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Abstract—The low spatial resolution of Electrical Impedance Tomography (EIT) makes it challenging to conduct 
quantitative analysis of the electrical properties of imaging targets in biomedical applications. We in this paper 
propose to integrate optical imaging into EIT to improve EIT image quality and report a dual-modal image 
reconstruction algorithm based on optical image-guided group sparsity (IGGS). IGGS receives an RGB microscopic 
image and EIT measurements as inputs, extracts the structural features of conductivity distribution from optical 
images and fuses the information from the two imaging modalities to generate a high-quality conductivity image. The 
superior performance of IGGS is verified by numerical simulation and real-world experiments. Compared with selected 
single-modal EIT image reconstruction algorithms, i.e. the classical Tikhonov regularization and the state-of-the-art 
Structure-Aware Sparse Bayesian Learning and Enhanced Adaptive Group Sparsity with Total Variation, the proposed 
method presents superiorities in terms of shape preservation, background noise suppression, and differentiation of 
conductivity contrasts. 

 
Index Terms—Dual-modal imaging, miniature impedance-optical sensor, electrical impedance tomography, information 

fusion, image reconstruction 

 

 

I. Introduction 

lectrical Impedance Tomography (EIT) is a tomographic 

imaging modality, which estimates the conductivity 

distribution within a 2D or 3D bounded domain from a 

sequence of boundary voltage measurements [1-3]. EIT offers 

non-radiative, non-intrusive and high-temporal-resolution 

imaging capabilities and is investigated in many research 

domains, such as flow velocity field measurement [4], chemical 

engineering [5], multiphase flow monitoring [6, 7], and non-

destructive cell culture imaging in tissue engineering [8-10]. 

However, its low image quality as a longstanding challenge has 

become a critical issue that prevents its wider adoption in 

different fields.  

The challenge of improving EIT image quality involves the 

structure preservation of imaging targets, differentiation of 

conductivity contrasts and suppression of artefacts and noise. In 

recent years, research to address the challenge for ‘single-

modal’ EIT is mainly in concerned with image reconstruction 

algorithms. Many algorithms leverage regularization to deal 

with the severe ill-posedness of the EIT inverse problem. This 

type of algorithms encodes certain prior information through 

the penalty term to stabilize the solution. These methods 

include Total Variation (TV) regularization [11, 12], Fidelity-

Embedded regularization [13], sparse regularization [14-16], 

Adaptive Group Sparsity (AGS) regularization [17, 18], and 

Sparse Bayesian Learning (SBL) [19], etc. Although these 

 
 

methods have brought a vast improvement in image quality, 

they can hardly precisely recover the shape and conductivity of 

the imaging targets simultaneously. Many algorithms are 

powerless when the geometry of the imaging target includes 

straight lines and angles. Shape-based image reconstruction 

methods were proposed to address better shape recovery. Such 

methods focus on the recovery of the shape of imaging targets 

regardless of the conductivity values and it can directly 

introduce the prior information of the shape into the image 

reconstruction procedure [20-22]. These methods present 

superior results to the regularization-based methods in terms of 

shape preservation. However, the image quality improvement 

for EIT is still limited because the conductivity and the shape 

of the imaging target cannot be simultaneously estimated 

accurately based only on EIT measurements. Therefore, dual-

modal or multi-modal EIT imaging is proposed to overcome 

such issue and it utilizes other imaging modalities as 

supplements to EIT, which could provide additional 

information to improve the EIT image quality. Some work on 

dual-modal or multi-modal based EIT image reconstruction has 

been reported. Li et al. developed a CT image guided method 

for EIT inversion, and the proposed algorithm showed the 

advantage of improved ability of shape preservation [23]. 

Another representative work is related to EIT and ultrasound 

tomography (UT) joint imaging which is based on the  

complementary sensitive areas of these two modalities [24, 25]. 

Reconstructed images based on EIT and UT also presented a 

better image quality compared with those based on single-

modal EIT.  

However, simultaneous, accurate recovery of conductivity 

and shape remains a significant challenge for EIT. In this paper, 
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we propose an EIT-optical dual-modal imaging approach to 

address the above-mentioned challenges. We propose Image-

Guided Group Sparsity (IGGS) for information fusion and 

high-quality conductivity reconstruction by leveraging the EIT 

measurements and microscopic images from a miniature 

impedance-optical dual-modal sensor as input. IGGS provides 

a new way to incorporate the structural information contained 

in the microscopic image into EIT image reconstruction by 

using the group sparsity regularization, which has been 

comprehensively investigated in single-modal EIT image 

reconstruction [17, 18]. IGGS adopts pixel grouping to link 

group sparsity with the structural information extracted from 

microscopic image segmentation. The finally established 

optimization problem is solved by the Accelerated Alternating 

Direction Method of Multipliers (A-ADMM) [26]. The results 

of the proposed method and the given single-modal based 

algorithms, i.e. Tikhonov regularization (TReg) [27], Structure-

Aware Sparse Bayesian Learning (SA-SBL) [19] and Enhanced 

Adaptive Group Sparsity with Total Variation (EAGS-TV) 

[18], are thoroughly compared by simulation and real-world 

experiments.  

The paper is organized as follows. Section II briefly 

describes the principle of the EIT inverse problem. Section III 

states the proposed imaging framework and IGGS. Section IV 

presents simulation and experimental results and compares 

algorithm performance. Finally, Section V concludes the work 

and discusses future work.  

II. PRINCIPLE OF EIT IMAGE RECONSTRUCTION 

In EIT, the relationship between the conductivity distribution 

and the induced boundary voltage can be expressed by the 

following non-linear equation: 

                                            𝑽 = 𝐹(𝝈) + 𝑬                                     (1) 

where 𝐹: ℝn → ℝm is the non-linear forward mapping of EIT. 

𝑽 ∈ ℝm  represents the measured boundary voltage, 𝝈 ∈ ℝn 

denotes the conductivity distribution, and 𝑬 ∈ ℝm  stands for 

the measurement noise. In this study, we adopt the time-

difference imaging method. The linearized forward model with 

respect to the conductivity change ∆𝝈 ∈ ℝn  and the induced 

boundary voltage change ∆𝑽 ∈ ℝm between the reference time 

point and the observation time point exists [28]: 

                                          ∆𝑽 = 𝑱∆𝝈 + 𝒆                                       (2) 

where 𝑱 ∈ ℝm×n  is the Jacobian matrix; 𝒆 ∈ ℝm  is the 

measurement error removing the common components in the 

two measurements. As time-difference imaging can, to a certain 

extent, eliminate the common measurement errors, this 

approach has better noise resistance ability and resistance to the 

imperfection of miniature sensors compared to absolute 

imaging. Therefore, it is more suitable for biomedical imaging 

applications with miniature EIT sensors, which is more 

challenging as the signals are weaker and the measurements are 

more sensitive to the imperfection of the sensor due to 

fabrication limitations. 

