11 research outputs found

    Multi-response optimization of face milling performance considering tool path strategies in machining of Al-2024

    Get PDF
    It is hypothesized that the orientation of tool maneuvering in the milling process defines the quality of machining. In that respect, here, the influence of different path strategies of the tool in face milling is investigated, and subsequently, the best strategy is identified following systematic optimization. The surface roughness, material removal rate and cutting time are considered as key responses, whereas the cutting speed, feed rate and depth of cut were considered as inputs (quantitative factors) beside the tool path strategy (qualitative factor) for the material Al 2024 with a torus end mill. The experimental plan, i.e., 27 runs were determined by using the Taguchi design approach. In addition, the analysis of variance is conducted to statistically identify the effects of parameters. The optimal values of process parameters have been evaluated based on Taguchi-grey relational analysis, and the reliability of this analysis has been verified with the confirmation test. It was found that the tool path strategy has a significant influence on the end outcomes of face milling. As such, the surface topography respective to different cutter path strategies and the optimal cutting strategy is discussed in detail

    Impact of Palm Oil based Minimum Quantity of Lubrication on Machinability of Ti and its Alloy (Ti-6AI-4V)

    Get PDF
    This project investigates the usage of palm oil as a metal cutting fluid in minimum quantity lubrication assisted turning operations and its effect on surface roughness, tool wear and cutting temperature for Titanium alloy Ti-6Al-4V. Artificial Neural Network models were developed to determine the optimum cutting parameters considering the sustainability of palm oil in titanium alloy machining to improve future manufacturing costs and qualities

    Sustainable End Milling of Difficult-Materials

    Get PDF
    This research investigates Minimum Quantity Lubrication (MQL) and Cryogenic Liquid Nitrogen as alternatives to using traditional flood cooling for end milling difficult-materials to minimise the environmental burden of coolant. Three materials: Titanium Alloy (Ti-6A1-4V), Inconel 718 and Aluminium Metal Matrix Composites (AMMC) were investigated and the results were analysed using the Taguchi S/N ratio and the Pareto ANOVA. MQL was found to be the most feasible cooling alternative for the replacement of traditional flood cooling

    Proceedings of the 4th International Conference on Innovations in Automation and Mechatronics Engineering (ICIAME2018)

    Get PDF
    The Mechatronics Department (Accredited by National Board of Accreditation, New Delhi, India) of the G H Patel College of Engineering and Technology, Gujarat, India arranged the 4th International Conference on Innovations in Automation and Mechatronics Engineering 2018, (ICIAME 2018) on 2-3 February 2018. The papers presented during the conference were based on Automation, Optimization, Computer Aided Design and Manufacturing, Nanotechnology, Solar Energy etc and are featured in this book

    Surface roughness prediction using a hybrid scheme of difference analysis and adaptive feedback weights

    Get PDF
    This research has presented an optimum model for surface roughness prediction in a shop floor machining operation. The proposed solution is premised on difference analysis enhanced with a feedback control model capable of generating transient adaptive weights until a converging set point is attained. The surface roughness results utilized herein were adopted from two prior experiments in the literature. The design of experiment herein is premised on three cutting parameters in both experimental scenarios viz: feed rate, cutting speed and depth of cut for experimental dataset one and cutting speed, feed rate and flow rate for experimental dataset two. Three experimental levels were considered in both scenarios resulting in twenty-seven outcomes each. The simulation trial anchored on Matlab software was divided into two sub-categories viz: prediction of surface roughness for cutting combinations with vector points off the edges of the mesh referred to as off-edge cutting combinations (Off-ECC) and recovery of cutting combinations with positions on the edges of the mesh referred to as on-edge cutting combinations (On-ECC). The proposed hybrid scheme of difference analysis with feedback control premised on the use of dynamic weights produced an accurate output in comparison with the abductive, regression analysis and artificial neural network techniques as earlier utilized in the literature. The novelty of the proposed hybrid model lies in its high degree of prediction and recovery of existing datasets with an error margin approximately zero. This predictive efficacy is premised on the use of set points and transient dynamic weights for feedback iterations. The proposed solution technique in this research is quite consistent with its outputs and capable of working with very small to complex datasets.http://www.cell.com/heliyonam2022Industrial and Systems Engineerin

