 3D geometry are incorporated into
the structure prior to improve the reconstruction accuracy. In
addition, an efficient approach based on approximate message
passing is developed to accelerate the large-scale 3D learning
process. To validate the algorithm, numerical experiments using
real recorded data are conducted. The visual and quantitative-
metric comparisons show that the proposed method outperforms
the existing methods in terms of reconstruction accuracy and
computational complexity in all test cases. The SA-SBL based
reconstruction approach can preserve the 3D structure of med-
ical volume, reduce the systematic artifacts, and improve the
computational efficiency.

Index Terms—Inverse problem, electrical impedance tomogra-
phy (EIT), sparse Bayesian learning (SBL), image reconstruction,
three-dimensional geometry.

I. INTRODUCTION

NON-DESTRUCTIVE examination and visualization of
the internal industrial/biological process within a certain

object is frequently and increasingly demanded in practice.
Compared with other popular imaging modalities, such as
ultrasound [1] and computed tomography (CT) [2], electrical
impedance tomography (EIT) possesses the merits of higher
temporal resolution, lower cost, wider applicability, and etc.
However, EIT reconstruction is inherently instable and suffers
from the fundamental ill-posedness of the underlying inverse
problem. The susceptibility of EIT solution to the measure-
ment, numerical, and modeling errors necessitates regulariza-
tion, and numerous such methods has been developed over
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the years. While the majority of EIT reconstruction algorithms
has been designed for two-dimensional (2D) geometries (cf.
literature review in [3]), a single cross-sectional slice of the
volume can only reveal partial information of the realistic
three-dimensional (3D) objects and thus limit the capacity of
EIT. On the other hand, EIT is intrinsically a 3D problem
[4], for it is well known that the path of the electric currents
spread all over the 3D domain. As such, off-plane conductivity
changes generally affect the solutions of the electrode plane
and create considerable distortions in the resulting 2D images
[5]. These severe limitations to 2D EIT thus encourage the
development of 3D reconstruction. It is worth mentioning
that, most 2D reconstruction methods are also applicable in
3D situations with minor modifications, and methods for both
situations have been occasionally discussed together indiscrim-
inately.

Fully 3D EIT has been investigated since 1980s. Calderón’s
pioneer work [6] outlined a linearized method for the recon-
struction of the multidimensional conductivity in a bounded
domain, which laid the mathematical foundation for 3D EIT.
Thenceforth many algorithms have been developed, including
double constraint iterative algorithm [7], variants of Newton’s
One-Step Error Reconstruction (NOSER) [8]–[10], Markov
chain Monte Carlo (MCMC) based Bayesian approach [11],
and etc. Apart from the linear approaches, various nonlinear
solvers have also been produced. However, these were either
facilitating a Newton-type strategy, which is highly compu-
tational intensive for large-scale problems, or employing the
Krylov-subspace approach, which suffers from poor conver-
gence rate [12]. In [13], a fully iterative regularized Gauss-
Newton method was applied to 3D tank data adopting the
complete electrode model (CEM) [14], which is the most
accurate model for real-world EIT. In this paper, we also
work exclusively with CEM. Readers are also referred to
important articles [4], [15], where various commonly used
conventional 3D reconstruction algorithms, such as regularised
Gauss-Newton and conjugate-gradient based algorithms, were
evaluated using simulated and real experimental data. The
results of the study suggested that 3D EIT algorithms do have
value and require further development.

Studies of 3D EIT in the early period was restrained
by the prohibitive consumption of computing and storage
resources, which partly explains why 2D assumptions were
constantly made. Later, advances in electronic devices made
the true 3D EIT reconstruction technically more feasible. The
release of software EIDORS [16] marked another significant
milestone in the progress of 3D EIT. Since then, other more
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recent approaches, including topology optimization approach
[17], direct reconstruction using scattering transforms [18],
iterative soft shrinkage algorithm [19], Bayesian approach with
edge-preferring priors [20], TV regularization [21], nonlinear
approach [22], and 3D-Laplacian and sparsity joint regulariza-
tion algorithm [23] have been proposed. Despite considerable
effort for nearly three decades, existing 3D EIT reconstruction
algorithms fail to efficiently and reliably produce images with
sufficiently high spatial resolution. Moreover, many algorithms
(perhaps the majority) are ad hoc and require tweaking
of parameters that prevents repeatability in experimentation.
Specifically in the field of bioengineering, 3D EIT has yet to
make the transition from theoretical studies to practical use.

