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Abstract 

Synthetic Aperture Radar Interferometry (InSAR) has proven to be a powerful tool for 

monitoring landslide movements with a wide spatial and temporal coverage. 

Interpreting landslide displacement time-series derived from InSAR techniques is a 

major challenge for understanding relationships between triggering factors and slope 

displacements. In this study, we propose the use of various wavelet tools, namely 

Continuous Wavelet Transform (CWT), Cross Wavelet Transform (XWT) and Wavelet 

Coherence (WTC) for interpreting InSAR time-series information for a landslide. CWT 

enables time-series records to be analysed in time-frequency space, with the aim of 

identifying localized intermittent periodicities. Similarly, XWT and WTC help identify the 

common power and relative phase between two time-series records in time-frequency 

space, respectively. Statistically significant coherence and confidence levels against red 

noise (also known as brown noise or random walk noise) can be calculated. Taking the 

Huangtupo landslide (China) as an example, we demonstrate the capabilities of these 

tools for interpreting InSAR time-series information. The results show the Huangtupo 

slope is affected by an annual displacement periodicity controlled by rainfall and 
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reservoir water level. Reservoir water level, which is completely regulated by the dam 

activity, is mainly in ‘anti-phase’ with natural rainfall, due to flood control in the Three 

Gorges project. The seasonal displacements of the Huangtupo landslide is found to be 

‘in-phase’ with respect to reservoir water level and the rainfall towards the front edge 

of the slope and to rainfall at the higher rear of the slope away from the reservoir. 

 

Keywords: InSAR; wavelet analysis; continuous wavelet transform; cross wavelet 

transform; wavelet coherence; time-series; time-frequency space; landslide; triggering 

factors 

 

1. Introduction 

Rainfall and reservoir water level changes (mainly rapid water level decreases) are vital 

triggering factors of landslides, playing a crucial role in the landslide dynamics. Water 

can act in several ways: (a) reducing shear strength of the weak zones due to the physical 

and chemical interactions between the slip zones’ materials and groundwater (He et al. 

2008, He et al. 2010, Jiao et al. 2014, Wen and Chen 2007) or due to pore pressure 

increase (i.e. a rise in pore-water pressure causes a drop in effective stress reducing the 

shear strength of a slope); (b) increasing the hydraulic gradient and seepage force of a 

landslide mass during water level lowering (Jiang et al. 2011); (c) reducing soil suction 

(Bittelli et al. 2012, Cascini et al. 2014); (d) increasing soil unit weight; and/or (e) causing 

soil consolidation-swelling due to the changes of effective stresses on the landslide mass 

(Jiang, et al. 2011). However, these water actions are not independent from each other. 

Shear strength, soil suction and consolidation deformation can be affected by transient 

seepage forces (Jiang et al., 2011). Many papers have discussed the above-mentioned 

effects on the Three Gorges landslides  (Bin et al. 2007, Cojean and Caï 2011, Du et al. 

2013, He, et al. 2008, He, et al. 2010, Hu et al. 2012, Hu et al. 2012, Jiang, et al. 2011, Jin 

et al. 2012, Wang et al. 2004, Wang et al. 2008, Xia et al. 2013, Xie 2009).  

The relationship between likely triggering factors (such as rainfall or reservoir water 

level changes) and landslide kinematics (i.e. displacements) is a key aspect for 

understanding landslide behaviour, its mechanism, and the subsequent design and 
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adoption of remedial measures. When similarity is suspected between seasonalities of 

landslide kinematics and triggering factors, this is usually studied through qualitative 

interpretations or direct correlations between two time-series in the frequency domain, 

assuming the underlying processes are stationary in time (Grinsted et al. 2004). 

However, Continuous Wavelet Transforms (CWT) expand time-series records into time-

frequency space and can therefore find localized intermittent periodicities (Grinsted, et 

al. 2004) that affect the landslide kinematics. Additionally, when comparing two time-

series, the Cross Wavelet Transform (XWT) and the Wavelet Coherence (WTC) tools 

permit the recognition of common power and relative phase in time-frequency space, 

respectively, along with assessing significant coherence and confidence levels against 

red noise backgrounds (Torrence and Compo 1998). Consequently, these tools are very 

useful for exploring seasonal patterns which might have a time-lag between the cause-

effect (shown by the phase of the XWT or WTC). 

This paper aims to investigate the feasibility of wavelet tools, such as CWT, XWT and 

WTC, for recognizing localized variations of power within Differential SAR 

Interferometry (InSAR) time-series. We demonstrate an optimal procedure for its 

regular application, using the Huangtupo landslide in the Three Gorges area (China), as 

an example. 

