
        

Citation for published version:
Zhu, L, Lu, W, Soleimani, M, Li, Z & Zhnag, M 2023, 'Electrical Impedance Tomography Guided by Digital Twins
and Deep Learning for Lung Monitoring', IEEE Transactions on Instrumentation and Measurement, vol. 72,
4009309. https://doi.org/10.1109/TIM.2023.3298389

DOI:
10.1109/TIM.2023.3298389

Publication date:
2023

Document Version
Peer reviewed version

Link to publication

© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
users, including reprinting/ republishing this material for advertising or promotional purposes, creating new
collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this
work in other works.
https://doi.org/10.1109/TIM.2023.3298389

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 05. Aug. 2024

https://doi.org/10.1109/TIM.2023.3298389
https://doi.org/10.1109/TIM.2023.3298389
https://researchportal.bath.ac.uk/en/publications/60157ba7-981f-4e3f-a2db-6367ace3698d


> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

1 

  
Abstract— In recent years, there has been an increasing interest 

in applying electrical impedance tomography (EIT) in lung 
monitoring, due to its advantages of being non-invasive, non-
ionizing, real-time, and functional imaging with no harmful side 
effects. However, the EIT images reconstructed by traditional 
algorithms suffer from low spatial resolution. This paper proposes 
a novel EIT-based lung monitoring scheme by using a 3D digital 
twin lung model and a deep learning-based image reconstruction 
algorithm. Unlike the static numerical or experimental 
simulations used in other data-driven EIT imaging methods, our 
digital twin lung model incorporates the biomechanical and 
electrical properties of the lung to generate a more realistic and 
dynamic dataset. Additionally, the image reconstruction neural 
network (IR-Net) is used to learn the prior information in the 
dataset and accurately reconstruct the conductivity variation 
within the lungs during respiration. The results indicate that EIT 
using a guided digital twin and deep learning-based image 
reconstruction has better accuracy and anti-noise performance 
compared to traditional EIT. The proposed EIT imaging 
framework provides a new idea for efficiently creating labeled EIT 
data and has potential to be used in various data-driven methods 
for electrical biomedical imaging. 
 

Index Terms—Electrical impedance tomography, lung 
modeling, lung imaging, digital twins, deep learning 
 

I. INTRODUCTION 
he continuous monitoring of the lung is necessary in the 
intensive care unit and for accurate pathological diagnosis 

of lung diseases. Computed tomography (CT) is the routine 
imaging method used to assess lung aeration, but critically ill 
patients in emergency situations must be transported to a 
radiology facility, resulting in radiation exposure and making it 
unsuitable for continuous lung condition monitoring [1]. 
Electrical impedance tomography (EIT) is an emerging non-
invasive and radiation-free imaging method that has been 
successfully used to monitor regional lung function in real-time 
at the bedside, enabling clinical decision making with CT 
images. EIT reconstructs the variation of conductivity within 
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the human body by applying safe electric currents through 
electrodes on the body surface and measuring the voltages [2-
4]. However, the inverse problem in EIT image reconstruction 
is highly ill-posed, limiting the spatial resolution of EIT images. 
To improve spatial resolution, data-driven methods have been 
introduced in recent years. Liu et al. [5-7] proposed a series of 
sparse Bayesian learning methods to efficiently solve the 
inverse problem of EIT by exploiting the structured sparsity in 
the conductivity distribution. As for absolute EIT imaging, 
Hamilton et al. [8, 9] reported the deep D-bar method based on 
convolutional neural networks that can lead to sharp and 
reliable reconstructions even for the highly nonlinear inverse 
problem of EIT. Besides, Seo et al. [10] used a variational 
autoencoder to learn prior information from training datasets, 
converting the ill-posed problem in EIT image reconstruction 
into a well-posed one, and validating the effectiveness and 
feasibility of their approach through numerical simulations. Ren 
et al. [11] proposed a two-stage deep learning method that can 
achieve high accuracy shape reconstructions with strong 
robustness. Zhang et al. [12] developed a supervised descent 
learning algorithm for thoracic EIT, which is effective for 
image reconstruction of EIT and can accelerate the imaging 
time.  

Data-driven methods have shown great potential in the field 
of lung EIT. By training, prior information in the dataset can be 
integrated into data-driven algorithms to improve imaging 
results. Therefore, the quality of the dataset is essential for the 
performance of data-driven methods. However, obtaining 
labeled training data for EIT is difficult in practice, so 
simulation data is commonly used to train networks, such as the 
2D data created from 2D chest CT scans [11, 13, 14] and the 
phantom images with random ellipses [12, 15]. One way to 
collect more accurate labelled data is building 3D thorax model 
from CT images [16]. However, using this method is time-
consuming as it requires repeated extraction and postprocessing 
of lung states during the dynamic respiratory process from CT 
images. Additionally, the number of available 4D chest CT 
datasets is currently limited, making it difficult to collect 
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sufficient data for training data-driven algorithms. 
Digital twin technology, which uses real-world data to create 

a virtual replica of physical objects, has been rapidly growing 
in popularity, particularly in the medical field [17-19]. By using 
digital twin models, dynamic changes in objects can be 
accurately predicted, which has been used for multiphase flow 
imaging by electrical tomography [20]. This technology is 
expected to have the ability to create labeled lung EIT data more 
efficiently. In this paper, we build digital twin models of lungs 
that incorporate both biomechanics and electric fields to enrich 
the dataset for data-driven algorithms. The first step is building 
the digital twin lung models in biomechanical field, which is a 
proved method to formulate respiratory motion and predict the 
process of lung ventilation effectively in radiation therapy [21-
25]. The geometry is built from 3D CT images, and the motion 
of the lung can be predicted by the finite element analysis (FEA) 
after solving the corresponding discretized equations. The 
second step is to set the electrical properties for the lung and 
adding the electrodes around the thorax in electric field. Then, 
after injecting electric current through the electrodes, the 
voltage measurements of EIT during the dynamic respiratory 
process can be simulated based on the digital twin model. This 
allows us to create a lung EIT dataset with labeled electrical 
properties and geometry information for use in data-driven 
image reconstruction methods. 