The quality of reconstructed images and the efficiency of
the reconstruction process are two major concerns for 3D
EIT. One most recent publication [3] has proposed a novel
structure-aware sparse Bayesian learning (SA-SBL) algorithm
for 2D EIT reconstruction, with which an enhanced spatial
resolution was achieved. The underlying structural dependency
of signals can be readily incorporated within the Bayesian
framework. Several challenging problems in industrial ap-
plications have been successfully tackled on this account.
For example, adaptive resource management in intelligent
wireless sensor networks can be realized by exploring the
temporal structure among observations in a dynamic Bayesian
network [24]; glutamic acid fermentation process can also
be predicted using a Bayesian fuzzy system, which involves
structure identification and parameter estimation of each fuzzy
rule therein [25]. This paper considers 3D geometry and
expands upon [3] and its follow-up studies [27], [28] in
several important ways. The presented 3D EIT reconstruction
algorithm could potentially be useful for designing real-time
industrial/bioengineering sensor systems that yields EIT imag-
ing of practical significance. The main contributions of this
papers are:
• First, the structure prior is redesigned to take into account

the correlation between proximal layers in the 3D geometry,
which yields an improved recovery performance and algorithm
robustness;
• Another important contribution of the present work is

that, to achieve efficient computation, an approximate message
passing (AMP) accelerated expectation maximization (EM)
technique is proposed to infer the maximum a posteriori
(MAP) estimates.
• In addition, an experiment is also designed to investigate

the fluid flow using EIT modality in a 3D geometry, where
accurate revivification is achieved. This suggests feasibility

of using EIT to monitor similar processes in industrial and
bioengineering applications, which is of great practical signif-
icance.

The remainder of this paper is structured as follows: In the
Method section we first present the SA-SBL-based 3D EIT
reconstruction algorithm. Then, in Section III we describe and
discuss the experiments performed to validate our approach.
The paper is concluded in Section IV.

II. METHOD

In this work, we consider an inverse problem of linearized
time-difference EIT of the form [3]

v = Jσ + n, (1)

where
• v ∈ RM×1 represents the time-difference vector of

the voltage measurements, and M denotes the length of the
measurement vector.
• J ∈ RM×N is the sensitivity matrix, and N denotes the

number of simplices in the 3D domain.
• σ ∈ RN×1 represents the 3D time-difference conductivity

distribution to be reconstructed.
• n ∈ RM×1 denotes the measurement noise vector, which

is assumed to be Gaussian, i.e., n ∼ N (0, γ0I).
Similar to [3], [26], we let g = N − h + 1 be the total

number of groups. For ∀i = 1, 2, . . . , g, σ is factorized as (2)
to facilitate the utilization of SA-SBL framework. Substituting
(2) into (1), we then obtain the following stretched linear
model

v = Φx + n, (3)

where Φ , JΨ ∈ RM×gh. We follow the standard
Bayesian formulation and assume that both of the priors of
the weights x and the noise vector n follow parameterized
Gaussian distributions, i.e., x ∼ N (0,Σ0), n ∼ N (0, γ0I),
where the stretched covariance matrix is expressed as Σ0 =
diag(γiBi) ∈ Rgh×gh. The positive definite matrix Bi de-
termines the correlated structure within the i-th block of x.
Due to the mechanism of automatic relevance determination,
most γi’s tend to become zero during the learning process,
thus promoting the group-level sparsity.

