85 research outputs found

    A comparative reliability analysis of ETCS train radio communications

    Get PDF
    StoCharts have been proposed as a UML statechart extension for performance and dependability evaluation, and were applied in the context of train radio reliability assessment to show the principal tractability of realistic cases with this approach. In this paper, we extend on this bare feasibility result in two important directions. First, we sketch the cornerstones of a mechanizable translation of StoCharts to MoDeST. The latter is a process algebra-based formalism supported by the Motor/Möbius tool tandem. Second, we exploit this translation for a detailed analysis of the train radio case study

    Doctor of Philosophy

    Get PDF
    dissertationOver the last decade, cyber-physical systems (CPSs) have seen significant applications in many safety-critical areas, such as autonomous automotive systems, automatic pilot avionics, wireless sensor networks, etc. A Cps uses networked embedded computers to monitor and control physical processes. The motivating example for this dissertation is the use of fault- tolerant routing protocol for a Network-on-Chip (NoC) architecture that connects electronic control units (Ecus) to regulate sensors and actuators in a vehicle. With a network allowing Ecus to communicate with each other, it is possible for them to share processing power to improve performance. In addition, networked Ecus enable flexible mapping to physical processes (e.g., sensors, actuators), which increases resilience to Ecu failures by reassigning physical processes to spare Ecus. For the on-chip routing protocol, the ability to tolerate network faults is important for hardware reconfiguration to maintain the normal operation of a system. Adding a fault-tolerance feature in a routing protocol, however, increases its design complexity, making it prone to many functional problems. Formal verification techniques are therefore needed to verify its correctness. This dissertation proposes a link-fault-tolerant, multiflit wormhole routing algorithm, and its formal modeling and verification using two different methodologies. An improvement upon the previously published fault-tolerant routing algorithm, a link-fault routing algorithm is proposed to relax the unrealistic node-fault assumptions of these algorithms, while avoiding deadlock conservatively by appropriately dropping network packets. This routing algorithm, together with its routing architecture, is then modeled in a process-algebra language LNT, and compositional verification techniques are used to verify its key functional properties. As a comparison, it is modeled using channel-level VHDL which is compiled to labeled Petri-nets (LPNs). Algorithms for a partial order reduction method on LPNs are given. An optimal result is obtained from heuristics that trace back on LPNs to find causally related enabled predecessor transitions. Key observations are made from the comparison between these two verification methodologies

    Testing By Dualization

    Get PDF
    Software engineering requires rigorous testing to guarantee the product\u27s quality. Semantic testing of functional correctness is challenged by nondeterminism in behavior, which makes testers difficult to write and reason about. This thesis presents a language-based technique for testing interactive systems. I propose a theory for specifying and validating nondeterministic behaviors, with guaranteed soundness and correctness. I then apply the theory to testing practices, and show how to derive specifications into interactive tester programs. I also introduce a language design for producing test inputs that can effectively detect and reproduce invalid behaviors. I evaluate the methodology by specifying and testing real-world systems such as web servers and file synchronizers, demonstrating the derived testers\u27 ability to find disagreements between the specification and the implementation

    Abstraction : a notion for reverse engineering.

    Get PDF

    On the analysis of stochastic timed systems

    Get PDF
    The formal methods approach to develop reliable and efficient safety- or performance-critical systems is to construct mathematically precise models of such systems on which properties of interest, such as safety guarantees or performance requirements, can be verified automatically. In this thesis, we present techniques that extend the reach of exhaustive and statistical model checking to verify reachability and reward-based properties of compositional behavioural models that support quantitative aspects such as real time and randomised decisions. We present two techniques that allow sound statistical model checking for the nondeterministic-randomised model of Markov decision processes. We investigate the relationship between two different definitions of the model of probabilistic timed automata, as well as potential ways to apply statistical model checking. Stochastic timed automata allow nondeterministic choices as well as nondeterministic and stochastic delays, and we present the first exhaustive model checking algorithm that allows their analysis. All the approaches introduced in this thesis are implemented as part of the Modest Toolset, which supports the construction and verification of models specified in the formal modelling language Modest. We conclude by applying this language and toolset to study novel distributed control strategies for photovoltaic microgenerators