The paper is organized as follows: Section 2 briefly defines the CWT concept as well as 

the XWT and the WTC approaches. The general analysis framework proposed in this 

paper is detailed in Section 3. Section 4 describes the geological setting of the 

Huangtupo landslide area. Section 5 explains the available InSAR, rainfall and reservoir 

water level time series data from the study area. Section 6 analyses the Huangtupo’s 

dataset described in the previous section using CWT, whereas Section 7 shows the 

application of XWT and WTC. Section 8 discusses the results derived from the previous 

analyses, and Section 9 summarises the main conclusions of the paper. 

2. Wavelet Tools 

Among all the wavelet transform tools designed to study time patterns in non-stationary 

processes (Torrence and Compo 1998), the CWT is especially suited to extract features 

from low signal-to-noise ratio time series. The CWT is useful for analysing individual 



This paper has to be cited as: Tomás, R., Li, Z., Lopez-Sanchez, J.M., Liu, P. & Singleton, A. 2016. Using wavelet tools to analyse 
seasonal variations from InSAR time-series data: a case study of the Huangtupo landslide. Landslides, 13, 437-450, The final 
publication is available at Springer via: https://link.springer.com/article/10.1007%2Fs10346-015-0589-y 

time-series. The result of the CWT is usually represented as a two-dimensional image 

with two axes defined by the time instants (e.g. dates) and the frequency or period of 

the time patterns. Therefore, the positions with high values in the 2-D CWT 

representation indicate the presence of significant time patterns (i.e. periodicities) at 

particular times or dates (see Figure 4 and related comments in Section 5 for examples 

of the CWT results). 

If the relationship between two different phenomena is of interest, two individual CWT’s 

can be combined by using the XWT or the WTC tools, which are  defined and described 

in detail by Grinsted (2004) This work makes use of all these wavelet tools (CWT, XWT 

and WTC) which have demonstrated their usefulness in this context (Grinsted, et al. 

2004) and for which there are freely available Matlab codes (NOC 2014).  

The XWT is computed by multiplying the CWT of one time series by the complex 

conjugate of the CWT of the second time series. The resulting XWT is a 2-D 

representation of complex numbers. The absolute value of the XWT will be high in the 

time-frequency areas where both CWT’s display high values, so this helps identify time 

patterns common in the two data sets. The phase of the XWT indicates the time lag 

between the two time-series. For instance, it will be 0 when the two time series are 

coincident in time (i.e. in-phase), whereas it will be around +/- 180 degrees if they are 

in anti-phase (i.e. one is maximum when the other is minimum and vice versa).  

For readers familiar with SAR interferometry, an analogy can be used to understand the 

meaning of the XWT: it is equivalent to the complex product of two images. The 

magnitude (absolute value) is high only where both images present high backscatter 

simultaneously, so the XWT reveals areas in the 2-D time-frequency space (obtained by 

the CWT) with high common power. 

On the other hand, the WTC is defined as the coherence between the two CWT’s, 

measured in the 2-D time-frequency domain. It is computed by the normalised cross-

correlation between them, including a smoothing operator that operates in both 

domains (time and frequency or scale). In other words, WTC is the result of normalising 

a smoothed version of the XWT. It is also the equivalent of the complex interferometric 

coherence in SAR interferometry, but calculated here with the 2-D CWT images instead 
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of radar images. As a coherence, its absolute value will be high (i.e. close to 1) in those 

areas of the time-frequency plane in which the time-frequency pattern is locally similar 

(i.e. coherent) in the two CWT’s. In contrast with the XWT, there is no requirement for 

large values in both the individual CWT’s to produce a high coherence, so it is especially 

useful to detect additional similarities between two data sets. These similarities depend 

only on the form of the time-frequency pattern itself and not on the power of particular 

components in the CWT. The interpretation of phase information is the same as for XWT, 

since they are computed in the same way with the exception of the smoothing operator 

used in the WTC. Finally, it is important to note that the smoothing operation required 

for the WTC degrades the resolution of the result in the time-frequency domain. This 

effect is analogous to the spatial resolution degradation produced by a multi-looking in 

SAR interferometry. 

Wavelet 

tool 

Number of 
series analysed 

Meaning of magnitude Meaning of phase Time-frequency 
resolution 

CWT 1 Presence of time patterns - Original 

XWT 2 Time patterns with large 
power in both time-series 

Time lag (delay) 
between both time-
series 

Original 

WTC 2 Similar time patterns in 
both time-series 

Time lag (delay) 
between both time-
series 

Degraded 

Table 1. Summary of features of wavelet tools 

 

Table 1 summarises the main features of the wavelet tools employed in this work. 

Additional comments on the interpretation of results from these wavelet analysis tools 

are provided in Section 6. 

3. Sampling strategies  

In this section we describe a systematic methodology for analysing InSAR time-series 

information from landslides using continuous wavelet tools. The proposed methodology 

can be used for the identification and study of the time-frequency relationships between 

triggering factors (e.g. reservoir water level fluctuations, rainfall, piezometric water 

level, etc.) and surface displacements (e.g. measured by InSAR).  
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Firstly, the time-series input data for wavelet analysis must be equally spaced in time, 

i.e. evenly sampled. However, although SAR satellites have a regular revisit interval (e.g. 