In this paper, we propose a framework that uses digital twin 
models to create training datasets and deep learning-based 
image reconstruction networks to reconstruct EIT images. This 
framework has two main advantages: 

1) Using digital twin lung models to create the dataset allows 
us to collect more simulated data from limited CT images and 
provide a new way to create labeled data that is closer to reality. 
Additionally, the lung models are built based on CT images at 
end-exhalation and end-inhalation, rather than on the entire 4D 
CT scan, which reduces radiation exposure for patients 

compared to using 4D CT images. 
2) The proposed image reconstruction network (IR-Net) is 

designed based on the U-Net structure and is trained on the 
dataset created by the digital twin lung models. Using IR-Net, 
lung EIT images can be obtained without requiring a patient's 
specific sensitivity matrix. It should be noted that other data-
driven methods can also adopt the proposed imaging 
framework. In this paper, the IR-Net structure has been selected 
because its better performance when limited data is available. 

The rest of the paper is organized as follows: Section II 
introduces the imaging framework, Section III describes the 
dataset and training details of the network, Section IV discusses 
the reconstruction results, and Section V presents conclusions 
and future work. 

 

II. METHODOLOGY 

A. Method Overview  
The proposed framework contains three main parts, as shown 

in Fig. 1. First, end-exhalation and end-inhalation CT images 
from a real-world CT scan are used to generate a lung motion 
model. Once EIT electrodes are added to the model and the 
electrical properties are set up, the complete digital twin model 
is established and the voltage measurements during the 
respiratory process can be simulated. By building adequate 
digital twin lung models, a virtual dataset consisting of EIT 
measurements and corresponding lung information can be 
generated and used for network training. Through the proposed 
image reconstruction network, more accurate predicted images 
for lung monitoring can be obtained based on real-world 
measurements. 

 

B. Lung Motion Model 
The respiratory motion is modeled as a contact problem in 

this paper. According to [26], the limiting geometry from end-

 

Fig. 1 The proposed imaging framework. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

3 

inhalation CT images are used as contact conditions to constrain 
the expansion of the lung (shown in Fig. 2). A uniform negative 
pressure is applied to the lung surface to make the lung expand 
until it fills the limiting geometry. The root of the lung is 
assumed to be fixed during the breathing. 
1) Segmentation 

The 3D CT images are segmented using 3D Slicer, an open 
source software platform for medical and related imaging 
research [27]. Taking the influence of other organs, such as the 
heart, into consideration can improve the modeling accuracy. 
However, this paper focuses on reconstructing the images of 
lungs, thus only the region of the lungs was segmented.  

The lung segmentations from the end-inhalation CT images 
and end-exhalation CT images are used to formulate the contact 
problem. Besides, the thorax of end-exhalation CT images is 

segmented to indicate the thorax region. The geometry model 
formed by the segmentations is showed in Fig. 3. 
 
2) Modeling Approach 

For simplicity, the lung is modeled as linear, homogeneous, 
and isotropic elastic tissue, and only the lung expansion motion 
is simulated. Different values of biomechanical parameters are 
used in previous studies depending on the variations in 
simulation conditions. By referring to the study in [26], the 
Young’s modulus E and Poisson’s ratio v in this paper is fixed 
at 1 kPa and 0.3, respectively.  

Root of the lung is supposed to be fixed, so the surface nodes 
in this area follow Dirichlet boundary conditions, and the other 
nodes in the deformed geometry follow the stress boundary 
conditions: 

 

𝑢𝑢(𝑥𝑥) = 0, 𝑥𝑥 ∈ Γ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∪ Γ𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 (1) 

𝛿𝛿(𝑥𝑥)𝑛𝑛(𝑥𝑥) = �𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�𝑛𝑛(𝑥𝑥), 𝑥𝑥 ∈ Γ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  (2) 
 
where 𝑢𝑢(𝑥𝑥) is the displacement vector at the point 𝑥𝑥. 𝛿𝛿(𝑥𝑥) and 
𝑛𝑛(𝑥𝑥) is Cauchy stress and the outward pointing normal vector 
at the point 𝑥𝑥 , respectively. The 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  represents the 
intrapleural pressure applied to the deformed surface. The 
𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  represent the contact pressure. The lung motion is 
modeled as a frictionless contact problem, which means: 
 

𝑔𝑔 ≥ 0 
𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≤ 0 

𝑔𝑔 ⋅ 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 0 
(3) 

 
where 𝑔𝑔 denotes the gap between the deformed lung and the 
limiting geometry. When the gap is positive, the contact 
pressure is zero. Otherwise, the contact pressure is nonzero to 
prevent the expansion of the deformed lung. 

By referring to the study in [21], estimated intrapleural 
pressure difference Δ𝑃𝑃 between the end-exhalation phase and 
the end-inhalation phase of each patient is calculated in 
equation (4): 
 

Δ𝑃𝑃 =
𝑉𝑉𝑙𝑙 − 𝑉𝑉𝑖𝑖
𝑉𝑉𝑖𝑖

⋅
𝐸𝐸

3(1− 2𝜈𝜈) (4) 
 
where 𝑉𝑉𝑙𝑙  is the volume of the limiting lung geometry and 𝑉𝑉𝑖𝑖 is 
the volume of the initial lung geometry. To make the deformed 
lung fully close to the end-inspiration geometry (i.e., reaching 
a volume ratio of at least 0.99), the applied intrapleural pressure 
will be adjusted accordingly. 

