407 research outputs found

    Surgical Applications of Compliant Mechanisms:A Review

    Get PDF
    Current surgical devices are mostly rigid and are made of stiff materials, even though their predominant use is on soft and wet tissues. With the emergence of compliant mechanisms (CMs), surgical tools can be designed to be flexible and made using soft materials. CMs offer many advantages such as monolithic fabrication, high precision, no wear, no friction, and no need for lubrication. It is therefore beneficial to consolidate the developments in this field and point to challenges ahead. With this objective, in this article, we review the application of CMs to surgical interventions. The scope of the review covers five aspects that are important in the development of surgical devices: (i) conceptual design and synthesis, (ii) analysis, (iii) materials, (iv) maim facturing, and (v) actuation. Furthermore, the surgical applications of CMs are assessed by classification into five major groups, namely, (i) grasping and cutting, (ii) reachability and steerability, (iii) transmission, (iv) sensing, and (v) implants and deployable devices. The scope and prospects of surgical devices using CMs are also discussed

    Robotic Handle Prototypes for Endoscopic Endonasal Skull Base Surgery: Pre-clinical Randomised Controlled Trial of Performance and Ergonomics

    Get PDF
    Endoscopic endonasal skull base surgery is a promising alternative to transcranial approaches. However, standard instruments lack articulation, and thus, could benefit from robotic technologies. The aim of this study was to develop an ergonomic handle for a handheld robotic instrument intended to enhance this procedure. Two different prototypes were developed based on ergonomic guidelines within the literature. The first is a forearm-mounted handle that maps the surgeon’s wrist degrees-of-freedom to that of the robotic end-effector; the second is a joystick-and-trigger handle with a rotating body that places the joystick to the position most comfortable for the surgeon. These handles were incorporated into a custom-designed surgical virtual simulator and were assessed for their performance and ergonomics when compared with a standard neurosurgical grasper. The virtual task was performed by nine novices with all three devices as part of a randomised crossover user-study. Their performance and ergonomics were evaluated both subjectively by themselves and objectively by a validated observational checklist. Both handles outperformed the standard instrument with the rotating joystick-body handle offering the most substantial improvement in terms of balance between performance and ergonomics. Thus, it is deemed the more suitable device to drive instrumentation for endoscopic endonasal skull base surgery

    Design of a Robotic Instrument Manipulator for Endoscopic Deployment

    Get PDF
    This thesis describes the initial design process for an application of continuum robotics to endoscopic surgical procedures, specifically dissection of the colon. We first introduce the long-term vision for a benchtop dual-instrument endoscopic system with intuitive haptic controllers and then narrow our focus to the design and testing of the instrument manipulator itself, which must be actuated through the long, winding channel of a standard colonoscope. Based on design requirements for a target procedure, we analyze simulations of two types of continuum robots using recently established kinematic and mechanic modeling approaches: the concentric-tube robot (CTR) and the concentric agonist-antagonist robot (CAAR). In addition, we investigate solutions to the primary engineering challenge to this system, which is accurately transmitting joint motion through exible, hollow shafts. Based on our study of the manipulator simulations and transmission shafts, we select instrument designs for prototyping and testing. We present approaches for controlling the position of the robotic instrument in real-time using an input device, and demonstrate the degree of control we can achieve in various configurations by performing time trial experiments with our prototype robotic instruments. Our observations of the manipulator during testing inform us of sources of error, and we conclude this report with suggestions for future work, including shaft design and alternative continuum manipulator approaches

    Laparoscopic robotic surgery : current perspective and future directions

    Get PDF
    Just as laparoscopic surgery provided a giant leap in safety and recovery for patients over open surgery methods, robotic-assisted surgery (RAS) is doing the same to laparoscopic surgery. The first laparoscopic-RAS systems to be commercialized were the Intuitive Surgical, Inc. da Vinci and the Computer Motion Zeus. These systems were similar in many aspects, which led to a patent dispute between the two companies. Before the dispute was settled in court, Intuitive Surgical bought Computer Motion, and thus owned critical patents for laparoscopic-RAS. Recently, the patents held by Intuitive Surgical have begun to expire, leading to many new laparoscopic-RAS systems being developed and entering the market. In this study, we review the newly commercialized and prototype laparoscopic-RAS systems. We compare the features of the imaging and display technology, surgeons console and patient cart of the reviewed RAS systems. We also briefly discuss the future directions of laparoscopic-RAS surgery. With new laparoscopic-RAS systems now commercially available we should see RAS being adopted more widely in surgical interventions and costs of procedures using RAS to decrease in the near future

    Medical robots with potential applications in participatory and opportunistic remote sensing: A review

    Get PDF
    Among numerous applications of medical robotics, this paper concentrates on the design, optimal use and maintenance of the related technologies in the context of healthcare, rehabilitation and assistive robotics, and provides a comprehensive review of the latest advancements in the foregoing field of science and technology, while extensively dealing with the possible applications of participatory and opportunistic mobile sensing in the aforementioned domains. The main motivation for the latter choice is the variety of such applications in the settings having partial contributions to functionalities such as artery, radiosurgery, neurosurgery and vascular intervention. From a broad perspective, the aforementioned applications can be realized via various strategies and devices benefiting from detachable drives, intelligent robots, human-centric sensing and computing, miniature and micro-robots. Throughout the paper tens of subjects, including sensor-fusion, kinematic, dynamic and 3D tissue models are discussed based on the existing literature on the state-of-the-art technologies. In addition, from a managerial perspective, topics such as safety monitoring, security, privacy and evolutionary optimization of the operational efficiency are reviewed