35 days for ERS and ENVISAT, 11 days for TerraSAR-X, 46 days for ALOS-PALSAR), some 

images are usually missing or excluded from processing (because they exhibit a high 

Doppler centroid, due to technical problems on the satellite or communication system, 

due to the large baselines of the resulting interferograms, etc.). Consequently, the time-

series data derived from InSAR processing are rarely distributed evenly in time, 

exhibiting some gaps (Figure 1). This issue can be solved using linearly interpolated 

values for the missing dates at the expected revisit times (ΔtR) (Figure 1). Note that the 

interpolated values do not introduce false periods because their linear feature produces 

just a constant or direct current (DC) component in the frequency domain.  

Furthermore, computing missing values in this way matches how InSAR time-series are 

obtained. InSAR processing chains usually compute displacements as the superposition 

of linear and non-linear terms. In the frequency domain, linear displacements exhibit an 

infinite period along time, i.e. a DC component. On the other hand, the non-linear 

component describes the seasonal fluctuations of the displacement, which can exhibit 

different periods and even changes along time. Consequently, continuous wavelet 

analyses (i.e. CWT, XWT and WTC) allow the identification and evolution of the cyclical 

displacements described by the non-linear component of the InSAR time-series and 

hence their relations with triggering factors. Thus, after interpolating the missing values, 

linear and non-linear components of displacement can be separated. The linear 

component is computed by means of a linear least squares fitting, and the non-linear 

component as the difference between the displacement time-series and the previously 

calculated linear component. Note that the separation of the linear and non-linear 

component could have been carried out before the interpolation of the missing values, 

hence interpolating only the non-linear component. Both approaches produce 

equivalent results.  

Usually, InSAR data present noise due to different reasons (e.g. due to temporal 

decorrelation, atmospheric artefacts, etc.) that distort the estimation of the phase and 

is included in the non-linear component of the derived time-series analysed by means 

of the wavelet tools. Although this noise might not be perfectly random (e.g. due to 
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long-wavelength orbital ramps or atmospheric effects), we assume it is random by 

definition and consequently, it does not provide any signal in the wavelet analysis. 

A second issue for the application of XWT and WTC to InSAR time-series is that the time-

series from the triggering factors (e.g. rainfall) usually present a shorter time sampling 

interval (typically one day) than that available from the InSAR time series. Consequently, 

the triggering factors time-series must be down-sampled to the revisiting time period 

(ΔtR) of the used satellite (Figure 1). For this task, the values from the triggering factors 

time-series have been linearly interpolated at the specific acquisition dates of the SAR 

images and the missing dates at the expected revisit times.   

Considering that wavelet analysis performs a time-frequency analysis of the signal, only 

the identification of cyclic phenomena with time periods equal or higher than the 

employed time interval (ΔtR) is possible.  

The CWT of InSAR and triggering factors time series allow the identification of cyclic 

displacements and the seasonality of triggering factors in the frequency domain, 

respectively. Additionally, XWT and WTC permit the recognition of the common power 

and relative phase in time-frequency space, and the significant coherence and 

confidence levels against red noise back-grounds (Torrence and Compo 1998) of 

triggering factors and the associated InSAR time series, respectively. 
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Figure 1.  Flow chart of the proposed methodology for the analysis of InSAR time-series 

using wavelet tools. v=linear displacement. 
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4. Description of the study area 

The Huangtupo slope is one of the largest landslides in the reservoir area of the Three 

Gorges (TG) Project, with problems related to the residential safety of inhabitants (Deng 

et al. 2000, Peng et al. 2014). This slope is located upstream from the TG dam and about 

1 km upstream from the old city of Badong, on the southern shore of the Yangtze River 

in Badong County (Hubei Province, China) (Figure 2). The old town of Badong was moved 

to this site overlying the Huangtupo slope in 1982 because of the construction of the 

Gezhouba Dam. The whole slide body extends up to 600 m a.s.l. from 50 m a.s.l. (the 

foot of the landslide is under the river water level) occupying a surface of 1.352 × 106 

m2 and having a volume of 6.934 × 107 m3 (Hu, et al. 2012, Hu, et al. 2012, Xie 2009). 

The rock basement bedding dips downhill and is affected by an east-west cleavage 

direction. The upper portion of the rock mass belongs to the middle Triassic rock 

basement and is composed of purplish red pelite alternating with pelitic siltstone (T2b2) 

in the upper area of the slope and grey pelitic limestone (T2b3) in the middle-lower part 

of the slope respectively (Figure 3). The landslide body is mostly covered by loose debris 

(delQ) of variable thickness originating from the degradation and sliding of the original 

bedrock.  

