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Dual-modal Image Reconstruction for Electrical
Impedance Tomography with Overlapping Group

Lasso and Laplacian Regularization
Zhe Liu, Graduate Student Member, IEEE , Hengjia Gu, Zhou Chen, Student Member, IEEE , Pierre

Bagnaninchi, Yunjie Yang, Member, IEEE

Abstract— Objective: Electrical Impedance Tomography
(EIT) is a promising biomedical imaging modality, yet EIT
image reconstruction remains an open challenge due to
its severe ill-posedness. High-quality EIT image reconstruc-
tion algorithms are desired. Methods: This paper reports a
segmentation-free dual-modal EIT image reconstruction al-
gorithm that uses Overlapping Group Lasso and Laplacian
(OGLL) regularization. An overlapping group lasso penalty
is constructed based on conductivity change properties
and encodes the imaging targets’ structural information
obtained from an auxiliary imaging modality that provides
structural images of the sensing region. We introduce
Laplacian regularization to alleviate the artifacts caused
by group overlapping. Results: The performance of OGLL
is evaluated and compared with single-modal and dual-
modal image reconstruction algorithms using simulation
and real-world data. Quantitative metrics and visualized
images confirm the superiority of the proposed method
in terms of structure preservation, background artifact
(BA) suppression, and conductivity contrast differentiation.
Conclusion: This work proves the effectiveness of OGLL
in improving EIT image quality. Significance: This study
demonstrates that EIT has the potential to be adopted
in quantitative tissue analysis by using such dual-modal
imaging approaches.

Index Terms— Dual-modal imaging, Electrical Impedance
Tomography, image reconstruction, overlapping group
lasso, Laplacian regularization

I. INTRODUCTION

B IOMEDICAL imaging aims to visualize internal struc-
tures or functions of the human body, tissues or cells.

Different imaging modalities estimate different parameters
and/or properties, thus, revealing different aspects of organism
status. Among existing biomedical imaging modalities such as
Electrical Impedance Tomography (EIT) , Positron Emission
Tomography (PET) [3], and Optical Coherence Tomography
(OCT) [4], EIT has demonstrated its unique advantages in
non-destructive, non-radioactive imaging, making it suitable
for in vivo imaging [1]–[3]. After stimulating with small
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electric fields and recording the voltage between electrodes,
EIT reconstructs the conductivity distribution of the region
of interest. EIT images can serve as evidence for clinical or
medical analysis and diagnosis, as different tissues or distinct
physiological states are characterised by different conductivity.
For instance, EIT has been applied to lung function monitoring
[6] [7], nerve imaging [8] [9] and 3D cell culture monitoring
[10]–[12]. However, EIT suffers from low image qualities
concerning structure preservation, background artefact (BA)
suppression, and differentiation of conductivity contrasts, pre-
venting it from quantitative analyses, thus limiting its further
applications in biomedical fields.

Various measures could improve EIT image quality, such
as advancing instrumentation [13] [14], optimizing sensor
design and refining sensing strategy [15]. Also central to
EIT performance are the image reconstruction algorithms
aiming to solve the inverse problem, including Total Variation
(TV) regularization [16]–[18], sparse regularization [19]–[21],
multiplicative regularization [22], group sparsity regulariza-
tion [23] [24], the D-bar method [25] [26], Sparse Bayesian
Learning [27] [28], GREIT [29] and learning-based methods
[30]–[32]. These algorithms have achieved remarkable success
in improving EIT image quality. However, these methods are
mainly single-modal-based and only leverage EIT data.

Another class of approaches is dual-modal or multi-modal-
based. These approaches combine EIT with one or multiple
complementary imaging modalities (referred to as auxiliary
modalities). For example, it was shown that EIT-ultrasound
imaging has the benefit of improving EIT image quality
[33]–[35]. Li et al. encoded structural information from the
CT image using Cross-Gradient regularization and employed
the constructed regularization term to confine EIT inversion
[36]. Both Gong et al. [37], and Liu et al. [38] proposed
to incorporate the prior information of the auxiliary image
into EIT inversion through a non-overlapping group lasso. The
difference is that Gong et al. group conductivity changes based
on K-Means clustering of auxiliary image pixels, while Liu et
al. generate groups based on the semantic segmentation of the
auxiliary image. Liu et al. further developed a segmentation-
free dual-modal algorithm using Kernel Method [39] and
reported the first exploration of learning-based methods for
dual-modal EIT imaging [40].

Compared to single-modal approaches, previous studies
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demonstrate that multi-modal imaging could further improve
image quality. Here, we propose an image reconstruction
algorithm based on overlapping group lasso and Laplacian reg-
ularization (named OGLL). OGLL is not confined to a specific
auxiliary imaging modality. On the contrary, we discuss the
approach in general, as OGLL can be applied to various dual-
modal imaging setups where the auxiliary imaging modality
provides structural information, such as CT scanning for lung
measurements or optical imaging for cell clusters. Similar to
[37] and [38], OGLL introduces the structural information of
the auxiliary image into EIT inversion through group lasso.
Differently, OGLL firstly adopts the overlapping strategy and
groups conductivity changes based on local characteristics of
the auxiliary image. Thus, it eliminates the need to semanti-
cally segment the imaging targets in [38]. In addition, since the
image quality is significantly affected by the non-overlapping
partition of conductivity changes, previous methods such as
[37] are unstable due to the uncertainty of grouping results.
OGLL tackles such issues by generating parameter-controlled
deterministic groups. In summary, the advantages of OGLL
are as follows:

• We first incorporate the overlapping group lasso into
dual-modal EIT image reconstruction. OGLL demon-
strates considerable improvements in structure preserva-
tion, background artifact suppression, and differentiation
of conductivity contrasts compared with other single-
modal and multi-modal image reconstruction algorithms.