Under the time-difference imaging framework, the general 

approach to estimate ∆𝝈 through ∆𝑽 can be formulated as the 

following optimization problem:  

                                    {
min 
𝝈
  𝑄(∆𝝈)        

  s. t.     𝑱∆𝝈 = ∆𝑽   
                            (3)                                   

where 𝑄 is the regularization function, which is determined by 
the prior information of the conductivity change distribution.  

III. METHOD 

The EIT-optical dual-modal imaging approach (see Fig. 1) is 

based on image-guided group sparsity (IGGS). The impedance-

optical sensor will simultaneously record and output a frame of 

voltage change measurements and an RGB microscopic image. 

Then, IGGS will fuse the two types of information from 

different modalities and generate a high-quality EIT image. The 

details are described in the following subsections.  

 

Fig. 1.  Schematic of the dual-modal imaging framework. 406 and 64 represent the side lengths of the circumscribed square regions for circular    
images. 104 is the dimension of voltage measurement vector. 
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A. EIT-optical Dual-modal Sensor 

The manufactured dual-modal sensor is shown in Fig. 1. It 

comprises a miniature 16-electrode EIT sensor and a digital 

microscope (Digital USB Microscope 1.3M, RS Components 

Ltd). The EIT sensor is placed under the microscope and the 

two sensors share the same sensing region. We select two 

different EIT sensors to investigate our method. They are 

labelled as EIT sensor A (see Fig. 2 (a)) and EIT sensor B (see 

Fig. 2 (b)). The two EIT sensors are both manufactured on the 

Printed Circuit Board (PCB).  

The sensing area of EIT sensor A is bounded by the PCB 

board (bottom of the sensing area) and a transparent glass tube 

(see Fig. 2 (a)). The height and the inner diameter of the glass 

tube are 6 mm and 15 mm, respectively. Sixteen gilded square 

microelectrodes are manufactured on the surface of the PCB 

and uniformly distributed at the bottom of the sensing area.  

The imaging targets in EIT sensor B are placed on the 

transparent glass substrate at the bottom of the sensing domain 

(see Fig. 2 (b)). The sidewall of the sensing region is surrounded 

by the PCB and microelectrodes. The height of microelectrodes 

is the same as the thickness of the PCB, i.e. 1.6 mm. The 

diameter of the sensing area is 15 mm. Sixteen gilded 

microelectrodes are manufactured using the half-hole process 

and uniformly distributed at the periphery of the sensing area.   

B. Image-Guided Group Sparsity 

IGGS consists of three steps (see Fig. 1). In the first step 

(semantic segmentation), the input RGB microscopic image is 

converted into its binary version. The height and width of the 

converted binary image (named mask image) is the same as 

those of the EIT image. In the second step (pixel grouping), the 

pixels of the EIT image are partitioned into different groups 

based on the mask image. In the last step (optimization solving), 

the grouping result first navigates the construction of the group 

sparsity regularization term. Afterwards, the final optimization 

problem will be established and solved by the Accelerated 

Alternating Direction Method of Multipliers (A-ADMM) [26]. 

Each step of IGGS is described as follows.  

1) Semantic Segmentation: The purpose of semantic 

segmentation is to generate the mask image of the input 

microscopic image. The algorithm in this step is replaceable 

because it highly depends on the configuration of the dual-

modal sensor and the application of the imaging system. As 

stated in Section III-A, there are two EIT sensors to conduct 

experiments in this work and they possess disparate structures, 

which leads to distinct types of microscopic images. For 

example, electrodes usually appear in the microscopic image 

generated by EIT sensor A based dual-modal sensor, while this 

situation does not happen in the microscopic image generated 

by EIT sensor B based dual-modal sensor. Thus, the electrodes 

should be eliminated in the semantic segmentation for images 

based on EIT sensor A based dual-modal sensor. Therefore, 

different sets of semantic segmentation algorithms should be 

applied to these sensors, and each set of algorithms include 

multiple image operations.  

The first set of segmentation algorithms is developed for EIT 

sensor A based dual-modal sensor. In operation 1 (OPA1), an 

RGB difference image is generated by subtracting the 

calibration image from the carrot image. The calibration image 

can be collected before real-time imaging and there are no 

imaging targets in the calibration image. In operation 2 (OPA2), 

the RGB difference image is firstly converted into its grayscale 

version. Then, Otsu's method based segmentation algorithm is 

applied to this grayscale image to transform it into a binary 

image. Otsu's method, as a histogram technique in image 

segmentation fields, finds the global value threshold in a 

grayscale image [29]. According to the calculated grayscale 

value threshold, pixels with the value above the threshold will 

be transformed to white (digit 1) and other pixels will be 

transformed to black (digit 0). The formula of Otsu's method for 

threshold searching is expressed by:  

        𝑡∗ = arg max
1≤𝑡≤𝐿

[(∑ ℓ𝑝ℓ
𝐿
ℓ=1 )(∑ 𝑝ℓ

𝑡
ℓ=1 ) − ∑ ℓ𝑝ℓ

𝑡
ℓ=1 ]2

(∑ 𝑝ℓ
𝑡
ℓ=1 )[1 − ∑ 𝑝ℓ

𝑡
ℓ=1 ]

       (4) 

where, 𝑡∗ is the optimal threshold of a grayscale image. L is the 

total gray levels of this image and  𝑝ℓ =
𝑞ℓ

𝑛
; 𝑞ℓ is the number of 

pixels at ℓ𝑡ℎ gray level and n is the total number of pixels of the 

image.  

In operation 3 (OPA3), open operation and dilation operation 

are applied successively to the binary image generated by 

OPA2 to refine the object’s boundary. Then, the result is down-

sampled to the EIT image size. Operation 4 (OPA4) is to 

eliminate small connected white regions to acquire the ultimate 

mask image. The threshold pixel number for the small 

connected white region is based on specific applications. This 

parameter is set as 50 throughout the paper. The two 

morphological operations in OPA3 are defined as [30]: 

                                   𝑰 ∘ 𝑺 =∪ {(𝑺)𝒛|(𝑺)𝒛 ⊆ 𝑰}                          (5) 

                                    𝑰⨁𝑺 = {𝒛|(�̂�)
𝒛
⋂𝑰 ≠ ∅}                          (6) 

where, 𝑰 ∘ 𝑺  means image I is opened by the structuring 

element S and 𝑰⨁𝑺  means I is dilated by S. (S)z and �̂�  are 

defined as:  

                              (𝑺)𝒛 =  {𝒌|𝒌 = 𝝍 + 𝒛,𝝍 ∈ 𝑺}                    (7) 

                                �̂�     =   {𝝑|𝝑 = −𝝍,𝝍 ∈ 𝑺}                        (8) 

where 𝒛 = (𝑧1, 𝑧2) is a fixed point in the image. Fig. 3 provides 

an example of the first semantic segmentation procedure. 

