641 research outputs found

    Impact of Aerosol Vertical Distribution on Aerosol Optical Depth Retrieval from Passive Satellite Sensors

    Get PDF
    When retrieving Aerosol Optical Depth (AOD) from passive satellite sensors, the vertical distribution of aerosols usually needs to be assumed, potentially causing uncertainties in the retrievals. In this study, we use the Moderate Resolution Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) sensors as examples to investigate the impact of aerosol vertical distribution on AOD retrievals. A series of sensitivity experiments was conducted using radiative transfer models with different aerosol profiles and surface conditions. Assuming a 0.2 AOD, we found that the AOD retrieval error is the most sensitive to the vertical distribution of absorbing aerosols; a −1 km error in aerosol scale height can lead to a ~30% AOD retrieval error. Moreover, for this aerosol type, ignoring the existence of the boundary layer can further result in a ~10% AOD retrieval error. The differences in the vertical distribution of scattering and absorbing aerosols within the same column may also cause −15% (scattering aerosols above absorbing aerosols) to 15% (scattering aerosols below absorbing aerosols) errors. Surface reflectance also plays an important role in affecting the AOD retrieval error, with higher errors over brighter surfaces in general. The physical mechanism associated with the AOD retrieval errors is also discussed. Finally, by replacing the default exponential profile with the observed aerosol vertical profile by a micro-pulse lidar at the Beijing-PKU site in the VIIRS retrieval algorithm, the retrieved AOD shows a much better agreement with surface observations, with the correlation coefficient increased from 0.63 to 0.83 and bias decreased from 0.15 to 0.03. Our study highlights the importance of aerosol vertical profile assumption in satellite AOD retrievals, and indicates that considering more realistic profiles can help reduce the uncertainties

    Synthesis of satellite (MODIS), aircraft (ICARTT), and surface (IMPROVE, EPA-AQS, AERONET) aerosol observations over eastern North America to improve MODIS aerosol retrievals and constrain surface aerosol concentrations and sources

    Get PDF
    We use an ensemble of satellite (MODIS), aircraft, and ground-based aerosol observations during the ICARTT field campaign over eastern North America in summer 2004 to (1) examine the consistency between different aerosol measurements, (2) evaluate a new retrieval of aerosol optical depths (AODs) and inferred surface aerosol concentrations (PM2.5) from the MODIS satellite instrument, and (3) apply this collective information to improve our understanding of aerosol sources. The GEOS-Chem global chemical transport model (CTM) provides a transfer platform between the different data sets, allowing us to evaluate the consistency between different aerosol parameters observed at different times and locations. We use an improved MODIS AOD retrieval based on locally derived visible surface reflectances and aerosol properties calculated from GEOS-Chem. Use of GEOS-Chem aerosol optical properties in the MODIS retrieval not only results in an improved AOD product but also allows quantitative evaluation of model aerosol mass from the comparison of simulated and observed AODs. The aircraft measurements show narrower aerosol size distributions than those usually assumed in models, and this has important implications for AOD retrievals. Our MODIS AOD retrieval compares well to the ground-based AERONET data (R = 0.84, slope = 1.02), significantly improving on the MODIS c005 operational product. Inference of surface PM2.5 from our MODIS AOD retrieval shows good correlation to the EPA-AQS data (R = 0.78) but a high regression slope (slope = 1.48). The high slope is seen in all AOD-inferred PM2.5 concentrations (AERONET: slope = 2.04; MODIS c005: slope = 1.51) and could reflect a clear-sky bias in the AOD observations. The ensemble of MODIS, aircraft, and surface data are consistent in pointing to a model overestimate of sulfate in the mid-Atlantic and an underestimate of organic and dust aerosol in the southeastern United States. The sulfate overestimate could reflect an excessive contribution from aqueous-phase production in clouds, while the organic carbon underestimate could possibly be resolved by a new secondary pathway involving dicarbonyls

    Efficient radiative transfer calculation and sensor performance requirements for the aerosol retrieval by airborne imaging spectroscopy

    Full text link
    Detailed aerosol measurements in time and space are crucial to address open questions in climate research. Earth observation is a key instrument for that matter but it is biased by large uncertainties. Using airborne imaging spectroscopy, such as ESA's upcoming airborne Earth observing instrument APEX, allows determining the widely used aerosol optical depth (AOD) with unprecedented accuracy thanks to its high spatial and spectral resolution, optimal calibration and high signal-to-noise ratios (SNR). This study was carried out within the overall aim of developing such a tropospheric aerosol retrieval algorithm. Basic and efficient radiative transfer equations were applied to determine the sensor performance requirement and a sensitivity analysis in context of the aerosol retrieval. The AOD retrieval sensitivity requirement was chosen according to the demands of atmospheric correction processes. Therefore, a novel parameterization of the diffuse path-radiance was developed to simulate the atmospheric and surface effects on the signal at the sensor level. It was found for typical remote sensing conditions and a surface albedo of less than 30% that a SNR of circa 300 is sufficient to meet the AOD retrieval sensitivity requirement at 550nm. A surface albedo around 50% requires much more SNR, which makes the AOD retrieval very difficult. The retrieval performance is further analyzed throughout the visual spectral range for a changing solar geometry and different aerosol characteristics. As expected, the blue spectral region above dark surfaces and high aerosol loadings will provide the most accurate retrieval results. In general, the AOD retrieval feasibility could be proven for the analyzed cases for APEX under realistic simulated conditions