• OGLL introduces a new grouping method, which is reg-
ular and controllable, leading to stable grouping results.
As OGLL allows group overlapping, the requirement of
fine-designed grouping rules and certain prior information
(e.g., the number of groups) for non-overlapping grouping
is unnecessary.

• The Laplacian regularization in OGLL can alleviate the
artifacts caused by group overlapping (abbreviated as
GOA). It enables flexible grouping strategies for OGLL,
i.e., using the search window with various sizes and step
lengths.

II. PRINCIPLE OF EIT

Consider an imaging region ℧ ⊂ RD, D = 2 or 3, E
electrodes represented by {ei}Ei=1 are evenly attached on its
boundary ∂℧. EIT consists of two subproblems - forward and
inverse problems.

A. Forward Problem

Given a known conductivity distribution, the forward prob-
lem of EIT calculates the electrical potential distribution
within the sensing region. Assuming σ(p) ∈ R, p ∈ ℧,
denotes the continuous-space real-valued conductivity, the
commonly-used Complete Electrode Model (CEM) [41] is

formulated as:

∇ · [σ(p)∇u(p))] = 0, p ∈ ℧ (1)

u(p) + ziσ(p)
∂u(p)

∂n̂
= Ui, p ∈ ei, i = 1, 2, ..., E (2)∫

ei

σ(p)
∂u(p)

∂n̂
dℓ = Ii, i = 1, 2, ..., E (3)

σ(p)
∂u(p)

∂n̂
= 0, p ∈ ∂℧\

E⋃
i=1

ei (4)

E∑
i=1

Ii = 0,

E∑
i=1

Ui = 0, (5)

where u(p) denotes the electrical potential in the sensing
region and n̂ represents the outer unit normal of ∂℧. zi, Ui

and Ii are the contact impedance, electrical potential, and the
injected current on ei, respectively. Equation (5) guarantees
the existence and uniqueness of the solution of (1).

B. Inverse Problem
We adopt the time-difference imaging approach, and de-

scribe the inverse problem in this specific setup. The mesh
adopted for circular sensing region is illustrated in Fig. 1 (a).
The linearized EIT forward model considered in this study is
described by

V = Jσ, (6)

where V = −Vo−Vr

Vr
and σ = σo−σr

σr
. Vo ∈ RM and

Vr ∈ RM represent the measured voltages at the observa-
tion and reference time points. σo ∈ RN and σr ∈ RN

account for the conductivity distribution at the observation
and reference time points, respectively. At the reference time
point, the conductivity distribution is homogeneous. N is the
number of pixels of the EIT image and M is the number of
measurements. Throughout the paper, vector division means
element-wise division. J ∈ RM×N denotes the normalised
sensitivity matrix. Refer to Appendix for the derivation of (6).

The general approach to formulate the inverse problem of
EIT, which estimates σ subject to the (6), is expressed by:

min
σ

R(σ)

s.t. Jσ = V,
(7)

where R : Rn → R denotes the regularization function, which
encodes the prior information.

III. METHODS

OGLL comprises two steps, i.e., conductivity grouping and
image reconstruction. Conductivity grouping is the key to
constructing the group lasso regularization term. The idea of
using group lasso encoding the prior information is based
on the observation that, in biomedical applications, the EIT
image usually shows local similarity for biological tissues with
similar function or anatomy. Specifically, in time-difference
imaging, the zero changes of the conductivity and non-zero
akin changes of the conductivity typically present the property
of local clustering. In addition, the group lasso can promote
sparsity on the group level and discourage sparsity within



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 3

1

2

n

N

...

11

12

𝝈

1

6

11

12

N

n ...

...

a b c d

Fig. 1. Illustration of EIT inverse mesh and overlapping groups. (a) is the mesh for EIT inverse problem which consists of 3228 simplexes. (b) ∼
(d) show a grouping example. (b) is an example with one inclusion which is indicated by blue simplexes in (b) and (c). In (c), the colored square
boundary defines the search window and the colored region means grouped pixels. Different colors represent different groups. Fuchsia circular
disks denote all centers of search windows in the first grouping stage. In (d), light purple region shows grouped pixels (may belong to different
groups) in the first grouping stage. The remaining pixels are ungrouped. Green circular disks stand for centers of search windows and blue square
boundary represents the search window in the second grouping stage. Blue arrows in (c) and (d) indicate the moving direction of the search window.

each group [44]. Therefore, grouping similar conductivity
changes can mitigate the ill-posedness of the EIT inversion
and improve reversibility. For the image reconstruction step,
OGLL solves the optimization problem using the Alternating
Direction Method of Multipliers (ADMM) [45]. More details
of OGLL are as follows.