The Huangtupo landslide is a complex deep-seated landslide formed by the 

superposition of several slumps (Chai et al. 2013, Chen et al. 2008, Hu, et al. 2012, Hu, 

et al. 2012, Jiang et al. 2007, Tang et al. 2014, Xie 2009) which exhibit “Very slow” to 

“Extremely slow” velocities (Tomás et al. 2014) according to Cruden and Varnes’ (1996) 

classification . 

 

Four main slumping bodies can be recognized in the slope (Figure 3): Riverside slumping 

mass I#, Riverside slumping mass II#, Garden Spot landslide, and Substation landslide. 

Riverside slumping mass I# is located at the northwest side of the slope and Riverside 

slumping mass II# is placed northeast of the slope. Both landslides have their toe 

submerged under the river water level. The third landslide is Garden Spot landslide, 

which is located southwest of the slope and with a front edge covering the upper part 

of Riverside slumping mass I#. Finally, Substation landslide is located southeast of the 
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slope and partially placed over Riverside slumping mass II#. Several more recent smaller 

landslides can also be recognized in the slope (Figure 3) (Jiang et al., 2007, Chen et al., 

2008, Xie, 2009, Hu et al., 2012b, 2012a).  

Regarding the Huangtupo landslide, Tomás et al. (2014) concluded that displacements 

can be explained by the means of a gravitational creep model, only controlled by 

geological conditions, with superposed minor vertical displacement oscillations related 

to consolidation–expansion processes caused by groundwater changes induced by the 

river fluctuations. The rest of the slope (i.e. Riverside Slumping Mass II#, Substation and 

Garden Spot landslides) exhibits a stable behaviour with only minor seasonal 

displacements related with river water level in the lower area and rainfall in the upper 

area of the slope, respectively. 

 

 

Figure 2. Location of the Huangtupo landslide. InSAR data used for the analysis have 

been overlaid. The persistent scatterers (PS) used for illustrating the wavelet analysis 
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are those contained within the Huangtupo landslide area. The plotted landslide 

boundaries plotted in (c) are based on the works of Cojean & Cai (2011) and Chai et al. 

(2013). The black star represents the reference point (i.e. the point with zero 

displacement) which has been placed in the area of Badong City Council building. SM I 

#, SM II #, GS and ST are the Slumping Mass I#, the Slumping Mass II#, the Garden Spot 

landslide and the Substation landslide, respectively. 

 

 

 

Figure 3. Zonation of the Huangtupo landslide (adapted by Tomás et al. (2014) 

from (Chai, et al. 2013, Tang et al. 2009, Xie 2009)) 
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5. Data used in this study 

In this work, the suitability of wavelet techniques for the analysis of landslide time-series 

data derived from InSAR is illustrated using the Huangtupo landslide as a case study. For 

this landslide, three different time-series have been considered, two of them 

corresponding to plausible triggering factors (i.e. reservoir water level and rainfall) 

which are expected to be linked with landslide activities, and the third corresponding to 

the displacement time-series of the landslide measured by InSAR. Monthly reservoir 

water level is available between June 2000 and January 2010, exhibiting clear cyclical 

changes due to flooding control measures. Rainfall data are also available from the 

meteorological station at Badong with a time-step of 10 days, also displaying a clear 

seasonality due to monsoons (Figure 4). The InSAR data used in this work were obtained 

by processing 41 Envisat ASAR images collected between August 2003 and July 2010 

from descending track 075 (T075) through a small baseline subset approach (Berardino 

et al. 2002) developed as part of the StaMPS package (Hooper 2008), and validated by 

comparing the time-series with in situ measurements (Tomás, et al. 2014). A detailed 

description of the data processing can be found in Liu et al. (2013) and Tomás et al. 

(2014). 

Following the procedure described in Section 3, the rainfall and the reservoir water level 

time-series have been resampled using a linear interpolation, to a 35 day interval (Figure 

1). This corresponds to the minimum revisiting period for the Envisat ASAR satellite. For 

those dates in which InSAR displacements are not available, interpolated values have 

been assigned. Subsequently, the InSAR time-series have been decomposed into linear 

and non-linear terms by fitting a line by means of a least square method. The non-linear 

displacements used in the wavelet analysis have been computed as the differences 

between the original time-series and the fitted line (Figure 1).  
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6. Application of CWT to the Huangtupo landslide 

6.1. Reservoir water level  

The initial water level of the Yangtze River was 65 m a.s.l. and the first reservoir 

impoundment started on 1st June 2003. The reservoir water level reached 135 m on 

15th June 2003 (Figure 4). On 27th October 2006 the water level of the reservoir 

increased to 156 m a.s.l. and in November 2008 rose to 175 m a.s.l. This increase in 

reservoir water level from June 2003 is affected by seasonal fluctuations that have major 

impacts on the stability of slopes (Singleton et al., 2014; Tomás et al., 2014). These 

seasonal fluctuations correspond with amplitudes over 5, 10 and 25 m for the first, 

second and third impoundment stages respectively (Figure 4). These water level changes 

are associated with the reservoir operation at the TG project for flood control, power 

generation, and navigation, varying widely from 15 to 30 m over the course of a year 

and up to several meters within a day (Tullos 2009). Thus, water level was projected to 

fluctuate in a cycle opposite to natural conditions, with lower levels during the summer 

and higher levels in the winter (Tullos 2009). 

