38 research outputs found

    Land subsidence over oilfields in the Yellow River Delta

    Get PDF
    Subsidence in river deltas is a complex process that has both natural and human causes. Increasing human activities like aquaculture and petroleum extraction are affecting the Yellow River delta, and one consequence is subsidence. The purpose of this study is to measure the surface displacements in the Yellow River delta region and to investigate the corresponding subsidence source. In this paper, the Stanford Method for Persistent Scatterers (StaMPS) package was employed to process Envisat ASAR images collected between 2007 and 2010. Consistent results between two descending tracks show subsidence with a mean rate up to 30 mm/yr in the radar line of sight direction in Gudao Town (oilfield), Gudong oilfield and Xianhe Town of the delta, each of which is within the delta, and also show that subsidence is not uniform across the delta. Field investigation shows a connection between areas of non-uniform subsidence and of petroleum extraction. In a 9 km2 area of the Gudao Oilfield, a poroelastic disk reservoir model is used to model the InSAR derived displacements. In general, good fits between InSAR observations and modeled displacements are seen. The subsidence observed in the vicinity of the oilfield is thus suggested to be caused by fluid extraction

    Earth Observations for Geohazards: Present and Future Challenges

    Get PDF
    Earth Observations (EO) encompasses different types of sensors (e.g., Synthetic Aperture Radar, Laser Imaging Detection and Ranging, Optical and multispectral) and platforms (e.g., satellites, aircraft, and Unmanned Aerial Vehicles) and enables us to monitor and model geohazards over regions at different scales in which ground observations may not be possible due to physical and/or political constraints. EO can provide high spatial, temporal and spectral resolution, stereo-mapping and all-weather-imaging capabilities, but not by a single satellite at a time. Improved satellite and sensor technologies, increased frequency of satellite measurements, and easier access and interpretation of EO data have all contributed to the increased demand for satellite EO data. EO, combined with complementary terrestrial observations and with physical models, have been widely used to monitor geohazards, revolutionizing our understanding of how the Earth system works. This Special Issue presents a collection of scientific contributions focusing on innovative EO methods and applications for monitoring and modeling geohazards, consisting of four Sections: (1) earthquake hazards; (2) landslide hazards; (3) land subsidence hazards; and (4) new EO techniques and services.Part of this work was supported by the UK Natural Environmental Research Council (NERC) through the Centre for the Observation and Modelling of Earthquakes, Volcanoes and Tectonics (COMET, ref.: come30001) and the LICS and CEDRRIC projects (refs. NE/K010794/1 and NE/N012151/1, respectively), European Space Agency through the ESA-MOST DRAGON-4 projects (ref. 32244) and the Spanish Ministry of Economy and Competitiveness and EU FEDER funds under projects TIN2014-55413- C2-2-P and ESP2013-47780-C2-2-R

    Subsidence in Coastal Cities Throughout the World Observed by InSAR

    Get PDF
    We measured subsidence rates in 99 coastal cities around the world between 2015 and 2020 using the PS Interferometric Synthetic Aperture Radar method and Sentinel-1 data. In most cities, part of the land is subsiding faster than sea level is rising. If subsidence continues at present rates, these cities will be challenged by flooding much sooner than projected by sea level rise models. The most rapid subsidence is occurring in South, Southeast, and East Asia. However, rapid subsidence is also happening in North America, Europe, Africa, and Australia. Human activity—primarily groundwater extraction—is likely the main cause of this subsidence. Expanded monitoring and policy interventions are required to reduce subsidence rates and minimize their consequences

    Detecting differential ground displacements of civil structures in fast-subsiding metropolises with interferometric SAR and band-pass filtering

    Get PDF
    Ground displacements due to changes in soil conditions represent a threat to the stability of civil structures in many urban areas, worldwide. In fast-subsiding areas, regional subsidence (wavelength ~ 1,000’s m) can be dominantly high and, consequently, mask other signals at local scales (wavelength ~ 10–100’s m). Still, engineering and construction applications require a comprehensive knowledge of local-scale signals, which can threaten the stability of buildings and infrastructure. Here we present a new technique based on band-pass filters for uncovering local-scale signals hidden by regional subsidence as detected by interferometric SAR measurements. We apply our technique to a velocity field calculated from 21 high-resolution COSMO-SkyMed scenes acquired over Mexico City and obtain components of long (\u3e 478 m), intermediate (42–478 m) and short (\u3c 42 m) spatial wavelengths. Our results reveal that long-wavelength velocities exceed − 400 mm/year, whereas intermediate- and short-wavelength velocities are in the order of ± 15 mm/year. We show that intermediate-wavelength velocities are useful for retrieving signals such as uplift along elevated viaducts of Metro lines 4 and B, as well as differential displacements in Pantitlán station’s pedestrian overpass system and across sharp geotechnical boundaries in the piedmont of Sierra de Santa Catarina—where surface faulting occurs