    Technologies of Coatings and Surface Hardening for Tool Industry

    Get PDF
    The innovative coating and surface hardening technologies developed in recent years allow us to obtain practically any physical–mechanical or crystal–chemical complex properties of the metalworking tool surface layer. Today, the scientific approach to improving the operational characteristics of the tool surface layers produced from traditional tools industrial materials is a highly costly and long-lasting process. Different technological techniques, such as coatings (physical and chemical methods), surface hardening and alloying (chemical-thermal treatment, implantation), a combination of the listed methods, and other solutions are used for this. This edition aims to provide a review of the current state of the research and developments in the field of coatings and surface hardening technologies for cutting and die tools that can ensure a substantial increase of the work resource and reliability of the tool, an increase in productivity of machining, accuracy, and quality of the machined products, reduction in the material capacity of the production, and other important manufacturing factors. In doing so, the main emphasis should be on the results of the engineering works that have had a prosperous approbation in a laboratory or real manufacturing conditions

    Advances and Trends in Non-conventional, Abrasive and Precision Machining

    Get PDF
    The work included in this book pertains to advanced abrasive and nonconventional machining processes. These processes are at the forefront of modern technology, with significant practical significance. Their importance is also made clear by the case studies that are included in the research that is presented in the book, pertaining to important materials and high-end applications. However, the particularities of these manufacturing processes need to be further investigated and the processes themselves need to be optimized. This is conducted in the presented works with significant experimental and modeling work, incorporating modern tools of analysis and measurements

    ON THE STABILITY OF VARIABLE HELIX MILLING TOOLS

    Get PDF
    One of the main aims of the manufacturing industry has been to maximise the material removal rate of machining processes. However, this goal can be restricted by the appearance of regenerative chatter vibrations. In milling, one approach for regenerative chatter suppression is the implementation of variable-helix cutters. However, these tools can lead to isolated unstable regions in the stability diagram. Currently, variable-helix unstable islands have not been extensively researched in the literature. Therefore, the current thesis focuses on studying and experimentally validating these islands. For the validation, an experimental setup that scaled not only the structural dynamics but also the cutting force coefficients was proposed. Therefore, it was possible to attain larger axial depths of cut while assuming linear dynamics. The variable-helix process stability was modelled using the semi-discretization method and the multi-frequency approach. It was found that the variable helix tools can further stabilise a larger width of cut due to the distributed time delays that are a product of the tool geometry. Subsequently, a numerical study about the impact of structural damping on the variable-helix stability diagram revealed a strong relationship between the damping level and instability islands. The findings were validated by performing trials on the experimental setup, modified with constrained layer damping to recreate the simulated conditions. Additionally, a convergence analysis using the semi-discretization method (SDM) and the multi-frequency approach (MFA) revealed that these islands are sensitive to model convergence aspects. The analysis shows that the MFA provided converged solutions with a steep convergence rate, while the SDM struggled to converge. In this work, it is demonstrated that variable-helix instability islands only emerge at relatively high levels of structural damping and that they are particularly susceptible to model convergence effects. Meanwhile, the model predictions are compared to and validated against detailed experimental data that uses a specially designed configuration to minimise experimental error. To the authors' knowledge, this provides the first experimentally validated study of unstable islands in variable helix milling, while also demonstrating the importance of accurate damping estimates and convergence studies within the stability predictions

    Osseointegrated Oral implants

    Get PDF
    In the past, osseointegration was regarded to be a mode of implant anchorage that simulated a simple wound healing phenomenon. Today, we have evidence that osseointegration is, in fact, a foreign body reaction that involves an immunologically derived bony demarcation of an implant to shield it off from the tissues. Marginal bone resorption around an oral implant cannot be properly understood without realizing the foreign body nature of the implant itself. Whereas the immunological response as such is positive for implant longevity, adverse immunological reactions may cause marginal bone loss in combination with combined factors. Combined factors include the hardware, clinical handling as well as patient characteristics that, even if each one of these factors only produce subliminal trauma, when acting together they may result in loss of marginal bone. The role of bacteria in the process of marginal bone loss is smaller than previously believed due to combined defense mechanisms of inflammation and immunological reactions, but if the defense is failing we may see bacterially induced marginal bone loss as well. However, problems with loss of marginal bone threatening implant survival remains relatively uncommon; we have today 10 years of clinical documentation of five different types of implant displaying a failure rate in the range of only 1 to 4 %
    corecore