From the analysis of the continuous wavelet power of the reservoir water level (Figure 

4, left) we can observe a clear annual (365 days) cycle since 2006, when the water level 

of the reservoir started increasing to 156 m a.s.l. 

Additionally, a half-year seasonal fluctuation (a burr shaped edge of the thick contour in 

Figure 4) can be identified from November 2008, when the reservoir water level reached 

its maximum value. This last seasonality might be related with semi-annual reservoir 

regulations. 

6.2. Rainfall 

Fang et al. (2010) revealed that the total seasonal rainfall in the TG increases in summer 

and winter, and decreases in spring and autumn. Additionally, drying changes are more 

notable in March and September, while wetting trends are greater in January, February, 

June and July. From the analysis of the Continuous wavelet power of the rainfall time-

series (Figure 4, right) we can observe a clear one-year (365 days) cycle related with the 

monsoons, along the whole observation period, in Figure 4 (right).  
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Figure 4. Continuous wavelet power of the reservoir water level (left) and rainfall (right) 

time series. The thick contour designates the 5% significant level against red noise. The 

cone of influence (COI) where edge effects might distort the picture is shown as a lighter 

shadow. Points in left figure correspond to equally-spaced (35 days) interpolated data 

used for the analysis.  

6.3. Deformation time-series data 

The third time-series we have analysed consists of the InSAR displacement time-series 

derived from the processing explained in Section 3. For this purpose, the mean time-

series (i.e. the averaged values on the displacements for the different dates), from the 

four main landslides (i.e. those described in section 3: Riverside slumping mass I#, 

Riverside slumping mass II#, Garden Spot landslide and Substation landslide) have been 

analysed. The reasons why the CWT from the four landslides have been computed 

separately is that different kinematics and relationships between the displacements and 

triggering factors were recognized by Tomás et al. (2014) in a qualitative way. Note that, 

for illustrating the usefulness of wavelet tools, in this work we have averaged the non-

linear term of the time-series from all points within each mass movement because they 

exhibit a very similar seasonal trends and then we have considered the average time-

series as representative of the kinematics of each landslide as a whole.  

From the analysis of the CWT of the InSAR time-series (Figure 5) we can observe a one-

year cycle (365 days period) along the whole observation interval for the four main 

landslides, although it is less evident for Garden Spot than for the other three slides. This 
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means that the displacements measured by InSAR exhibit cyclic displacements which 

can be related with seasonal rainfall episodes or reservoir water level changes. 

Additionally, some power signals with a period of 3 to 4 months and a significant level 

against red noise can be recognized during the time intervals 2004-05 and 2007-08. 

Although this signal seems to be related to the response of the ground surface to 

seasonal variations of rainfalls, the cause of this relationship needs further research to 

be confirmed. 

The cross analysis of displacements and triggering factors using XWT and WTC will help 

confirm the role of  rainfall episodes and reservoir water level changes on the 

Huangtupo landslide kinematics. 

 

 

Figure 5. Continuous wavelet transform  of the mean InSAR displacements in the Line of 

Sight (LOS) for the different slumping masses from the Huangtupo landslide (see Figure 

3 for landslides zonation). The thick contour designates the 5% significant level against 

red noise. The cone of influence (COI) where edge effects might distort the picture is 

shown as a lighter shadow. 
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7. Application of XWT and WTC to the Huangtupo landslide 

7.1. XWT and WTC of rainfall and reservoir water level 

Figure 6 shows the XWT and WTC of reservoir water level and rainfall in Badong County. 

Both figures show a high common power between reservoir water level and rainfall 

time-series approximately in the 365 days (1 year) period for the whole study period 

(2004-09). The XWT and the WTC also shows that rainfall and reservoir water level are 

in anti-phase (i.e. a phase shift of 180º) in all the sectors with significant common power, 

as can be easily recognized in the lower plot from Figure 6, in agreement with one of the 

objectives of the TG project mentioned in Section 5, which consists on the fluctuation of 

the water level in a cycle (i.e. 365 days) opposite to natural conditions (Tullos, 2009) 

mainly for flood control. 

7.2. XWT and WTC of rainfall and the landslide displacement 

Because rainfall is a well-known triggering factor of landslides (Bittelli, et al. 2012, He, 

et al. 2008, He, et al. 2010, Jiang, et al. 2011, Jiao, et al. 2014, Wen and Chen 2007), 

(Jiang, et al. 2011), this section assesses the relationship between rainfall and the 

Huangtupo slope displacements through XWT and WTC analysis. The plots for the four 

different slumping masses are shown in Figure 7. As expected, a high significant power 

is found for a 365-day period for the four landslides, practically for the whole studied 

period. Note that rainfall and displacements are in-phase at Substation and Garden Spot 

landslides during the whole period. This fact was described by Xie (2009) and Tomás et 

al. (2014). However, Riverside Slumping Mass I# and II# show a predominantly anti-

phase relationship with rainfall with a period of 365 days (1 year). 

