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Chapter 1:    Introduction and Motivation 

Advancements in robot technology have given humans the ability to change the 

methods in which they interact with their environment.  One form of robot use is the 

remote control of robotic functions referred to as teleoperation.  Teleoperating robots 

usually entails (1) a human operator engaged in real-time visual processing of display 

views that are used for navigation and end-effector manipulation, (2) identification of 

landmarks or other elements to establish a sense of remote presence or situation 

awareness, and (3) a method for manipulating the robot [1].  The distance from which an 

operator can send signals is typically limited by the method of signal transmission and 

therefore can span great distances (i.e., transatlantic robot-assisted tele-surgery [2].  The 

wide range of applications and general advancement of teleoperation technology has led 

to teleoperated robots becoming a prominent tool in high-tech industries. 

Tele-operated robots provide many benefits to their operators.  For example, 

teleoperated robots are extremely valuable in environments with hazardous conditions as 

demonstrated during the search and rescue efforts after September 11, 2001 at the World 

Trade Center  [3].  Unmanned teleoperated robots were used in the search for victims in 

the remains of the collapsed towers and allowed their operators to navigate through 

irregular and dangerous terrain. 

Tele-operated robots have also become more prevalent in the medical industry.  

The Da Vinci microsurgical laparoscopic robot has changed the way surgeons perform 

laparoscopic surgery by providing a more comfortable seated position (Figure 1) and a 

controller interface that eliminates the fulcrumed motion mapping (Figure 2) present in 

conventional laparoscopic surgery.  Minimally invasive robotic surgery provides 
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additional advantages over conventional laparoscopic surgery for surgical operations, 

including an increase in dexterity [4, 5] and precision [6].  Advances in control 

algorithms, kinematics, and mechanical design in robotic systems have increased the 

usability of the most advanced robotic surgical systems. 

 
Figure 1.  The comfortable working environment available through the Zeus MicroWrist platform.  The hand 

controllers on the surgeon side control the end-effectors on the patient side providing motion scaling and tremor 

filtration. 
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Figure 2.  The fulcrum effect, a reversed directional motion experienced during conventional minimally invasive 

surgery.  Notice that the length past the trocar can change as the tool slides through the trocar.  This changing 

length creates a variable movement arm. 

Today, the combination of three-dimensional imaging data, computers, and 

sensors [7] allow robots to guide instruments accurately to pathological structures deep 

within the body.  In addition, tremor filtration [8-14], motion scaling [4, 15-21], an 

ergonomically comfortable environment [22], and an added wrist joint have been 

incorporated into surgical robots to enhance surgeon precision.  The advantages that these 

minimally invasive surgical robots present have led to their widespread adoption.  The da 

Vinci robot is now used in over 500 different types of operations [23]. 

1.1 System Factors Affecting Human Machine Interaction 

The examples of search and rescue robots and medical robotics both demonstrate 

how tele-operated robots can be used to facilitate or enhance operations.  Although the 

applications may be different, the interaction between the human and the robot contain 

very similar challenges.  Removing the operator from direct contact with the environment 
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negatively impacts operator situation awareness.  There are, as well, complexities in 

translating between the operator’s intentions and what should be executed by the robot.  

Significant research has investigated the effects of changing the operator environment to 

lessen the negative effects of remotely operating the system.  Visual displays [24], 

orientation presentation schemes [25-27], as well as input devices [28, 29] all have their 

pros and cons and different magnitudes in which they affect performance. 

1.2 Spatial Effects and Movement Patterns 

The interface of robotic-assisted surgery systems, Zeus™ and da Vinci (Intuitive 

Surgical, Sunnyvale, CA) for example, usually consists of the surgeon’s control console 

placed in front of a visual display that presents the endoscopic camera view (Figure 1).  