The posterior distribution for x can be expressed analyti-
cally as x|v ∼ N (µx,Σx) with mean and covariance matrix

µx = Σ0Φ
>Γ−1v ∈ Rgh×1, (4)

Σx = Σ0 −Σ0Φ
>Γ−1ΦΣ0 ∈ Rgh×gh, (5)

σ , ΨN×ghxgh×1

,

 [ 1h×h
0(N−h)×h

]
· · ·

 0(i−1)×h
1h×h

0(N−i−h+1)×h

 · · ·
[

0(N−h)×h
1h×h

]  ·


[
x1 · · · xh

]>
...[

xi · · · xi+h−1
]>

...[
xg · · · xN

]>


(2)
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where
Γ , γ0I + ΦΣ0Φ

> ∈ RM×M . (6)

Fig. 1. AMP factor graph representation.

The first step in the SA-SBL-based EIT reconstruction [3]
is to update the hyperparameters Θ , {γ0, {γi,Bi}gi=1}. This
is achieved by employing the expectation-maximization (EM)
method to minimize the cost function L (Θ) = log |Γ| +
v>Γ−1v. Subsequently, the MAP probability estimate x̂ is
obtained directly from the posterior mean µx. Up to this point,
one would naturally assume that the 2D EIT reconstruction
algorithm in [3] can be directly applied to the 3D scenario,
as the underlying mathematical problem intrinsically remains
unchanged. However, the computational complexity of the
previously proposed EM-based SA-SBL algorithm is domi-
nated by the expectation step (E-step), i.e., (4) and (6), which
respectively involves O(MN2) and O(N3) multiplications per
iteration. In this context, the large-scale weight length N in the
3D model makes the inversion via SA-SBL computationally
intractable.

Recently, the AMP methods [29]–[31] have received grow-
ing attention due to their low computational complexity, fast
convergence, and close-to-Bayes-optimal estimation. We illus-
trate the AMP framework in Fig. 1, where blue squares and red
circles represent probability density function (pdf) factors and
random variables, respectively. Gaussian approximated belief
propagation is performed. Concretely, the posterior pdf is first
factorized into a product of simpler pdfs. Then, the locally
computed messages associated with the unknown variables
are passed around the factor graph until agreement on a
common set of beliefs is arrived. By assuming a large and
dense measurement matrix and exploiting similarity among the
messages, central limit theorem and Taylor series expansion
are adopted to approximate the inference.

In this work, AMP is applied to simplify the computational
expensive E-step of SA-SBL-based 3D EIT reconstruction. We
summarize the algorithm flow in Algorithm 1, where ⊗ and
� respectively denote Hadamard product and element-wise
division. It can be readily observed from Algorithm 1 that,
Φ, S, and their transposes related vectorized multiplications
constitute the majority of the overall computation load. As
such, the E-step is implemented by a first-order algorithm with
a computational complexity of O(MN) per iteration.

It should be noted that, as Gaussian prior is imposed on the
weights x, the algorithm is parameterized by the following
two scalar estimation functions:

fs(p,αp) = (p�αp − v)� (γ0 + 1�αp) , (7)

fx(r, τ r) = (γ ⊗ r)� (γ + τ r) . (8)

Algorithm 1: AMP-based E-step approximation.
Input : Φ, θs, θx ∈ (0, 1], εAMP.
Initialize : Set S = Φ⊗Φ, s = 0, µx = 0, τx � 0,

ε = 1.
Iterations:

1 while ε > εAMP do
2 αp = 1� (Sτx),
3 p = s + αp ⊗Φµx,
4 αs = αp ⊗ ∂

∂pfs(p,αp),
5 s = (1− θs)s + θsfs(p,αp),
6 τ r = 1� (S>αs),
7 r = µx + τ r ⊗Φ>s,
8 τx = τ r ⊗ ∂

∂rfx(r, τ r),
9 µx = (1− θx)µx + θxfx(r, τ r),

10 ε = ‖µnew
x − µx‖2/ ‖µnew

x ‖2.
11 end

Output : µ̂x, τ̂x

Remarks 1: The Onsager correction term in step 7 is the
key to the increased accuracy and computational efficiency of
AMP methods, for it decouples prediction errors across itera-
tions and ensure that r is an i.i.d.-Gaussian corrupted version
of the true x. In addition, to prevent divergence caused by the
ill-conditioned measurement matrix with strongly correlated
columns, damping mechanism is introduced in step 5 and 9.

