## Graphical Abstract

To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered.

Ir(III) complexes of diamine ligands for
Leave this area blank for abstract info. asymmetric ketone hydrogenation.
José E. D. Martins and Martin Wills
Department of Chemistry, The University of Warwick, Coventry, CV4 7AL, UK.


# Ir(III) complexes of diamine ligands for asymmetric ketone hydrogenation 

José E. D. Martins and Martin Wills *<br>Department of Chemistry, The University of Warwick, Coventry, CV4 7AL, UK.


#### Abstract

The use of a combination of $\mathrm{IrCl}_{3}$ with a series of ligands derived from the C2-symmetric diamine diphenylethanediamine (DPEN) forms a catalyst capable of the asymmetric hydrogenation of ketones in up to $85 \%$ ee. © 2009 Elsevier Science. All rights reserved


[^0]
## Introduction

Relatively few organometallic complexes derived from amine ligands have been reported to be effective at the control of asymmetric hydrogenation reactions, ${ }^{1-10}$ particularly in comparison to the large numbers of diphosphine ${ }^{11,12}$ and mixed amine/phosphine ${ }^{13,14}$ ligands which have been reported.

In principle, amine-based ligands possess a potential advantage over phosphorus because they are relatively simple to prepare and less prone to decomposition reactions and oxidation. Of the diamine-containing systems which have been reported, a number have been applied to the catalysis of the reduction of ketones in high ee. In most cases, the complexes are of ruthenium, rhodium or iridium metals, whilst the ligands are frequently derived from the C2-symmetric 1,2-diphenylethylene-1,2-diamine 1 ( $R, R$ - or $S, S$-DPEN) or 1,2-diaminocyclohexane 2 ( $R, R$ - or $S, S$ DACH).

An iridium-diamine complex has been prepared in situ through the combination of $N, N$ '-dimethyl-DPEN (DiMeDPEN) with $\left[\operatorname{Ir}(\mathrm{COD})_{2}\right] \mathrm{BF}_{4}$. This gave products in up to $80 \%$ ee in hydrogenations of $\alpha$-keto esters and $68 \%$ ee for acetophenone. ${ }^{\text {b.c }}$ Water soluble DiMeDPEN complexes of $\operatorname{Ir}(\mathrm{I})$ salts gave better results than Ru or Rh and $84 \%$ ee for the reduction of $\mathrm{PhCOtBu} .{ }^{2}$ Complexes of $R, R$-DACH 2 and DiMeDPEN with $\left[\operatorname{Ir}(\mathrm{COD})_{2}\right] \mathrm{BF}_{4}$ have been used in the hydrogenation of $\alpha$-keto esters. ${ }^{1 \text { a }}$ (up to $72 \%$ and $31 \%$ ee respectively). The combination of ( $R, R$ )-$N$-tosyl-DPEN 3 ( $R, R$-TsDPEN) and $[\operatorname{Ir}(\operatorname{cod}) \mathrm{Cl}]_{2}$ in $\mathrm{MeOH} /$ toluene has been reported to be effective in the reduction of $\beta$-keto esters. ${ }^{3}$



(R,R)-DPEN 1
$(R, R)$-DACH 2
( $R, R$ )-TsDPEN 3



A number of amine-containing isolated complexes for ketone hydrogenation have been reported. ${ }^{5-10}$ The pentamethylcyclopentadienyl rhodium (III) and iridium (III) catalysts $\mathbf{4 a}$ and $\mathbf{4 b}$ respectively, derived from TsDPEN 3 have given excellent results. ${ }^{5}$ A closely related $\mathrm{Ru}(\mathrm{II})$ /arene complex $\mathbf{5}$ has also been reported to be highly effective. ${ }^{6}$ Ruthenium complexes $\mathbf{6}$ and $\mathbf{7}$ have also proved to be very enantioselective catalysts in ketone hydrogenation. ${ }^{7,8}$

In recently reported preliminary studies, we reported that N'-alkylated derivatives of TsDPEN 3 can be combined with $\mathrm{IrCl}_{3}$ to form a competent catalyst for the reduction of acetophenone derivatives in ees of up to $84 \%$ (Scheme 1). ${ }^{15}$ Although the activity of these catalysts is lower than that of phosphine-derived catalysts, their ease of preparation from stable materials and a simple $\operatorname{Ir}($ III $)$ complex makes them attractive as a simple system for the reduction of selected ketones. The use of iridium was also shown to be important; ruthenium or rhodium complexes formed catalysts which also reduced the arene ring of the substrate. In this paper, we report the synthesis and screening of a diverse series of TsDPEN derived ligands in ketone hydrogenation.


Scheme 1: Asymmetric ketone reduction using a combination of $\mathrm{IrCl}_{3}$ and a diamine ligand. ${ }^{15}$

## Results and Discussion

In previous studies, ${ }^{15}$ we had examined only the tosylated derivatives of DPEN 1. In order to understand the importance of the structure of the sulfonamide part, a series of sulfonamides were selected for further studies.


Scheme 2: Preparation of ligands 9a- 9q.
The ligands were prepared (Scheme 2) by the reaction of $(S, S)$-DPEN 1 with the appropriate sulfonylhalide in DCM
at $0^{\circ} \mathrm{C}$, using triethylamine as a base, to give sulfonamides $\mathbf{8 a - 8 q}$. Reductive amination of each with propanal resulted in formation of ligands $\mathbf{9 a - 9} \mathbf{9}$ in good isolated yields. The incorporation of a N '-propyl group was selected as this had given the highest selectivity when used in the tosylated catalyst series. ${ }^{15}$ In each case the ( $S, S$ ) enantiomers of diamines were prepared.

Each of the ligands was employed in the asymmetric hydrogenation of 2-methylacetophenone, using the conditions previously reported for the reduction. ${ }^{15}$ The results are summarized in Table 1. 2-Methylacetophenone was selected for study because it had given particularly promising results in preliminary results, and because orthosubstituted substrates can be challenging substrates to reduce in high ee. ${ }^{16}$

Table 1: Asymmetric hydrogenation of 2-methylacetophenone using $\mathrm{IrCl}_{3}$ with diamine ligands $\mathbf{9 a - 9 q}$. ${ }^{\text {a }}$


| Entry | Ligand | Conv./\% | $\mathrm{Ee} / \%(R / S)$ |
| :--- | :--- | :--- | :--- |
| 1 | $\mathbf{9 a}$ | 100 | $79(R) 90: 10$ |
| 2 | $\mathbf{9 b}$ | 100 | $55(R)$ |
| 3 | $\mathbf{9 c}$ | 100 | $79(R) 90: 10$ |
| 4 | $\mathbf{9 d}$ | 100 | $81(R) 90: 10$ |
| 5 | $\mathbf{9 e}$ | 99 | $62(R)$ |
| 6 | $\mathbf{9 f}$ | 100 | $82(R)$ |
| 7 | $\mathbf{9 g}$ | 100 | $40(R)$ |
| 8 | $\mathbf{9 h}$ | 100 | $55(R)$ |
| 9 | $\mathbf{9 i}$ | 100 | $73(R)$ |
| 10 | $\mathbf{9 j}$ | 100 | $77(R)$ |
| 11 | $\mathbf{9 k}$ | 93 | $65(R)$ |
| 12 | $\mathbf{9 1}$ | 100 | $81(R)$ |
| 13 | $\mathbf{9 m}$ | 100 | $80(R)$ |
| 14 | $9 \mathbf{n}$ | 100 | $76(R)$ |
| 15 | $\mathbf{9 o}$ | 100 | $83(R)$ |
| 16 | $\mathbf{9 p}$ | 29 | $4(R)$ |
| 17 | $\mathbf{9 q}$ | 81 | $61(R)$ |

a. Conditions: 1M 2-methylacetophenone in methanol (1 mL); 1\% catalyst, 50 bar hydrogen, NaOH :catalyst $=30: 1,40^{\circ} \mathrm{C}, 24 \mathrm{~h}$.