Each hand operates a controller used to manipulate the robot-mediated laparoscopic 

instruments.  This arrangement facilitates movements that are more ergonomic than 

conventional laparoscopic tools [22, 30-35].  Depending on the physical arrangement of 

the workstation, and robotic parameters such as motion scaling, the surgeon’s movements 

necessary to guide the robotic instruments may expand beyond the working envelope [36] 

typical in conventional laparoscopic procedures.  As a result of the added movement 

volume and motion scaling, the small tight movements found in conventional minimally 

invasive surgery are replaced with larger movements.  In some interfaces, surgeons are 

able to extend their arm fully or to bring their arm close to their body to complete a task.  

In these situations, re-indexing (sometimes referred to as “clutching”) permits surgeons to 

reposition the master hand controllers to a more comfortable position.  However, in 

instances when surgeons choose to complete a task prior to re-indexing, these awkward 

arm positions have adverse effects on performance. 
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The larger field of hand movements in robotic surgery eliminates the common 

tight motions of conventional minimally invasive surgery.  The added convenience of this 

more ergonomic movement gained by the surgeon in robotic surgery over the pivoting 

circular motions in conventional minimally invasive surgery is clear [37].  This larger 

working envelope, however, does not eliminate all negative effects that are associated 

with laparoscopic procedures.  Research has shown that hand positions have a significant 

influence on participant performance.  Golenberg [36] showed that error was lower and 

accuracy was higher in the participant’s predetermined comfortable working envelope 

(Figure 3).  The improved performance in the comfortable working envelope did come at 

a price of longer travel times and distances.  Their study also demonstrated that the 

regions with lower accuracy and higher error were concentrated in the regions located 

farther from the participant.  Quadrants of working range-of-motion (Figure 4) located in 

the right column (for right-hand-dominant operators) had slightly worse accuracy than 

the left. This may indicate that the cramped positions in these regions may also be 

limiting. 
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Figure 3.  Visual representation of the working envelopes, where (1) is the comfortable working envelope and (2) 

is the area outside of envelope (1). 

 

Figure 4.  Visual representation of the four quarter area used to sort the data points.  All regions have the same 

area. 

As demonstrated by this research, with the added benefits of teleoperation come 

interface complexities that can change the nature in which an operator interacts with their 

environment through a tele-operated robot.  Golenberg [36] showed that moving the 

surgeon to a seated position and manipulating laparoscopic end-effectors in a more 

mirrored-motion rather than fulcrum-like motion resulted in working envelope volumes 
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where operators’ performance was better than in other regions.  The results suggested that 

the non-homogenous performance distribution over the surgeon working envelope was 

likely a bio-kinematic issue that depended on joint and muscle usage and limitations. 

Although Golenberg et al.’s [36] testing was performed on the Zeus microsurgical 

robot platform, the effects that they studied are generalizeable.  The da Vinci robot 

system also allows a surgeon to move the controller through a three-dimensional volume 

of space.  The variation in performance throughout the working envelope of the Zeus 

platform would be expected on other control systems that have input movements in a 

volume of space. 

1.3 Computer Assistance in Tasks 

Golenberg et al. [36] proposed that an automated adaptive system could help 

compensate for less than optimal user input commands.  In other words, a computer 

system could help the operator by changing the control gain automatically when a task 

calls for a more precise motion, or even to help smooth out motions much like surgical 

robots eliminate hand tremors.  Alternatively, in instances when a majority of a surgeon’s 

motions lie in volumes of space prone to degradation of working performance, a system 

could advise a surgeon to re-index. 

The augmentation of tasks is not a new concept.  Cruise control is an example of 

how a computer or machine assists the human operator in a simple task that is used on a 

daily basis.  Cruise control, however, is an example of automation that does not change 

according to environmental or task changes.  It functions consistently by maintaining a 

speed until it is turned off or changed.  It does not adjust speeds according to terrain or 
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elevation to increase fuel efficiency nor does it adjust the speed based on anticipated 

traffic conditions. 

Augmentation can also take an active role in aiding a human performing a task.  