    Urban Deformation Monitoring using Persistent Scatterer Interferometry and SAR tomography

    Get PDF
    This book focuses on remote sensing for urban deformation monitoring. In particular, it highlights how deformation monitoring in urban areas can be carried out using Persistent Scatterer Interferometry (PSI) and Synthetic Aperture Radar (SAR) Tomography (TomoSAR). Several contributions show the capabilities of Interferometric SAR (InSAR) and PSI techniques for urban deformation monitoring. Some of them show the advantages of TomoSAR in un-mixing multiple scatterers for urban mapping and monitoring. This book is dedicated to the technical and scientific community interested in urban applications. It is useful for choosing the appropriate technique and gaining an assessment of the expected performance. The book will also be useful to researchers, as it provides information on the state-of-the-art and new trends in this fiel

    InSAR-based mapping of ground deformation caused by industrial waste disposals: the case study of the Huelva phosphogypsum stack, SW Spain

    Get PDF
    Close to the city of Huelva, SW Spain, and near the Atlantic Ocean, there is a phosphogypsum (PG) stack that accumulates 100 Mt of wastes and extends over 1000 ha. The stack lies directly over estuarine unconsolidated sediments with no protective layer in between. Here, we evaluate for the first time the structural stability of the PG stack, monitoring the deformation suffered by the salt-marsh basement. Through the web-based Geohazard Exploitation Platform (GEP) of the European Space Agency (ESA), a specific differential SAR interferometry (DInSAR) algorithm known as arallel Small Baseline Subset (P-SBAS) has been used to process 279 ESA Sentinel-1 images acquired between October 2016 and June 2021. Resulting displacement maps and time-series curves reveal vertical displacements of up to 16 cm/year. This vertical motion has been associated to subsidence. In parallel with subsidence, horizontal movements > 2.5 cm/year have been also accounted and linked to talus destabilization. The analysis also demonstrates that the Huelva PG stack is vulnerable to adverse weather condition. The present study demonstrates that the InSAR-based methods are effective tools for monitoring the stability and ground motion of large waste stockpiles.This work was financed by the ESA thorough a project covered by the NOR Sponsorship Program. The project (ID: Felipe González) was intended to use the Geohazards TEP service (https:// geoha zards- tep. eu/#!) for the analysis of the subsidence of SW Spain. Special thanks are extended to Hervé Caumont (Terradue Programme Manager) who patiently provided technical support during all the analysis. The original manuscript was significantly improved thanks to the valuable suggestions and comments of two anonymous reviewers. Aerial photograph in Figure 1 was provided by the Mesa de la Ría Association. Funding for open access charge: Universidad de Huelva / CBUA

    ALOS-2/PALSAR-2 Calibration, Validation, Science and Applications

    Get PDF
    Twelve edited original papers on the latest and state-of-art results of topics ranging from calibration, validation, and science to a wide range of applications using ALOS-2/PALSAR-2. We hope you will find them useful for your future research

    Monitoring land subsidence of airport using InSAR time-series techniques with atmospheric and orbital error corrections