A. Conductivity Grouping
In OGLL, conductivity grouping is based on the pixel

similarity over the auxiliary image. To avoid ambiguity, we
strictly impose the size of the auxiliary image is the same
as that of the EIT image. A pixel at the same position in
both the EIT and auxiliary images corresponds to the same
point of the imaging target. Usually, images generated by the
auxiliary modality like CT are larger than EIT images, and the
auxiliary images are acquired by down-sampling them into the
EIT image size.

Before grouping, we predefine a set of feature vectors {fn ∈
RW , W ≥ 1}Nn=1 to characterize the pixels of the EIT image
and a measure function ι : RW × RW → R to evaluate
the similarity between different pixels of the EIT image. In
general, fn and ι are selected based on the characteristics of
the auxiliary image. For example, intensity values of the 3×3
window centered at the nth pixel of the auxiliary image can
form the 9-element feature vector for the nth pixel of the EIT
image. In this study, fn is defined as the nth pixel intensity
of the auxiliary image, and the below exponential function is
selected as the similarity measure:

ι(fn, fk) = exp(−||fn − fk||2), (8)

where || · || denotes the l2 norm. We define that two elements
of σ belong to the same group if ι of their feature vectors is
larger than a pre-defined positive threshold φ.

The grouping process is composed of two stages. In the
first stage, a s× s window (named the search window) slides
over the auxiliary image. The sliding direction is from top to
bottom then from left to right. s is a positive odd number. The
horizontal and vertical step sizes (denoted by q) are the same
and should be pre-specified. At each position, in the search
window, elements of σ whose ι with respect to the center
pixel larger than φ are categorized into the same group. To

guarantee as many elements of σ to be grouped as possible
in the first stage, 1 ≤ q ≤ s is required.

After the first grouping stage, some elements of σ may not
be grouped. Therefore, in the second stage, we first locate the
ungrouped element of the σ which has the lowest row and
column indexes in the EIT image, and group the elements of
σ in the s× s search window centered at the located element
with the same φ used in the first stage. Then, for the remaining
ungrouped elements of σ, we continue locating the ungrouped
element which has the lowest row and column indexes and
perform the same grouping approach. We repeat this operation
until all elements of σ are grouped. In summary, the grouping
process can be simply considered as sliding twice the s × s
search window along the same direction over the auxiliary
images to group all elements of σ.

During the grouping process, overlapping is allowed, lead-
ing to the grouping result of:

{σg1 , σg2 , ..., σgG} , (9)

where G is the number of groups, 1 ≤ G ≤ N ; σgς

⋂
σgτ ̸=

ϕ or σgς

⋂
σgτ = ϕ if ς ̸= τ , and

⋃G
ε=1 σgε = σ. τ, ς and

ε are group indicators. The grouping method is simple and
regular, and the result is controllable by tuning s and q once
fn and ι are determined. An example of the grouping process is
illustrated in Fig. 1 (b) ∼ (d). Finally, the overlapping group
lasso regularization term can be expressed by the following
l2,1 norm:

l2,1 =

G∑
ε=1

ψε||σgε ||, (10)

where, ψε > 0 represents the weight for the εth group.

B. The Laplacian Regularization

We will show later that group overlapping may lead to
artefacts (see Fig. 7), i.e. the GOA, especially for relatively
small s and q. The GOA increases the rapid pixel intensity
changes in the reconstructed EIT image. Inspired by [46],
the Laplacian regularization term is included to alleviate the
negative influence of GOA. The continuous Laplacian of an
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n

n. . . . . . . . . . . . Ln,:

Fig. 2. Principle of constructing the Laplacian matrix: Ln,: denotes the
nth row of L. The pink square represents the kernel center, which is also
located at the nth pixel of the EIT image. Dark blue squares denote the
8-neighbors of the nth pixel. In Ln,:, the value at the pink pixel is set to
8 and that at the dark blue pixel is set to -1. Other values at light blue
pixels are filled by zeros.

Algorithm 1 Dual-modal EIT Image Reconstruction based on
OGLL
Input: Auxiliary image, J, V, s, q, φ, θ, α, β1,β2, η1, η2, tmax,

ϑ.
Output: Calculated conductivity distribution.
Initialize: σ ← 0N , z← 0Ξ, λ1 ← 0Ξ, λ2 ← 0M .

1: Conductivity grouping to construct (10) according to A,
Section III.

2: while stopping criteria unsatisfied do
3: Solve problem (15) by (16);
4: Solve problem (17) by (19);
5: Update λ1 by (21);
6: Update λ2 by (22).
7: end while

image I(x, y) is defined as:

L(x, y) = ∂2I(x, y)
∂x2

+
∂2I(x, y)
∂y2

, (11)

where x ∈ R and y ∈ R are coordinates of the image. As
the Laplacian is sensitive to rapid image intensity changes, we
might penalize the Laplacian of the EIT image to reduce GOA.
For digital images, a small discrete convolutional kernel is
usually adopted to approximate (11) and the discrete Laplacian
can be calculated by the convolution. In this work, a 3 × 3
kernel is chosen and the vectorized discrete Laplacian of the
EIT image can be formulated as Lσ, where L ∈ RN×N is the
Laplacian matrix. The detailed description of the kernel and
the Laplacian matrix construction is illustrated in Fig. 2.