Additionally, a common power with a period varying from 180 to 30 days (6 to 1 months) 

can be observed for the four landslides during 2008-2009, coinciding with the period in 

which the maximum reservoir water level was reached for the first time (Figure 8). Note 

that this relationship is in-phase for the lower landslides (i.e. slumping Mass #I and #II) 

and in antiphase with the others (i.e. Substation and Garden Spot landslides).   
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Figure 6. Cross wavelet transform  and wavelet coherence  of reservoir water level and 

rainfall in Badong county. The relative phase relationship is shown as arrows, with in-

phase pointing right and anti-phase pointing left and the water level leading 

displacement by 90º pointing straight down.  
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Figure 7. Cross wavelet transform  and wavelet coherence of the mean InSAR 

displacements in the LOS and rainfall for the different parts of the Huangtupo landslide 

(see Figure 3 for landslides zonation). The relative phase relationship is shown as arrows 

(with in phase pointing right and anti-phase pointing left and the water level leading 

displacement by 90º pointing straight down).  
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7.3. XWT and WTC of reservoir water level and the landslide displacements 

In this section the relationship between reservoir water level and the Huangtupo slope 

displacements is studied through XWT and WTC analysis. The plots for the four different 

slumping masses are shown in Figure 8. In the four plots, a high significant power is 

recognized for a 365-day period. For Substation and Garden Spot landslides the relation 

between both variables seems to be near to antiphase.  

Riverside Slumping Mass I# and II#, which due to their location on the riverside are 

expected to be highly affected by the river water level, show a clear in-phase 

relationship indicating that both the landslides displacement and the reservoir 

groundwater level are in phase, in agreement with Xie (2009), Tomás et al. (2014) and 

Tang et al. (2014). 

8. Discussion 

In this paper, the relationships between InSAR derived seasonal displacements, 

reservoir water level and rainfall time-series have been studied using three different 

wavelet tools. The first wavelet tool is CWT which expands the time-series into a time-

frequency space to recognize the oscillations of the variables in an intuitive way 

(Grinsted, et al. 2004). This analysis has allowed the identification of a common annual 

seasonality in the three analysed time-series from Huangtupo (i.e. the reservoir water 

level, the rainfall and the landslide displacement). The seasonality observed in the 

rainfall time-series and the associated CWT (Figure 4) can be explained by the 

subtropical highly seasonal monsoon climate of the study area, characterized by annual 

total rainfall higher than 1000 mm mainly concentrated in summer and winter (Fang, 

Hang and Xinyi 2010). Thus, the reservoir water level is regulated according to the above 

described rainfall seasons (Tullos 2009). This reservoir water level regulation induces a 

clear seasonality also observed in the time-series and the CWT shown in Figure 4 that 

can be explained considering the reservoir operation cycles (Wang et al. 2013): a) Firstly, 

the water level is maintained at its lowest level during the monsoon seasons (i.e. June, 

July, and August) in order to prevent catastrophic floods, as those occurred in 1911, 

1931, 1935, 1954, 1981 and 1998 that caused the death of hundred thousands of people 

and the displacement of millions of people (Jackson and Sleigh 2000). b) Later, the 

reservoir impoundment begins at the end of the wet season in September to the 
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maximum level, which is maintained from November to February for power generation 

and navigation. c) Finally, the reservoir water level is gradually decreased to the 

minimum previous level during spring, mainly for downstream irrigation. Consequently, 

the landslide kinematics are highly conditioned by this rainfall and reservoir water level 

seasonality, which induces important changes in the reservoir slopes groundwater levels 

causing different unfavourable effects. These changes modify the equilibrium conditions 

of the slope introducing a cyclicity in the landslide displacements’ time-series that can 

be recognized in the CWT of the mean InSAR landslides displacements shown in Figure 

5.  

Therefore, the CWT of the three considered time-series allows periodicities to be 

identified in the InSAR time series without assessing the relationship between different 

time-series. This task has been performed by means of the wavelet tools XWT and WTC, 

which identify the common power and the relative phase in time-frequency space, and 

allow the significant coherence between two time-series to be found. This analysis has 

been performed comparing the three available time-series. The comparison between 

rainfall and reservoir water level (Figure 6) has confirmed the anti-phase relationship, 

with a one year period, between both variables. This fact agrees with the purpose of the 