    Get PDF
    Land subsidence is one of the common geological hazards worldwide and mostly caused by human activities including the construction of massive infrastructures. Large infrastructure such as airport is susceptible to land subsidence due to several factors. Therefore, monitoring of the land subsidence at airport is crucial in order to prevent undesirable loss of property and life. Remote sensing technique, especially Interferometric Synthetic Aperture Radar (InSAR) has been successfully applied to measure the surface deformation over the past few decades although atmospheric artefact and orbital errors are still a concerning issue in this measurement technique. Multi-temporal InSAR, an extension of InSAR technique, uses large sets of SAR scenes to investigate the temporal evolution of surface deformation and mitigate errors found in a single interferogram. This study investigates the long-term land subsidence of the Kuala Lumpur International Airport (KLIA), Malaysia and Singapore Changi Airport (SCA), Singapore by using two multi-temporal InSAR techniques like Small Baseline Subset (SBAS) and Multiscale InSAR Time Series (MInTS). General InSAR processing was conducted to generate interferogram using ALOS PALSAR data from 2007 until 2011. Atmospheric and orbital corrections were carried out for all interferograms using weather model, namely European Centre for Medium Range Weather Forecasting (ECMWF) and Network De-Ramping technique respectively before estimating the time series land subsidence. The results show variation of subsidence with respect to corrections (atmospheric and orbital) as well as difference between multi-temporal InSAR techniques (SBAS and MInTS) used. After applying both corrections, a subsidence ranging from 2 to 17 mm/yr was found at all the selected areas at the KLIA. Meanwhile, for SCA, a subsidence of about less than 10 mm/yr was found. Furthermore, a comparison between two techniques (SBAS and MInTS) show a difference rate of subsidence of about less than 1 mm/yr for both study area. SBAS technique shows more linear result as compared to the MInTS technique which shows slightly scattering pattern but both techniques show a similar trend of surface deformation in both study sites. No drastic deformation was observed in these two study sites and slight deformation was detected which about less than 20mm/yr for both study areas probably occurred due to several reasons including conversion of the land use from agricultural land, land reclamation process and also poor construction. This study proved that InSAR time series surface deformation measurement techniques are useful as well as capable to monitor deformation of large infrastructure such as airport and as an alternative to costly conventional ground measurement for infrastructure monitoring

    Using wavelet tools to analyse seasonal variations from InSAR time-series data: a case study of the Huangtupo landslide

    Get PDF
    Synthetic aperture radar interferometry (InSAR) has proven to be a powerful tool for monitoring landslide movements with a wide spatial and temporal coverage. Interpreting landslide displacement time-series derived from InSAR techniques is a major challenge for understanding relationships between triggering factors and slope displacements. In this study, we propose the use of various wavelet tools, namely, continuous wavelet transform (CWT), cross wavelet transform (XWT) and wavelet coherence (WTC) for interpreting InSAR time-series information for a landslide. CWT enables time-series records to be analysed in time-frequency space, with the aim of identifying localized intermittent periodicities. Similarly, XWT and WTC help identify the common power and relative phase between two time-series records in time-frequency space, respectively. Statistically significant coherence and confidence levels against red noise (also known as brown noise or random walk noise) can be calculated. Taking the Huangtupo landslide (China) as an example, we demonstrate the capabilities of these tools for interpreting InSAR time-series information. The results show the Huangtupo slope is affected by an annual displacement periodicity controlled by rainfall and reservoir water level. Reservoir water level, which is completely regulated by the dam activity, is mainly in ‘anti-phase’ with natural rainfall, due to flood control in the Three Gorges Project. The seasonal displacements of the Huangtupo landslide is found to be ‘in-phase’ with respect to reservoir water level and the rainfall towards the front edge of the slope and to rainfall at the higher rear of the slope away from the reservoir.R. Tomás was supported by the Generalitat Valenciana fellowship BEST-2011/225 and by the Ministry of Education, Culture and Sport trough the project PRX14/00100. Part of this work is also supported by the Spanish Ministry of Economy and Competitiveness and EU FEDER funds under project TEC2011-28201-C02-02, by the Natural Environmental Research Council (NERC) through the GAS and LICS projects (ref. NE/H001085/1 and NE/K010794/1, respectively) as well as the ESA-MOST DRAGON-3 projects (ref. 10607 and 10665)

    Sentinel-1 InSAR Measurements of Elevation Changes over Yedoma Uplands on Sobo-Sise Island, Lena Delta

    Get PDF
    Yedoma—extremely ice-rich permafrost with massive ice wedges formed during the Late Pleistocene—is vulnerable to thawing and degradation under climate warming. Thawing of ice-rich Yedoma results in lowering of surface elevations. Quantitative knowledge about surface elevation changes helps us to understand the freeze-thaw processes of the active layer and the potential degradation of Yedoma deposits. In this study, we use C-band Sentinel-1 InSAR measurements to map the elevation changes over ice-rich Yedoma uplands on Sobo-Sise Island, Lena Delta with frequent revisit observations (as short as six or 12 days). We observe significant seasonal thaw subsidence during summer months and heterogeneous inter-annual elevation changes from 2016–17. We also observe interesting patterns of stronger seasonal thaw subsidence on elevated flat Yedoma uplands by comparing to the surrounding Yedoma slopes. Inter-annual analyses from 2016–17 suggest that our observed positive surface elevation changes are likely caused by the delayed progression of the thaw season in 2017, associated with mean annual air temperature fluctuations
    corecore