C. Image Reconstruction Based on OGLL

OGLL can be formulated as the following optimization
problem:

min
σ

G∑
ε=1

ψε||σgε ||+
θ

2
||Lσ||2

s.t. Jσ = V,

(12)

where θ > 0 denotes the parameter for the Laplacian reg-
ularization. (12) can be effectively solved by ADMM. By
introducing an auxiliary variable z ∈ RΞ, (12) is reformulated
as:

min
σ,z

G∑
ε=1

ψε||zgε ||+
θ

2
||Lσ||2

s.t. z = Fσ, Jσ = V,

(13)

where F ∈ RΞ×N , N ≤ Ξ ≤ N2, is a (0, 1) matrix and
each row has an unique 1. If nth element of σ belongs to G
groups, 1 ≤ G ≤ G, there are G rows of F in each of which
the nth element is 1. Thus, the transformation of F duplicates
the nth element of σ G times and integrates them into z. In
other words, although elements of σ are overlapped, elements
of z are completely non-overlapped. Furthermore, FTF is a
diagonal matrix, whose nth diagonal element represents the
number of groups the nth element of σ belongs to. Especially
in the case of non-overlapping grouping, F becomes a N ×
N identity matrix. To solve (13), the augmented Lagrangian
equation is firstly constructed:

min
σ,z,λ1,λ2

G∑
ε=1

ψε||zgε ||+
θ

2
||Lσ||2

− λT
1 (z− Fσ) +

β1
2
||z− Fσ||2

− λT
2 (Jσ −V) +

β2
2
||Jσ −V||2,

(14)

where λ1 ∈ RΞ, and λ2 ∈ RM are Lagrange multipliers and
β1 > 0 and β2 > 0 are penalty parameters. Then, (14) can
be split into the σ-subproblem and the z-subproblem, which
are solved separately. From (14), the σ-subproblem can be
expressed as:

σt = argmin
σ

θ

2
||Lσ||2 + (λt−1

1 )TFσ

+
β1
2
||zt−1 − Fσ||2 − λT

2 Jσ +
β2
2
||Jσ −V||2,

(15)

where superscript t = 1, 2, 3, ... represents the iteration
number. In this work, (15) is solved by one-step gradient
descent and its iteration equation is expressed as:

σt = σt−1 − α
[
(θLTL+ β1F

TF+ β2J
TJ)σt−1

− (β1F
T zt−1 − FTλt−1

1 + β2J
TV + JTλt−1

2 )
]
,

(16)

where α is the iteration step length.
The z-subproblem can also be deduced from (14) and it is

formulated as:

zt = argmin
z

G∑
ε=1

ψε||zgε || − (λt−1
1 )T z+

β1
2
||z− Fσt||2.

(17)
Equation (17) is equivalent to solving the below problem:

zt = argmin
z

G∑
ε=1

[ψε||zgε ||

+
β1
2
||zgε − (Fσt)gε −

1

β1
(λt−1

1 )gε ||2],
(18)
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which can be solved using group-wise soft thresholding:

(zt)gε = max(0, ||ℓε|| −
ψε

β1
)

ℓε
||ℓε||

, ε = 1, 2, ..., G,

(19)
where ℓε is given by:

ℓε = (Fσt)gε +
1

β1
(λt−1

1 )gε , ε = 1, 2, ..., G. (20)

Afterwards, the Lagrange multipliers are updated:

λt
1 = λt−1

1 − η1β1(zt − Fσt), (21)

λt
2 = λt−1

2 − η2β2(Jσt −V), (22)

where η1 > 0 and η2 > 0 are iteration step lengths. The
stopping criteria are defined by two conditions. The first one
is the maximum iteration tmax ∈ Z+ and the second one is the
tolerance ϑ > 0 which is defined as:

||σt+1 − σt||
||σt||

< ϑ. (23)

If any of the conditions is satisfied, OGLL will stop. We ini-
tialize σ, z, λ1 and λ2 with zero vectors. The implementation
of OGLL is summarised in Algorithm 1.

Remarks: 0: represents the column 0-vector and the sub-
script accounts for its size. In this paper, the weights ψε is
always set as 1.

IV. SIMULATION STUDY

In this section, we conduct numerical simulation to analyse
the performance of the OGLL method. First, based on blocky
phantoms, we compare OGLL with standard Tikhonov reg-
ularization [47], Structure-Aware Sparse Bayesian Learning
(SA-SBL) [27], Kernel Method [39], and the dual-modal
algorithm in [37] (named KMGS in this paper), and discuss
the properties of the OGLL. Moreover, the performance of
the given algorithms are compared based on thorax imaging.
For a fair comparison, ADMM optimization for KMGS is
implemented the same as in OGLL while the grouping method
remains identical to that in the original paper.

A. Quantitative Metrics

Image Relative Error (Err) and Mean Structural Similarity
Index (MSSIM) [48] are selected as image quality indicators.