Advanced systems can carry out complex computations that allow them to function 

alongside a human, supporting them only when needed (i.e., on-demand).  One such 

example is the use of exoskeletons.  The first documented use of an exoskeleton named 

Hardiman was jointly developed by General Electric and the US Army [38].  Since then, 

exoskeleton systems have been used to aid the physically disabled as well [39].  The 

distinction made between an exoskeleton and cruise control is not specifically in its 

complexity, but rather the system’s ability to truly augment a user’s task.  For instance, 

the Berkley Lower Extremity Exoskeleton assists a user in carrying up to 34 kg at a 

walking pace of 1.3 m/s [39].  The system does not just maintain a speed like cruise 

control does in a car.  Its joints flex and extend to match the user’s motions.  In addition, 

it enhances the user’s strength.  The Berkley Exoskeleton applies an amount of force 

sufficient to carry a large load without overcompensating. 

In much the same way, robotic micro-surgical platforms have the potential to 

assist a surgeon based on master controller motions.  For instance, rather than 

maintaining a constant motion scale throughout a surgery, the control gain could be 

adjusted with respect to the task being executed.   Other enhancements may include 

intelligent autonomous endoscope control, task assistants, motion augmentation, or 

automatic gesture execution.  Of course, for a system to assist a surgeon with tasks, it 

must first be made aware of the surgeon’s intentions. 
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A task analysis is a method of charting the actions necessary to accomplish a goal.  

Task analyses are typically used for training purposes.  They do, however, functions well 

as a structured methodology for defining a class library from which both a human and an 

automatic classification system can identify subtasks.  If the benefits of augmented 

surgeon movements, automatic surgical tasks, or training systems are to be realized, a 

system that is robust enough to be applied to the real world is necessary.  Using classes 

that are based on a structured task analysis approach results in very clear information 

that, when automatically classified and presented, any trained individual can understand.  

Testing classes that are understandable and unambiguous allows the human to observe 

how an autonomous system interprets an event.  Not only is this transparency important 

for general adoption, but it can help avoid miscommunication and inform an operator of 

what changes may be made to a system. 

This dissertation presents the result of a Hierarchical Task Analysis performed on 

a four-throw suturing task.  Eight participants were tested ranging in surgery experience 

from naïve to expert.  The subtasks identified in the Hierarchical Task Analysis of a four-

throw suturing task were used as the class library for automatic subtask classification.  

The resulting automatic classification of subtasks using a class library based on a 

structured task analysis presents a novel approach to bringing automatic gesture 

classification systems closer to acceptance through higher ecological validity.   

The results of this research have the potential to improve the surgeon-robot 

interface and enhance surgery performance.  The gap between robotic and manual 

surgery times could be reduced by streamlined robot-assisted tasks, errors could be 

minimized or eliminated by preventing unintended movements, and accuracy could be 
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improved.  Miscommunication over the interpretation of system status between the 

human and an autonomous system can be eliminated.  The task analysis alone can be 

used for training purposes and surgery schedule optimization.  Robotic-assisted 

microsurgery is a relatively new area of medicine as well as engineering and the potential 

to improve on it is great with an opportunity to surpass conventional surgery in some 

areas.  Digitizing a surgery will help provide a better understanding of what advantages 

robot-assisted laparoscopic platforms offer, what features and functions should be 

included with the robot and what features and functions are unnecessary.   
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Chapter 2:    Hierarchical Task Analysis of a Robotic-Assisted 

Laparoscopic Task 

2.1 Background and Significance 

2.1.1 Introduction 

Task analysis is a widely accepted method of charting human goals and actions 

during an activity.  A task analysis can contain mental processes, physical actions or 

both.  The importance of using a standard task analysis method is that it provides a 

reproducible framework for breaking down a process following a structured technique.  

This enables developing a shared understanding or framework for a task, and 

communicates analysis results in a reproducible and widely understood manner in the 

industrial engineering and ergonomics communities.  From a task analysis, a vocabulary 

can be drawn to describe an entire process, ensuring that all involved personnel are 

employing the same vocabulary and interpretation of each task and subtask definitions. 

