5,314 research outputs found

    Asymmetric Hydrogenation in Water by a Rhodium Complex of Sulfonated 2,2'-Bis(diphenylphosphino)-1,1'-binaphthyl (binap)

    Get PDF
    The synthesis of sulfonated 2,2′-bis(diphenylphosphino)-1,1′-binaphthyl (binap) is reported; a rhodium complex of this ligand is the first to perform asymmetric hydrogenation in neat water with optical yields as high as those obtained in nonaqueous solvent

    Asymmetric Hydrogenation

    Get PDF

    Asymmetric Hydrogenation of 1-alkyl and 1-aryl vinyl benzoates: a broad scope procedure for the highly enantioselective synthesis of 1-substituted ethyl benzoates

    Get PDF
    The enantioselective hydrogenation of enol esters of formula CH2=C(OBz)R with rhodium catalysts based on phosphine-phosphite ligands (P-OP) has been studied. The reaction has a broad scope and it is suitable for the preparation of products possessing a wide variety of R substituents. For the cases where R is a primary alkyl high catalyst activity (S/C = 500) and enantioselectivities (95-99 % ee) were obtained with a catalyst characterized by an ethane backbone and a PPh2 fragment. In contrast, for R = tBu a catalyst possessing a benzene backbone provided the best results (97 % ee). Derivatives with a cycloalkyl R substituent were particularly difficult substrates for this reaction. A broader catalyst screening was required for these substrates, which identified a catalyst possessing a P(m-xylyl)2 fragment as the most appropriate one, affording enantioselectivities between 90 and 95 % ee. Outstanding enantioselectivities (99 % ee) and high catalyst activity (S/C = 500-1000) were also obtained in the case of substrates bearing a Ph or a fluoroaryl R substituent. In addition, the system is also appropriate for the preparation of other synthetically useful esters as those for R = benzyl, 2-phenylethyl or Nphthalimido alkyl chains. Likewise, the hydrogenation of divinyl dibenzoates proceeded with very high diastero- and enantioselectivity, generating rather low amounts of the meso isomer (3-6 %). On the other hand, substrates with Br- and MeO- substituents at the phenyl benzoate ring, suitable for further functionalization, have also been examined. The results obtained indicate no detrimental effect of these substituents in the hydrogenation. Alternatively, the methodology has been applied to the highly enantioselective synthesis of deuterium isotopomers of 1-octyl benzoate bearing CDH2, CD2H or CD3 fragments. Finally, as a practical advantage of the present system, it has been observed that the high performance of the catalysts is retained in high concentrated solutions or even in the neat substrate, then minimizing both the amount of solvent added and the volume of the reactionJunta de Andalucía 2009/FQM-4832CSIC 201480E03 1Ministerio de Ciencia e Innovación CTQ2010- 14796/BQ

    (S)-(−)-Fluorenylethylchloroformate (FLEC) ; preparation using asymmetric transfer hydrogenation and application to the analysis and resolution of amines

    Get PDF
    Fluorenylethylchoroformate (FLEC) is a valuable chiral derivatisation reagent that is used for the resolution of a wide variety of chiral amines. Herein, we describe an improved preparation of (S)-(−)-FLEC using an efficient asymmetric catalytic transfer hydrogenation as the key step. We also demonstrate the application of FLEC as a chiral Fmoc equivalent for chiral resolution, with facile deprotection, of tetrahydroquinaldines, and its capacity for inducing regioselective outcomes in nitration reactions

    Ruthenacycles and Iridacycles as Catalysts for Asymmetric Transfer Hydrogenation and Racemisation

    Get PDF
    Ruthenacycles, which are easily prepared in a single step by reaction between enantiopure aromatic amines and [Ru(arene)Cl2]2 in the presence of NaOH and KPF6, are very good asymmetric transfer hydrogenation catalysts. A range of aromatic ketones were reduced using isopropanol in good yields with ee’s up to 98%. Iridacycles, which are prepared in similar fashion from [IrCp*Cl2]2 are excellent catalysts for the racemisation of secondary alcohols and chlorohydrins at room temperature. This allowed the development of a new dynamic kinetic resolution of chlorohydrins to the enantiopure epoxides in up to 90% yield and 98% enantiomeric excess (ee) using a mutant of the enzyme Haloalcohol dehalogenase C and an iridacycle as racemisation catalyst.

    Palladium Nanoparticle–Graphene Catalysts for Asymmetric Hydrogenation

    Get PDF
    We report for the first time the application of palladium nanoparticle-graphene (Pd/Gn) catalysts in the asymmetric hydrogenation of aliphatic a,b-unsaturated carboxylic acids using cinchonidine as chiral modifier. Pd/ Gns were prepared by deposition–precipitation from the aqueous phase over graphite oxide and subsequent simultaneous reduction of both the support and the metal precursor with NaBH4. The materials obtained were characterized by ICP optical emission spectroscopy, X-ray diffraction spectroscopy, Raman spectroscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. We demonstrate that the Pd/Gns modified by cinchonidine can act as efficient catalysts in the asymmetric hydrogenation of a,b-unsaturated carboxylic acids for producing optically enriched saturated carboxylic acids

    Enantioselective hydrogenation of activated ketones in the presence of Pt–cinchona catalysts. Is the proton transfer concept valid?

    Get PDF
    Experimental evidences related to the proton transfer in the catalytic system Pt-Cinchona alkaloids for enantioselective hydrogenation of activated ketones were collected and analyzed. Both new and earlier results indicate that in aprotic media direct transfer of proton from platinum to the substrate with the involvement of quinuclidine nitrogen as a general rule can be questioned

    Cobalt-Catalyzed Asymmetric Hydrogenation:Substrate Specificity and Mechanistic Variability

    Get PDF
    Asymmetric hydrogenation finds widespread application in academia and industry. And indeed, a number of processes have been implemented for the production of pharma and agro intermediates as well as flavors & fragrances. Although these processes are all based on the use of late transition metals as catalysts, there is an increasing interest in the use of base metal catalysis in view of their lower cost and the expected different substrate scope. Catalysts based on cobalt have already shown their potential in enantioselective hydrogenation chemistry. This review outlines the impressive progress made in recent years on cobalt-catalyzed asymmetric hydrogenation of different unsaturated substrates. We also illustrate the ligand dependent substrate specificity as well as the mechanistic variability in detail. This may well guide further catalyst development in this research area

    Cobalt-Catalyzed Asymmetric Hydrogenation:Substrate Specificity and Mechanistic Variability

    Get PDF
    Asymmetric hydrogenation finds widespread application in academia and industry. And indeed, a number of processes have been implemented for the production of pharma and agro intermediates as well as flavors & fragrances. Although these processes are all based on the use of late transition metals as catalysts, there is an increasing interest in the use of base metal catalysis in view of their lower cost and the expected different substrate scope. Catalysts based on cobalt have already shown their potential in enantioselective hydrogenation chemistry. This review outlines the impressive progress made in recent years on cobalt-catalyzed asymmetric hydrogenation of different unsaturated substrates. We also illustrate the ligand dependent substrate specificity as well as the mechanistic variability in detail. This may well guide further catalyst development in this research area
    • …
    corecore