Of the ligands tested, the best results were obtained using those with relatively unhindered aromatic rings containing electron withdrawing groups (entries $3,4,6,12$, 13, 15). With the exception of ligand 91, diamines containing substituents at the ortho-position(s) gave lower asymmetric inductions (entries 7-9), and those with two ortho-substituents were particularly poor, possibly for steric reasons. Electron-withdrawing groups on the aromatic ring provided a reduction in the activity and the enantioselectivity, whilst both non-aromatic rings gave incomplete conversions and correspondingly reduced ees. Of the ligands examined, the best was the 2-naphthalene
sulfonyl derivative 90, therefore this was selected for further tests on a series of ketones 10a-100 (Table 2).


The enantioselectivities of the reductions using ligand 90 are reasonably similar to those obtained with the N -tosyl derivative, although in some cases a marginally improved result was obtained (e.g. entries $2,3,5,6,8,10,14$ ). In the case of tetralone $\mathbf{1 0 g}$ and 2,5-dimethoxyacetophenone 10d, ligand 90 was somewhat inferior.

Table 2: Asymmetric hydrogenation of ketones using $\mathrm{IrCl}_{3}$ with diamine ligand $90,9 \mathrm{~d}$ and $9 \mathrm{9f}{ }^{\text {a }}$

|  |  | $\xrightarrow[\substack{\mathrm{MeOH}, \mathrm{NaOH}, 50 \text { bar }_{2}, 40^{\circ} \mathrm{C} 24 \mathrm{~h} .}]{\substack{1 \mathrm{~mol} \% \mathrm{Xo} \\ 1 \mathrm{~mol} \% \mathrm{Ir}\left(\mathrm{III} \mathrm{Cl}_{3}\right.}}$ |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Entry | Ligand | Ketone | Conv./\% | Ee/\% (R/S) |
| 1 | 90 | 10a | 100 | 71 (R) |
| 2 | 90 | 10b | 100 | 70 (R) |
| 3 | 90 | 10c | 99 | 54 (R) |
| 4 | 90 | 10d | 100 | 67 (R) |
| 5 | 90 | 10e | 100 | 85 (R) |
| 6 | 90 | 10 f | 100 | 75 (R) |
| 7 | 90 | 10 g | 100 | $52(R)$ |
| 8 | 90 | 10h | 100 | 72 (R) |
| 9 | 90 | 10i | 100 | 67 (R) |
| 10 | 90 | 10j | 100 | 61 (R) |
| 11 | 90 | 10k | 100 | 65 (R) |
| 12 | 90 | 101 | 100 | 61 (R) |
| 13 | 90 | 10m | 100 | $62(R)$ |
| 14 | 90 | 10n | 100 | 71 (R) |
| 15 | 90 | 100 | 100 | $72(R)$ |
| 16 | 9d | 10e | 100 | $84(R)$ |
| 17 | 9d | 10d | 100 | 71 (R) |
| 18 | 9d | 10 g | 90 | $45(R)$ |
| 19 | 9f | 10e | 98 | 80 (R) |
| 20 | 9f | 10d | 100 | 60 (R) |
| 21 | 9f | 10 g | 99 | 53 (R) |

a. Conditions: 1M ketone in methanol ( 1 mL ); 1\% catalyst, 50 bar hydrogen, NaOH :catalyst $=30: 1,40^{\circ} \mathrm{C}, 24 \mathrm{~h}$.

Some of the best results were obtained with relatively hindered ortho-substituted ketones (e.g. 10a, 10b, 10e and 10f). To complete this series of tests, ligands $9 \mathbf{d}$ and $\mathbf{9 f}$ were also tested against the more challenging ketones (also shown in Table 2). Competitive, but not sharply improved, results were obtained with these ligands.

## Conclusions

In conclusion, a series of N '-alkyl-N-sulphonylated derivatives of the readily available and inexpensive diamine DPEN have been prepared and tested in asymmetric ketone hydrogenation reactions. In some cases, notably those of relatively sterically congested ketones (ortho-substituted arenas, tBu-substituted), the ees are high. Whilst not competitive with the best hydrogenation systems in terms of activity and ee, the simplicity of this hydrogenation system (i.e. it is compatible with the simple salt $\mathrm{IrCl}_{3}$ ) may in some cases provide an attractive alternative. The novel ligands and intermediates to them may find application in other asymmetric catalytic processes, including asymmetric transfer hydrogenation reactions. ${ }^{17}$

## Experimental section

General experimental details, and the procedure for the hydrogenation reaction, have been described in a previous publication. ${ }^{15}$

General procedure for synthesis of sulfonated DPEN derivatives: Compounds $\mathbf{8 a}-\mathbf{8 q}$ were obtained by reaction between ( $S, S$ )-DPEN $\mathbf{1}$ and the correspondent sulfonylchloride (1:1) in DCM and $\mathrm{Et}_{3} \mathrm{~N}$ overnight. With the exception of $\mathbf{8 p}$ all reactions were performed at $0^{\circ} \mathrm{C}$. Although some of the monotosylated ligands have been described in the literature, only a few references contain experimental data, hence most were fully characterized. Below is a representative example; the other ligands are described in the Supporting Information.