TG project (Tullos 2009) for flood control during most of the monsoon seasons (i.e. the 

most raining period) by means of the increase of the reservoir capacity by lowering the 

water level. In addition, the computation of the XWT and WTC spectra (Figure 8) have 

also proved that the displacements from the slumping masses from Huangtupo located 

near the Yangtze river shores (i.e. Riverside Slumping Masses I# and II#) exhibit annual 

seasonal displacement kinematics and are mainly in phase with the river water level 

changes, which seasonally modify the groundwater regime of the near part of the slope, 

in agreement to the observations performed by other authors (Tang, et al. 2014, Tomás, 

et al. 2014, Xie 2009). Additionally, this analysis has shown that the displacements from 

areas from the Huangtupo slope with a higher elevation (i.e. Substation and Garden Spot 

landslides) are in-phase with rainfall (Figure 7) with a one year cycle, although the 

gradual filling of the reservoir seems to have a higher effect on the kinematic of the 

landslide since the reservoir water level reached 156 m a.s.l., probably due to the 
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elevation of the groundwater level on the slope affecting areas which were previously 

undisturbed by the reservoir water level (Tomás, et al. 2014, Xie 2009). 

 

Figure 8. Cross wavelet transform and wavelet coherence of mean InSAR displacements 

along LOS and reservoir water level for the different parts of the Huangtupo landslide 

(see Figure 3 for landslides zonation). The relative phase relationship is shown as arrows 

(with in phase pointing right and anti-phase pointing left and the water level leading 

displacement by 90º pointing straight down).  



This paper has to be cited as: Tomás, R., Li, Z., Lopez-Sanchez, J.M., Liu, P. & Singleton, A. 2016. Using wavelet tools to analyse 
seasonal variations from InSAR time-series data: a case study of the Huangtupo landslide. Landslides, 13, 437-450, The final 
publication is available at Springer via: https://link.springer.com/article/10.1007%2Fs10346-015-0589-y 

 

Considering the LOS azimuth (N283.3ºE ) and the look angle (23º) of the track T075, 

and the NW-SE Huangtupo slope strike (Figure 2) we can see that this track is more 

sensitive to vertical displacements than to SW-NE movements. Bearing in mind this fact 

and the relationships found through wavelet tools, we propose the conceptual model of 

possible mechanisms for the Huangtupo landslide shown in Figure 9 that illustrates the 

described in-phase relationship between reservoir water level and Slumping Masses I# 

and II# (Figures 8 and 9). This means that, when the reservoir water level cyclically 

decreases and increases, it changes the groundwater level and the slope ground surface 

suffers subsidence accompanied by downslope movement and uplift, respectively, 

superimposed to the general linear displacement trend subtracted for the wavelet 

analysis. In the same part of the landslide, rainfall and displacements are in antiphase 

(Figures 7 and 9) and then subsidence occurs when accumulated rainfall increases, 

contributing to the elevation of the groundwater level jointly with the reservoir water 

level reducing the safety factor of the slope. Nevertheless, the non-linear seasonal 

displacements at Substation and Garden Spot landslides are in phase with rainfall and in 

antiphase with reservoir water level, as illustrated in Figure 9 and shown in Figures 7 

and 8. This relationship can be interpreted as for higher elevations, since groundwater 

level is mainly controlled by rainfall and independent from reservoir water level changes 

(except for the lower part of these landslides), and therefore reservoir water level has a 

limited influence on the displacement patterns of these landslides. In addition to the 

mentioned relationships between the non-linear seasonal relationships, Figures 5 shows 

that the general trend (linear component) of Substation and Garden Spot landslides is 

much lower than for Slumping Masses I# and II# (Figure 5). Therefore, we can conclude 

that the northwest zone of the Huagtupo slope (i.e. Slumping Mass I#) exhibits the 

maximum displacements with superimposed 1-year cycles related with rainfall and 

reservoir water level. The other main landslides present a more stable behaviour with 

superimposed seasonal movements related with the rainfall for Garden Spot and 

Substation landslides and  with both rainfall and reservoir water level for Slumping Mass 

I#. 
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Summarizing, in this work, wavelet tools have confirmed the former proposed 

relationships between triggering factors and InSAR displacements from the Huangtupo 

landslide, providing a more objective quantification of the processes and allowing the 

identification of gradual temporal changes in the cause-effect relations. 

 

Figure 9. Conceptual model of mechanisms for the Huangtupo landslide based on 

wavelet analysis results of the non-linear component of InSAR time-series. Vertical axes 

are non-scaled. 
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These tools present some advantages and drawbacks, which are described below. In 

general, we can conclude that the main advantages of using wavelet tools for landslides’ 

time series analysis are as follows. a) The methodology is simple and free of model 

selection parameters (i.e. we do not have to make assumptions concerning the data for 

the time-series under investigation) (Gençay et al. 2001) and can be applied using 

different available toolboxes. b) The CWT allows the analysis of localized variations of 

power within an InSAR time series of a landslide to determine both the modes of 

variability and how these modes vary in time, even for nonstationarity in time series (i.e. 