As shown in Fig. 4, by building the lung motion model 
through this modeling approach, the whole dynamic lung 
motion during the inhalation can be simulated based on the CT 
images at the end-exhalation and end-inhalation moment. 
 

C. Electrical Impedance Tomography 
The 16-electrode EIT sensor is used in this work. The EIT 

sensor is placed between the 4th and 6th intercostal space [28]. 
The conventional adjacent protocol excitation strategy was 

 

Fig. 4 The simulated dynamic states of the lung 

 

Fig. 2 Illustration of the respiratory motion model 

 

 

Fig. 3 The geometry of the respiratory motion model 
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adopted, where a complete scan comprises 208 voltage 
measurements [29, 30]. The complete electrode model (CEM) 
is used to solve the forward model of EIT [31], which can be 
expressed as: 

 

∇ ⋅ �𝜎𝜎(𝑝𝑝)∇𝜙𝜙(𝑝𝑝)� = 0, 𝑝𝑝 ∈ Ω (5) 

𝜙𝜙(𝑝𝑝) + 𝑧𝑧𝑙𝑙𝜎𝜎(𝑝𝑝)
𝜕𝜕𝜕𝜕(𝑝𝑝)
𝜕𝜕𝜕𝜕 = 𝑈𝑈𝑙𝑙 ,𝑝𝑝 ∈ 𝑒𝑒𝑙𝑙 , 𝑙𝑙 = 1,2, … , 𝐿𝐿 (6) 

𝜎𝜎(𝑝𝑝)
𝜕𝜕𝜕𝜕(𝑝𝑝)
𝜕𝜕𝜕𝜕 = 0,𝑝𝑝 ∈ ∂Ω\�𝑒𝑒𝑙𝑙

𝐿𝐿

𝑙𝑙=1

 (7) 

� 𝜎𝜎(𝑝𝑝)
𝜕𝜕𝜕𝜕(𝑝𝑝)
𝜕𝜕𝜕𝜕 = 𝐼𝐼𝑙𝑙

𝑒𝑒𝑙𝑙
 (8) 

�𝐼𝐼𝑙𝑙

𝐿𝐿

𝑙𝑙=1

= 0,�𝑈𝑈𝑙𝑙

𝐿𝐿

𝑙𝑙=1

= 0 (9) 

 
where the 𝑝𝑝 is the point inside the sensing area Ω; 𝜙𝜙(𝑝𝑝) and 
𝜎𝜎(𝑝𝑝) denote the potential and conductivity at 𝑝𝑝 respectively; 𝑧𝑧𝑙𝑙 
is the contact impedance between the electrodes and the body; 
n is outward unit normal vector to ∂Ω; 𝑈𝑈𝑙𝑙 and 𝐼𝐼𝑙𝑙 is the electrical 
potential and injected current on the electrode 𝑒𝑒𝑙𝑙 ; 𝐿𝐿  is the 
number of electrodes.  

When the current is driven though the j-th pair of adjacent 
electrodes (𝑒𝑒𝑗𝑗, 𝑒𝑒𝑗𝑗+1), the voltage difference between the k-th 
pair of adjacent electrodes (𝑒𝑒𝑘𝑘 ,𝑒𝑒𝑘𝑘+1) is: 

 

𝑈̇𝑈𝑗𝑗,𝑘𝑘 = 𝑈𝑈𝑘𝑘
𝑗𝑗 − 𝑈𝑈𝑘𝑘+1

𝑗𝑗  (10) 
 
All the 𝑈̇𝑈𝑗𝑗,𝑘𝑘  for combinations of 𝑗𝑗,𝑘𝑘 ∈ [1, … ,16] and 𝑗𝑗 ≠ 𝑘𝑘 

will be measured, and the convention 𝑒𝑒17 = 𝑒𝑒1 is used.  
The complete digital twin models can be built after combing 

the EIT sensing system with the numerical lung model. Thus, 
the electrical potential distribution of the dynamic lung model 
can be obtained. For instance, the electrical potential 
distributions of the model at the initial and final state of 
inhalation when the first electrode pair is excited are illustrated 
in Fig. 5. 

Time-difference EIT is applied in this paper, so we use the 
difference between two complete measurements to reconstruct 
images: 

 

𝑼̇𝑼 = 𝑼̇𝑼𝑡𝑡 − 𝑼̇𝑼𝑡𝑡0 (11) 
 
where 𝑼̇𝑼𝑡𝑡 , 𝑼̇𝑼𝑡𝑡0 ∈ ℝ

𝐿𝐿(𝐿𝐿−3) is the complete measurements at time 
𝑡𝑡 and reference time (i.e., end-exhalation) 𝑡𝑡0 respectively. 