Naphthalene-2-sulfonic acid (2-amino-1,2-diphenyl-ethyl)-amide 80: ( $S, S$ )-DPEN $1(0.3 \mathrm{~g}, 1.4 \mathrm{mmol}$ ) was dissolved in DCM $\left(20 \mathrm{~cm}^{3}\right)$ and cooled to $0^{\circ} \mathrm{C}$, then $\mathrm{Et}_{3} \mathrm{~N}$ $\left(0.21 \mathrm{~cm}^{3}, 1.5 \mathrm{mmol}\right)$ was added followed by a solution of 2-Naphthalenesulfonyl chloride ( $0.31 \mathrm{~g}, 1.4 \mathrm{mmol}$ ) in DCM ( $5 \mathrm{~cm}^{3}$ ) . The system was allowed to stay at rt and it was stirred overnight. The mixture was washed with water $\left(10 \mathrm{~cm}^{3}\right)$ and then the organic phase was separated, dried over dried $\mathrm{MgSO}_{4}$ and evaporated under reduced pressure to afford the crude product which was purified by silica gel chromatography ( $0 \rightarrow 5 \% \mathrm{v} / \mathrm{v}$ Methanol/DCM) to afford 8 o as a white solid ( $0.47 \mathrm{~g}, 1.1 \mathrm{mmol}, 84 \%$ ). mp $199-$ $201{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{27}=-34\left(c 0.55, \mathrm{CH}_{3} \mathrm{OH}\right) ; v_{\max }($ neat $) / \mathrm{cm}^{-1}$ : 3386, 3330, 3059, 3029, 1589, 1495, 1455, 1417, 1311, 1151, 1129, 875, 853, 750, 696, 662. $\delta_{\mathrm{H}}(300 \mathrm{MHz}$; $\mathrm{CDCl}_{3}$ )/ppm: $8.00-6.90(17 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 6.20(1 \mathrm{H}, \mathrm{br}$ s, NH), 4.46 ( $\left.1 \mathrm{H}, \mathrm{d}, J 5.0, \mathrm{PhCHNHSO}_{2} \mathrm{R}\right), 4.13(1 \mathrm{H}, \mathrm{d}, J$ 5.0, $\mathrm{PhCHNH}_{2}$ ), $1.44\left(2 \mathrm{H}\right.$, br s, $\left.\mathrm{NH}_{2}\right) . \delta_{\mathrm{C}}(75 \mathrm{MHz}$;
$\mathrm{CDCl}_{3}$ )/ppm: 141.1, 139.1, 136.8, 134.4, 131.8, 129.1, $128.8,128.3,128.2,128.1,128.0,127.6,127.4,126.8$, 126.2 (Ar-C), $63.2(\mathrm{CH}), 60.3(\mathrm{CH})$. HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$403.1472, found 403.1488 .

General procedure for ${ }^{\text {N'-propyl-N-sulphonyIDPEN }}$ derivatives: The $N$-propyl derivatives $9 \mathbf{9 a} \mathbf{- 9 q}$ were obtained by reductive amination of the mono sulfonylated derivative $\mathbf{8 a}-\mathbf{8 q}$ with propanal. Below is a representative example; the other ligands are described in the Supporting Information.

Naphthalene-2-sulfonic acid (1,2-diphenyl-2-propylamino-ethyl)-amide 9o: To a stirred solution of $\mathbf{8 0}$ ( $0.20 \mathrm{~g}, 0.5 \mathrm{mmol}$ ) and molecular sieves $(0.7 \mathrm{~g})$ in dried methanol ( $10 \mathrm{~cm}^{3}$ ), was added propanal ( $0.035 \mathrm{~cm}^{3}, 0.50$ mmol ) followed by 2 drops of glacial acetic acid. The reaction was followed by TLC until the imine was formed ( 3 hours) and then sodium cyanoborohydride ( $0.13 \mathrm{~g}, 2.0$ mmol) was added and the reaction left to stir overnight at rt. The molecular sieves were filtered through filter paper and the solution was concentrated under reduced pressure. The residue was dissolved in chloroform ( 30 mL ), washed with saturated $\mathrm{NaHCO}_{3}$ solution ( 20 mL ) and then dried over anhydrous $\mathrm{MgSO}_{4}$. The solvent was removed to give a crude product which was purified by silica gel column chromatography ( $0 \rightarrow 30 \% \mathrm{v} / \mathrm{v}$ ethyl acetate/hexane) to afford 9 o as a white solid ( $0.12 \mathrm{~g}, 0.27 \mathrm{mmol}, 57 \%$ ). mp $148-151^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{27}=-4$ (c $0.37, \mathrm{CH}_{3} \mathrm{OH}$ ); $v_{\max }($ neat $) / \mathrm{cm}^{-1}: 3291,3058,2953,2928,2807,2325,1593$, 1494, 1453, 1330, 1158, 1149, 1072, 1053, 1021, 8914, 839, 744, 697, 665. $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$ )/ppm: $8.00-6.85$ ( $17 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$ ), 4.32 (1H, d, J 8.0, $\mathrm{PhCHNHSO}_{2} \mathrm{R}$ ), 3.61 (1H, d, J 8.0, PhCHNHpropyl), $2.30\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.35$ $\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ and NH$), 0.81\left(3 \mathrm{H}, \mathrm{t}, J 7.3, \mathrm{CH}_{3}\right) . \delta_{\mathrm{C}}(75$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$ )/ppm: 139.2, 137.9, 136.8, 134.4, 131.8, 129.1, 128.7, 128.5, 128.3, 128.1, 127.7, 127.6, 127.5, 127.4, 127.3, 127.2, 126.9, 122.3 (Ar-C), 67.6 (CH), 63.1 $(\mathrm{CH}), 48.9\left(\mathrm{CH}_{2}\right), 23.1\left(\mathrm{CH}_{2}\right), 11.5\left(\mathrm{CH}_{3}\right)$. HRMS calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 445.1940$, found 445.1944.

## Analysis of reduction products:

1-(2-methylphenyl)ethanol: Enantiomeric excess and conversion determined by GC analysis (Chrompac cyclodextrin- $\beta-236 \mathrm{M}-1950 \mathrm{~m}$, gas $\mathrm{He}, \mathrm{T}=150{ }^{\circ} \mathrm{C}, \mathrm{P}=15$ psi, ketone $10.8 \mathrm{~min}, \mathrm{R}$ isomer 15.6 min ., S isomer 16.3 $\min$.); $[\alpha]_{\mathrm{D}}{ }^{32}=+68.5$ (c 0.54 in $\mathrm{CHCl}_{3}$ ) $83 \%$ ee (R) (lit. ${ }^{18}$ $[\alpha]_{\mathrm{D}}{ }^{29}-72.1$ (c $0.53, \mathrm{CHCl}_{3}$ ) for $91 \%$ ee (S)). $\delta_{\mathrm{H}}(300 \mathrm{MHz}$; $\mathrm{CDCl}_{3}$ )/ppm: 7.49 - 7.06 (4H, m, Ar-H), 5.05 ( $1 \mathrm{H}, \mathrm{q}, ~ J 6.4$, PHCHOH), $2.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right), 1.41\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.4, \mathrm{CH}_{3}\right)$. $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) / \mathrm{ppm}: 143.9,134.2,130.3,127.1$, 126.3, 124.5 (Ar-C), 66.7, (CH), $23.9\left(\mathrm{CH}_{3}\right), 18.9\left(\mathrm{CH}_{3}\right)$.