Err measures the accuracy of conductivity estimation of an
algorithm, which is defined as:

Err =
||σest − σtrue||
||σtrue||

, (24)

where σest and σtrue are estimated and ground truth con-
ductivity vectors, respectively. MSSIM measures the structure
preservation, which is defined by:

MSSIM =
1

N

∑
n

(2µestµtrue + Γ1) (2δest,true + Γ2)

(µ2
est + µ2

true + Γ1)
(
δ2est + δ2true + Γ2

) ,
(25)

where µest = µest(n) and µtrue = µtrue(n) denote the local
means of the nth pixel, and δest = δest(n) and δtrue = δtrue(n)
stand for the standard deviation of the nth pixel for the
estimated conductivity change image and the ground truth
image sequentially. δest,true = δest,true(n) accounts for the cross
covariance between the estimated conductivity change image
and the ground truth image at the nth pixel. Γ1 = (U1B)2

and Γ2 = (U2B)2 are constants, where U1, U2 and B are set
as 0.01, 0.03 and 1 respectively. More details of MSSIM can
refer to [48].

B. Blocky Phantom Imaging

1) Modelling: We modelled the 16-electrode EIT sensor and
added various inclusions as imaging targets. The resulting
three types of conductivity distributions are labelled as case 1,
case 2 and case 3. The simulated true conductivity images are
illustrated in the first column of Fig. 3 and they correspond
to case 1 ∼ 3 sequentially from top to bottom. For all cases,
the background conductivity is set to 2 S/m. There are two
rectangular inclusions for case 1. The conductivity of the left
rectangle is set to 3.2 S/m and that of the right rectangle is set
to 1.4 S/m. Case 2 simulates a huge circular inclusion whose
conductivity is set to 0.5 S/m. For case 3, the conductivity
of the uppermost smallest circular inclusion is set to 1.4 S/m.
Starting from the rightest inclusion, the conductivity of the
rest four inclusions are clockwise set to 1.4 S/m, 0.4 S/m, 0.9
S/m and 0.9 S/m. The auxiliary images are also simulated by
assigning digit 1 to pixels of the inclusions and the background
pixels are set to 0.5. The generated auxiliary images are
illustrated in the first row of Fig. 4.
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Ground Truth Tikhonov SA-SBL Kernel Method KMGS OGLL-GOA OGLL-NGOA

Err

MSSIM

0.6749

0.1386

0.5764

0.8241

0.3835

0.7660

0.2545

0.9416

0.3837

0.9404

0.0994

0.9945

Err

MSSIM

0.4487

0.2324

0.5276

0.5153

0.1939

0.8300

0.3060

0.8731

0.2920

0.8970

0.1325

0.9745

0.6706

0.2120

0.7585

0.4492

0.4130

0.6630

0.3989

0.8309

0.3015

0.9214

0.1158

0.9886

Err

MSSIM

Fig. 3. Image reconstruction results based on blocky phantoms. Images from top to bottom correspond to case 1, case 2 and case 3, respectively.
For case 1, the number of groups is 47 for OGLL-NGOA and is 76 for OGLL-GOA; for case 2, the number of groups is 47 for OGLL-NGOA and is
360 for OGLL-GOA; and for case 3, the number of groups is 201 for OGLL-NGOA and is 3228 for OGLL-GOA.

Fig. 4. Images in the first row are simulated auxiliary images and
those in the second row are results of modified K-Means in KMGS. The
number of clusters is 20, 30, and 25 for case 1, case 2 and case 3
respectively.

2) Parameter Settings: Parameters for each algorithm are
selected based on trials to obtain the results as best as possible.
The regularization parameters of Tikhonov regularization are
set as 0.00001, 0.0001, and 0.0003 for case 1, case 2, and case
3, respectively. For SA-SBL, the maximum iteration number,
tolerance, and cluster size are set as 5, 10−5, and 4 for all
cases. The pattern coupling factors are set as 0.3, 2, and
0.8 for cases 1, 2, and 3 sequentially. For Kernel Method,
all parameters are the same for the three cases. The feature
window size and the search window size are set as 3 and 21,
respectively. The number of nearest neighbors kNN is set as
441, and the variance of the Gaussian kernel is fixed as 20.
In addition, the maximum iteration number is set as 500, and
the iteration step for the gradient is selected as 10. For all
cases, KMGS takes the same weighting parameter (0.01) for
modified K-Means clustering, and the number of clusters is

Group 1 Group 16 Group 25 Group 36 Group 39

Group 1 Group 35 Group 66 Group 214Group 170

Fig. 5. Examples of grouping results of OGLL. The first row is part of
the results based on the parameters of case 1 of OGLL-NGOA in Table
I and there are 47 groups in total. The second row is part of the results
based on the parameters of case 2 of OGLL-GOA in Table I and there
are 360 groups in total. For each image, pixels in the white region belong
to the same group. Pink curves represent the boundaries of inclusions.

set to 20, 30, and 25 for cases 1, 2, and 3.

In later discussions, we group conductivities based on two
types of search windows. One type of search windows usually
causes the GOA phenomenon if we set θ to 0. The results
based on this type of search windows are labeled as OGLL-
GOA. The other type of search windows will not result in
the GOA phenomenon if we set θ to 0, and the results are
labeled as OGLL-NGOA. Usually, the search window size of
OGLL-NGOA is larger than that of OGLL-GOA. When we
mention OGLL, we refer to both OGLL-GOA and OGLL-
NGOA. For a specific case, parameters for OGLL-GOA and
OGLL-NGOA are usually different. Detail settings of OGLL-
GOA and OGLL-NGOA and parameters of KMGS (except the
number of clusters and the weighting parameter) are illustrated
in Table I.
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Fig. 6. 1D profile comparison for case 1. (a) shows 1D profiles on the
horizontal line across the center of the imaging region. Both (b) and (c)
display the 1D profiles on the vertical line across the imaging region
center. All images share the same legend. The curve of OGLL-NGOA is
invisible in (b) because it is hidden by other curves.
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Fig. 7. GOA phenomenon in OGLL-GOA for case 1 and case 2 at
selected iteration steps (1, 10, 100, 1000). For numbers under each
image, the top one is Err and the bottom one is MSSIM.