For traditional EIT algorithms, the distribution of 
conductivity variation 𝑮̇𝑮 can be reconstructed by solving the 
inverse problem of EIT. This is usually formulated as an 
optimization problem: 
  

min
𝑮𝑮
�‖𝑼̇𝑼 − 𝑺𝑺𝑮̇𝑮‖2 + 𝜁𝜁 ∙ 𝑙𝑙�𝑮̇𝑮�� (12) 

 
where 𝑺𝑺  is the sensitivity matrix; 𝑙𝑙(∙)  and 𝜁𝜁 ∈ ℝ  denote the 
regularization function and parameter, respectively. Many 
traditional algorithms have been applied to solve this problem, 
such as Newton–Raphson (NR) method [32]. When 𝑙𝑙(∙) adopts 
Tikhonov regularization, the NR method can be described as: 
 

𝑮̇𝑮�𝑘𝑘+1 = 𝑮̇𝑮�𝑘𝑘 − (𝑺𝑺𝑇𝑇𝑺𝑺+ 𝜁𝜁𝑰𝑰)−1𝑺𝑺𝑇𝑇(𝑺𝑺𝑮̇𝑮�𝑘𝑘 − 𝑼̇𝑼) (13) 
 

D. Image Reconstruction Network 
U-Net has been developed for biomedical image 

segmentation, where it can work with few training images and 
yields more precise segmentations [33]. Based on the U-Net 
structure, we proposed an image reconstruction neural network 
(IR-Net), whose network structure is shown in Fig. 6. To better 
solve the specific problem in this paper, the downsampling 
steps and upsampling steps in the original U-Net architecture 
are reduced to three in the IR-Net to reduce network parameters 
and prevent overfitting. 

The input of the IR-Net contains the two normalized EIT 
measurements using different normalization methods: 

 

𝑼𝑼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖1 =
𝑼̇𝑼 

 𝑼̇𝑼𝑡𝑡0
 (14) 

𝑼𝑼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2 =
𝑼̇𝑼

𝑼̇𝑼𝑡𝑡𝑙𝑙 − 𝑼̇𝑼𝑡𝑡0
 (15) 

 
where 𝑼̇𝑼𝑡𝑡𝑙𝑙  is the EIT measurements at end-inhalation time 𝑡𝑡. 
The first channel of the input is 𝑼𝑼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖1, which contains the 
conductivity variation information. Besides, for lung 
monitoring, the relative conductivity variation during the whole 
respiratory period is also important. So, the second channel of 
the network input is designed as 𝑼𝑼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2 to provide the relative 
conductivity variation information during the whole respiratory 
period. Because the second part of the input is susceptive to 
noises, the Sigmoid layer is used to reduce the influence of 
outliers. The fully connected (Fc) layer is used to obtain the 
initial images (64×64 pixels) from the two channels of input 
respectively. To demonstrate the effectiveness of adding 
𝑼𝑼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖2 , the reconstructed results of the IR-Net with two-

 

(a)                                                    (b) 

Fig. 5 When the first electrode pair is excited, the electrical potential 
distribution of (a) the initial state of inhalation, (b) the final state of 
inhalation 
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channel input and IR-Net with only 𝑼𝑼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖1 input (referred as 
modified U-Net) are listed in the section IV. 

The U-Net structure is used to extract the features in initial 
images from Fc layer. The contracting path (at the top of Fig. 
6) of the modified U-Net contains three downsampling steps. 
Every downsampling step consists of two 3×3 convolutions 
followed by a batch normalization layer and a rectified linear 
unit (ReLU). And the 2×2 max-pooling operation with stride 2 
in each step is adopted to perform the downsampling. At each 
downsampling step, the number of feature channels is doubled. 
The expansive path (in the bottom side of Fig. 6) contains 3 
upsampling steps and the feature maps from contracting path 
are concatenated by jump connections to provide additional 
information. At each upsampling step, 3 × 3 transposed 
convolution is utilized to  double the size of feature maps and 
halve the feature channels. Finally, a 1×1 convolution layer is 
used to obtain the output reconstructed images. The 
conductivity variation in this paper is normalized in the range 
of [0,1], so Sigmoid is selected as the activation function for the 
final convolution layer to output the predicted images.  
 

III. EXPERIMENTS SETUP 

A. Dataset Collection 
The 4D-Lung CT dataset used in this paper comes from the 

Cancer Imaging Archive (TCIA) [34]. This dataset consists of 
20 patients (labeled from 100 to 119), and detailed information 
can be found in [35-37]. the image sets of patients 100-117 are 
used in this paper because the modeling method is not 
appropriate for the lung shape of the last two patients, whose 
lung has missing parts that may have resulted from surgical 
removal. Each CT image set has ten breathing phases (0 to 90%), 
among which the images at 0% (end-inhalation) and 50% phase 
(end-exhalation) are selected to model the respiratory motion. 

In our lung motion model, the inhalation process is divided 
into 21 phases. The first phase, T0, represents the end-
exhalation state and the last phase, T20, represents the end-
inhalation state. The frequency of excitation current in EIT is 
100 kHz, so the conductivity and relative permittivity of end-
exhalation lung tissue is set as 0.26 S/m and 8531.4, 

respectively, whereas the conductivity and relative permittivity 
of end-inhalation lung tissue is set as 0.10 S/m and 4272.5, 
respectively [38]. The electrical properties of the deformed lung 
varied linearly with the volume change:  

 

𝐻𝐻𝑇𝑇 = 𝐻𝐻𝑖𝑖 + (𝐻𝐻𝑙𝑙 − 𝐻𝐻𝑖𝑖) ∗
𝑉𝑉𝑇𝑇 − 𝑉𝑉𝑖𝑖
 𝑉𝑉𝑙𝑙 − 𝑉𝑉𝑖𝑖

 (16) 

 
where 𝐻𝐻𝑇𝑇  is the electrical property (conductivity and 
permittivity) at phase T. 𝐻𝐻𝑖𝑖 and 𝐻𝐻𝑙𝑙 are the electrical properties 
at the end-exhalation phase and the end-inhalation phase 
respectively. And 𝑉𝑉𝑇𝑇  is the volume of the deformed lung at 
phase T. 