1-(2’-Methoxyphenyl)ethanol: Enantiomeric excess and conversion determined by GC analysis (Chrompac cyclodextrin- $\beta-236 \mathrm{M}-1950 \mathrm{~m}$, gas $\mathrm{He}, \mathrm{T}=140{ }^{\circ} \mathrm{C}, \mathrm{P}=15$ psi, ketone $31.3 \mathrm{~min}, \mathrm{~S}$ isomer 37.5 min ., R isomer 39.0 min.); $[\alpha]_{\mathrm{D}}{ }^{33}=+37$ (c 0.67 in toluene) $71 \%$ ee (R) (lit. ${ }^{19}$ $[\alpha]_{\mathrm{D}}{ }^{23}-63.0$ (c 1.10 in toluene) $>99 \%$ ee (S)); $\delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) / \mathrm{ppm}: 7.34$ (1H, dd, J 7.4 and 1.6, Ar-H),
7.25 (1H, td, J 7.8 and 1.8, Ar-H), 6.96 (1H, t, J 7.4, Ar-H), $6.88(1 \mathrm{H}, \mathrm{d}, J 8.3, \mathrm{Ar}-\mathrm{H}), 5.09\left(1 \mathrm{H}, \mathrm{q}, J 6.5, \mathrm{PhCHCH}_{3}\right)$, $3.86\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.72(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 1.50(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.5$, $\mathrm{CH}_{3}$ ); $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) / \mathrm{ppm}: 156.6$ (next to $\mathrm{OCH}_{3}$ ) 133.4, 128.3, 126.1, 120.8, 110.4 (Ar-C), 66.6 (CH), 55.3 $\left(\mathrm{OCH}_{3}\right), 22.9\left(\mathrm{CH}_{3}\right)$.

1-(2'-Chlorophenyl)ethanol: Enantiomeric excess and conversion determined by GC analysis (Chrompac cyclodextrin- $\beta$-236M-19 50m, gas $\mathrm{He}, \mathrm{T}=150{ }^{\circ} \mathrm{C}, \mathrm{P}=15$ psi, ketone 13.7 min, R isomer 20.7 min ., S isomer 22.4 $\min$.); $[\alpha]_{\mathrm{D}}{ }^{33}=+44.5$ (c 0.7 in $\mathrm{CHCl}_{3}$ ) $70 \%$ ee (R) (lit. ${ }^{20}$ $[\alpha]_{\mathrm{D}}{ }^{20}+41$ (c 1.0 in $\mathrm{CHCl}_{3}$ ) $67 \%$ ee (R)); $\delta_{\mathrm{H}}(400 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) / \mathrm{ppm}: 7.56$ (1H, dd, J 7.8 and 1.8, Ar-H), 7.32-7.25 $(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.18(1 \mathrm{H}, \mathrm{td}, J 7.7$ and 1.8, Ar-H), $5.26(1 \mathrm{H}$, dq, $J 6.3$ and $2.8, \mathrm{PhCHCH}_{3}$ ), 2.33 ( 1 H , br d, $J 3.0, \mathrm{OH}$ ), $1.46\left(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) / \mathrm{ppm}$ : 143.1, 131.6, 129.4, 128.4, 127.2, 126.4 (Ar-C), 66.9 (CH),23.5 ( $\mathrm{CH}_{3}$ ).

1-(2'-Bromophenyl)ethanol: Enantiomeric excess and conversion by GC analysis through its acetate derivative (Chrompac cyclodextrin- $\beta$-236M-19 50m, gas He, $\mathrm{T}=160$ ${ }^{0} \mathrm{C}, \mathrm{P}=15$ psi, Ketone 15.4 min., R isomer 21.8 min., S isomer 23.6 min .); $[\alpha]_{\mathrm{D}}{ }^{33}+27$ (c 0.6 in $\mathrm{CHCl}_{3}$ ) 54 \% ee (R) (lit. ${ }^{21}[\alpha]_{\mathrm{D}}{ }^{20}=-39.5\left(\mathrm{c}=0.96, \mathrm{CHCl}_{3}\right) 81 \%$ ee (S); $\delta_{\mathrm{H}}(300$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$ )/ppm: 7.59 - 7.06 ( $4 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$ ), $5.20(1 \mathrm{H}$, q, J 6.3, CH $\alpha-\mathrm{OH}$ ), 1.44 (3H, d, J 6.3, $\mathrm{CH}_{3}$ ). $\delta_{\mathrm{C}}(75 \mathrm{MHz}$; $\mathrm{CDCl}_{3}$ )/ppm: 144.0, 132.0, 128.1, 127.2, 126.0, 121.0 (ArC), $68.5(\mathrm{CH}), 22.9\left(\mathrm{CH}_{3}\right)$.

1-(2,5-dimethoxyphenyl)ethanol: Enantiomeric excess and conversion by GC analysis (Chrompac cyclodextrin- $\beta$ -236M-19 50m, gas He, T = $155{ }^{\circ} \mathrm{C}, \mathrm{P}=15$ psi, ketone 40.7 min., R isomer 49.6 min., S isomer 51.6 min.$)$; $[\alpha]_{\mathrm{D}}{ }^{33}+$ 18.6 (c 0.5 in $\mathrm{CHCl}_{3}$ ) $71 \%$ ee (R) (lit. ${ }^{22}[\alpha]_{\mathrm{D}}{ }^{25}=+23.8$ (c 2.6 in $\mathrm{CHCl}_{3}$ ) $91 \%$ ee (R)); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3} / \mathrm{ppm}: 6.96\right.$ - 6.71 (3H, m, Ar-H), 5.05 ( $1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \alpha-\mathrm{OH}$ ), 3.81 ( $3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{OCH}_{3}\right), 3.76\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 1.48\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.5, \mathrm{CH}_{3}\right) . \delta_{\mathrm{C}}(75$ $\mathrm{MHz} ; \mathrm{CDCl}_{3} / \mathrm{ppm}: 153.7,150.6,134.6,112.4,112.2,111.3$ (Ar-C), $66.4(\mathrm{CH}), 55.8\left(\mathrm{OCH}_{3}\right), 55.7\left(\mathrm{OCH}_{3}\right), 22.9\left(\mathrm{CH}_{3}\right)$.

1-(2-Trifluoromethylphenyl)ethanol: Enantiomeric excess and conversion determined by GC analysis (Chrompac cyclodextrin- $\beta$-236M-19 50m, gas He, T = 120 ${ }^{0} \mathrm{C}, \mathrm{P}=15 \mathrm{psi}$, ketone $18.1 \mathrm{~min}, \mathrm{R}$ isomer 31.8 min ., S isomer 34.1 min .). $[\alpha]_{\mathrm{D}}{ }^{33}=+33$ (c 0.16 in $\mathrm{CH}_{3} \mathrm{OH}$ ) $75 \%$ ee (R) (lit. ${ }^{19}[\alpha]_{D}{ }^{22}=-45.5$ (c= $\left.0.66, \mathrm{CH}_{3} \mathrm{OH}\right) 97 \%$ ee (S); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) / \mathrm{ppm}: 7.84(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.8, \mathrm{ArH}), 7.64-$ 7.58 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$ ), 7.38 ( $1 \mathrm{H}, \mathrm{t}, J 7.7$, ArH), 5.34 ( $1 \mathrm{H}, \mathrm{q}, J$ $\left.6.3, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}\right), 1.98(1 \mathrm{H}, \mathrm{br}$ s, OH$), 1.50(3 \mathrm{H}, \mathrm{d}, J 6.3$, $\left.\mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) / \mathrm{ppm}: 145.0\left(\mathrm{~F}_{3} \mathrm{C}\right), 132.4$, 127.4, 127.1, 125.7, 125.4, 125.3 (Ar-C), 65.7 (CH), 25.5 $\left(\mathrm{CH}_{3}\right)$.

