2,298 research outputs found

    OPA1-related auditory neuropathy: site of lesion and outcome of cochlear implantation.

    Get PDF
    Hearing impairment is the second most prevalent clinical feature after optic atrophy in Dominant Optic Atrophy associated with mutations in the OPA1 gene. In this study we characterized the hearing dysfunction in OPA1-linked disorders and provided effective rehabilitative options to improve speech perception. We studied two groups of OPA1 subjects, one comprising 11 patients (7 males; age range 13-79 years) carrying OPA1 mutations inducing haploinsufficiency, the other, 10 subjects (3 males; age range 5-58 years) carrying OPA1 missense mutations. Both groups underwent audiometric assessment with pure tone and speech perception evaluation, and otoacoustic emissions and auditory brainstem response recording. Cochlear potentials were recorded through transtympanic electrocochleography from the group of patients harboring OPA1 missense mutations and were compared to recordings obtained from 20 normally-hearing controls and from 19 subjects with cochlear hearing loss. Eight patients carrying OPA1 missense mutations underwent cochlear implantation. Speech perception measures and electrically-evoked auditory nerve and brainstem responses were obtained after one year of cochlear implant use. Nine out of 11 patients carrying OPA1 mutations inducing haploinsufficiency had normal hearing function. In contrast, all but one subject harboring OPA1 missense mutations displayed impaired speech perception, abnormal brainstem responses and presence of otoacoustic emissions consistent with auditory neuropathy. In electrocochleography recordings, cochlear microphonic had enhanced amplitudes while summating potential showed normal latency and peak amplitude consistent with preservation of both outer and inner hair cell activities. After cancelling the cochlear microphonic, the synchronized neural response seen in both normally-hearing controls and subjects with cochlear hearing loss was replaced by a prolonged, low-amplitude negative potential that decreased in both amplitude and duration during rapid stimulation consistent with neural generation. The use of cochlear implant improved speech perception in all but one patient. Brainstem potentials were recorded in response to electrical stimulation in five subjects out of six, whereas no compound action potential was evoked from the auditory nerve through the cochlear implant. These findings indicate that underlying the hearing impairment in patients carrying OPA1 missense mutations is a disordered synchrony in auditory nerve fiber activity resulting from neural degeneration affecting the terminal dendrites. Cochlear implantation improves speech perception and synchronous activation of auditory pathways by by-passing the site of lesion

    Universal newborn hearing screening in the Lazio region, Italy

    Get PDF
    Background: The introduction of Universal Newborn Hearing Screening (UNHS) programs has drastically contributed to the early diagnosis of hearing loss in children, allowing prompt intervention with significant results on speech and language development in affected children. UNHS in the Lazio region has been initially deliberated in 2012; however, the program has been performed on a universal basis only from 2015. The aim of this retrospective study is to present and discuss the preliminary results of the UNHS program in the Lazio region for the year 2016, highlighting the strengths and weaknesses of the program. Methods: Data from screening facilities in the Lazio region for year 2016 were retrospectively analyzed. Data for Level I centers were supplied by the Lazio regional offices; data for Level II and III centers were provided by units that participated to the study. Results: During 2016, a total of 44,805 babies were born in the Lazio region. First stage screening was performed on 41,821 children in 37 different birth centers, with a coverage rate of 93.3%. Of these, 38.977 (93.2%) obtained a "pass" response; children with a "refer" result in at least one ear were 2844 (6.8%). Data from Level II facilities are incomplete due to missing reporting, one of the key issues in Lazio UNHS. Third stage evaluation was performed on 365 children in the three level III centers of the region, allowing identification of 70 children with unilateral (40%) or bilateral (60%) hearing loss, with a prevalence of 1.6/1000. Conclusions: The analysis of 2016 UNHS in the Lazio region allowed identification of several strengths and weaknesses of the initial phase of the program. The strengths include a correct spread and monitoring of UNHS among Level I facilities, with an adequate coverage rate, and the proper execution of audiological monitoring and diagnosis among Level III facilities. Weakness, instead, mainly consisted in lack of an efficient and automated central process for collecting, monitoring and reporting of data and information

    Acoustically evoked potentials in two cephalopods inferred using the auditory brainstem response (ABR) approach

    Get PDF
    It is still a matter of debate whether cephalopods can detect sound frequencies above 400 Hz. So far there is no proof for the detection of underwater sound above 400 Hz via a physiological approach. The controversy of whether cephalopods have a sound detection ability above 400 Hz was tested using the auditory brainstem response (ABR) approach, which has been successfully applied in fish, crustaceans, amphibians, reptiles and birds. Using ABR we found that auditory evoked potentials can be obtained in the frequency range 400 to 1500 Hz (Sepiotheutis lessoniana) and 400 to 1000 Hz (Octopus vulgaris), respectively. The thresholds of S. lessoniana were generally lower than those of O. vulgaris