The respiratory motion model of patients 100-112 are used 
to generate datasets for training the neural network. To increase 
the amount of data, the following methods are applied: 
1) The electrode groups are placed on two different heights to 

measure the voltages, which is common in the real world 
because the electrode groups are not fixed on a specific 
height. 

2) 5% Gaussian noise is added to the voltage measurements to 
improve the generalization of the proposed network. 

 

Fig. 6 The proposed image reconstruction network 

 

Fig. 7 Flip the original geometry to increase the amount of dataset 
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3) Flip the original geometry and corresponding labels 
horizontally or vertically (shown in Fig. 7). 

After the data augmentation, the training dataset contains 
4368 subsets finally. The data of patient 13-14 without flipping 
are used for validation, containing 168 subsets. And the images 
of patients 15-17 are used for testing, containing 252 subsets. 
 

B. Evaluation Criteria 

To quantitatively evaluate the reconstruction image quality, 
the Relative Image Error (RIE), Structural Similarity Index 
Measure (SSIM) [39] and Correlation Coefficient (CC) are 
employed. The RIE, SSIM and CC are defined as:  
 

𝑅𝑅𝑅𝑅𝑅𝑅 =
‖𝐴𝐴 − 𝐵𝐵‖2

 ‖𝐵𝐵‖2
 (17) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
(2𝜇𝜇𝐴𝐴𝜇𝜇𝐵𝐵 + 𝑅𝑅1)(2𝛿𝛿𝐴𝐴𝐴𝐴 + 𝑅𝑅2)

 (𝜇𝜇𝐴𝐴2 + 𝜇𝜇𝐵𝐵2 + 𝑅𝑅1)(𝛿𝛿𝐴𝐴2 + 𝛿𝛿𝐵𝐵2 + 𝑅𝑅2) (18) 

𝐶𝐶𝐶𝐶 =
𝛿𝛿𝐴𝐴𝐴𝐴
𝛿𝛿𝐴𝐴𝛿𝛿𝐵𝐵

 (19) 

 

where 𝐴𝐴, B represent the reconstructed images and the true 
distribution, respectively; 𝜇𝜇𝐴𝐴 , 𝜇𝜇𝐵𝐵 , δ𝐴𝐴 ,𝛿𝛿𝐵𝐵 , and δ𝐴𝐴𝐴𝐴  denote 
respectively the mean values, standard deviations, and 
covariance of images 𝐴𝐴,𝐵𝐵 ; 𝑅𝑅1,𝑅𝑅2  are the regularization 
constants for the luminance and contrast.  

C. Network Training 
Adam [40] is employed to optimize the network. The 

learning rate is 5×10-5, and the number of training epoch is 1500. 
The networks are trained with a batch size of 128 on the 
Pytorch-GPU environment and implemented in NVIDIA 
GeForce RTX 3070 Ti Laptop GPU.  

The mean square error (MSE) loss is exploited for 
optimization in the training: 

 

𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑁𝑁
��𝐹𝐹(𝐼𝐼𝑛𝑛𝑖𝑖 )− 𝐼𝐼𝑛𝑛𝑐𝑐�2

2
𝑁𝑁

𝑛𝑛=1

 (20) 

 
where 𝑁𝑁  is the number of training samples. 𝐹𝐹(⋅)  is the 
nonlinear function representing the neural network.  𝐼𝐼𝑛𝑛𝑖𝑖  is the 
EIT data and 𝐼𝐼𝑛𝑛𝑐𝑐  is the corresponding labels. 

TABLE I Image reconstruction results on the test set  

Patient 115 116 117 
 

Phase T4 T8 T12 T16 T20 T4 T8 T12 T16 T20 T4 T8 T12 T16 T20 

CT images 
               

 

Truth 
               

NR 
               

CNN-RBF 
               

Modified 
U-Net                

IR-Net 
               

IR-Net 
(Moved 

electrodes)                

 

TABLE II Quantitative evaluation of prediction results of different algorithms on the test set 

method 
NR CNN-RBF modified U-Net IR-Net 

Noisy data Noise-free Noisy data Noise-free Noisy data Noise-free Noisy data Noise-free 

SSIM 0.368 0.444 0.666 0.686 0.725 0.783 0.764 0.811 

RIE 0.748 0.567 0.479 0.430 0.503 0.424 0.459 0.383 

CC 0.645 0.790 0.850 0.881 0.824 0.882 0.855 0.896 

Time (ms) 7.27 6.90 6.17 6.41 
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IV. RESULTS AND DISCUSSIONS 
Table I lists the predicted images from noisy data on the test 

set, and Table II shows the quantitative evaluation results. We 
also use the NR algorithm, CNN-RBF [41] and modified U-Net 
for comparison. The iteration number of NR algorithm is set to 
10, and the training procedure of CNN-RBF and modified U-
Net is the same as that of IR-Net. 

As seen in Table I, the EIT images reconstructed by the NR 
algorithm have blurred boundaries and artifacts near the 
electrodes. Its performance is also easily affected by noise, as 
the SSIM of its reconstructed images decreases from 0.433 to 
0.342 and the RIE increases from 0.565 to 0.676 when 5% 
Gaussian random noise is added. However, the results of the 
learning-based methods, which have utilized the proposed 
imaging framework, are greatly improved. The SSIM of the 
images reconstructed by learning-based methods are all above 
0.66, and the RIE are all below 0.51. The learning-based 
methods can reconstruct conductivity distributions more 
accurately and has better anti-noise performance, 
demonstrating the feasibility of our proposed lung imaging 
framework. To further demonstrate the anti-noise performance 
of IR-Net, the quantitative evaluations of prediction results of 
IR-Net with different noise levels are listed in Table III. The 
noise levels of the EIT measurements are increased from 0 to 
10%. As the noise increases, the SSIM declines from 0.811 to 
0.737 and the CC decreases from 0.896 to 0.844, meanwhile, 
the RIE increases from 0.383 to 0.522. So, the effect of noise 
will be propagated from the EIT measurements to the results of 
IR-Net, but the performance of IR-Net at 10% Gaussian noise 
level in EIT measurements is still better than that of the other 
methods at 5% Gaussian noise level. Therefore, the IR-Net has 
better anti-noise performance. Besides, compared with CNN-
RBF and modified U-Net with single input, 𝑼𝑼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖1, IR-Net can 
better reconstruct the relative conductivity variation during the 
whole respiratory period because of the additional information 
in two-channel input. The imaging time of the four methods are 
close and have the potential to implement in real-time 
applications, as shown in the last row of Table II. 