Once the parameters µ̂x and τ̂x for the expected distribution
are obtained, the algorithm continues to infer the hyperpa-
rameters Θ , {γ0, {γi,Bi}gi=1} through the maximization
iterations as we did in [3]. Note that, the learning rules for
these hyperparameters are slightly different from our previous
work in [3]. Concretely, the regularized correlation structure
matrix Bi is updated as

Bi = Toeplitz
([
r0i , r

1
i , . . . , r

h−1
i

])
, (9)

with
ri = sign(r̃i) ·min {|r̃i| , 0.99} , (10)

r̃i = diag(B̃i, 1)
/

diag(B̃i) . (11)

B̃new
i = B̃i +

1

γi

(
diag(τ̂ i

x) + µ̂i
x

(
µ̂i

x

)>)
, (12)

where the superscript i denotes the ((i− 1)h+ 1 : ih)-th
entries of the corresponding vectors.

To better exploit the 3D structure correlation so as to
enhance the reconstruction accuracy, a 3D pattern coupling
parameter β ∈ [0, 1] is introduced to the updating formula
of γi to capture the dependency between the simplex under
investigation and its proximal 6 simplexes (see Fig. 2). As
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Fig. 2. Illustration of the structure in the conductivity distribution σ.

such, an updated γi in each iteration can be expressed as
follows:

γnewi =

(γi + β

6∑
d=1

γ̃i,d) ·
tr

(
B−1i

(
diag(τ̂ i

x) + µ̂i
x

(
µ̂i

x

)>))
h

,

(13)
Likewise, hyperparameter γ0 is learned by

γnew0 =
‖v −Φµ̂x‖

2
2 +

∑g
i=1 tr

(
diag(τ̂ i

x)(Φi)
>

Φi

)
M

.

(14)

A pseudo-code implementation of the overall algorithm for
3D EIT reconstruction is presented in Algorithm 2. As stated
in [3], h and β are two tuning-free parameters, and we set
h = 4 and β = 0.25 in the following discussion. εAMP in
Algorithm 1 and ϑmax in Algorithm 2 are both selected
according to the precision requirement and computational
resource.

Remarks 2: The initial guess of the parameters in Algorithm
2 such as γ0 is empirically selected by extensive numerical tri-
als, which generally leads to a faster convergence. It has little
impact on the algorithm performance since these parameters
will be automatically learned afterwards.

Algorithm 2: SA-SBL-based 3D EIT reconstruction.
Input : v, J, h, β, ϑmax

Initialize : Set ϑ = 0, γi = 1g×1,

γ0 = 0.01×

√
1

N−1

N∑
i=1

|vi − v̄|2,

Bi = Toeplitz([0.90, . . . , 0.9h−1]).
Iterations:

1 while ϑ ≤ ϑmax do
2 Execute approximated E-step in Algorithm 1;
3 Update γi using (13);
4 Update γ0 using (14);
5 Update Bi using (12)–(11);
6 ϑ = ϑ+ 1.
7 end

Output : σ̂ = Ψµ̂x

III. EXPERIMENT RESULTS AND DISCUSSIONS

In this section, the proposed 3D EIT reconstruction algo-
rithm is evaluated with real-collected data. We consider two
different experimental scenarios, viz., 3D cell pellet imaging
and 3D Process Tomography of solution diffusion.