    Individual differences in auditory brainstem response wave characteristics : relations to different aspects of peripheral hearing loss

    Get PDF
    Little is known about how outer hair cell loss interacts with noise-induced and age-related auditory nerve degradation (i.e., cochlear synaptopathy) to affect auditory brainstem response (ABR) wave characteristics. Given that listeners with impaired audiograms likely suffer from mixtures of these hearing deficits and that ABR amplitudes have successfully been used to isolate synaptopathy in listeners with normal audiograms, an improved understanding of how different hearing pathologies affect the ABR source generators will improve their sensitivity in hearing diagnostics. We employed a functional model for human ABRs in which different combinations of hearing deficits were simulated and show that highfrequency cochlear gain loss steepens the slope of the ABRWave-V latency versus intensity and amplitude versus intensity curves. We propose that grouping listeners according to a ratio of these slope metrics (i.e., the ABR growth ratio) might offer a way to factor out the outer hair cell loss deficit and maximally relate individual differences for constant ratios to other peripheral hearing deficits such as cochlear synaptopathy. We compared the model predictions to recorded click-ABRs from 30 participants with normal or high-frequency sloping audiograms and confirm the predicted relationship between the ABR latency growth curve and audiogram slope. Experimental ABR amplitude growth showed large individual differences and was compared with the Wave-I amplitude, Wave-V/I ratio, or the interwaveI-W latency in the same listeners. The model simulations along with the ABR recordings suggest that a hearing loss profile depicting the ABR growth ratio versus the Wave-I amplitude or Wave-V/I ratio might be able to differentiate outer hair cell deficits from cochlear synaptopathy in listeners with mixed pathologies

    A European perspective on auditory processing disorder-current knowledge and future research focus

    Get PDF
    Current notions of \u201chearing impairment,\u201d as reflected in clinical audiological practice, do not acknowledge the needs of individuals who have normal hearing pure tone sensitivity but who experience auditory processing difficulties in everyday life that are indexed by reduced performance in other more sophisticated audiometric tests such as speech audiometry in noise or complex non-speech sound perception. This disorder, defined as \u201cAuditory Processing Disorder\u201d (APD) or \u201cCentral Auditory Processing Disorder\u201d is classified in the current tenth version of the International Classification of diseases as H93.25 and in the forthcoming beta eleventh version. APDs may have detrimental effects on the affected individual, with low esteem, anxiety, and depression, and symptoms may remain into adulthood. These disorders may interfere with learning per se and with communication, social, emotional, and academic-work aspects of life. The objective of the present paper is to define a baseline European APD consensus formulated by experienced clinicians and researchers in this specific field of human auditory science. A secondary aim is to identify issues that future research needs to address in order to further clarify the nature of APD and thus assist in optimumdiagnosis and evidence-based management. This European consensus presents the main symptoms, conditions, and specific medical history elements that should lead to auditory processing evaluation. Consensus on definition of the disorder, optimum diagnostic pathway, and appropriate management are highlighted alongside a perspective on future research focus

    Applicability of subcortical EEG metrics of synaptopathy to older listeners with impaired audiograms

    Get PDF
    Emerging evidence suggests that cochlear synaptopathy is a common feature of sensorineural hearing loss, but it is not known to what extent electrophysiological metrics targeting synaptopathy in animals can be applied to people, such as those with impaired audiograms. This study investigates the applicability of subcortical electrophysiological measures associated with synaptopathy, i.e., auditory brainstem responses (ABRs) and envelope following responses (EFRs), to older participants with high-frequency sloping audiograms. The outcomes of this study are important for the development of reliable and sensitive synaptopathy diagnostics in people with normal or impaired outer-hair-cell function. Click-ABRs at different sound pressure levels and EFRs to amplitude-modulated stimuli were recorded, as well as relative EFR and ABR metrics which reduce the influence of individual factors such as head size and noise floor level on the measures. Most tested metrics showed significant differences between the groups and did not always follow the trends expected from synaptopathy. Age was not a reliable predictor for the electrophysiological metrics in the older hearing-impaired group or young normal-hearing control group. This study contributes to a better understanding of how electrophysiological synaptopathy metrics differ in ears with healthy and impaired audiograms, which is an important first step towards unravelling the perceptual consequences of synaptopathy.(C) 2019 Elsevier B.V. All rights reserved

    Determination and evaluation of clinically efficient stopping criteria for the multiple auditory steady-state response technique