    Optically Sensorized Tendons for Articulate Robotic Needles

    Get PDF
    This study proposes an optically sensorized tendon composed of a 195 µm diameter, high strength, polarization maintaining (PM) fiber Bragg gratings (FBG) optical fiber which resolves the cross-sensitivity issue of conventional FBGs. The bare fiber tendon is locally reinforced with a 250 µm diameter Kevlar bundle enhancing the level of force transmission and enabling high curvature tendon routing. The performance of the sensorized tendons is explored in terms of strength (higher than 13N for the bare PM-FBG fiber tendon, up to 40N for the Kevlar-reinforced tendon under tensile loading), strain sensitivity (0.127 percent strain per newton for the bare PM-FBG fiber tendon, 0.04 percent strain per newton for the Kevlar-reinforced tendon), temperature stability, and friction-independent sensing behavior. Subsequently, the tendon is instrumented within an 18 Ga articulate NiTi cannula and evaluated under static and dynamic loading conditions, and within phantoms of varying stiffness for tissue-stiffness estimation. The results from this series of experiments serve to validate the effectiveness of the proposed tendon as a bi-modal sensing and actuation component for robot-assisted minimally invasive surgical instruments

    Micro-motion controller

    Get PDF
    Micro-motions in surgical applications are small motions in the range of a few millimeters and are common in ophthalmic surgery, neurosurgery, and other surgeries which require precise manipulation over short distances. Robotic surgery is replacing traditional open surgery at a rapid pace due to the obvious health benefits, however, most of the robotic surgical tools use robotic motion controllers that are designed to work over a large portion of the human body, thus involving motion of the entire human arm at shoulder joint. This requirement to move a large inertial mass results in undesirable, unwanted, and imprecise motion. This senior design project has created a 2-axis micro-motion “capable” platform, where the device studies the most common linear, 2-D surgical micro-motion of pinched human fingers in a damped and un-damped state. Through a system of printed and modeled parts in combination with motors and encoders a microsurgical controller was developed which can provide location-based output on a screen. Mechanical damping was introduced to research potential stability of micro-motion in any surgeon’s otherwise unsteady hand. The device is to also serve as a starter set for future biomedical device research projects in Santa Clara University’s bioengineering department. Further developments in the microsurgical controller such as further scaling, addition of a third axis, haptic feedback through the microcontroller, and component encasing to allow productization for use on an industrial robotic surgical device for clinical applications

    Task Analysis, Modeling, And Automatic Identification Of Elemental Tasks In Robot-Assisted Laparoscopic Surgery

    Get PDF
    Robotic microsurgery provides many advantages for surgical operations, including tremor filtration, an increase in dexterity, and smaller incisions. There is a growing need for a task analyses on robotic laparoscopic operations to understand better the tasks involved in robotic microsurgery cases. A few research groups have conducted task observations to help systems automatically identify surgeon skill based on task execution. Their gesture analyses, however, lacked depth and their class libraries were composed of ambiguous groupings of gestures that did not share contextual similarities. A Hierarchical Task Analysis was performed on a four-throw suturing task using a robotic microsurgical platform. Three skill levels were studied: attending surgeons, residents, and naïve participants. From this task analysis, a subtask library was created. The Hierarchical Task Analysis subtask library, a computer system was created that accurately identified surgeon subtasks based on surgeon hand gestures. An automatic classifier was trained on the subtasks identified during the Hierarchical Task Analysis of a four-throw suturing task and the motion signature recorded during task performance. Using principal component analysis and a J48 decision tree classifier, an average individual classification accuracy of 94.56% was achieved. This research lays the foundation for accurate and meaningful autonomous computer assistance in a surgical arena by creating a gesture library from a detailed Hierarchical Task Analysis. The results of this research will improve the surgeon-robot interface and enhance surgery performance. The classes used will eliminate human machine miscommunication by using an understandable and structured class library based on a Hierarchical Task Analysis. By enabling a robot to understand surgeon actions, intelligent contextual-based assistance could be provide to the surgeon by the robot. Limitations of this research included the small participant sample size used for this research which resulted in high subtask execution variability. Future work will include a larger participant population to address this limitation. Additionally, a Hidden Markov Model will be incorporated into the classification process to help increase the classification accuracy. Finally, a closer investigation of vestigial techniques will be conducted to study the effect of past learned laparoscopic techniques, which are no longer necessary in the robotic-assisted laparoscopic surgery arena

    Design and Development of a Surgical Robot for Needle-Based Medical Interventions

    Get PDF
    Lung cancer is the leading cause of cancer related deaths. If diagnosed in a timely manner, the treatment of choice is surgical resection of the cancerous lesions followed by radiotherapy. However, surgical resection may be too invasive for some patients due to old age or weakness. An alternative is minimally invasive needle-based interventions for cancer diagnosis and treatment. This project describes the design, analysis, development and experimental evaluation of a modular, compact, patient-mounted robotic manipulator for lung cancer diagnosis and treatment. In this regard, a novel parallel Remote Centre of Motion (RCM) mechanism is proposed for minimally invasive delivery of needle-based interventions. The proposed robot provides four degrees of freedom (DOFs) to orient and move a surgical needle within a spherical coordinate system. There is an analytical solution for the kinematics of the proposed parallel mechanism and the end-effectors motion is well-conditioned within the required workspace. The RCM is located beneath the skin surface to minimize the invasiveness of the surgical procedure while providing the required workspace to target the cancerous lesions. In addition, the proposed robot benefits from a design capable of measuring the interaction forces between the needle and the tissue. The experimental evaluation of the robot has proved its capability to accurately orient and move a surgical needle within the required workspace. Although this robotic system has been designed for the treatment of lung cancer, it is capable of performing other procedures in the thoracic or abdominal cavity such as liver cancer diagnosis and treatment
    corecore