35 research outputs found

    Monitoring and detecting faults in wastewater treatment plants using deep learning

    Get PDF
    Wastewater treatment plants use many sensors to control energy consumption and discharge quality. These sensors produce a vast amount of data which can be efficiently monitored by automatic systems. Consequently, several different statistical and learning methods are proposed in the literature which can automatically detect faults. While these methods have shown promising results, the nonlinear dynamics and complex interactions of the variables in wastewater data necessitate more powerful methods with higher learning capacities. In response, this study focusses on modelling faults in the oxidation and nitrification process. Specifically, this study investigates a method based on deep neural networks (specifically, long short-term memory) compared with statistical and traditional machine-learning methods. The network is specifically designed to capture temporal behaviour of sensor data. The proposed method is evaluated on a real-life dataset containing over 5.1 million sensor data points. The method achieved a fault detection rate (recall) of over 92%, thus outperforming traditional methods and enabling timely detection of collective faults

    Addressing Variability in Speech when Recognizing Emotion and Mood In-the-Wild

    Full text link
    Bipolar disorder is a chronic mental illness, affecting 4% of Americans, that is characterized by periodic mood changes ranging from severe depression to extreme compulsive highs. Both mania and depression profoundly impact the behavior of affected individuals, resulting in potentially devastating personal and social consequences. Bipolar disorder is managed clinically with regular interactions with care providers, who assess mood, energy levels, and the form and content of speech. Recent work has proposed smartphones for automatically monitoring mood using speech. Much of the early work in speech-centered mood detection has been done in the laboratory or clinic and is not reflective of the variability found in real-world conversations and conditions. Outside of these settings, automatic mood detection is hard, as the recordings include environmental noise, differences in recording devices, and variations in subject speaking patterns. Without addressing these issues, it is difficult to move towards a passive mobile health system. My research works to address this variability present in speech so that such a system can be created, allowing for interventions to mitigate the life-changing effects of mood transitions. However detecting mood directly from speech is difficult, as mood varies over the course of days or weeks, while speech fluctuates rapidly. To address this, my thesis explores how an intermediate step can be used to aid in this prediction. For example, one of the major symptoms of bipolar disorder is emotion dysregulation - changes in the way emotions are perceived and a lack of inhibition in their expression. My work has supported the relationship between automatically extracted emotion estimates and mood. Because of this, my thesis explores how to mitigate the variability found when detecting emotion from speech. The remainder of my thesis is focused on employing these emotion-based features, as well as features based on language content, to real-world applications. This dissertation is divided into the following parts: Part I: I address the direct classification of mood from speech. This is accomplished by addressing variability due to recording device using preprocessing and multi-task learning. I then show how both subject-specific and population-general information can be combined to significantly improve mood detection. Part II: I explore the automatic detection of emotion from speech and how to control for the other factors of variability present in the speech signal. I use progressive networks as a method to augment emotion with other paralinguistic data including gender and speaker, as well as other datasets. Additionally, I introduce a novel domain generalization method for cross-corpus detection. Part III: I demonstrate real-world applications of speech mood monitoring using everyday conversations. I show how the previously introduced generalized model can predict emotion from the speech of individuals with suicidal ideation, demonstrating its effectiveness across domains. Furthermore, I use these predictions to distinguish individuals with suicidal thoughts from healthy controls. Lastly, I introduce a novel framework for intervention detection in individuals with bipolar disorder. I then create a natural speech mood monitoring system based on features derived from measures of emotion and automatic speech recognition (ASR) transcripts and show effective intervention detection. I conclude this dissertation with the following future directions: (1) Extending my emotion generalization system to include multiple modalities and factors of variability; (2) Expanding natural speech mood monitoring by including more devices, exploring other data besides speech, and investigating mood rating causality.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/153461/1/gideonjn_1.pd