Task analysis provides a representation of the operations that are required to 

accomplish a goal.  This is especially critical when a designer aims to change or enhance 

a procedure, product, or system.  Without a thorough mapping of an objective and its 

subtasks, it can be difficult to anticipate the influences or effects that a change may have 

on a system. 

The first scientific analysis of work began in the field of Scientific Management. 

Taylor [40] studied inefficiency in everyday work activities and set out to demonstrate 

that inefficiencies are more often a result of poor work methods rather than, in his 

examples, a physically unfit worker.  Taylor’s studies found that precise performance 
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guidelines, design-to-fit tools, and worker motivation and efficiency could be greatly 

improved.  The following section charts the development of task analysis to its current 

form and application in the present research. 

2.1.1.1 Hierarchical Task Analysis 

Classical task analysis methods were improved upon by Annett et al. [41] by 

focusing on ways of structuring the level of detail in the analysis.  Their group created the 

Hierarchical Task Analysis, a top-down methodology for identifying the tasks in an 

operation and breaking them down into a hierarchy of categories.  They also specified 

that the order of occurrence of these categories may vary.  The current form of the 

Hierarchical Task Analysis methodology is intended to be used to identify objective 

indicators of success or failure.  In most cases, Hierarchical Task Analysis is used for 

training and often for the purpose of creating a guideline for a training regime [42]. 

A Hierarchical Task Analysis breakdown of a task includes an overall task 

objective called a “goal” which is then divided into smaller subgoals, tasks, and subtasks.  

The advantage of incorporating goals and subgoals into a task analysis is that it specifies 

a context to a task.  This distinction is important because it places an emphasis on the 

objective.  Stating an overall goal rather than a rigid concatenation of tasks allows for 

flexibility in the path chosen to achieve a goal [43]. 

2.1.1.2 Cognitive Modeling 

Unlike the Hierarchical Task Analysis, which treats the human’s cognitive 

process like a black box, cognitive modeling techniques focus on perceptual, cognitive, 

and motor processes [44].  Card [45] created the Model Human Processor, a method of 

predicting the time required for cognitive, perceptual, and motor elements of a task or 
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response.  For example, in the Model Human Processor, the task of processing a visual 

stimulus would be broken into perceptual processing time (the amount of time it would 

take an individual to perceive the stimulus, code it, and finally recognize it).  The results 

of perceptual processing are passed on to cognitive processing that may include plans, 

procedures, and decision cycles.  Finally, motor responses are broken into feedback loops 

which include a paired micromovement and a perception of the movement. 

The method used to break down human responses in the Model Human Processor 

is the basis of GOMS (Goals, Operators, Methods and Selection rules).  GOMS is a way 

of modeling the users’ interaction with an interface and can predict the time necessary for 

an operator to become proficient with an interface [46].  By definition, goals are the 

objectives of the user, operators are actions performed to accomplish a goal, methods are 

a series of operators and subgoals that support the accomplishment of a goal, and 

selection rules are strategy rules that provide the system with flexibility to represent a 

variety of individuals’ experiences and preferences to accomplishing a task.  A number of 

variations have been created based on the GOMS platform including KLM (keystroke 

level model) [47] and CPM-GOMS (a parallel-activity capable, multi-processing stage 

model of human information processing) [48]. Once element execution times are 

established, GOMS analysis is a strong tool in assessing a system without a laborious 

series of human testing. 

Although cognitive modeling was not used in this research, the modeling 

techniques provide potential in modeling surgeon behaviors in future studies.  Cognitive 

modeling presents a way of incorporating decision making and fine muscle execution 
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timing.  All of these modeling approaches can give a clearer picture of what the surgeon 

is doing and may be able to further enhance automated robotic assistance. 

2.1.2 Motivation 

The incorporation of robotics into laparoscopic surgery opens new avenues in 

improving and augmenting surgeon capabilities.  Tremor filtration, motion scaling, 

improved visualization, and added degrees of freedom are examples of some of the 

advantages that surgeons experience when using robotic microsurgical platforms. 