The second set of segmentation algorithms is applied to EIT 

sensor B based dual-modal sensor and it also includes four 

operations. Operation 1 (OPB1) is to obtain the one-

dimensional illuminant invariant image of the microscopic 

image by using the method of Finlayson et al. [31]. This 

operation will convert the original RGB image into a grayscale 

version meanwhile removing the influence of illumination. The 

equation is defined as:  

 

 Fig. 2.  Structure of (a) EIT sensor A and (b) EIT sensor B. 
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       𝑰𝑖𝑛𝑣(𝑟, 𝑐) = exp(𝜞1(𝑟, 𝑐) cos(𝛩) + 𝜞2(𝑟, 𝑐) sin(𝛩))    (9) 

where r and c are pixel position indexes of an image. 𝛩 is the 

projection direction in the two-dimensional log-chromaticity 

space of the microscopic image and it is a constant for a specific 

camera. This direction can be estimated by traversing every 

integer angle from 1o to 180o and it makes Iinv having the 

minimum Shannon’s entropy [31]. 𝜞1(𝑟, 𝑐)  and 𝜞2(𝑟, 𝑐)  is 

calculated by:  

                      [𝜞1(𝑟, 𝑐), 𝜞2(𝑟, 𝑐)]
𝑇 = [𝝂1, 𝝂2]

𝑇𝜿(𝑟, 𝑐)            (10) 

where 𝝂1 = [
1

√2
, −

1

√2
, 0]

𝑇

, 𝝂1 = [
1

√6
,
1

√6
, −

2

√6
]
𝑇

. 𝜿(𝑟, 𝑐)  is 

defined by:  

     𝜿(𝑟, 𝑐) = [ln (
𝑹(𝑟, 𝑐)

𝚲(𝑟, 𝑐)
) , ln (

𝑮(𝑟, 𝑐)

𝚲(𝑟, 𝑐)
) , ln (

𝑩(𝑟, 𝑐)

𝚲(𝑟, 𝑐)
)]

𝑇

  (11) 

where 𝚲(𝑟, 𝑐) = √𝑹(𝑟, 𝑐)𝑮(𝑟, 𝑐)𝑩(𝑟, 𝑐)
3

. R(r, c), G(r, c) and 

B(r, c) are the three components of a color image. 

In operation 2 (OPB2), the binary version of  𝑰𝑖𝑛𝑣  can be 

generated by using the following simple thresholding 

segmentation method: 

                  𝑰𝑏𝑤(𝑟, 𝑐) = {  
0,   if   𝑰𝑖𝑛𝑣(𝑟, 𝑐) < 𝜏

1,   if   𝑰𝑖𝑛𝑣(𝑟, 𝑐) ≥ 𝜏
                (12)           

where Ibw denotes the binary image after thresholding and 𝜏 is 

selected based on empirical trials. Operation 3 (OPB3) uses the 

same two successive morphological operations as in OPA3 for 

the same purpose of refining object boundaries. Finally, in 

operation 4 (OPB4), the mask image is gained by down-

sampling the result of OPB3 into the EIT image size. An 

example of the second segmentation algorithm is illustrated in 

Fig. 4. 

2) Pixel Grouping: Based on the mask image, EIT image 

pixels in the same connected white region of the mask image 

will be considered to have a similar structure and are labelled 

as the same large group. The other individual pixels will be 

labelled as small groups. Examples of grouping results can be 

found in Table III. It should be noted that each large group 

contains more than one pixel, and each small group only 

contains one pixel. Suppose the pixels of the EIT image can be 

classified into N groups, the underlying conductivity change 

can be expressed as:  

                             ∆𝝈 = {∆𝝈𝑔1 , ∆𝝈𝑔2 , … , ∆𝝈𝑔𝑁}                       (13) 

where 𝑔𝑖 , 𝑖 = 1, 2, … , 𝑁, represents group index of the ith group. 

This expression should satisfy the properties of ∆𝝈 =

⋃ ∆𝝈𝑔𝑖
𝑁
𝑖=1  and ∆𝝈𝑔𝑖⋂∆𝝈𝑔𝑗 = ∅ for any 𝑖 ≠ 𝑗.  

3) Optimization Solving: The key idea of IGGS is to 

incorporate structural information from the optical image by 

using group sparsity regularization. Group sparsity groups 

pixels with structural similarities and apply sparsity constraint 

on the formed pixel groups. Therefore, the grouping result from 

the second step of IGGS will guide the formulation of the 

group-level regularization term. The vanilla form of group 

sparsity can be expressed by the following 𝑙2,1 norm [32]: 

                                    ‖∆𝝈‖2,1 =∑ ‖∆𝝈𝑔𝑖‖2

𝑁

𝑖=1
                     (14) 

In this work, we adopt weighted group sparsity and the 

ultimate optimization problem for IGGS based on weighted 

group-level constraint and Total Variation (TV) constraint can 

be formulated by the below equations:  

                         {
 min 
𝝈

  ∑ 𝜔𝑖‖∆𝝈𝑔𝑖‖2 +
‖∆𝝈‖𝑇𝑉

𝑁

𝑖=1
  

 s. t.      𝑱∆𝝈 = ∆𝑽                                  
         (15) 

where  ∑ 𝜔𝑖‖∆𝝈𝑔𝑖‖2
𝑁
𝑖=1 is the weighted 𝑙2,1 norm and 𝜔𝑖 is the 

weight for ith group. ‖∆𝝈‖𝑇𝑉 is the isotropic TV norm, which 

can help smooth the estimated EIT image and is defined as [33]: 

            ‖∆𝝈‖𝑇𝑉 =∑ √(𝐷𝑟,𝑐
ℎ (∆𝝈))2 + (𝐷𝑟,𝑐𝑣 (∆𝝈))2

𝑟,𝑐
      (16) 

where 𝐷𝑟,𝑐
ℎ (∆𝝈) and 𝐷𝑟,𝑐

𝑣 (∆𝝈) is the first order finite difference 

operators in horizontal direction and vertical direction, 

respectively. And these two operators are defined by (17) and 

(18), respectively: 

           𝐷𝑟,𝑐
ℎ (∆𝝈) = {

 ∆𝝈𝑟,𝑐 − ∆𝝈𝑟,𝑐+1,      1 ≤ 𝑐 ≤ ℎ𝑛
0,                                  𝑐 = 𝑣𝑛       

        (17) 

            𝐷𝑟,𝑐
𝑣 (∆𝝈) = {

 ∆𝝈𝑟,𝑐 − ∆𝝈𝑟+1,𝑐 ,      1 ≤ 𝑟 ≤ 𝑣𝑛
0,                                  𝑟 = 𝑣𝑛       

         (18) 

where hn denotes the pixel number along the horizontal 

direction and vn denotes the pixel number along the vertical 

direction. 

To solve (15), the accelerated ADMM (A-ADMM) is used, 

which exhibits faster convergence than the conventional 

ADMM by including an over-relaxation step [26]. By 

introducing an auxiliary vector, a, (15) can be equivalently 

rewritten as: 

 

Fig. 3.  An example of semantic segmentation for EIT sensor A 
based dual-modal sensor. The leftist images are carrot image 
(bottom) and calibration image (top), and the rightest image is the 
mask image. Numbers mean the pixel numbers of the side of the 
circumscribed square region. 