    Functional neuroanatomy of action selection in schizophrenia

    Get PDF
    Schizophrenia remains an enigmatic disorder with unclear neuropathology. Recent advances in neuroimaging and genetic research suggest alterations in glutamate-dopamine interactions adversely affecting synaptic plasticity both intracortically and subcortically. Relating these changes to the manifestation of symptoms presents a great challenge, requiring a constrained framework to capture the most salient elements. Here, a biologically-grounded computational model of basal ganglia-mediated action selection was used to explore two pathological processes that hypothetically underpin schizophrenia. These were a drop in the efficiency of cortical transmission, reducing both the signal-to-noise ratio (SNR) and overall activity levels; and an excessive compensatory upregulation of subcortical dopamine release. It was proposed that reduced cortical efficiency was the primary process, which led to a secondary disinhibition of subcortical dopamine release within the striatum. This compensation was believed to partly recover lost function, but could then induce disorganised-type symptoms - summarised as selection ”Instability” - if it became too pronounced. This overcompensation was argued to be countered by antipsychotic medication. The model’s validity was tested during an fMRI (functional magnetic resonance imaging) study of 16 healthy volunteers, using a novel perceptual decision-making task, and was found to provide a good account for pallidal activation. Its account for striatum was developed and improved with a small number of principled model modifications: the inclusion of fast spiking interneurons within striatum, and their inhibition by the basal ganglia’s key regulatory nucleus, external globus pallidus. A key final addition was the explicit modelling of dopaminergic midbrain, which is dynamically regulated by both cortex and the basal ganglia. This enabled hypotheses concerning the effects of cortical inefficiency, compensatory dopamine release and medication to be directly tested. The new model was verified with a second set of 12 healthy controls. Its pathological predictions were compared to data from 12 patients with schizophrenia. Model simulations suggested that Instability went hand-in-hand with cortical inefficiency and secondary dopamine upregulation. Patients with high Instability scores showed a loss of SNR within decision-related cortex (consistent with cortical inefficiency); an exaggerated response to task demands within substantia nigra (consistent with dopaminergic upregulation); and had an improved fit to simulated data derived from increasingly cortically-inefficient models. Simulations representing the healthy state provided a good account for patients’ motor putamen, but only cortically-inefficient simulations representing the ill state provided a fit for ventral-anterior striatum. This fit improved as the simulated model became more medicated (increased D2 receptor blockade). The relative improvement of this account correlated with patients’ medication dosage. In summary, by distilling the hypothetical neuropathology of schizophrenia into two simplified umbrella processes, and using a computational model to consider their effects within action selection, this work has successfully related patients’ fMRI activation to particular symptomatology and antipsychotic medication. This approach has the potential to improve patient care by enabling a neurobiological appreciation of their current illness state, and tailoring their medication level appropriately

    Frameshift mutations at the C-terminus of HIST1H1E result in a specific DNA hypomethylation signature

    Get PDF
    BACKGROUND: We previously associated HIST1H1E mutations causing Rahman syndrome with a specific genome-wide methylation pattern. RESULTS: Methylome analysis from peripheral blood samples of six affected subjects led us to identify a specific hypomethylated profile. This "episignature" was enriched for genes involved in neuronal system development and function. A computational classifier yielded full sensitivity and specificity in detecting subjects with Rahman syndrome. Applying this model to a cohort of undiagnosed probands allowed us to reach diagnosis in one subject. CONCLUSIONS: We demonstrate an epigenetic signature in subjects with Rahman syndrome that can be used to reach molecular diagnosis

    Etiology and Morphogenesis of Congenital Heart Disease: From Gene Function and Cellular Interaction to Morphology

    Get PDF
    Cardiology; Pediatric

    A comparative investigation of longevity and morbidity in Angelman syndrome and Prader-Willi syndrome

    Get PDF
    The present study examined the life histories of individuals In Western Australia with a diagnosis of Angelman or Prader-Willi syndrome. Angelman and Prader_Willi syndrome, are phenoypically diverse disorders both of which result from the failure of imprinting at the chrl5qll-q13 locus. In most cases, loss of the maternal imprint from the region leads to Angelman syndrome, while lack of a paternal pattern results in Prader-WilIi syndrome. Between 4-14% of Angelman cases have a mutation in a single gene, UBE3A

    Down Syndrome

    Get PDF
    Down syndrome, the most cutting-edge book in the field congenital disorders. This book features up-to-date, well referenced research and review articles on Down syndrome. Research workers, scientists, medical graduates and pediatricians will find it to be an excellent source for references and review. It is hoped that such individuals will view this book as a resource that can be consulted during all stages of their research and clinical investigations. Key features of this book are: Common diseases in Down syndrome Molecular Genetics Neurological Disorders Prenatal Diagnosis and Genetic Counselling Whilst aimed primarily at research workers on Down syndrome, we hope that the appeal of this book will extend beyond the narrow confines of academic interest and be of interest to a wider audience, especially parents, relatives and health-care providers who work with infants and children with Down syndrome
    corecore