A thorough task analysis evaluation of the actions or gestures that occur during a 

robotic-assisted laparoscopic surgery task must be conducted to gain an understanding of 

how working in a teleoperated environment may affect the way a surgeon operates.  Such 

a task analysis needs to include all the subtasks that typically appear in a standard 

procedure as well as the subtasks that occur during common task deviations. Even non-

value added actions and common techniques for error correction phases should be 

mapped out with task analysis for an in-depth understanding and representation of the 

task. 

2.1.2.1 Task Analysis in Laparoscopic Surgery 

Task analysis has been used in surgical scenarios identifying steps in laparoscopic 

surgery, surgeon skill, or an aid for self-assessment of skill.  In some cases, there are 

gestures or subtasks that can be used to identify surgeon skill levels based on their 

occurrence alone.  Joice et al. [49] conducted a human reliability assessment of 

laparoscopic cholecystectomy (removal of the gallbladder).  The aim of the task analysis 

was to provide a detailed study into the errors that occur during laparoscopic 

cholecystectomy and identify the performance shaping factors that can be attributed to 
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these errors.  Their task analysis was broken into ten generic tasks.  In addition to these 

generic tasks, a sub-categorization of the types of External Error Modes was used to 

classify observed errors during the monitored 20 procedures performed by eight 

surgeons.  This technique was based on SHERPA [50].  These External Errors Modes 

were made up of interstep errors (procedural) and intrastep errors (execution).   189 

errors were recorded; 116 intrastep errors and 73 interstep errors. 

Cao et al. [51] used four surgical tasks (dissecting tissue, suturing, tying knots, 

and cutting sutures) for their task analysis of endoscopic surgery.  These tasks were 

broken down into subtasks and their respective component motions.  Suturing was 

decomposed into seven subtasks: 

1) Position needle 

2) Bite tissue 

3) Pull needle through 

4) Re-position needle 

5) Re-bite tissue 

6) Re-pull needle through 

7) Pull suture through tissue. 

An example of the component motions of the subtask of “position needle” are 1) 

reach and orient (needle driver), 2) grasp and hold (needle driver), and 3) reach and orient 

(needle driver).  Their task analysis focused on subtask timelines and made time 

comparisons between one expert surgeon and five novice surgeons and showed that 

novice surgeons took longer to perform surgical tasks and had more repetitions of 

subtasks.  In general, the motion analysis found that both the expert and novice surgeons 

had the hardest time with orienting the end-effector, needle, and suture.  Error modes 

were not specifically investigated. 
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Mackenzie et al. [52] created top-down analyses of surgical procedures and 

bottom-up analyses of tool motions to create a hierarchical decomposition task analysis 

of endoscopic procedures.  The task analysis of this procedure included surgical steps 

(e.g., repair crura), sub-steps (e.g., join), tasks (e.g., cauterize), sub-tasks (e.g., suture), 

and tool motions (e.g., pull needle through).  They also found that all task and sub-tasks 

could be categorized into five fundamental motions: reach and orient, grasp and hold/cut, 

push, pull, and release. 

The five fundamental motions used by Mackenzie et al. [52] are adapted from 

Methods-Time Measurements developed by Harold Maynard.  His work examined 

fundamental motion required to perform any manual operation.  The five fundamental 

motions identified were reach, move, turn, grasp, position, disengage, and release [53]. 

Sarker et al. [54-56] were the first group to apply the Hierarchical Task Analysis 

method on laparoscopic surgery (cholecystectomy).  Their main aim was to evaluate the 

Hierarchical Task Analysis as a self-assessment tool of surgical skill.  The 

cholecystectomy Hierarchical Task Analysis included 17 tasks with up to seven sub-tasks 

each including a recovery description. 

2.1.2.2 Gesture Identification in Robotic-Assisted Laparoscopic Surgery 

Several research groups have examined movement characteristics directly, 

seeking low-level signal processing features that can be used to automatically 

differentiate surgeons into different skill levels.  The ability to quickly and automatically 

identify skill is very desirable because it translates into more efficient objective metrics 

that can save time and money in the training process. 