 

Fig. 4.  An example of semantic segmentation for EIT sensor B 
based dual-modal sensor. The leftist image is the cell spheroid 
image and the rightest image is the mask image. Numbers mean 
the pixel numbers of the side of the circumscribed square region. 
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                       {
 min 
∆𝝈

  ∑ 𝜔𝑖‖𝒂𝑔𝑖‖2
+ ‖∆𝝈‖𝑇𝑉

𝑁

𝑖=1
        

  s. t.     𝒂 = ∆𝝈,   𝑱∆𝝈 = ∆𝑽𝒏                    
     (19) 

Equation (19) can be solved by the augmented Lagrangian 

scheme and its equivalent augmented Lagrangian problem is 

formulated as:  

          min
∆𝝈,𝒂

{∑ 𝜔𝑖‖𝒂𝑔𝑖‖2

𝑁

𝑖=1
+ ‖∆𝝈‖𝑇𝑉 − 𝝀1

𝑇(𝒂 − ∆𝝈)  

+
𝜂1
2
‖𝒂 − ∆𝝈‖2

2 − 𝝀2
𝑇( 𝑱∆𝝈 − ∆𝑽) 

                                +
𝜂2
2
‖ 𝑱∆𝝈 − ∆𝑽‖2

2}                                  (20) 

where 𝝀1  and 𝝀2  represents multipliers; 𝜂1  and 𝜂2  are penalty 

parameters. In the A-ADMM framework, (20) is decomposed 

into following ∆𝝈-subproblem (21) and a-subproblem (22), and 

these two subproblems can be solved separately.  

∆𝝈𝑘+1 = arg min 
∆𝝈

{‖∆𝝈𝑘‖𝑇𝑉 + 𝝀1
𝑇∆𝝈𝑘 +

𝜂1
2
‖𝒂 − ∆𝝈𝑘‖2

2 

                                    −𝝀2
𝑇𝑱∆𝝈𝑘 +

𝜂2
2
‖ 𝑱∆𝝈𝑘 − ∆𝑽‖2

2}         (21) 

𝒂𝑘+1 = arg min 
𝒂
{∑𝜔𝑖‖𝒂𝑔𝑖

𝑘 ‖
2

𝑁

𝑖=1

− 𝝀1
𝑇𝒂𝑘 +

𝜂1
2
‖𝒂 − ∆𝝈𝑘‖2

2}  

     (22) 

The ∆𝝈 -subproblem (21) is solved by a gradient-based 

recovery algorithm, and each iteration equation is expressed as: 

 ∆𝝈𝑘+1 = ∆𝝈𝑘 − 𝜇{𝑱𝑇(𝜂2𝑱∆𝝈
𝑘 − 𝜂2∆𝑽 − 𝝀2) + 𝝀1 

                                   +𝜂1(∆𝝈
𝑘 − 𝒂) + ∇‖∆𝝈𝑘‖𝑇𝑉}    (23) 

where 𝜇 is the iteration step length, and the gradient of TV norm 

based on a smooth approximation strategy is calculated by: 

∇𝑟,𝑐‖∆𝝈‖𝑇𝑉 =
𝐷𝑟,𝑐
ℎ (∆𝝈) + 𝐷𝑟,𝑐

𝑣 (∆𝝈)

√(𝐷𝑟,𝑐
ℎ (∆𝝈))2 + (𝐷𝑟,𝑐

𝑣 (∆𝝈))2 + 𝜑
 

                                     −
𝐷𝑟,𝑐−1
ℎ (∆𝝈)

√(𝐷𝑟,𝑐−1
ℎ (∆𝝈))2 + (𝐷𝑟,𝑐−1

𝑣 (∆𝝈))2 + 𝜑

 

                                     −
𝐷𝑟−1,𝑐
𝑣 (∆𝝈)

√(𝐷𝑟−1,𝑐
ℎ (∆𝝈))2 + (𝐷𝑟−1,𝑐

𝑣 (∆𝝈))2 + 𝜑

 

(24) 

where 𝜑  is the relaxation factor, which can avoid the 

occurrence of zero denominator in the gradient of TV norm and 

should not be too large. 𝜑 is set as 1 × 10−7  throughout this 

paper based on a series of trials. 

The a-subproblem (22) is solved by the below group-wise 

soft thresholding [34]: 

𝒂𝑔𝑖 = max {‖∆𝝈𝑔𝑖 +
1

𝜂1
(𝝀1)𝑔𝑖‖

2

−
𝜔𝑖
𝜂1
, 0}

∆𝝈𝑔𝑖 +
1
𝜂1
(𝝀1)𝑔𝑖

‖∆𝝈𝑔𝑖 +
1
𝜂1
(𝝀1)𝑔𝑖‖

2

 

(25) 

After solving the Δσ-subproblem and a-subproblem 

successively, an additional constraint is posed on the solution 

of the a-subproblem followed by the updates of multipliers 

based on the accelerated method. The additional constraint can 

improve the algorithm’s ability of voltage noise resistance and 

is defined as: 

                            AP𝑖=1
𝑁 (sign𝑔𝑖(sum𝑔𝑖(𝒂))) ∙ 𝒂 ≥ 0               (26) 

 where sum𝑔𝑖
() denotes the summation of all elements of 𝒂𝑔𝑖 . 

sign𝑔𝑖()  means the operation of assigning the value of the 

sign(sum𝑔𝑖
(𝒂)) to each pixel of ith group; here, sign() is the 

sign function. AP𝑖=1
𝑁 () mean applying sign𝑔𝑖(sum𝑔𝑖

(𝒂)) to all 

groups. This constraint imposes non-negative constraint to the 

groups with the number one resulting from sign𝑔𝑖(sum𝑔𝑖
(𝒂)) 

and imposes non-positive constraint to the groups with the 

number minus one resulting from the same equation. By this 

approach, it is expected that the artefact around the imaging 

targets can be effectively eliminated. Then, the update of 

multipliers based on the accelerated method is carried out 

according to the following equations:  

                    

{
 
 
 
 
 

 
 
 
 
 
�̃�1
𝑘+1 = 𝝀1

𝑘 − 𝜀1𝜂1(𝒂
𝑘+1 − ∆𝝈𝑘+1)  

�̃�2
𝑘+1 = 𝝀2

𝑘 − 𝜀2𝜂2(𝑱∆𝝈
𝑘+1 − ∆𝑽)   

𝑑𝑘+1 =
1 + √1 + 4(𝑑𝑘)2

2
                 

 𝒂𝑘+1 = 𝒂𝑘+1 +
𝑑𝑘 − 1

𝑑𝑘+1
(𝒂𝑘+1 − 𝒂𝑘)

𝝀1
𝑘+1 = �̃�1

𝑘+1 +
𝑑𝑘 − 1

𝑑𝑘+1
(�̃�1

𝑘+1 − �̃�1
𝑘)

𝝀2
𝑘+1 = �̃�2

𝑘+1 +
𝑑𝑘 − 1

𝑑𝑘+1
(�̃�2

𝑘+1 − �̃�2
𝑘)

            (27) 

where, 𝜀1  and 𝜀2  are the iteration step lengths. 𝑑  is an 

additional variable for the predictor-corrector–type acceleration 

process and its initial value is set as 1 throughout the paper.  