    A Dark Target Algorithm for the GOSAT TANSO-CAI Sensor in Aerosol Optical Depth Retrieval over Land

    Get PDF
    Cloud and Aerosol Imager (CAI) onboard the Greenhouse Gases Observing Satellite (GOSAT) is a multi-band sensor designed to observe and acquire information on clouds and aerosols. In order to retrieve aerosol optical depth (AOD) over land from the CAI sensor, a Dark Target (DT) algorithm for GOSAT CAI was developed based on the strategy of the Moderate Resolution Imaging Spectroradiometer (MODIS) DT algorithm. When retrieving AOD from satellite platforms, determining surface contributions is a major challenge. In the MODIS DT algorithm, surface signals in the visible wavelengths are estimated based on the relationships between visible channels and shortwave infrared (SWIR) near the 2.1 µm channel. However, the CAI only has a 1.6 µm band to cover the SWIR wavelengths. To resolve the difficulties in determining surface reflectance caused by the lack of 2.1 μm band data, we attempted to analyze the relationship between reflectance at 1.6 µm and at 2.1 µm. We did this using the MODIS surface reflectance product and then connecting the reflectances at 1.6 µm and the visible bands based on the empirical relationship between reflectances at 2.1 µm and the visible bands. We found that the reflectance relationship between 1.6 µm and 2.1 µm is typically dependent on the vegetation conditions, and that reflectances at 2.1 µm can be parameterized as a function of 1.6 µm reflectance and the Vegetation Index (VI). Based on our experimental results, an Aerosol Free Vegetation Index (AFRI2.1)-based regression function connecting the 1.6 µm and 2.1 µm bands was summarized. Under light aerosol loading (AOD at 0.55 µm < 0.1), the 2.1 µm reflectance derived by our method has an extremely high correlation with the true 2.1 µm reflectance (r-value = 0.928). Similar to the MODIS DT algorithms (Collection 5 and Collection 6), a CAI-applicable approach that uses AFRI2.1 and the scattering angle to account for the visible surface signals was proposed. It was then applied to the CAI sensor for AOD retrieval; the retrievals were validated by comparisons with ground-level measurements from Aerosol Robotic Network (AERONET) sites. Validations show that retrievals from the CAI have high agreement with the AERONET measurements, with an r-value of 0.922, and 69.2% of the AOD retrieved data falling within the expected error envelope of ± (0.1 + 15% AODAERONET)

    Evaluation of Landsat-8 and Sentinel-2A Aerosol Optical Depth Retrievals Across Chinese Cities and Implications for Medium Spatial Resolution Urban Aerosol Monitoring

    Get PDF
    In urban environments, aerosol distributions may change rapidly due to building and transport infrastructure and human population density variations. The recent availability of medium resolution Landsat-8 and Sentinel-2 satellite data provide the opportunity for aerosol optical depth (AOD) estimation at higher spatial resolution than provided by other satellites. AOD retrieved from 30 m Landsat-8 and 10 m Sentinel-2A data using the Land Surface Reflectance Code (LaSRC) were compared with coincident ground-based Aerosol Robotic Network (AERONET) Version 3 AOD data for 20 Chinese cities in 2016. Stringent selection criteria were used to select contemporaneous data; only satellite and AERONET data acquired within 10 min were considered. The average satellite retrieved AOD over a 1470 m1470 m window centered on each AERONET site was derived to capture fine scale urban AOD variations. AERONET Level 1.5 (cloud-screened) and Level 2.0 (cloud-screened and also quality assured) data were considered. For the 20 urban AERONET sites in 2016 there were 106 (Level 1.5) and 67 (Level 2.0) Landsat-8 AERONET AOD contemporaneous data pairs, and 118 (Level 1.5) and 89 (Level 2.0) Sentinel-2A AOD data pairs. The greatest AOD values (>1.5) occurred in Beijing, suggesting that the Chinese capital was one of the most polluted cities in China in 2016. The LaSRC Landsat-8 and Sentinel-2A AOD retrievals agreed well with the AERONET AOD data (linear regression slopes > 0.96; coefficient of determination r(exp 2) > 0.90; root mean square deviation < 0.175) and demonstrate that the LaSRC is an effective and applicable medium resolution AOD retrieval algorithm over urban environments. The Sentinel-2A AOD retrievals had better accuracy than the Landsat-8 AOD retrievals, which is consistent with previously published research.The implications of the research and the potential for urban aerosol monitoring by combining the freely available Landsat-8 and Sentinel-2 satellite data are discussed
    corecore