Lin et al. [57] used a neural network modeling approach to classify signals 
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recorded on the da Vinci surgical robot into eight surgeon gestures.  Their study aimed to 

automatically identify surgeon gestures based on encoder signals downloaded from the da 

Vinci surgical robot for the purpose of surgeon skill level identification.  The gesture 

classes were: 

1) Reach for needle 

2) Position needle 

3) Insert and push needle through tissue 

4) Move to middle with needle (left hand) 

5) Move to middle with needle (right hand) 

6) Pull suture with left hand 

7) Pull suture with right hand 

8) Orient needle with both hands 

These surgical gestures were based on second-hand recommendations from a 

surgeon and not on first-hand observations of a procedure or task.  Of these eight surgical 

gestures, Lin et al. [57] found that the expert surgeon tested did not use surgical gesture 

#5 and surgical gesture #7.  In addition, the intermediate surgeons only used surgical 

gesture #4 sparingly.  Since some gestures were used less frequently than others, they 

consolidated some of the gestures for the purpose of increasing the overall automatic 

classification rate.  The combined surgical gestures were tested for accuracy in their 

different combinations.  For example, gestures #5 and #6 were combined into one class 

and surgical gestures #7 and #8 into another class resulting in six total surgical gesture 

classes.  Four different motion class combinations for expert users and six different 

motion class combinations for intermediate users were tested and compared. 

Lin et al. [57] combined gesture classes ad hoc to increase automatic gesture 

classification accuracy.  Their groupings did not use a functionally similar or context-

based strategy for the gesture class pairing.  In addition, their consolidation was 

conducted separately for the expert surgeons and intermediate surgeons revealing the 
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brittleness of the model and the model’s inability to be generalized across multiple 

participant groups or task settings. 

Reiley et al. [58] also used the da Vinci but extended the research of  Lin et al. 

[57] by increasing the participant pool used.  They used eleven surgical gestures, adding 

three gestures to Lin’s vocabulary; right hand assisting left while pulling suture, loosen 

up more suture, and end trial.  These additional gestures were added by necessity from 

their surgery observations.  In their processing stage, however, five of their motions were 

consolidated into one gesture class. 

The major weakness of the approaches discussed above is that they were ad hoc 

and did not rely on a structured decomposition of the task.  The elements were anecdotal 

and/or arbitrary, and in some cases, abstract and symbolic only.  The importance of 

using a structured task analysis method is that it provides a reproducible 

framework that provides consistency and can be generalized to be applied to other 

tasks and platforms.  Using a structured approach also makes the data more acceptable 

and interpretable since the creation of a gesture breakdown would follow guidelines and 

rules.  Additionally, a thorough task analysis could help ensure that a robust system could 

be less brittle to less common gestures occurring during surgery deviations, errors, and 

error recovery. Hierarchical Task Analysis is ideal for studying robotic-assisted 

microsurgical cases because it provides a framework to decompose tasks into smaller 

subtasks.  Finally, the Hierarchical Task Analysis is one of the most common methods of 

task analysis used, making it a strong choice for ensuring acceptability.  This research 

constitutes the first Hierarchical Task Analysis conducted on a robotic laparoscopic 

surgical task. 
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2.1.3 Summary 

Using a structured task analysis method provides a reproducible framework that 

offers consistency and can be generalized to be applied on other platforms.  The 

hierarchical task analysis method is a strong candidate for studying a surgical procedure 

because it breaks down a procedure into small goals, tasks, and subtasks.  This 

decomposition can give an observer the subtask resolution to identify tasks prone to error 

and differences that may occur as a result of an alteration to a system. 

Recent task analyses have mapped the elements of laparoscopic surgeries to help 

with surgeon training, establish procedure guidelines, and estimate surgery times.  With 

the increase in adoption of minimally invasive robotic-assisted surgical systems, there is 

a growing need to record the tasks and subtasks performed during a typical robotic 

laparoscopic procedure as well.  Doing so will provide a better understanding of the work 

involved in performing these operations. 