The average SSIM, RIE and CC of the reconstructed results 
for test data, including noisy data and noisy-free data, at every 
phase are plotted in Fig. 8. As shown in Fig. 8, the SSIM of the 
results reconstructed by NR algorithm declines during the 
inhalation process. The SSIM of images reconstructed by 
modified U-Net is better than that reconstructed by CNN-RBF, 
but CNN-RBF performance slightly better in RIE and CC index. 
And the results reconstructed by IR-Net are the best in all 
indexes. Through the IR-Net, the SSIM of the results can stay 
at around 0.8 during the whole inhalation process. And as 
shown in Fig. 8 (b), the RIE of the results reconstructed by IR-
Net is much lower than that of reconstructed by NR algorithm 
while the CC index of IR-Net is much higher than that of NR 
algorithm as shown in Fig. 8 (c).  

To further verify the practical ability of the proposed imaging 
framework, experimental data from [42] is tested. This EIT in 
vivo measurement was collected by Camille Gómez-Laberge 
on a normal human subject, but the way the electrodes were 
placed was different from the simulation data in this paper. In 
the experimental data, the first electrode is placed in the center 
of the sternum, while in the simulation data, the first and last 
electrodes are placed symmetrically around the sternum. To 
show the effectiveness of IR-Net, firstly we tested the 
reconstructed results of the simulation data of moved electrodes, 
and the corresponding electrode positions are shown in Fig. 9. 
The image results are in the last row of TABLE I. These results 
indicate that IR-Net can still accurately reconstruct the dynamic 

TABLE III Quantitative evaluation of prediction results of IR-Net with 
different noise levels 

Index 
Noise levels 

0% 3%  5% 10% 

SSIM 0.811 0.782 0.764 0.737 

RIE 0.383 0.434 0.459 0.522 

CC 0.896 0.869 0.855 0.844 

 

 

(a) SSIM of reconstructed results with respect to phases 

 

(b) RIE of reconstructed results with respect to phases 

 

(c) CC of reconstructed results with respect to phases 

Fig. 8 The performance of reconstructed results with respect to phases 
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changes in lung conductivity when the electrode placement 
varies. 

The reconstructed results of the first respiratory cycle (frame 
41-83) in the data I.1 is shown in Fig. 10. Even though the 
corresponding CT images haven’t been provided, the IR-Net 
can provide seemingly more accurate results to show the lung 
conductivity change during the dynamic respiratory process. 
 

V. CONCLUSION 
In this paper, we propose a novel imaging framework for 

lung EIT that leverages digital twin lung models to generate 
more data with accurate labels for deep learning. These models 
incorporate both biomechanical and electric field information 
to provide the geometry and electrical properties of the lung 
during respiration in simulation. Our proposed image 
reconstruction network can then learn from this prior 
information and output EIT images directly from voltage 
measurements. The effectiveness and feasibility of our 
framework were demonstrated using simulation and 
experimental data. Additionally, our framework is not patient-
specific, meaning it can be trained on a number of digital twin 
models and applied to different patients. Our proposed imaging 
framework is currently a prototype and has been limited by the 
availability of CT data and patient tests. In the future, we plan 

to incorporate more accurate lung motion modeling methods 
and account for variations in electrical properties to improve the 
digital twin model. We also plan to expand our dataset to 
include a wider range of healthy and unhealthy lung cases with 
both CT and EIT measurements, in order to improve the 
generalization performance of our imaging framework.  
 

REFERENCES 
 
[1] L. Ball, V. Vercesi, F. Costantino, K. Chandrapatham, 

and P. Pelosi, "Lung imaging: how to get better look 
inside the lung," Annals of translational medicine, vol. 
5, no. 14, 2017. 

[2] T. Muders, H. Luepschen, and C. Putensen, 
"Impedance tomography as a new monitoring 
technique," Current Opinion in Critical Care, vol. 16, 
no. 3, pp. 269-275, Jun 2010, doi: 
10.1097/MCC.0b013e3283390cbf. 

[3] M. Kircher et al., "Regional Lung Perfusion Analysis 
in Experimental ARDS by Electrical Impedance and 
Computed Tomography," Ieee Transactions on 
Medical Imaging, vol. 40, no. 1, pp. 251-261, Jan 
2021, doi: 10.1109/tmi.2020.3025080. 

[4] M. Zamani, M. Kallio, R. Bayford, and A. 
Demosthenous, "Generation of Anatomically Inspired 
Human Airway Tree Using Electrical Impedance 
Tomography: A Method to Estimate Regional Lung 
Filling Characteristics," Ieee Transactions on Medical 
Imaging, vol. 41, no. 5, pp. 1125-1137, May 2022, doi: 
10.1109/tmi.2021.3136434. 