1-(1'-Naphthyl)ethanol: Enantiomeric excess and conversion determined by GC analysis (Chrompac cyclodextrin- $\beta$-236M-19 50m, gas $\mathrm{He}, \mathrm{T}=170{ }^{\circ} \mathrm{C}, \mathrm{P}=10$ psi, ketone 49.1 min , S isomer 70.6 min., R isomer 72.8 min.); $[\alpha]_{\mathrm{D}}{ }^{33}+65$ (c 0.8 in $\mathrm{Et}_{2} \mathrm{O}$ ) $72 \%$ ee (R) (lit. ${ }^{23}[\alpha]_{\mathrm{D}}{ }^{28}$ +77.2 (c 0.67 in $\mathrm{Et}_{2} \mathrm{O}$ ) $99 \%$ ee (R)); $\delta_{\mathrm{H}}(300 \mathrm{MHz}$;
$\mathrm{CDCl}_{3}$ )/ppm: 8.09 (1H, d, J 8.0, Ar-H), 7.87-7.83 (1H, m, Ar-H), 7.76 (1H, d, J 8.3, Ar-H), 7.65 (1H, d, J 7.0, Ar-H), 7.53-7.43 (3H, m, Ar-H), $5.64\left(1 \mathrm{H}, \mathrm{q}, \mathrm{J} 6.4, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}\right)$, $2.05(1 \mathrm{H}, \mathrm{br}$ s, OH$), 1.65\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.5, \mathrm{CH}_{3}\right)$; $\delta_{\mathrm{C}}(75 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) / \mathrm{ppm}: 141.5,133.8,130.3,128.9,127.9,126.0$, 125.6, 125.5, 123.2, 122.1 (Ar-C), $67.1(\mathrm{CH}), 24.4\left(\mathrm{CH}_{3}\right)$.

1-phenyl-2,2-dimethyl-1-propanol: Enantiomeric excess and conversion determined by GC analysis through its acetate derivative (Chrompac cyclodextrin- $\beta$ - 236M-19 50 m , gas $\mathrm{He}, \mathrm{T}=125^{\circ} \mathrm{C}, \mathrm{P}=10 \mathrm{psi}$, ketone $39.6 \mathrm{~min}, \mathrm{R}$ isomer (acetate) $59.7 \mathrm{~min} ., \mathrm{S}$ isomer (acetate) 58.2 min. ); $[\alpha]_{\mathrm{D}}{ }^{33}+28$ (c 0.55 in acetone) $72 \%$ ee (R) (lit. ${ }^{24}[\alpha]_{\mathrm{D}}{ }^{20}-$ 30.3 (c 0.3 in acetone) $100 \%$ ee (S)); $\delta_{\mathrm{H}}$ ( 300 MHz ; $\left.\mathrm{CDCl}_{3}\right) / \mathrm{ppm}: 7.28-7.19(5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 4.33(1 \mathrm{H}, \mathrm{s}$, $\mathrm{PhCHOH}), \quad 0.88\left(9 \mathrm{H}, \mathrm{s}, 3 \mathrm{CH}_{3}\right) . \quad \delta_{\mathrm{C}}(75 \mathrm{MHz}$; $\mathrm{CDCl}_{3}$ )/ppm: 141.5, 127.0, 126.9, 126.6 (Ar-C), 81.7 (CH), 35.0 (C), $25.3\left(3 \mathrm{CH}_{3}\right)$.

1-Tetralol: Enantiomeric excess and conversion determined by GC analysis through its acetate derivative (Chrompac cyclodextrin- $\beta$ - 236M-19 50m, gas He, T = 140 ${ }^{0} \mathrm{C}, \mathrm{P}=15 \mathrm{psi}$, ketone $47.2 \mathrm{~min}, \mathrm{R}$ isomer (acetate) 62.9 min., S isomer (acetate) 64.2 min .); [ $\alpha]_{\mathrm{D}}{ }^{35}$ - 15 (c 0.37 in $\mathrm{CHCl}_{3}$ ) 53 \% ee (R) (lit. ${ }^{25}[\alpha]_{\mathrm{D}}{ }^{27}$-32.3 (c 1.00 in $\mathrm{CHCl}_{3}$ ) $98 \%$ ee (R)); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) / \mathrm{ppm}: 7.43-7.38(1 \mathrm{H}$, m, Ar-H), 7.21-7.15 (2H, m, Ar-H), 7.10-7.06 (1H, m, Ar$\mathrm{H}), 4.74(1 \mathrm{H}, \mathrm{br}$ s, CHOH$), 2.85-2.66\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ ortho to $\mathrm{CHOH}), 2.00-1.70\left(5 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}+\mathrm{OH}\right) ; \delta_{\mathrm{C}}(100.6$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) / \mathrm{ppm}: 138.9,137.1,129.0,128.7,127.6$, 126.2 (Ar-C), $68.1(\mathrm{CH}), 32.3\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{2}\right), 18.9$ $\left(\mathrm{CH}_{2}\right)$.

1-(4'-Methoxyphenyl)ethanol: Enantiomeric excess and conversion determined by GC analysis (Chrompac cyclodextrin- $\beta-236 \mathrm{M}-1950 \mathrm{~m}$, gas $\mathrm{He}, \mathrm{T}=130{ }^{\circ} \mathrm{C}, \mathrm{P}=15$ psi, ketone 65.96 min , R isomer 71.8 min. , S isomer 74.3 $\min$.); $[\alpha]_{\mathrm{D}}{ }^{32}+33.8$ (c 0.54 in $\mathrm{CHCl}_{3}$ ) 67 \% ee (R) (lit. ${ }^{25}$ $[\alpha]_{\mathrm{D}}{ }^{27}+32.3$ (c 1.00 in $\mathrm{CHCl}_{3}$ ) $90 \%$ ee (R)); $\delta_{\mathrm{H}}(400 \mathrm{MHz}$; $\mathrm{CDCl}_{3}$ )/ppm: 7.30-7.26 (2H, m, Ar-H), 6.89-6.85 (2H, m, Ar-H), 4.83 ( $1 \mathrm{H}, \mathrm{q}, \mathrm{J} 6.3, \mathrm{PhCHCH}_{3}$ ), 3.79 (3H, s, $\mathrm{OCH}_{3}$ ), $2.02\left(1 \mathrm{H}\right.$, br s, OH), $1.46\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.3, \mathrm{CH}_{3}\right)$; $\delta_{\mathrm{C}}(100.6$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$ )/ppm: 159.0 (next to $\mathrm{OCH}_{3}$ ), 138.1, 126.7, 113.9 (Ar-C), $70.0(\mathrm{CH}), 55.3\left(\mathrm{OCH}_{3}\right), 25.0\left(\mathrm{CH}_{3}\right)$.