M
SS

IM

Er
r

SNR (dB)

(a) (b)

SNR (dB)

OGLL-NGOA OGLL-GOA Kernel Method Tikhonov SA-SBL KMGS

Fig. 8. Voltage noise resistance ability comparison: Err and MSSIM
change with different SNRs. The plots share the same legends.

3) Results and Discussion: Fig. 3 compares OGLL with
selected algorithms on the three cases. The voltage data is
noise-free. The clustering results of the KMGS are shown in
the second row of Fig. 4. Part of grouping results of OGLL
is illustrated in Fig. 5. The results show the performance
of single-modal based algorithms is generally inferior to the
multi-modal based algorithms. This situation is indicated by
visualization and quantitative metrics, i.e. the Err and MSSIM.
The reason is that multi-modal methods utilize complementary
information from other imaging modalities, mitigating the ill-

Case 1-OGLL-NGOA

Case 1-OGLL-GOA

Case 2-OGLL-NGOA

Case 2-OGLL-GOA

Case 3-OGLL-NGOA

Case 3-OGLL-GOA

Fig. 9. Convergence curves: Err and MSSIM change with iterations.

posedness of the EIT inversion. Fig. 6 compares 1D profiles
of case 1 of different algorithms. The results further visually
demonstrate dual-modal methods are generally superior to
single-modal methods. Among dual-modal methods, OGLL-
NGOA achieves the best performance. OGLL-GOA also show
a better BA suppression and competitive structure preservation
ability compared to other algorithms. The quality of the
reconstructed inclusions based on OGLL-GOA is similar to
those based on Kernel Method and KMGS, while OGLL-GOA
performs better than Kernel Method and is akin to KMGS
on BA suppression. Nevertheless, quantitative metrics indicate
the performance of both OGLL-GOA and OGLL-NGOA is
generally superior than other given algorithms.

We demonstrate the effect of Laplacian regularization based
on cases 1 and 2. Usually, the EIT image can be reconstructed
well based on OGLL-NGOA. The reconstructed images of
cases 1 and 2 based on OGLL-NGOA are shown in the
seventh column of the Fig. 3. However, when we set θ = 0
and keep other parameters for OGLL-GOA, GOA appears
(see Fig. 7). The GOA originated from the search window
size can hardly be eradicated by tuning other parameters
and the results also show that such a phenomenon remains
when iteration increases. Reconstructed images of OGLL-
GOA with activated Laplacian regularization are displayed in
the sixth column of the Fig. 3. These results indicate that
Laplacian regularization mitigates the issue of GOA while
the image quality degrades.The degradation of image quality
is reasonable because the Laplacian regularization not only
’punishes’ the GOA but also blurs edges of the inclusions.
Nevertheless, it is conspicuous that OGLL provides flexible
and controllable grouping and reconstruction strategies, and
the Laplace regularization guarantees an accepted reconstruc-
tion when encountering the GOA.

Based on case 3, Fig. 8 compares the voltage noise re-
sistance ability of algorithms. We set a serials of different
SNRs for voltage data and display the Err and the MSSIM
of given algorithms. The results demonstrate OGLL can resist
the widest range of SNRs meanwhile maintaining best metric
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Fig. 10. Err and MSSIM variation with s and q change for OGLL-NGOA
and OGLL-GOA.

values, which indicates the proposed OGLL has the best
performance on voltage noise resistance.

The convergence analysis of OGLL are illustrated in Fig.
9. We observe that Err decreases with iterations and MSSIM
increases with iterations, indicating the correct convergence
property of the OGLL. However, oscillations exist due to two
reasons. First, ADMM-based algorithms are not guaranteed
monotonically decreasing [49]. Second, we use one-step gra-
dient descent with fixed step length to solve the σ-subproblem,
which increases the possibility of having oscillation. Conver-
gence curves vary with different cases since they are related
to true conductivity distributions.

Fig. 10 takes case 1 as an example to analyse the influence
of q and s on OGLL-NGOA and OGLL-GOA. Suppose
suitable fn, ι and φ are defined, among OGLL parameters, s
and q determine the grouping result, and further influence the
reconstruction quality. Fig. 10 displays the Err and MSSIM
variation with q or s meanwhile freezing other parameters.
The results show there is a relatively wide range to select q
or s while retaining a satisfactory result, indicating reduced
complexity of parameter tuning.

There are several parameters to be tuned in OGLL. There-
fore, it is worth introducing the parameter tuning experience.
In this work, we adopt fixed η1, η2, tmax, ϑ and φ, and always
set the same values for β1 and β2. Only s, q, θ, α, and β1
(or β2) require tuning. The initial value of s is set according
to the inclusion’s size in the auxiliary image and q is set
to (s − 1)/2 to make groups partially overlap. In this study,
the algorithm works correctly when we set the initial β1 and
β2 both to 5. For both OGLL-NGOA and OGLL-GOA, the
initial θ is set to 0. The next step is to select a reasonable
starting point of α. One can begin from a large value, e.g.
100, and gradually decrease α by a factor of 0.1 until the
quality of the reconstructed image improves with the increase
of iterations. 0.01 is always selected as the initial α in this
study. Afterwards, each parameter should be carefully tuned
by the method of control variables.