    Constructive tool design for formal languages : from semantics to executing models

    Get PDF
    Embedded, distributed, real-time, electronic systems are becoming more and more dominant in our lives. Hidden in cars, televisions, mp3-players, mobile phones and other appliances, these hardware/software systems influence our daily activities. Their design can be a huge effort and has to be carried out by engineers in a limited amount of time. Computer-aided modelling and design automation shorten the design cycle of these systems enabling companies to deliver their products sooner than their competitors. The design process is divided into different levels of abstraction, starting with a vague product idea (abstract) and ending up with a concrete description ready for implementation. Recently, research has started to focus on the system level, being a promising new area at which the product design could start. This dissertation develops a constructive approach to building tools for system-level design/description/modelling/specification languages, and shows the applicability of this method to the system-level language POOSL (Parallel Object-Oriented Specification Language). The formal semantics of this language is redefined and partly redeveloped, adding probabilistic features, real-time, inheritance, concurrency within processes, dynamic ports and atomic (indivisible) expressions, making the language suitable for performance analysis/modelling. The semantics is two-layered, using a probabilistic denotational semantics for stating the meaning of POOSL’s data layer, and using a probabilistic structural operational semantics for the process layer and architecture layer. The constructive approach has yielded the system-level simulation tool rotalumis, capable of executing large industrial designs, which has been demonstrated by two successful case studies—an ATM-packet switch (in conjunction with IBM Research at Z¨urich) and a packet routing switch for the Internet (in association with Alcatel/Bell at Antwerp). The more generally applicable optimisations of the execution engine (rotalumis) and the decisions taken in its design are discussed in full detail. Prototyping, where the system-level model functions as a part of the prototype implementation of the designed product, is supported by rotalumis-rt, a real-time variant of the execution engine. The viability of prototyping is shown by a case study of a learning infrared remote control, partially realised in hardware and completed with a system-level model. Keywords formal languages / formal specification / modelling languages / systemlevel design / embedded systems / real-time systems / performance analysis / discrete event simulation / probabilistic process algebra / design automation / prototyping / simulation tool

    An Integrated Methodology for Creating Composed Web/Grid Services

    Get PDF
    This thesis presents an approach to design, specify, validate, verify, implement, and evaluate composed web/grid services. Web and grid services can be composed to create new services with complex behaviours. The BPEL (Business Process Execution Language) standard was created to enable the orchestration of web services, but there have also been investigation of its use for grid services. BPEL specifies the implementation of service composition but has no formal semantics; implementations are in practice checked by testing. Formal methods are used in general to define an abstract model of system behaviour that allows simulation and reasoning about properties. The approach can detect and reduce potentially costly errors at design time. CRESS (Communication Representation Employing Systematic Specification) is a domainindependent, graphical, abstract notation, and integrated toolset for developing composite web service. The original version of CRESS had automated support for formal specification in LOTOS (Language Of Temporal Ordering Specification), executing formal validation with MUSTARD (Multiple-Use Scenario Testing and Refusal Description), and implementing in BPEL4WS as the early version of BPEL standard. This thesis work has extended CRESS and its integrated tools to design, specify, validate, verify, implement, and evaluate composed web/grid services. The work has extended the CRESS notation to support a wider range of service compositions, and has applied it to grid services as a new domain. The thesis presents two new tools, CLOVE (CRESS Language-Oriented Verification Environment) and MINT (MUSTARD Interpreter), to respectively support formal verification and implementation testing. New work has also extended CRESS to automate implementation of composed services using the more recent BPEL standard WS-BPEL 2.0
    • …
    corecore