1-(4-methylphenyl)ethanol: Enantiomeric excess and conversion determined by GC analysis (Chrompac cyclodextrin- $\beta-236 \mathrm{M}-1950 \mathrm{~m}$, gas $\mathrm{He}, \mathrm{T}=125{ }^{\circ} \mathrm{C}, \mathrm{P}=15$ psi, ketone $28.3 \mathrm{~min}, \mathrm{R}$ isomer 35.2 min ., S isomer 38.1 $\min$.) $[\alpha]_{\mathrm{D}}{ }^{33}+38$ (c 0.72 in $\mathrm{CHCl}_{3}$ ) $61 \%$ ee (R) (lit. ${ }^{18}$ $[\alpha]_{D}{ }^{26}-53.0$ (c $0.55, \mathrm{CHCl}_{3}$ ) for $92 \%$ ee (S)). $\delta_{\mathrm{H}}(300 \mathrm{MHz}$; $\mathrm{CDCl}_{3}$ )/ppm: $7.22-7.15(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}), 7.12-7.06(2 \mathrm{H}$, m, Ar-H), 4.73 (1H, q, J 6.4, PHCHOH), $2.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, 1.38 (3H, d, J 6.4). $\delta_{\mathrm{C}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) / \mathrm{ppm}: 143.0,136.9$, 129.1, 125.4 (Ar-C), $70.0(\mathrm{CH}), 25.1\left(\mathrm{CH}_{3}\right), 21.1\left(\mathrm{CH}_{3}\right)$.

1-Phenylpropan-1-ol: Enantiomeric excess and conversion determined by GC analysis (Chrompac cyclodextrin- $\beta$ -236M-19 50m, gas He, T = $115{ }^{\circ} \mathrm{C}, \mathrm{P}=15$ psi, ketone 29.3 min, R isomer 45.8 min ., S isomer 47.9 min .); $[\alpha]_{\mathrm{D}}{ }^{33}+33$ (c 1 in $\mathrm{CHCl}_{3}$ ) $62 \%$ ee (R) (lit. ${ }^{26}[\alpha]_{\mathrm{D}}{ }^{20}+47.0$ (c 1.4 in
$\left.\mathrm{CHCl}_{3}\right) 95 \%$ ee (R)); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) / \mathrm{ppm}: 7.36-7.24$ ( $5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$ ), $4.57\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.5, \mathrm{PhCH}(\mathrm{OH}) \mathrm{CH}_{2}\right), 2.00$ $(1 \mathrm{H}, \mathrm{br}$ s, OH$), 1.86-1.68\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 0.90(3 \mathrm{H}, \mathrm{t}, J 7.4$, $\mathrm{CH}_{3}$ ); $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) / \mathrm{ppm}: 144.6,128.4,127.5$, 126.0 (Ar-C), $76.0(\mathrm{CH}), 31.9\left(\mathrm{CH}_{2}\right), 10.2\left(\mathrm{CH}_{3}\right)$.

1-(3-methylphenyl)ethanol: Enantiomeric excess and conversion determined by GC analysis (Chrompac cyclodextrin- $\beta$-236M-19 50m, gas $\mathrm{He}, \mathrm{T}=125{ }^{\circ} \mathrm{C}, \mathrm{P}=15$ psi, ketone $26.1 \mathrm{~min}, \mathrm{R}$ isomer 37.7 min ., S isomer 38.8 $\min$.); $[\alpha]_{\mathrm{D}}{ }^{33}+34.6$ (c 0.8 in $\mathrm{CHCl}_{3}$ ) $65 \%$ ee (R) (lit. ${ }^{18}$ $[\alpha]_{\mathrm{D}}{ }^{26}-42.6\left(\mathrm{c} 0.62, \mathrm{CHCl}_{3}\right)$ for $84 \%$ ee (S)). $\delta_{\mathrm{H}}(300 \mathrm{MHz}$; $\mathrm{CDCl}_{3}$ )/ppm: 7.26 - 7.4 (4H, m, Ar-H), 4.80 ( $1 \mathrm{H}, \mathrm{q}, ~ J 6.4$, PHCHOH), 2.34 (3H, s, CH3), 1.44 (3H, d, J 6.4). $\delta_{\mathrm{C}}(75$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$ )/ppm: 145.8, 138.1, 128.4, 128.2, 126.1, 122.4 (Ar-C), $70.3(\mathrm{CH}), 25.1\left(\mathrm{CH}_{3}\right), 21.4\left(\mathrm{CH}_{3}\right)$.

1-(3'-Methoxyphenyl)ethanol: Enantiomeric excess and conversion determined by GC analysis (Chrompac cyclodextrin- $\beta$-236M-19 50m, gas $\mathrm{He}, \mathrm{T}=140{ }^{\circ} \mathrm{C}, \mathrm{P}=15$ psi , ketone $33.4 \mathrm{~min}, \mathrm{R}$ isomer 48.8 min ., S isomer 51.0 $\min$ ); $[\alpha]_{\mathrm{D}}{ }^{33}+21.6$ (c 0.74 in MeOH ) $61 \%$ ee (R) (lit. ${ }^{19}$ $[\alpha]_{\mathrm{D}}{ }^{22}-34.9$ (с 0.849 in MeOH ) $>99 \%$ ee (S)); $\delta_{\mathrm{H}}$ ( 400 MHz; $\mathrm{CDCl}_{3}$ )/ppm: 7.26 (1H, dd, $\left.J_{1}=J_{2} 8.0, \mathrm{Ar}-\mathrm{H}\right), 6.96-$ 6.92 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$ ), 6.83-6.79 (1H, m, Ar-H), 4.86 ( $1 \mathrm{H}, \mathrm{q}$, $\left.J 6.4, \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}\right), 3.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArOCH}_{3}\right), 1.94(1 \mathrm{H}, \mathrm{br}$ s, $\mathrm{OH}), 1.48\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.5, \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}(100.6 \mathrm{MHz} ;$ $\mathrm{CDCl}_{3}$ )/ppm: 159.8 (ArC-OMe), 147.6, 129.6, 117.7, 112.9, 110.9 (Ar-C), $70.4(\mathrm{CH}), 55.2\left(\mathrm{OCH}_{3}\right), 25.2\left(\mathrm{CH}_{3}\right)$.