The papers surveyed showed that there was consensus over the types of surgical 

gesture classes that should be used when classifying motions [57, 58].  It is, however, 

important to note that these gestures were initially suggested by a surgeon [57] and were 

not based on a structured task analysis.  This was made evident when some of the 

suggested gestures were either used scarcely or not at all.  One of the suggested classes 

was rarely used and two were never used by the expert himself.  Since the purpose of the 

referenced studies was to determine skill level, then any performed error would 

essentially result in an inefficient movement rating when automatically assessing skill 

level or misclassification altogether, which was determined to be typical for novice 

surgeons. 
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A better approach would be to conduct a hierarchical task analysis of a surgical 

procedure by charting tasks and subtasks during an operation.  The task analysis should 

include participants from different skill levels in order to record a full spectrum of 

behaviors.  Error and recovery tasks and subtasks must also be studied during the task 

analysis to ensure that an automatic gesture classification system has as many possible 

gestures to match with, making it robust enough for real surgical applications. Prior to 

this research, past research groups had not used a structured task analysis methodology to 

chart a robotic surgical task. 

2.2 Materials and Methods 

2.2.1 Participants 
 

Eight participants from three skill levels were studied in this task analysis: 4 

novices (naïve), 1 intermediate (residents), and 4 experts (attending physicians).  Three of 

the attending surgeons had previously performed surgeries with the Zeus MicroWrist 

robot and one had performed surgeries with the da Vinci robot.  The resident had no prior 

experience with robotic surgical systems but had laparoscopic experience.  Two 

observers were used in the study.  The University’s Human Investigation Committee 

approved this study. 

2.2.2 Apparatus 

The Zeus MicroWrist surgical robot was used in conjunction with an Aesop arm 

(Intuitive Surgical, Sunnyvale, CA) controlling a 10mm 0° endoscope (Karl Storz 

Endoscopy, Culver City, CA).  A training box, acting as a control fixture for the testing 

environment, was used to stabilize the end-effector needle drivers and the laparoscopic 

camera.  The two end-effectors were introduced through port openings on opposite sides 
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of the working environment.  The endoscope presented an overhead view of the testing 

area.  A Samsung Digital Color Camera SOD14C (Samsung, Samsung Town, Seoul, 

South Korea) was used to record each participant’s trial for post hoc analysis. 

2.2.3 Task and Experimental Procedure 

Suturing was used for this study because it provided the complexity of a 

surgeon’s task and the findings from this study could be used towards training and 

evaluation.  Subject testing was conducted on the Zeus MicroWrist platform.  Participants 

were provided with an overhead endoscope view at 3X magnification of the testing area 

[59].  A default human-to-robot control gain of 3.9:1 was used during testing [60].  Prior 

to testing, novice participants were given training and time to familiarize themselves with 

the robot.  Participants were considered ready for testing once they were able to 

accurately suture 4 throws in less than 6 minutes.  Practice time was also given to both 

intermediate and expert participants to allow for acclimation to the Zeus robotic system. 

Each participant was asked to complete a four-throw suturing task on a glove box.   

The aluminum glove box, with a top cavity over which a latex rubber glove was 

stretched, was used to simulate tissue for the task (see Figure 5).  Participants were 

provided a K872 3-0 (2.0 Metric), with an RB-1 taper, silk suture cut to a length of 30 cm 

long (Ethicon, Inc., New Brunswick, NJ) to perform the task. 
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Figure 5.  A completed four-throw suture.  The testing platform consisted of an aluminum glove box with a latex 

membrane stretched over it.  A target grid provided a suturing path for the participants to follow. 

Square targets were printed on the latex skin to provide a suturing guide for 

participants to follow.  The square targets were 1 mm in size and spaced 5 mm apart.  

Once the task was completed, the suture passed through eight total square targets.  Each 

participant completed 4 trials. 