systems with short-lived transient components), and reveals features we could not see 

otherwise (Cazelles et al. 2008). This is the key advantage of the wavelet techniques over 

the more classic approaches which assume stationarity, and thus they are more suitable 

for landslide time-series research than Fourier methods as the landslide kinematics 

depends strongly on the time variability of the triggering factors (e.g. rainfall or reservoir 

water level). c) The WTC and XWT allow the identification of common power and similar 

patterns regions between the InSAR displacement time-series and the triggering factors, 

providing very useful information about the time lag between triggering factors and 

landslide displacements. This information can be exploited by researchers for stating 

causal relationships and improving landslide models. The main shortcomings regarding 

the application of wavelet tools for landslide InSAR time-series include: a) The data have 

to be equally-spaced in time (regular sampling). Although InSAR presents a constant 

revisiting period, it is not always possible for InSAR time-series to provide a constant 

time interval as it is usual the loss or exclusion of some images from processing. This fact 

implies a loss of information for which we have proposed a strategy to enable the 

application of wavelet techniques. b) Wavelet tools cause an edge effect at the 

beginning and at the end of the time-frequency space (cone of influence) that is 

impossible to eliminate and for which the spectral information of the landslide time-

series is less accurate. c) Wavelet tools do not provide information about the underlying 

mechanisms (Cazelles, et al. 2008) causing the cyclic landslide displacements measured 

by InSAR time-series. Consequently, further information and analysis is necessary to 
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clarify the mechanisms that underlie the mutual relationships and the phase 

dependence between landslides and triggering factors. 

The application of wavelet techniques to time-series obtained from other sensors with 

a lower revisiting period (e.g. TerraSAR-X which acquires images every 11 days or 

ground-based SAR systems) would allow lower-period oscillations and correlations to be 

identified. Additionally, this methodology can be used to explore InSAR displacement 

time-series corresponding to other phenomena which exhibit non-stationary 

behaviours, such as land subsidence. 

 

9. Conclusions 

In this work, a procedure for applying wavelet tools to landslides has been successfully 

demonstrated. The use of continuous wavelet transform, cross wavelet transform and 

wavelet coherence tools for analysing relationships between seasonal displacements 

time-series obtained by InSAR and triggering factors (e.g. rainfall and reservoir water 

level time-series) on landslides is shown. For this purpose, the available InSAR derived 

displacement time-series from the Huangtupo landslide, one of the largest landslides in 

the Three Gorges region, have been used as an example. For applying wavelet tools, 

InSAR data have been resampled to a constant time step of 35 days, which corresponds 

to the revisiting period of the InSAR time-series. Subsequently, the InSAR displacement 

data have been separated into linear and non-linear displacement components. 

Continuous Wavelet Transform analysis is only performed over the nonlinear 

component of the InSAR time series. Additionally, Cross Wavelet Transform and the 

Wavelet Coherence can be performed for different triggering factors of a landslide, also 

using the non-linear term of the InSAR time-series. 

In the analysed case study, one displacement time-series has been considered for each 

one of the four main slumping masses recognized in the Huangtupo slope, computed by 

averaging all the persistent scatterers contained within the slide. Subsequently, the CWT 

has been computed for all time-series, analysing them into time-frequency space, 

recognizing a predominant annual seasonality, as expected. Similarly, XWT and WTC 

tools have been applied to find the common power and relative phase in time-frequency 
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space between the different analysed time-series. This analysis has confirmed that the 

seasonal displacements from the lowest areas of the Huangtupo slope (riverside 

Slumping Masses I # and II#) are correlated with reservoir water level, exhibiting annual 

in-phase seasonality. However, the analysis of the XWT and WTC from the highest 

elevated areas of the slope (i.e. Substation and Garden Spot landslides) show that these 

zones are mainly in-phase with annual rainfall.  

In brief, the joint analysis of the InSAR time-series and the information extracted from 

the wavelet analysis has helped state that Riverside Slumping Mass I# slope presents the 

higher absolute displacements with superimposed minor seasonal displacements 

caused by groundwater changes induced by reservoir water level and rainfall. Slumping 

Mass II# exhibits a more general stable behaviour with minor cyclic displacements 

caused by rainfall and reservoir water level. Finally, Substation and Garden Spot 

landslides display a quite stable behaviour with only seasonal displacements related 

with rainfall. 

This work illustrates the benefits of using wavelet tools for the analyses of individual 

time-series in both time and frequency, and to find common power and the information 

about the phase relationship between two time-series. Specifically, the analysed case 

study highlights the potential of wavelet tools for interpreting InSAR time-series in a 

quantitative way to better understand displacement oscillations in the frequency space 

with other variables to find physical phase relationships. 

To summarize, the application of wavelet tools (WTC, XWT and WTC) to InSAR and 

triggering factors time series have helped understand the seasonal kinematic behaviour 

of the Huagtupo landslide and to recognize the relationships between InSAR 

displacements and various triggering factors. 
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