 IGGS adopts two stopping criteria in solving (15), i.e. the 

maximum iteration number and following condition:  

                                      ‖∆𝝈𝑘+1 − ∆𝝈𝑘‖2 < ℘                          (28) 

℘  is the tolerance. The IGGS will stop if either of the two 

criteria is satisfied. In addition, throughout the paper, weights 

selection is based on the following equation, which can promote 

the sparsity for large group conductivity estimation [17].  

                    𝜔𝑖 =

{
 

  
1

2𝑁𝑠 + 𝑁𝑙
     if 𝑖th group is large

 
2

2𝑁𝑠 + 𝑁𝑙
     if 𝑖th group is small

          (29) 
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where Ns and Nl are the number of small groups and the number 

of large groups, respectively. They also satisfy 𝑁𝑠 + 𝑁𝑙 = 𝑁, N 

is the number of total groups.  
To sum up, the implementation of the whole IGGS algorithm 

is illustrated in Table I.  

IV. RESULTS AND DISCUSSION 

The proposed IGGS algorithm is evaluated by numerical 

simulation and real-world experiments. The performance of 

IGGS is compared with that of other widely used single-modal 

based EIT image reconstruction algorithms, i.e. the classical 

Tikhonov regularization based algorithm (TReg) [27] and the 

state-of-the-art Structure-Aware Sparse Bayesian Learning 

(SA-SBL) [19] and Enhanced Adaptive Group Sparsity with 

Total Variation (EAGS-TV) [18] algorithms. The numerical 

simulation aims to quantitatively evaluate the performance of 

the algorithms and real-world experiments are to verify the 

practical feasibility.   

A. Numerical Simulation 

1) Modelling:  A 16-electrode EIT sensor is modelled in 

COMSOL Multiphysics (see Fig. 5 (a)). The diameter of the 

sensor is 15 mm and the background medium is set as 

homogeneous saline with a conductivity value of 0.05 S/m–1. 

The material of electrodes is set as Titanium whose 

conductivity is 7.407 × 105 S/m–1. From Fig. 5 (b) to Fig. 5 (d), 

three types of conductivity distribution, i.e. phantom 1 to 

phantom 3, are modeled. The background material of all 

phantoms is saline with the conductivity value of 0.05 S/m–1. 

Phantom 1 simulates a large circle object with a conductivity 

value of 0.035 S/m–1. Phantom 2 simulates three dispersed 

small objects. i.e. two circle with conductivity values of 0.035 

S/m–1 (upper left) and 0.015 S/m–1 (bottom left) respectively, 

and a ellipse object with conductivity value of 0.025 S/m–1. 

Phantom 3 simulates two square objects with conductivity 

values of 0.08 S/m–1 (upper right) and 0.035 S/m–1 (bottom) 

respectively. The adjacent sensing protocol is applied to obtain 

the boundary voltage data [35].  

2) Parameter Settings: The regularization factor of TReg is 

searched based on the L-curve method [36]. The calculated 

optimal regularization factors for phantom 1, phantom 2 and 

phantom 3 are 9.2140 × 10−11, 2.5655 × 10−6 and 1.1153 ×

10−6 , respectively. Parameters of other algorithms are 

determined based on trial and error to ensure the best 

performance of the algorithms within a wide range of parameter 

sets. For all results based on SA-SBL, the maximum iteration 

number is set as 5 and the tolerance is selected as 1 × 10−5; the 

pattern coupling factor and the cluster size are chosen as 0.3 and 

4, respectively. For EAGS-TV and IGGS, the result of Treg 

with the regularization factor of 0.001 is selected as their 

starting point and the weight calculation is based on (29). The 

maximum iteration number of IGGS is set as 90 for phantom 1 

and phantom 2 and set as 40 for phantom 3. The stopping 

tolerance of IGGS for all phantoms is set as 1 × 10−7 . The 

iteration number and stopping tolerance are set as 150 and 1 ×

10−7 for all cases based on EAGS-TV. For IGGS, the penalty 

parameters 𝜂1  and 𝜂2  are set as 0.0015/mean(abs(ΔV)) and 

0.0005/mean(abs(ΔV)). abs() converts each element of ΔV  to 

its absolute value and the function of mean() is to calculate the 

average value of  the vector abs(ΔV). The multiplier update step 

lengths 𝜀1  and 𝜀2  are both selected as 0.4854. The two 

multiplier update step lengths for EAGS-TV are same and are 

set as 0.9870. In EAGS-TV, the penalty parameter for the l2 

norm related to auxiliary variable is set as 1/mean(abs(ΔV)) and 

the penalty parameter for the l2 norm related to EIT linearized 

model is set as 10/mean(abs(V)). In addition, the maximum 

group diameter for EAGS-TV is set as 10 pixels, which is 

reasonable in this study. If not specified, algorithm parameter 

settings follow the above configuration in the following 

discussions.  

3) Quantitative Metrics: In simulation, as the ground truth is 

known, the reconstructed image can be quantitatively evaluated 

by two metrics, i.e. Relative Image Error (RIE) and Mean 

Structural Similarity Index (MSSIM) [37], which are defined as:   

                                         RIE =
‖𝐸 − 𝐺‖2
‖𝐺‖2

                                (30) 

   MSSIM =
1

𝑊𝐻
∑∑

(2𝜇𝐸𝜇𝐺 + 𝐶1)(2δ𝐸𝐺 + 𝐶2)

(𝜇𝐸
2 + 𝜇𝐺

2 + 𝐶1)(δ𝐸
2 + δ𝐺

2 + 𝐶2)
𝑐𝑟

   (31) 

where E and G are the reconstructed image and the ground truth, 

respectively. W and H are the width and height of an image. 

TABLE I 
ALGORITHM OF IMAGE-GUIDED GROUP SPARSITY 

Algorithm: Image-Guided Group Sparsity (IGGS) 

Input: Jacobian matrix J, voltage change measurements ΔV and  

            weight vector 𝝎, 𝜂1, 𝜂2, 𝜀1, 𝜀2. 

Initialize: Δ𝝈 equals to the result of Tikhonov regularization. 

                  𝒂 = Δ𝝈，𝝀1=0，𝝀2 = 𝟎，d = 1. 

Step 1: Semantic segmentation for guidance image by application- 

             specific algorithm. 

Step 2: Pixel grouping according to the method depicted in section  

             III-B-2). 

Step 3: 
             Iteration until satisfying stopping criteria, Do: 

① Solve subproblem (20) by using (22). 

② Solve subproblem (21) by using (24). 

③ Apply constraint (25) to the result of ②. 

④ Update multipliers by using (26). 

             End Do. 