Fig. 11. The left image is the simulated CT image of the thoracic cross
section and the right image is the simulated true thoracic EIT image.

C. Thoracic Imaging

1) Modelling: We modelled a cross-section of the human
thorax to evaluate the performance of OGLL (see Fig. 11). Re-
fer to [36], the surface contact impedance between electrodes
and human skin is 10−4 Ω ·m−1, and the left image of the
Fig. 11 is the modeled CT image with 100 doses. Refer to [7],
the background conductivity, the conductivity of lungs and the
heart are set to 0.24 S/m, 0.1 S/m and 0.5 S/m, respectively.
The ground truth image is the right image of Fig. 11.

2) Parameter Settings: Parameter settings are based on trial
and error. For Tihkonov regularization, the regularization pa-
rameter is set to 0.0005. For SA-SBL, the maximum iteration
number, tolerance, the cluster size, and the pattern coupling
factor are set as 5, 10−5, 4 and 0.16, respectively. For Kernel
Method, the search window size and variance of the Gaussian
kernel are set as 37 and 10, respectively. Other parameters are
the same as those in the blocky phantom study. The weighting
parameter for modified K-Means clustering in KMGS is 0.001

0.3914
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0.5721

0.2314

0.5481

0.4607

0.5244

0.4803

0.5184

0.5513
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0.7561
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Fig. 12. Comparison of thoracic EIT image reconstruction. (a) ∼
(f) sequentially correspond to results of Tikhonov regularization, SA-
SBL, Kernel Method, KMGS, OGLL-GOA and OGLL-NGOA. For (d)
the left image is the reconstruction and the right is the result of K-
Means clustering. There are 15 clusters. For (e), the left image is
the reconstruction with Laplacian regularization and the right one is
the reconstructed image without Laplacian regularization. For numbers
under the result of each algorithm, the upper one is Err and the lower
one is MSSIM. There are 138 groups for both OGLL-NGOA and OGLL-
GOA.
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and the number of clusters is 15. Other parameters of KMGS
and parameters of OGLL-NGOA and OGLL-GOA are given
in Table II. Parameters not shown in Table II are the same as
those in Table I.

3) Results and Discussion: The reconstructed EIT images
and quantitative metrics are shown in Fig. 12. The result
of SA-SBL is poor. There are two main reasons. First, BA
is severe for the irregular sensing region. Second, SA-SBL
is more suitable for sparse conductivity distribution rather
than non-sparse situations. The Kernel method reconstructs the
most homogeneous lungs and heart among given algorithms
while non-sparse background is noticeable. These phenomena
are also clearly indicated in Fig. 6. For Fig. 12 (e), GOA
is alleviated by the Laplacian regularization, which is con-
sistent with the blocky phantom study. Compared with other
algorithms, OGLL-NGOA and OGLL-GOA present superior
performance, evidenced by quantitative metrics. Especially,
OGLL-NGOA and OGLL-GOA recover the most accurate
conductivity contrast levels, by comparing the color distribu-
tion of the reconstructed image with the ground truth.

V. REAL-WORLD EXPERIMENTS

A. Phantom Fabrication and Data Collection

In experiments, we used phosphate buffered saline as the
reference conductivity (1.898 S/m). A total of five objects
were selected and added to the imaging region into three
groups labelled as case 1, case 2 and case 3 from top to
bottom in the first column of Fig. 13. The first object is
a conductive hexagonal prism (red arrow in figure), whose
conductivity is higher than the saline. The other objects
are either non-conductive regular prisms/cylinders or non-
conductive irregular prisms/cylinders, whose conductivities are
lower than saline. Non-conductive objects were fabricated
using stereolithography (SLA) with black resin (FormLabs
Inc., MA).

EIT data were collected using the Edinburgh EIT system
[50]. The adjacent strategy was adopted [51] and the frequency
of the excitation current was 10 kHz. A digital camera placed
over the EIT sensor was used to collect the auxiliary images.
The direct outputs of the camera are RGB images. We first
converted them into gray-scale images (we call them original
auxiliary images). We down-sampled the original auxiliary
images into the EIT image size to acquire the expected
auxiliary images. The original auxiliary images are illustrated
in the first row of Fig. 14.

B. Parameter Settings
Parameter selection for each algorithm is based on trial

and error. For all experiments, the Tihkonov regularization
parameter is set to 0.005. For SA-SBL, the maximum iteration
number, tolerance, the cluster size, and the pattern coupling
factor are set as 5, 10−5, 4 and 0.03 for all cases. Regarding
the Kernel Method, variances of the Gaussian kernel are set to
18, 3 and 3 for case 1, case 2 and case 3 respectively. Other
parameters are the same as those described in 2)-B, Section
IV. The number of clusters for modified K-Means in KMGS
is 30 for all cases and the values of the weighting parameter
are 0.08, 0.08 and 0.065 for case 1, 2, and 3, respectively.
Parameters of OGLL and KMGS related to ADMM are given
in Table III. Parameters not shown in Table III are the same
as those in Table I.