2-Methyl-1-phenylpropan-1-ol: Enantiomeric excess and conversion by GC analysis (Chrompac cyclodextrin- $\beta$ -236M-19 50m, gas He, $\mathrm{T}=115{ }^{\circ} \mathrm{C}, \mathrm{P}=10$ psi, ketone 45.8 min., R isomer 90.7 min., S isomer 92.1 min .); $[\alpha]_{\mathrm{D}}{ }^{33}=+$ 33 (c 0.47 in ether) $71 \%$ ee (R) (lit. ${ }^{19}[\alpha]_{\mathrm{D}}{ }^{25}-49.1$ (c 0.85 in ether) $99 \%$ ee (S)); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3} / \mathrm{ppm}\right.$ : $7.37-7.22$ ( $5 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$ ), 4.33 ( $1 \mathrm{H}, \mathrm{d}, J 6.9$, CH $\alpha-\mathrm{OH}$ ), $2.00-1.88$ ( $1 \mathrm{H}, \mathrm{m}, \mathrm{CH}$ ), 0.99 (3H, d, J 6.6, $\mathrm{CH}_{3}$ ), 0.78 (3H, d, J 6.8, $\mathrm{CH}_{3}$ ). $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3} / \mathrm{ppm}: 143.0,127.5,126.8\right.$, 125.9 (Ar-C), $79.4(\mathrm{CH}), 34.6(\mathrm{CH}), 18.3\left(\mathrm{CH}_{3}\right), 17.6$ $\left(\mathrm{CH}_{3}\right)$.

1-(2,5-dimethylphenyl)ethanol: Enantiomeric excess and conversion by GC analysis (Chrompac cyclodextrin- $\beta$ -236M-19 50m, gas $\mathrm{He}, \mathrm{T}=140^{\circ} \mathrm{C}, \mathrm{P}=15 \mathrm{psi}$, ketone 21.8 min., R isomer 36.5 min., S isomer 39.9 min .); $[\alpha]_{\mathrm{D}}{ }^{33}=+$ 64 (c 0.5 in $\mathrm{CHCl}_{3}$ ) 85 \% ee (R) (lit. ${ }^{15}[\alpha]_{\mathrm{D}}{ }^{27}-61.7$ (c 0.6 in $\left.\mathrm{CHCl}_{3}\right) 83$ \% ее (S)). $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3} / \mathrm{ppm}: 7.32-\right.$ 6.92 (3H, m, Ar-H), 5.03 ( $1 \mathrm{H}, \mathrm{q}, J 6.4, \mathrm{CH} \alpha-\mathrm{OH}$ ), 2.31 $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.26\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.41\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.4, \mathrm{CH}_{3}\right) . \delta_{\mathrm{C}}$ ( $75 \mathrm{MHz} ; \mathrm{CDCl}_{3} / \mathrm{ppm}: 143.7,135.8,131.0,130.3,127.8$, 125.1 (Ar-C), $66.7(\mathrm{CH}), 23.9\left(\mathrm{CH}_{3}\right), 21.1\left(\mathrm{CH}_{3}\right), 18.4$ $\left(\mathrm{CH}_{3}\right)$.

## Acknowledgments

We thank the EPSRC for financial support of JEDM (EPSRC project grant no. EP/F019424/1 since 1/4/08), and Coordenação de Aperfeiçoamento de Pessoal de Ensinol Superior (CAPES, Brazil) for a scholarship to JEDM (2007). Dr B. Stein and colleagues of the EPSRC National

Mass Spectroscopic service (Swansea) are thanked for HRMS analysis of certain compounds. We acknowledge the use of the EPSRC Chemical Database Service at Daresbury. ${ }^{27}$

## Supplementary Material

Procedures for preparation of, and characterization data for, ligands not described above, and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR of all new compounds.

## References and notes

1 (a) Tommasino, M. L.; Thomazeau, C.; Touchard, F.; Lemaire, M. Tetrahedron: Asymmetry 1999, 10, 1813-1819. (b) Ferrand, A.; Bruno, M.; Tommasino, M. L; Lemaire, M. Tetrahedron: Asymmetry 2002, 13, 1379-84. (c) Tommasino, M. L; Casalata, M.; Breuzard, J. A.; Bonnet, M. C.; Lemaire, M. Studies in Surface Science and Catalysis 2000, 130D, 3369-3374.
2. Maillet, C.; Praveen, T.; Janvier, P.; Minguet, S.; Evain, M.; Saluzzo, C.; Tommasino, M. L.; Bujoli, B. J. Org. Chem. 2002, 67, 8191-8196.
3. Ter Halle,R.; Breheret, A.; Schulz, E.; Pinel, C.; Lemaire, M. Tetrahedron: Asymmetry 1997, 8, 2101-2108.
4 (a) Wu, X.; Corcoran, C.; Yang, S.; Xiao, J. ChemSusChem 2008, 1, 71-74. (b) Inuoe, S.-I.; Nomura, K.; Hashiguchi, S.; Noyori, R.; Izawa, Y. Chem. Lett. 1987, 9, 957-958. (c) Liu, J.; Wu, X.; Wu, X.; Iggo, J. A.; Xiao, J. Coord. Chem. Rev. 2008, 252, 782-809. (d) Karame, I.; Jahjah, M.; Messaoudi, A.; Tommasino, M. L.; Lemaire, M. Tetrahedron; Asymmetry 2004, 15, 1569-1581. (e) Li, B.-Z.; Chen, J.-S.; Dong, Z.-R.; Li, Y.-Y.; Li, Q.-B.; Gao, J.-X. J. Mol. Catal. A 2006, 258, 113-117. (f) Dong, Z.-R.; Li, Y.-Y.; Chen, J.-S.; Li, B.-Z.; Xing, Y.; Gao, J.-X. Org. Lett. 2005, 7, 1043-1045. (g) Shen, W.-Y.; Zhang, H.; Zhang, H.-L.; Gao, J.-X. Tetrahedron: Asymmetry 2007, 18, 729-733. (h) Furegati, M.; Rippert, A. J. Tetrahedron: Asymmetry 2005, 16, 3947-3950.
5. Ohkuma, T.; Utsumi, N.; Watanabe, M.; Tsutsumi, K.; Arai, N.; Murata, K. Org. Lett. 2007, 9, 2565-2567
6. (a) Ohkuma, T.; Utsumi, N.; Tsutsumi, K.; Murata, K.; Sandoval, C. A.; Noyori, R. J. Am. Chem. Soc. 2006, 128, 8724-8725. (b) Ohkuma, T,; Tsutsumi, K.; Utsumi, N.; Arai, N.; Noyori, R.; Murata, K. Org. Lett. 2007, 9, 255-257. (c) Sandoval, C. A.; Ohkuma, T.; Utsumi, N.; Tsutsumi, K.; Murata, K.; Noyori, R. Chem. Asian. J. 2006, 1-2, 102-110. (d) Ito, M.; Endo, Y.; Ikariya, T. Organometallics, 27, 60536055.
7. Ito, M.; Hirakawa, M.; Murata, K.; Ikariya, T. Organometallics 2001, 20, 379-381.
8. (a) Hedberg, C.; Kallstrom, K.; Arvidsson, P. I.; Brandt, P.; Andersson, P. G. J. Am. Chem. Soc. 2005, 127, 15083-15090. (b) Samec, J. S. M.; Bäckvall, J.-E.; Andersson, P. G.; Brandt, P. Chem. Soc. Rev. 2006, 35, 237-248. (c) Paptchikhine, A.; Kaellstroem, K.; Andersson, P. G. Comptes Rendus Chimie 2007, 10, 213-219.
9. (a) Jones, M. D.; R. Raja, R.; Thomas, J. M.; Johnson, B. F. G.; Lewis, D. W.; Rouzard, J.; Harris, K. D. M. Angew. Chem. Int. Edn. 2003, 42, 4326-4231. (b) Raja, R.; Thomas, J. M.; Jones, M. D.; Johnson, B. F. G.; Vaughan, D. E. W. J. Am. Chem. Soc. 2003, 125, 14982-14983.
10. Haung, H.; Okuno, T.; Tsuda, K.; Yoshimura, M.; Kitamura, M. J. Am. Chem. Soc. 2006, 128, 8716-8717.
11. (a) Noyori, R. Adv. Synth. Catal., 2003, 345, 15-32. (b) Noyori, R.; Sandoval, C. A.; Muniz, K.; Ohkuma, T. Phil.