    Get PDF
    Background: Although the auditory steady-state response (ASSR) technique utilizes objective statistical detection algorithms to estimate behavioural hearing thresholds, the audiologist still has to decide when to terminate ASSR recordings introducing once more a certain degree of subjectivity. Aims: The present study aimed at establishing clinically efficient stopping criteria for a multiple 80-Hz ASSR system. Methods: In Experiment 1, data of 31 normal hearing subjects were analyzed off-line to propose stopping rules. Consequently, ASSR recordings will be stopped when (1) all 8 responses reach significance and significance can be maintained for 8 consecutive sweeps; (2) the mean noise levels were ≤ 4 nV (if at this “≤ 4-nV” criterion, p-values were between 0.05 and 0.1, measurements were extended only once by 8 sweeps); and (3) a maximum amount of 48 sweeps was attained. In Experiment 2, these stopping criteria were applied on 10 normal hearing and 10 hearing-impaired adults to asses the efficiency. Results: The application of these stopping rules resulted in ASSR threshold values that were comparable to other multiple-ASSR research with normal hearing and hearing-impaired adults. Furthermore, in 80% of the cases, ASSR thresholds could be obtained within a time-frame of 1 hour. Investigating the significant response-amplitudes of the hearing-impaired adults through cumulative curves indicated that probably a higher noise-stop criterion than “≤ 4 nV” can be used. Conclusions: The proposed stopping rules can be used in adults to determine accurate ASSR thresholds within an acceptable time-frame of about 1 hour. However, additional research with infants and adults with varying degrees and configurations of hearing loss is needed to optimize these criteria

    Acquisition of subcortical auditory potentials with around-the-Ear cEEGrid technology in normal and hearing impaired listeners

    Get PDF
    Even though the principles of recording brain electrical activity remain unchanged since their discovery, their acquisition has seen major improvements. The cEEGrid, a recently developed flex-printed multi-channel sensory array, can be placed around the ear and successfully record well-known cortical electrophysiological potentials such as late auditory evoked potentials (AEPs) or the P300. Due to its fast and easy application as well as its long-lasting signal recording window, the cEEGrid technology offers great potential as a flexible and 'wearable' solution for the acquisition of neural correlates of hearing. Early potentials of auditory processing such as the auditory brainstem response (ABR) are already used in clinical assessment of sensorineural hearing disorders and envelope following responses (EFR) have shown promising results in the diagnosis of suprathreshold hearing deficits. This study evaluates the suitability of the cEEGrid electrode configuration to capture these AEPs. cEEGrid potentials were recorded and compared to cap-EEG potentials for young normal-hearing listeners and older listeners with high-frequency sloping audiograms to assess whether the recordings are adequately sensitive for hearing diagnostics. ABRs were elicited by presenting clicks (70 and 100-dB peSPL) and stimulation for the EFRs consisted of 120 Hz amplitudemodulated white noise carriers presented at 70-dB SPL. Data from nine bipolar cEEGrid channels and one classical cap-EEG montage (earlobes to vertex) were analysed and outcome measures were compared. Results show that the cEEGrid is able to record ABRs and EFRs with comparable shape to those recorded using a conventional capEEG recording montage and the same amplifier. Signal strength is lower but can still produce responses above the individual neural electrophysiological noise floor. This study shows that the application of the cEEGrid can be extended to the acquisition of early auditory evoked potentials

    Sudden hearing loss as an early detector of multiple sclerosis: a systematic review

    Get PDF
    To evaluate whether Sudden Sensorineural Hearing Loss (S-SNHL) may be an early symptom of Multiple Sclerosis (MS). A systematic review was conducted using the following keywords: "Multiple sclerosis, hearing loss, sudden hearing loss, vertigo, tinnitus, magnetic resonance imaging, otoacoustic emission, auditory brainstem responses, white matter lesions, sensorineural hearing loss, symptoms of MS and otolaryngology, nerve disease and MS". Only the articles that included results of at least one auditory test and MRI were considered. We evaluated the prevalence of SNHL in patients with MS, the presence of different forms of SNHL (S-SNHL and Progressive SNHL (P-SNHL)) and their correlation with the stage of MS, the results of electrophysiological tests, and the location (if any) of MS lesions as detected by white matter hyperintensities in the MRI. We reviewed a total of 47 articles, which included 29 case reports, 6 prospective studies, 6 cohort studies, 4 case-control studies, and 2 retrospective studies. 25% of patients suffered from SNHL. S-SNHL typically occurred in the early stage of the disease (92% of patients) and was the only presenting symptom in 43% of female subjects. Instead, P-SNHL occurred in the late stage of MS (88% of patients). Auditory Brainstem Responses (ABR) were abnormal in all MS patients with S-SNHL. When S-SNHL appeared during the early stage of the disease, MS lesions were found in the brain in 60% of patients and in the Internal Auditory Canal in 40% of patients. ABR remained abnormal after recovery. S-SNHL can be an early manifestation of MS and should always be considered in the differential diagnosis of this condition, especially in women. The pathophysiology can be explained by the involvement of microglia attacking the central and/or peripheral auditory pathways as indicated by WMHs
    • …
    corecore