C. Results and Discussion
Fig. 13 shows the EIT image reconstruction results. The

clustering results of KMGS are given in the second row of
Fig. 14. In Fig. 13, there are two columns for OGLL-GOA.
The left column is the reconstructed images with the Laplacian
regularization and the right column is the reconstructed images
without the Laplacian regularization. Compared with dual-
modal methods, single-modal algorithms have less ability
on structure preservation. Similarly to the simulation, the
kernel method can reconstruct phantoms with homogeneous
conductivity distribution but has limitations in eliminating the
BA. The KMGS performs better than the kernel method while
it is inferior to OGLL-NGOA, which can be indicated by the
homogeneity of the background and objects. For OGLL-GOA,
when we set the θ to non-zero numbers, the GOA is reduced.
These experimental results further prove the effectiveness
of the Laplacian regularization to mitigate the GOA though
losing part of structural information. Nevertheless, OGLL-
GOA generates EIT images close to the ground truth.

It is noticeable the boundaries in the auxiliary images are
distinct in simulation and real experiments in this study. Good
structural image quality could usually be gained for common
auxiliary imaging modalities, such as CT and optical imaging.
Therefore, fn and ι adopted in this work can perform well in
these situations. However, when the boundaries in the auxiliary
images are not clear, fn and ι used in this work may lead to
inaccurate grouping. Therefore, new definitions of fn and ι
should be investigated.

VI. CONCLUSION

This paper proposes a segmentation-free dual-modal EIT
image reconstruction algorithm named OGLL. OGLL inte-
grates the structural information of the auxiliary image into
EIT inversion through overlapping group lasso. Combining
the overlapping group lasso with Laplacian regularization,
the choice range of the grouping parameters is expanded.
Simulation studies and real-world experiments demonstrate the
superiority of the proposed OGLL on improving the EIT image
quality in terms of structure preservation, background artifact
suppression, and conductivity contrast differentiation. Future
work will extend this method to 3D image reconstruction and
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Experimental Results

Fig. 13. Image reconstruction results based on experimental data. Results from top to bottom corresponds to case 1, case 2 and case 3
sequentially. Conductive hexagonal prism is indicated by red arrow. For both case 1 and case 2, the number of groups is 47 for OGLL-NGOA
and is 201 for OGLL-GOA; and for case 3, the number of groups is 47 for OGLL-NGOA and is 129 for OGLL-GOA.
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Fig. 14. Images in the upper row are original auxiliary images and those
in the lower row are results of modified K-Means of KMGS.

explore its application in 3D cell culture imaging. In addition,
fn and ι definitions for various auxiliary imaging modalities
will also be comprehensively investigated in the future.

APPENDIX

In EIT, the voltage changes ∆V ∈ RM on the boundary
electrodes are related to the conductivity changes ∆σ ∈ RN

from a reference homogeneous conductivity distribution by the
following expression:

∆V = J∆σ, (26)

where ∆V = Vo − Vr and ∆σ = σo − σr. J ∈ RM×N

stands for the ordinary sensitivity matrix, which is readily
expressed as [52]:

J (jτϱ, v) = −
∫
℧v

∇uτ (p) · ∇uϱ(p)dω, (27)

where uτ (p) and uϱ(p) represent the electrical potential distri-
bution in ℧ when the current is injected into the electrode pair
(eτ , eτ+1) and (eϱ, eϱ+1), respectively. τ or ϱ = 1, 2, ..., E,

and we define eE+1 := e1. jτϱ represents (jτϱ)th measurement
and ℧v denotes the region of the vth simplex.

Consider an assistant time point when the conductivity
distribution σa is homogeneous and the corresponding voltage
data is Va. Below equation also holds:

Va −Vr = J (σa − σr) . (28)

As σa and σr are homogeneous, σa and σr can be
rewritten as: {

σa = 1Nσa

σr = 1Nσr,
(29)

where 1N denotes the column 1-vector with N elements. σa ∈
R and σr ∈ R represent the conductivity values at the assistant
and reference time points, respectively.

Combining (26) ∼ (29), lead to the following relationship:

Vo −Vr

Va −Vr
=

J (σo − σr)

J (σa − σr)

=
J (σo − σr)

J 1N (σa − σr)

= [J ./ (J 1N )]
σo − σr

σa − σr
,

(30)

where ’./’ means each element in a row of J , e.g. the mth row,
is divided by the mth element of J 1N . We denote J ./ (J 1N )
as J, and (30) becomes:

Vo −Vr

Va −Vr
= J

σo − σr

σa − σr
. (31)

Suppose σa = ζσr, then Va = 1
ζVr, where ζ ∈ R+.

Therefore, (31) is converted into:

Vo −Vr

Vr
=

1− ζ
ζ2 − ζ

J
σo − σr

σr
. (32)
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When ζ → 1:

Vo −Vr

Vr
=

(
lim
ζ→1

1− ζ
ζ2 − ζ

)
J
σo − σr

σr

= −Jσo − σr

σr

= −Jσo − σr

σr
.

(33)

It is readily acquiring the equation:

−Vo −Vr

Vr
= J

σo − σr

σr
. (34)

Therefore, (6) holds.
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