Trans. R. Soc. A 2005, 363, 901-912. (c) Hedberg, C. in Modern Reduction Methods, ed. Andersson, P. G.; Munslow, I. J. Wiley-VCH, 2008, Chapter 5. (d) Noyori, R.; Ohkuma, T. Angew. Chem. Int. Ed. 2006, 40, 40-73.
12. (a) Doucet, H.; Ohkuma, T.; Murata, K.; Yokozawa, T.; Katayama, E.; England, A. F.; Ikariya, T.; Noyori, R. Angew. Chem. Int. Edn. 1998, 37, 1703-1707. (b) Ohkuma, T.; Ooka, H.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1995, 117, 2675-2676. (c) Sandoval, C. A.; Ohkuma, T.; Muniz, K.; Noyori, R. J. Am. Chem. Soc. 2003, 125, 1349013503. (d) Abbel, R.; Abdur-Rashid, K.; Faatz, M.; Hadzovic, A.; Lough, A. J.; Morris, R. H. J. Am. Chem. Soc. 2005, 127, 1870-1882. (e) Leysson, T.; Peters, D.; Harvey, J. N. Organometallics 2008, 27, 1514-1523.
13. (a) Rautenstrauch, V.; Hoang-Cong, X.; Churland, R.; AbdurRashid K.; Morris, R. H. Chem. Eur. J. 2003, 9, 4954-4967.
(b) Gao, J.-X.; Ikariya, T.; Noyori, R. Organometallics

1996, 15, 1087-1089. (c) Gao, J.-X.; Zhang, H.; Yi, X.-D.; Xu, P.-P.; Tang, C.-L.; Wan, H.-L.; Tsai, K.-R.; Ikariya, T. Chirality 2000, 12, 383-388.
14. (a) Li, T.; Churland, R.; Lough, A. J.; Abdur-Rashid, K.; R. H. Morris, R. H. Organometallics 2004, 23, 6239-6247. (b) Hamilton, R. J.; Bergens, S. H. J. Am. Chem. Soc. 2006, 128, 13700-13701. (c) Clapham, S. E.; Guo, R.; Zimmer-De Iuliis, M.; Rasool, N.; Lough, A.; Morris, R. H. Organometallics 2006, 25, 5477-5486. (d) Puchta, R.; Dahlenburg, L.; Clark, T. Chem. Eur. J. 2008, 14, 8898-8903.
15. Martins, J. E. D. ; Morris, D. J. ; Wills, M. Tetrahedron Lett. 2009, 50, 688-692.
16. (a) Clarke, M.L.; Diaz-Valenzuela, M. B.; Slawin, A. M. Z. Organometallics 2007, 26, 16-19. (b) O Ohkuma, T.;
Sandoval, C. A.; Srinivasan, R.; Lin, Q.; Wei, Y.; Muniz, K.; Noyori, R. J. Am. Chem. Soc. 2005, 127, 8288-8289. (c) Morris, D. J.; Hayes, A. M.; Wills, M. J. Org. Chem. 2006, 71, 7035-7044.
17. (a) Clapham, S. E.; Hadzovic, A.; Morris, R. H. Coord. Chem. Rev. 2004, 248, 2201. (b) Zassinovich, G.; Mestroni, G.; Gladiali, S. Chem. Rev. 1992, 92, 1051. (c) Gladiali, S.; Alberico, E. Chem. Soc. Rev. 2006, 35, 226. (d) Ikariya, T.; Murata, K.; Noyori, R. Org. Biomol. Chem. 2006, 4, 393. (e) Ikariya, T.; Blacker, A. J. Acc. Chem. Res. 2007, 40, 1300.
18. Knöpfel, T. F.; Aschwanden, P.; Ichikawa, T.; Watanabe, T.; Carreira, E. M. Angew. Chem. Int. Ed. 2004, 43, 5971-5973.
19. Nakamura, K.; Matsuda, T. J. Org. Chem. 1998, 63, 89578964.
20. De Vries, E. F. J.; Brussee, J.; Kruse, C. J.; Van der Gen, A. Tetrahedron:Asymmetry. 1994, 5, 377-386.
21. Shimizu, H.; Igarashi, D.; Kuriyama, W.; Yusa, Y.; Sayo, N.; Saito, T. Org. Lett. 2007, 9, 1655-1657.
22. Xu, Y.; Alcock, N. W.; Clarkson, G. J.; Docherty, G.; Woodward, G.; Wills, M. Org. Lett. 2004, 6, 4105-4107.
23. Xu, Y.; Clarkson, G. J.; Docherty, G.; North, C. L.; Woodward, G.; Wills, M. J. Org. Chem. 2005, 70, 80798087.
24. Winstein, S.; Morse, B. K. J. Am. Chem. Soc. 1952, 74, 11331139.
25. Hannedouche, J.; Clarkson, G. J.; Wills, M. J. Am. Chem. Soc. 2004, 126, 986-987.
26. Hayes, A. M.; Morris, D. J.; Clarkson, G. J.; Wills, M. J. Am. Chem. Soc. 2005, 127, 7318.
27. Fletcher, D. A.; McMeeking, R. F.; Parkin, D. J. Chem. Inf. Comput. Sci. 1996, 36, 746-749.

Captions for schemes and figures:
Scheme 1: Asymmetric ketone reduction using a combination of $\mathrm{IrCl}_{3}$ and a diamine ligand. ${ }^{15}$

Scheme 2: Preparation of ligands 9a- 9q.
Table 1: Asymmetric hydrogenation of 2methylacetophenone using $\mathrm{IrCl}_{3}$ with diamine ligands 9a9q. ${ }^{\text {a }}$

Table 2: Asymmetric hydrogenation of ketones using $\mathrm{IrCl}_{3}$ with diamine ligand $\mathbf{9 o}, \mathbf{9 d}$ and $9 f .{ }^{\text {a }}$


[^0]:    * Corresponding author. Tel.: +44 247652 3260; fax: +44 247652 4112; e-mail: m.wills@warwick.ac.uk.