Output: The estimated conductivity change distribution. 

 

 

Fig. 5.  Modelled (a) 16-electrode EIT sensor, (b) phantom 1, (c) 
phantom 2 and (d) phantom 3. 
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𝜇𝐸 = 𝜇𝐸(𝑟, 𝑐) , 𝜇𝐺 = 𝜇𝐺(𝑟, 𝑐) ,  δ𝐸 = δ𝐸(𝑟, 𝑐) , δ𝐺 = δ𝐺(𝑟, 𝑐) , 

and δ𝐸𝐺 = δ𝐸𝐺(𝑟, 𝑐) are the local means, standard deviations 

and cross-covariance for E and G. 𝐶1 = (𝐾1𝐿)
2  and 𝐶2 =

(𝐾2𝐿)
2. 𝐾1 and 𝐾2 are constants with values of 0.01 and 0.03, 

respectively. As the absolute pixel values of the reconstructed 

EIT images in both simulation study and real-world 

experiments are normalized to [0, 1] in this work, L is set as 1.  

4) Result Comparison and Discussion: Table II displays the 

reconstructed EIT images, RIE and MSSIM based on IGGS, 

TReg, SA-SBL and EAGS-TV. In these results, the voltage data 

is noise-free and the mask image for IGGS is accurate and 

generated by assigning one to pixels where there are objects and 

assigning zero to the background pixels. The mask images and 

corresponding grouping results are shown in Table III. In Table 

III, LNG means the number of large groups and SNG means the 

number of small groups. When a mask image is given, the 

grouping results can be easily acquired by the method in 

Section III-B-2). Thus, for later reconstructed images by IGGS, 

we only provide mask images. According to Table II, although 

TReg can predict the position of objects correctly, the shape and 

conductivity contrasts are significantly wrong (see its images, 

RIE and MSSIM) and this algorithm suffers from severe 

background noise. SA-SBL and AGS-TV show considerable 

improvement in terms of the accuracy of the shape and 

conductivity contrasts. When the shape of the imaging objects 

are circle and ellipse, they can predict a relatively accurate 

shape. However, these two algorithms are powerless when 

encountering imaging objects with angles and straight lines like 

phantom 3 and the shape feature is lost. Differently, IGGS can 

generate the most accurate position, shape, and conductivity 

contrasts.  
   Table IV selects phantom 2 to compare noise resistance 

ability of algorithms with signal to noise ratios (SNR) of 35 dB 

and 25 dB. Since the voltage data are changed, the 

regularization factors of TReg for phantom 2 should be re-

calculated based on the L-curve method [36]. The searched 

regularization factors for voltage data with the SNR of 35 dB 

and 25 dB are 3.5384 × 10−6  and 1.7933 × 10−5 , 

respectively. As shown in the Table II and Table IV, EAGS-TV 

presents a good noise-resistance ability. The shape of objects in 

the reconstructed images of this algorithm does not change 

significantly and the RIE varies within 0.03. The performance 

of SA-SBL is a worse than EAGS-TV, which can be indicated 

by the reconstructed shape and quantitative metrics. However, 

images generated by these two algorithms show evident change 

when SNR varies from 35 dB to 25 dB. In this case, the images 

generated by TReg show unnoticeable degradation. Meanwhile, 

the results of IGGS also show slight change when SNR 

decreases. The performance of IGGS presents the highest level 

compared with other algorithms, which indicates IGGS has the 

best noise resistance capability among these four given 

algorithms.  

   Table V selects phantom 3 to examine the noise-resistance 

ability of IGGS under noise-contaminated voltage data and 

inaccurate mask image. Two voltage noise-levels, i.e. clean 

voltage data an d voltage data with SNR=35 dB, are selected. 

In addition, the mask image suffers from three perturbation-

levels, i.e. accurate mask, slight perturbed mask and severely 

perturbed mask (from top to bottom). Inaccurate mask may be 

generated by the unideal semantic segmentation algorithms or 

caused by noisy guidance image in real scenarios. Therefore, 

investigation of the effect of inaccurate mask image is 

necessary for real applications. As Table V shows, the shape of 

objects in the reconstructed image is determined by the mask 

image. Given a fixed mask image, quantitative metrics are 

barely influenced by the voltage noise. While given a fixed 

voltage noise-level, the metrics become worse when the mask 

image becomes inaccurate. However, the quantitative metrics 

of the results of IGGS is still superior to those images generated 

by the other three algorithms under the same voltage noise-level. 

In addition, although given an inaccurate mask, the 

conductivity change can still be estimated relatively accurate 

except the pixels at the boundary. This indicates IGGS has a 

good generalization ability when encountering inaccurate mask 

images. In summary, IGGS has a strong ability to resist voltage 

noise and mask perturbation.  

TABLE II 
COMPARISON OF DIFFERENT ALGORITHMS ON DIFFERENT PHANTOMS 

 

TABLE III 
MASK IMAGES OF PHANTOMS AND CORRESPONDING GROUPING 

RESULTS (FIRST ROW: MASK IMAGES; SECOND ROW: GROUPING 

RESULTS) 
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 The last comparison is concerned with the elapsed time. As 

the second and third steps of IGGS are fixed in practice and we 

don’t conduct semantic segmentation in sumulation, we only 

compare the elapsed time of the second and third steps of IGGS  

with the other algorithms. The simulation data and algorithm 

parameter settings are the same as those in Table II. The results 

are illustrated in Fig. 6. The image reconstruction is carried out 

on the MATLAB R2021a on a Windows laptop with an IntelR 

CoreTM i7-10750 CPU. From Fig. 6, it is explicit that IGGS 

spends the minimum time for all phantoms, while TReg and 

SA-SBL are the two most time-consuming algorithms. 

Comparing IGGS with EAGS-TV, the less elapsed time is 

mainly benefited from smaller number of iterations, indicating 

IGGS has the potential to be implemented for real-time image 

reconstruction in future applications.  
Here we also present a brief discussion of the model error 

and its influences. In the adopted time-difference imaging 

model, the model error originates from the linearization of the 

non-linear problem of EIT. Specificlly, the forward model of 

EIT, i.e. (1), is a non-linear mapping, while this paper adopts 

the commonly used linearized version, i.e. (2). Based on the 

linearized forward model, the EIT image reconstruction cannot 

recover accurate conductivity change distribution when the 

perturbation is not subtle. This is the primary reason that we 

normalize the reconstructed images and focus on the contrasts 

of the conductivity distribution. We qualitatively discuss the 

model error with the assistance of Fig. 7. In Fig. 7, we ignore 

all types of measurement error and confine F as a mapping from 

ℝ to ℝ. Thus, the vector 𝝈 and 𝑽 are simplified as the scalar 𝜎 

and scalar 𝑉, respectivily. The blue curve represents the true 

EIT forward response and the orange straight line represents the 

linearized forward response. Note this simplification and the 

curves are just for illustration purpose. At the reference time 

point, the conductivity is denoted by 𝜎0 and the corresponding 

boundary voltage is represented by 𝑉0. 𝑉1 denotes the boundary 

voltage at the observation time point. Based on the linear model 

and the voltage measurement ∆𝑉 = 𝑉1 − 𝑉0, the reconstructed 

conductivity change is ∆𝜎 = 𝜎1 − 𝜎0 . However, it should be 

𝜎1
∗ − 𝜎0  according to the realistic non-linear model. Such 

deviation would affect the image reconstruction quality and 

accuracy in practical applications. 