In the first experimental evaluation, we reconstruct the 3D
EIT image from the dataset that has been utilized in [23]. The
voltage measurement under test was recorded using a planar
3D miniature EIT sensor designed for cell imaging. Fast and

Fig. 3. 3D inverse mesh.
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high-spatial-resolution reconstruction algorithm is particularly
desirable in the scenario of continuous monitoring of cell
culture process. Such task is considered challenging because of
the small size of the sensor/subject and the high conductivity
of the culture medium [23]. In the second experiment, the
jet saline flow experiment in the Section IV-B of [3] is
further extended to a 3D geometry. We still acquire the EIT
measurements with the same cylindrical vessel senor used in
[3], but two electrode planes are enabled to collect the voltage
data at this time.

The 3D inverse finite element method (FEM) mesh in both
reconstruction processes is illustrated in Fig. 3. While each
layer in the FEM meshes for both experiments consists of
821 square simplices, the numbers of layers L in the two FEM
meshes are different. The former FEM mesh in Section III-A
has 12 layers, and the latter in Section III-B has 40 layers.
Consequently, the numbers of 3D simplices N for these two
experiments are 9744 and 32480, respectively.

A. 3D Cell Pellet Imaging

In the cell pellet imaging experiment, phosphate buffered
saline with a conductivity of 1.9 S/m and height of 3 mm
is used as cell culture medium. The internal diameter of
the sensor is 15 mm. The frequency of current excitation
is 10 KHz, and the amplitude of current is approximately
1.5 mA peak to peak. A triangular high-density breast cancer
cell pellet is used as the experimental subject to be measured,
which is shown in Fig. 4. The length of the trilateral is around
4.2 mm, 3.6 mm, and 4.5 mm, respectively.

Fig. 4. Truth of the triangular cell pellet to be measured. (Adapted from Fig.
15(c) of [23]. Reuse with the permission from IEEE and the authors.)

A comparison is drawn in Table I, which shows the 3D EIT
reconstruction results of the phantom using the conventional
Bayesian algorithm [32] and the proposed SA-SBL based
algorithm, respectively. Note that in Table I the two images in
the first row of each table box are the 3D isosurface generated
from the resulting volumetric data and the corresponding
lateral view, respectively. The isovalue is specified as 40% of
the maximum conductivity value. White grids are added into
the slice plots to allow for a more precise assessment of the
reconstruction. The readers are referred to the previous related
work in [23] for a comparison of reconstructed results using
other deterministic algorithms.

Because the subject to be imaged is a compound of cell
pellet and agarose gel with an irregular shape, and part of
the compound is transparent in the field of vision, we are
unable to give a precise position of the inclusion. Since neither

do we have an exact truth of the conductivity distribution
under investigation, a quantitative evaluation of the advantage
of the proposed algorithm in terms of spatial resolution and
reconstruction accuracy cannot be provided. But it is important
to note that, the presented algorithm in this paper is essentially
a 3D and computationally efficient extension of the SA-
SBL-based EIT reconstruction algorithm in [3] with the aid
of AMP-based EM iteration. The effectiveness of the SA-
SBL-based algorithm in comparison with other state-of-the-art
approaches has been demonstrated via sufficient synthetic data
simulations in COMSOL environment. On the other hand, it
has been proved with extensive numerical studies in [30] that,
AMP technique is able to yield nearly minimum mean-squared
error recovery. In the light of the above facts, it is unnecessary
to repeat the COMSOL-based numerical verification.

As indicated in Fig. 4, the utilized dataset is essentially
a pseudo-3D measurement collected from a single electrode
ring. Additionally, the EIT senor and subject to be detected
are both in a extremely small size. Therefore, it is reasonable
to anticipate a poor reconstruction result by using conventional
methods. Nevertheless, the advantage of the proposed SA-SBL
based algorithm in terms of algorithm performance can be
visually observed from Table I. More specifically, the proposed
algorithm is able to render a clear and accurate 3D image
of the triangular cell pellet, whereas with the conventional
Bayesian algorithm, conspicuous errors in the reconstructed
shape/height of the phantom and undesired artifacts espe-
cially in the near-boundary region can be seen. 3D structural
priors intuitively introduce additional constraints to stabilize
the recovered images and, thus, make them more robust to
interference and noise.