[5] S. Liu, J. Jia, Y. D. Zhang, and Y. Yang, "Image 
reconstruction in electrical impedance tomography 
based on structure-aware sparse Bayesian learning," 
IEEE transactions on medical imaging, vol. 37, no. 9, 
pp. 2090-2102, 2018. 

[6] S. Liu, Y. Huang, H. Wu, C. Tan, and J. Jia, "Efficient 
multitask structure-aware sparse Bayesian learning for 
frequency-difference electrical impedance 
tomography," IEEE Transactions on industrial 
informatics, vol. 17, no. 1, pp. 463-472, 2020. 

[7] S. Liu, H. Wu, Y. Huang, Y. Yang, and J. Jia, 
"Accelerated structure-aware sparse Bayesian learning 
for three-dimensional electrical impedance 
tomography," IEEE transactions on industrial 
informatics, vol. 15, no. 9, pp. 5033-5041, 2019. 

[8] S. J. Hamilton and A. Hauptmann, "Deep D-bar: Real-
time electrical impedance tomography imaging with 
deep neural networks," IEEE transactions on medical 
imaging, vol. 37, no. 10, pp. 2367-2377, 2018. 

[9] S. J. Hamilton, A. Hänninen, A. Hauptmann, and V. 
Kolehmainen, "Beltrami-net: domain-independent 
deep D-bar learning for absolute imaging with 
electrical impedance tomography (a-EIT)," 
Physiological measurement, vol. 40, no. 7, p. 074002, 
2019. 

[10] J. K. Seo, K. C. Kim, A. Jargal, K. Lee, and B. 
Harrach, "A Learning-Based Method for Solving III-
Posed Nonlinear Inverse Problems: A Simulation 

Patient Original position of 
electrodes 

Moved position of 
electrodes 

115 

  

116 

  

117 

  
Fig. 9 The position of electrodes in our test dataset 

Frame 41 43 45 47 49 51 

 

 
      

Frame 53 55 57 59 61 63 

 
      

Frame 65 67 69 71 73 75 

 
      

Frame 77 79 81 83   

 
    

  

Fig. 10 Image reconstruction results of the experimental data 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

9 

Study of Lung EIT," Siam Journal on Imaging 
Sciences, vol. 12, no. 3, pp. 1275-1295, 2019, doi: 
10.1137/18m1222600. 

[11] S. J. Ren, K. Sun, C. Tan, and F. Dong, "A Two-Stage 
Deep Learning Method for Robust Shape 
Reconstruction With Electrical Impedance 
Tomography (vol 69, pg 4887, 2020)," Ieee 
Transactions on Instrumentation and Measurement, 
vol. 69, no. 11, pp. 9284-9284, Nov 2020, doi: 
10.1109/tim.2020.3012378. 

[12] K. Zhang, R. Guo, M. Li, F. Yang, S. Xu, and A. 
Abubakar, "Supervised descent learning for thoracic 
electrical impedance tomography," IEEE 
Transactions on Biomedical Engineering, vol. 68, no. 
4, pp. 1360-1369, 2020. 

[13] Z. Lin et al., "Feature-Based Inversion Using 
Variational Autoencoder for Electrical Impedance 
Tomography," IEEE Transactions on Instrumentation 
and Measurement, vol. 71, pp. 1-12, 2022. 

[14] X. Zhang et al., "V-Shaped Dense Denoising 
Convolutional Neural Network for Electrical 
Impedance Tomography," IEEE Transactions on 
Instrumentation and Measurement, vol. 71, pp. 1-14, 
2022. 

[15] Z. Wei and X. Chen, "Induced-current learning 
method for nonlinear reconstructions in electrical 
impedance tomography," IEEE transactions on 
medical imaging, vol. 39, no. 5, pp. 1326-1334, 2019. 

[16] Q. Wang et al., "Exploring Respiratory Motion 
Tracking Through Electrical Impedance 
Tomography," Ieee Transactions on Instrumentation 
and Measurement, vol. 70, 2021, Art no. 4504712, 
doi: 10.1109/tim.2021.3083892. 

[17] G. Coorey, G. A. Figtree, D. F. Fletcher, and J. 
Redfern, "The health digital twin: advancing precision 
cardiovascular medicine," Nature Reviews 
Cardiology, vol. 18, no. 12, pp. 803-804, 2021. 

[18] B. Björnsson et al., "Digital twins to personalize 
medicine," Genome medicine, vol. 12, no. 1, pp. 1-4, 
2020. 

[19] M. N. Kamel Boulos and P. Zhang, "Digital twins: 
from personalised medicine to precision public 
health," Journal of Personalized Medicine, vol. 11, no. 
8, p. 745, 2021. 

[20] S. Wang et al., "A digital twin of electrical 
tomography for quantitative multiphase flow 
imaging," Communications Engineering, vol. 1, no. 1, 
p. 41, 2022. 

[21] R. Werner, J. Ehrhardt, R. Schmidt, and H. Han De Ls, 
"Patient-specific finite element modeling of 
respiratory lung motion using 4D CT image data," 
Medical Physics, vol. 36, 2009. 

[22] B. Fuerst et al., "Patient-Specific Biomechanical 
Model for the Prediction of Lung Motion From 4-D 
CT Images," IEEE Transactions on Medical Imaging, 
vol. 34, no. 2, p. 599, 2015. 

[23] H. Ladjal, M. Beuve, P. Giraud, and S. Behzad, 
"Towards Non-invasive Lung Tumor Tracking Based 
on Patient-Specific Model of Respiratory System," 

IEEE Transactions on Biomedical Engineering, vol. 
PP, no. 99, 2021. 