B. Real-world Experiments 

The performance of IGGS is further validated on real-world 

data and the results are illustrated in Table VI. The sensor is 

TABLE IV 
COMPARISON OF THE ABILITY OF VOLTAGE NOISE RESISTANCE 

 

TABLE V 
IMAGE RECONSTRUCTION RESULTS BASED ON INACCURATE MASK 

IMAGE 

 

 

Fig. 6. Running time comparison. The values represent 
the running time (unit: second). 

 

Fig. 7. Induced boundary voltage response of EIT. 
Linearization leads to the model error. 
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connected to the EIT system developed in the Intelligent 

Sensing, Analysis and Control Group (ISAC) at The University 

of Edinburgh and the highest Signal-to-Noise Ratio (SNR) of 

the system is 82.82 dB [38]. As stated in Section III, we use two 

EIT sensors, i.e. EIT sensor A and EIT sensor B, to verify the 

proposed method. EIT sensor A is used to image square carrot 

tissues (length ~ 3 mm) and the combination of a triangle rubber 

(large length ~ 3 mm, small length ~ 2mm) and a hexagonal 

iron (diameter ~ 3 mm). The Background medium for both 

phantoms is saline, which conductivity is 0.05 S/m–1. The upper 

surface of the iron is covered by a thin white rubber layer. The 

rubber layer does not af fect the conductivity properties of this 

imaging target much, meanwhile, it can reduce surface 

reflection that may influence the definition of the object shape 

in the optical image. The EIT sensor B is employed to image 

MCF-7 cell spheroids (diameter ~ 2 mm) which are cultured in 

PBS with a conductivity of 2 S/m–1. For all experiments, the 

current excitation frequency is set as 10 kHz and the current 

amplitude is set as 1.5 mA peak to peak. A completed frame 

contains 104 individual measurements, and the frame rate is 48 

fps. Adjacent protocol is also adopted to collect boundary 

voltages [35].  

Based on the L-curve method [36], the searched Tikhonov 

regularization factors for carrot tissues, the combination of a 

triangle rubber and a hexagonal iron, and MCF-7 cell spheroids 

are 2.5109 × 10−5 , 0.0015 and 2.4612 × 10−5 , respectively. 

In addition, based on trials, the maximum iteration numbers are 

set as 100 and 40 for EAGS-TV and IGGS, for all experiments. 

In rubber and iron imaging, the penalty parameter for the l2 

norm related to auxiliary variable is set as 0.05/mean(abs(ΔV)) 

and the penalty parameter for the l2 norm related to EIT 

linearized model is set as 10/mean(abs(ΔV)) for EAGS-TV. 

Other parameters for all algorithms and all experiments are set 

the same as those in simulation study. In addition, the size of 

structuring element is set as 3 × 3  for the two sets of 

segmentation algorithms throughout experiments. For the cell 

spheroid image segmentation, the value of 𝜏 is set as 0.45.  
In Table VI, mask images generated by the semantic 

segmentation algorithms are in the rightest column. We assume 

the mask images provide accurate geometrical distribution 

information and select them as the reference to calculate 

MSSIM for quantitative assessment of algorithm performance. 

For TReg and SA-SBL, the shape of imaging targets is 

deteriorated, and the images contain too much background 

noise although they can roughly locate the position of imaging 

targets. EAGS-TV has a stronger capability of noise resistance 

compared to the former two methods, whereas it fails to 

reconstruct objects with accurate shapes. In contrast, only IGGS 

presents the best shape preservation ability (see images and 

MSSIM) and background noise-resistance ability (see image 

background quality) for different types of miniature sensors and 

sensing objects.  

V. CONCLUSION 

We proposed an EIT-optical dual-modal image 

reconstruction algorithm named IGGS to improve the image 

quality of EIT with the assistance of an extra imaging modality. 

IGGS fuses the dual-modal information from EIT and optical 

images to reconstruct high-quality EIT images. Both simulation 

study and real-world experiments demonstrated that IGGS 

TABLE VI 
IMAGE RECONSTRUCTION COMPARISON BASED ON EXPERIMENTAL DATA  
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could generate more accurate contrasts of conductivity 

distribution than the comparative algorithms, implying the 

potential of performing impedance-based quantitative analysis 

for tissue engineering. Future research will extend the method 

to the three-dimensional imaging setup. Quantitative 

conductivity imaging based on the dual-modal setup will also 

be rigorously explored.  

REFERENCES 

[1] R. H. Bayford, "Bioimpedance tomography (electrical impedance 
tomography)," Annu. Rev. Biomed. Eng., vol. 8, pp. 63-91, 2006. 

[2] P. Metherall, D. C. Barber, R. H. Smallwood, and B. H. Brown, "Three-

dimensional electrical impedance tomography," Nature, vol. 380, no. 
6574, pp. 509-512, 1996. 

[3] D. S. Holder, Electrical impedance tomography: methods, history and 

applications. CRC Press, 2004. 
[4] A. Seppänen, A. Voutilainen, and J. Kaipio, "State estimation in process 

tomography—reconstruction of velocity fields using EIT," Inverse 

Problems, vol. 25, no. 8, p. 085009, 2009. 

[5] H. S. Tapp, A. Peyton, E. K. Kemsley, and R. H. Wilson, "Chemical 

engineering applications of electrical process tomography," Sensors and 

Actuators B: Chemical, vol. 92, no. 1-2, pp. 17-24, 2003. 
[6] C. Dang, M. Darnajou, C. Bellis, G. Ricciardi, S. Mylvaganam, and S. 

Boure nnane, "Improving EIT-based visualizations of two-phase flows 
using an eigenvalue correlation method," IEEE Transactions on 

Instrumentation and Measurement, vol. 70, pp. 1-9, 2021. 

[7] D. Santos, P. Faia, F. Garcia, and M. Rasteiro, "Oil/water stratified flow 
in a horizontal pipe: Simulated and experimental studies using EIT," 

Journal of Petroleum Science and Engineering, vol. 174, pp. 1179-1193, 

2019. 
[8] Y. Yang, J. Jia, S. Smith, N. Jamil, W. Gamal, and P.-O. Bagnaninchi, "A 

miniature electrical impedance tomography sensor and 3-D image 

reconstruction for cell imaging," IEEE Sensors Journal, vol. 17, no. 2, pp. 
514-523, 2016. 

[9] Y. Yang, H. Wu, J. Jia, and P.-O. Bagnaninchi, "Scaffold-based 3-D cell 

culture imaging using a miniature electrical impedance tomography 
sensor," IEEE Sensors Journal, vol. 19, no. 20, pp. 9071-9080, 2019. 