B. 3D Process Tomography of Jet Flow

EIT and the related electrical capacitance tomography
(ECT) [33] are emerging techniques for imaging the flow
and mixing of fluids in various industrial and biomedical
applications. In this work, another experiment is designed to
demonstrate the feasibility of fast and accurate 3D EIT-based
process monitoring of fluid flow. Jet flows are simulated in
the experiment since they are amongst the most frequently
encountered flow types.

The vessel senor adopts an alternate mode to acquire the
measurements for 3D imaging, i.e., the voltmeter readings in
each plane are alternately drawn by switching the channels
back and forth. The inner diameter of the cylindrical vessel
is 287 mm, and the height of the background substance is
200 mm. The current excitation frequency and the injected
current amplitude remain the same as [3], which are respec-
tively 10 kHz and 15.17 mA. The frame collection rate is set
to 62.5 fps. We select one frame from every 8 frames between
the 460-th and the 516-th frame. The conductivities of the
red jet ink and the background saline are set to 0.8 S/m and
0.25 S/m respectively. The successive video snapshots and the
reconstructed conductivity distributions by using the proposed
algorithm for the selected frames are shown in Table II. To
create a legible visualization, we first compare the absolute
value of each entry with the threshold in each frame, which
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TABLE I
3D EIT RECONSTRUCTION RESULTS OF THE TRIANGULAR CELL PELLET.
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is set to 40% of the maximum absolute value in the frame.
We then discard the conductivity values below the threshold
and draw slices through the resulting EIT volumetric data.
As such, only significant values induced by the jet flow are
preserved and visualized in the 3D slices in Table II, so that the
occlusions caused by the background and noise are removed. It
can be observed from Table II that the estimates are in a good
agreement with their corresponding video snapshots. Very few
peripheral artifacts exist, and the entire injection process of the
jet flow is accurately reconstructed.

Remarks 3: Note that the threshold 40% adopted in produc-
ing Table II is empirically selected for illustrative purpose. The
use of a fixed percentage cut-off from the maximum value may
lead to incorrect EIT result if there are no inclusions inside the
sensor. In this situation, background fluctuations may not be
filtered correctly and, consequently, artifacts from non-existing
objects may appear in the output image. Thus, in practice one
should always refer to the original 3D images/slices without
the threshold. It is also observed that this threshold at some
point reduces the size of inclusions in comparison to the
reference snapshots in the video. However, if we decrease
the threshold, the thin stream adjacent the syringe outlet in
the upper layers can become overly thick in the resulting
3D images. Bear in mind the fact that EIT inverse problem
is mathematically ill-posed and ill-conditioned. Here we are
reconstructing a 32480-pixel 3D image using 208 voltage
measurements from 2× 16 electrodes. Although the structural
a priori knowledge is exploited, we can never obtain the
exact and true 3D conductivity distribution. Additionally, the
injected saline with a conductivity below the EIT sensitivity
may still be clearly visible to the naked eyes in the video
snapshot due to the bright color of the ink. Thus, the actually
conductivity distribution can also disagree considerably with
the color dispersion in the vessel.

IV. CONCLUSION

In summary, for the underlying large-scale inverse prob-
lem of 3D EIT reconstruction, this paper has developed an
accelerated SA-SBL-based algorithm via AMP, which offers
enhanced reconstruction accuracy and reduced artifacts by ex-
ploiting 3D structure priors. It is noteworthy that the proposed
algorithm is generalizable to other similar process tomography
modalities. The advantage of the proposed algorithm over
conventional methods has been validated by numerical experi-
ments using real collected measurements, and the visualization
of 3D fluid flow process has also been attempted. This study
takes an important step towards practical and more sophisti-
cated real-time impedance tomography. The enhanced imaging
quality and reduced computational complexity offers exciting
possibilities for imaging tasks in several practical applications,
such as dispersion control in mixing vessels and monitoring
of brain function. Together with its characteristic strength in
time and contrast resolution, EIT instrumentation should be
able to evolve as an attractive complement/alternative to the
prevailing radionuclide modalities in the foreseeable future.
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