[24] P. Alvarez, S. Rouzé, M. I. Miga, Y. Payan, and M. 
Chabanas, "A hybrid, image-based and biomechanics-
based registration approach to markerless 
intraoperative nodule localization during video-
assisted thoracoscopic surgery," Medical Image 
Analysis, vol. 69, no. 1, p. 101983, 2021. 

[25] L. Han, H. Dong, J. R. McClelland, L. Han, D. J. 
Hawkes, and D. C. Barratt, "A hybrid patient-specific 
biomechanical model based image registration method 
for the motion estimation of lungs," Medical image 
analysis, vol. 39, pp. 87-100, 2017. 

[26] R. Werner, J. Ehrhardt, R. Schmidt, and H. Handels, 
"Modeling respiratory lung motion: a biophysical 
approach using finite element methods," Proceedings 
of SPIE - The International Society for Optical 
Engineering, vol. 6916, 2008. 

[27] A. Fedorov et al., "3D Slicer as an image computing 
platform for the Quantitative Imaging Network," 
Magnetic Resonance Imaging, vol. 30, no. 9, pp. 1323-
1341, 2012. 

[28] PulmoVista 500 Basics Getting Started [Online] 
Available: 
https://www.draeger.com/Products/Content/PulmoVi
sta%20500%20SW1.30-
%20BASICS_Getting_Started.pdf 

[29] B. H. Brown and A. D. Seagar, "The Sheffield data 
collection system," Clinical Physics and Physiological 
Measurement, 1987. 

[30] K. S. Jin, C. K. Kang, A. Jargal, K. Lee, and B. 
Harrach, "A Learning-Based Method for Solving Ill-
Posed Nonlinear Inverse Problems: A Simulation 
Study of Lung EIT," SIAM Journal on Imaging 
Sciences, vol. 12, no. 3, pp. 1275-1295, 2019. 

[31] K. S. Cheng and D. Isaacson, "Electrode models for 
electric current computed tomography," Biomedical 
Engineering IEEE Transactions on, vol. 36, no. 9, pp. 
918-924, 1989. 

[32] W. Yang and L. Peng, "Image reconstruction 
algorithms for electrical capacitance tomography," 
Measurement science and technology, vol. 14, no. 1, 
p. R1, 2002. 

[33] O. Ronneberger, P. Fischer, and T. Brox, "U-net: 
Convolutional networks for biomedical image 
segmentation," in International Conference on 
Medical image computing and computer-assisted 
intervention, 2015: Springer, pp. 234-241.  

[34] K. Clark et al., "The Cancer Imaging Archive (TCIA): 
Maintaining and Operating a Public Information 
Repository," Journal of Digital Imaging, vol. 26, no. 
6, pp. 1045-1057, Dec 2013, doi: 10.1007/s10278-
013-9622-7. 

[35] G. D. Hugo et al., "A longitudinal four‐dimensional 
computed tomography and cone beam computed 
tomography dataset for image ‐ guided radiation 
therapy research in lung cancer," Medical physics, vol. 
44, no. 2, pp. 762-771, 2017. 

https://www.draeger.com/Products/Content/PulmoVista%20500%20SW1.30-%20BASICS_Getting_Started.pdf
https://www.draeger.com/Products/Content/PulmoVista%20500%20SW1.30-%20BASICS_Getting_Started.pdf
https://www.draeger.com/Products/Content/PulmoVista%20500%20SW1.30-%20BASICS_Getting_Started.pdf


> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

10 

[36] N. O. Roman, W. Shepherd, N. Mukhopadhyay, G. D. 
Hugo, and E. Weiss, "Interfractional positional 
variability of fiducial markers and primary tumors in 
locally advanced non-small-cell lung cancer during 
audiovisual biofeedback radiotherapy," International 
Journal of Radiation Oncology* Biology* Physics, 
vol. 83, no. 5, pp. 1566-1572, 2012. 

[37] S. Balik et al., "Evaluation of 4-dimensional computed 
tomography to 4-dimensional cone-beam computed 
tomography deformable image registration for lung 
cancer adaptive radiation therapy," International 
Journal of Radiation Oncology* Biology* Physics, 
vol. 86, no. 2, pp. 372-379, 2013. 

[38] D. Chakraborty and M. Chattopadhyay, "Monitoring 
of the Lung Fluid Movement and Estimation of Lung 
Area Using Electrical Impedance Tomography," in 
Next Generation Sensors and Systems, vol. 16, S. C. 
Mukhopadhyay Ed., (Smart Sensors Measurement and 
Instrumentation, 2016, pp. 161-190. 

[39] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. 
Simoncelli, "Image quality assessment: from error 
visibility to structural similarity," IEEE transactions 
on image processing, vol. 13, no. 4, pp. 600-612, 2004. 

[40] D. P. Kingma and J. Ba, "Adam: A method for 
stochastic optimization," arXiv preprint 
arXiv:1412.6980, 2014. 

[41] Y. Wu et al., "Shape reconstruction with multiphase 
conductivity for electrical impedance tomography 
using improved convolutional neural network 
method," IEEE sensors journal, vol. 21, no. 7, pp. 
9277-9287, 2021. 

[42] A. Adler and W. R. Lionheart, "Uses and abuses of 
EIDORS: an extensible software base for EIT," 
Physiological measurement, vol. 27, no. 5, p. S25, 
2006. 

 


	I. INTRODUCTION
	II. METHODOLOGY
	A. Method Overview
	B. Lung Motion Model
	1) Segmentation
	2) Modeling Approach

	C. Electrical Impedance Tomography
	D. Image Reconstruction Network

	III. EXPERIMENTS SETUP
	A. Dataset Collection
	B. Evaluation Criteria
	C. Network Training

	IV. RESULTS AND DISCUSSIONS
	V. CONCLUSION
	References