[10] H. Wu, Y. Yang, P. O. Bagnaninchi, and J. Jia, "Electrical impedance 

tomography for real-time and label-free cellular viability assays of 3D 
tumour spheroids," Analyst, vol. 143, no. 17, pp. 4189-4198, 2018. 

[11] B. Gong, B . Schullcke, S. Krueger-Ziolek, F. Zhang, U. Mueller-Lisse, 

and K. Moeller , "Higher order total variation regularization for EIT 
reconstruction," Medical & biological engineering & computing, vol. 56, 

no. 8, pp. 1367-1378, 2018. 

[12] J. Liu, L. Lin, W. Zhang, and G. Li, "A novel combined regularization 
algorithm of total variation and Tikhonov regularization for open 

electrical impedance tomography," Physiological measurement, vol. 34, 

no. 7, p. 823, 2013. 
[13] K. Lee, E. J. Woo, and J. K. Seo, "A fidelity-embedded regularization 

method for robust electrical impedance tomography," IEEE transactions 

on medical imaging, vol. 37, no. 9, pp. 1970-1977, 2017. 
[14] J. Li, S. Yue, M. Ding, Z. Cui, and H. Wang, "Adaptive Lp Regularization 

for Electrical Impedance Tomography," IEEE Sensors Journal, vol. 19, 

no. 24, pp. 12297-12305, 2019. 
[15] M. Gehre et al., "Sparsity reconstruction in electrical impedance 

tomography: an experimental evaluation," Journal of Computational and 

Applied Mathematics, vol. 236, no. 8, pp. 2126-2136, 2012. 
[16] Y. Shi, Y. Wu, M. Wang, Z. Tian, X. Kong, and X. He, "Sparse image 

reconstruction of intracerebral hemorrhage with electrical impedance 

tomography," Journal of Medical Imaging, vol. 8, no. 1, p. 014501, 2021.  
[17] Y. Yang and J. Jia, "An image reconstruction algorithm for electrical 

impedance tomography using adaptive group sparsity constraint," IEEE 

Transactions on Instrumentation and Measurement, vol. 66, no. 9, pp. 
2295-2305, 2017. 

[18] Y. Yang, H. Wu, and J. Jia, "Image reconstruction for electrical 

impedance tomography using enhanced adaptive group sparsity with total 
variation," IEEE Sensors Journal, vol. 17, no. 17, pp. 5589-5598, 2017. 

[19] S. Liu, J. Jia, Y. D. Zhang, and Y. Yang, "Image reconstruction in 

electrical impedance tomography based on structure-aware sparse 
Bayesian learning," IEEE transactions on medical imaging, vol. 37, no. 

9, pp. 2090-2102, 2018. 

[20] D. Liu, D. Gu, D. Smyl, A. K. Khambampati, J. Deng, and J. Du, "Shape-
driven EIT reconstruction using Fourier representations," IEEE 

Transactions on Medical Imaging, 2020. 

[21] D. Liu, D. Gu, D. Smyl, J. Deng, and J. Du, "Shape reconstruction using 
Boolean operations in electrical impedance tomography," IEEE 

transactions on medical imaging, vol. 39, no. 9, pp. 2954-2964, 2020. 

[22] D. Liu, D. Gu, D. Smyl, J. Deng, and J. Du, "B-spline-based sharp feature 
preserving shape reconstruction approach for electrical impedance 

tomography," IEEE transactions on medical imaging, vol. 38, no. 11, pp. 

2533-2544, 2019. 
[23] Z. Li, J. Zhang, D. Liu, and J. Du, "CT image-guided electrical impedance 

tomography for medical imaging," IEEE transactions on medical 

imaging, vol. 39, no. 6, pp. 1822-1832, 2019. 
[24] H. Liu, S. Zhao, C. Tan, and F. Dong, "A bilateral constrained image 

reconstruction method using electrical impedance tomography and 

ultrasonic measurement," IEEE Sensors Journal, vol. 19, no. 21, pp. 
9883-9895, 2019. 

[25] G. Liang, S. Ren, S. Zhao, and F. Dong, "A Lagrange-Newton method for 

EIT/UT dual-modality image reconstruction," Sensors, vol. 19, no. 9, p. 
1966, 2019. 

[26] T. Goldstein, B. O'Donoghue, S. Setzer, and R. Baraniuk, "Fast 

alternating direction optimization methods," SIA M Journal on Imaging 

Sciences, vol. 7, no. 3, pp. 1588-1623, 2014.  
[27] M. Vauhkonen, D. Vadasz, P. A. Karjalainen, E. Somersalo, and J. P. 

Kaipio, "Tikhonov regularization and prior information in electrical 
impedance tomography," IEEE transactions on medical imaging, vol. 17, 

no. 2, pp. 285-293, 1998. 
[28] W. R. Lionheart, "EIT reconstruction algorithms: pitfalls, challenges and 

recent developments," Physiological measurement, vol. 25, no. 1, p. 125, 

2004. 
[29] N. Otsu, "A threshold selection method from gray-level histograms," 

IEEE transactions on systems, man, and cybernetics, vol. 9, no. 1, pp. 62-

66, 1979. 
[30] R. C. Gonzalez and P. Wintz, "Digital image processing(Book)," Reading, 

Mass., Addison-Wesley Publishing Co., Inc.(Applied Mathematics and 

Computation, no. 13, p. 451, 1977. 
[31] G. D. Finlayson, M. S. Drew, and C. Lu, "Entropy minimization for 

shadow removal," International Journal of Computer Vision, vol. 85, no. 

1, pp. 35-57, 2009. 
[32] J. Huang and T. Zhang, "The benefit of group sparsity," The Annals of 

Statistics, vol. 38, no. 4, pp. 1978-2004, 2010. 

[33] A. Chambolle, "An a lgorithm for total variation minimization and 
applications," Journal of Mathematical imaging and vision, vol. 20, no. 

1, pp. 89-97, 2004. 

[34] W. Deng, W. Yin, and Y. Zhang, "Group sparse optimization by 
alternating direction method," in Wavelets and Sparsity XV, 2013, vol. 

8858: International Society for Optics and Photonics, p. 88580R.  

[35] B. H. Brown and A. D. Seagar, "The Sheffield data collection system," 
Clinical Physics and Physiological Measurement, vol. 8, no. 4A, p. 91, 

1987. 

[36] P. C. Hansen and D. P. O’Leary, "The use of the L-curve in the 
regularization of discrete ill-posed problems," SIAM journal on scientific 

computing, vol. 14, no. 6, pp. 1487-1503, 1993. 

[37] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image quality 
assessment: from error visibility to structural similarity," IEEE 

transactions on image processing, vol. 13, no. 4, pp. 600-612, 2004. 

[38] Y. Yang and J. Jia, "A multi-frequency electrical impedance tomography 
system for real-time 2D and 3D imaging," Revie w of Scientific 

Instruments, vol. 88, no. 8, p. 085110, 2017.  
  