2.2.4 Constructing a Hierarchical Task Analysis 

The first step of constructing a Hierarchical Task Analysis of a suturing task was 

to record the actions performed.  This step entailed the manual categorization (task 

labeling) of the videos recorded during the 32 trials of the participants.  During video 

analysis, gesture class labeling was conducted.  Each inter-task-element transition in the 

video feed of the patient-side test bed was recorded on Excel and broken down into 

individual subtasks.  The video parsing included a start and end time, a class number, and 

a class description (Table 1). 
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Table 1.  An example of the time-stamped parsed video data including the task start and end times, the class 

number, and the class description. 

 

Once a complete list was prepared of the subtasks observed during the subject 

testing, a Hierarchical Task Analysis was constructed.  A surgical phase-based task 

grouping was arranged in a hierarchy of subtasks.  Because of the diversity in experience 

levels among the recorded participants, a variety of task deviations and non-value-added 

subtasks were also included in the task analysis.  A final Hierarchical Task Analysis was 

created which included a task, plan, subtasks, and recovery information. 

For this study, a lead observer constructed a Hierarchical Task Analysis of the 

four-throw suturing task.  A second observer was used to validate Hierarchical Task 

Analysis produced by the lead observer by comparing their task labels.  The second 

observer was trained on the label definitions used in the Hierarchical Task Analysis.  A 

Therbligs [61] chart was used in addition to the Hierarchical Task Analysis to further 

decompose the subtasks into atomic motions, to help fully define task elements and better 

distinguish between similar subtasks. 

2.2.5 Experimental Design and Analysis 

A video of every trial was recorded for post analysis from each of the 8 

participants, 4 trials each, totaling 32 videos.  Two trials were removed from the data set 

because they did not meet the maximum time requirements leaving a total of 30 

processed videos.  Time stamping of the videos was performed on Microsoft Office Excel 

Start Time End Time HTA Class # Subtask Description

0:00:09 0:00:12 6 Needle hand off, from left gripper to right gripper.

0:00:12 0:00:19 13 Rotate right wrist while holding needle and move towards tissue insertion point.

0:00:19 0:00:25 14 Insert needle through tissue until needle protrudes other side.

0:00:25 0:00:31 15 Rotate wrist and move towards protruding needle with left gripper.

0:00:31 0:00:32 16 Rotate/pull needle out of tissue with left gripper.

0:00:32 0:00:35 17 Draw thread out, while left holding needle, using the pully technique.

0:00:35 0:00:38 19 Draw thread out by pulling with right gripper, left gripper holding needle.
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2007 (Microsoft, Redmond, WA).  The data were analyzed using the Cohen’s Kappa 

statistic to test inter-observer and intra-observer agreement [62].  Analysis was conducted 

using code developed in MATLAB R2009a (The MathWorks, Natick, MA).  A 

coefficient of agreement of 0.41 < k < 0.60 was deemed as moderate agreement, a 

coefficient of agreement of 0.61 < k < 0.80 was deemed as substantial agreement [63], 

with a coefficient of agreement of k > 0.75 deemed as almost perfect agreement [64].  A 

p < 0.05 was considered significant. 

2.3 Results 

2.3.1 Model development 

From the 8 participants observed, a list of 24 subtasks was created (Table 2).  A 

task that could be performed by either the left or right hand was recorded as two separate 

subtasks.  For example, reach for and grab needle was broken into two classes: 1) Reach 

for and grab needle with the right hand and 2) Reach for and grab needle with the left 

hand. 

Table 2.  The 24 subtask classes recorded during a 4-throw suturing task.  Videos from eight participants 

including naïve, resident, and attending surgeons were observed to compile this subtask list. 

 

Surgical Subtasks
1 Reach for and grab needle with right open gripper
2 Reach for and grab needle with left open gripper
3 Move above working area with needle, left hand holding needle
4 Move above working area with needle, right hand holding needle
5 Needle hand off, from right gripper to left gripper
6 Needle hand off, from left gripper to right gripper
7 Orient needle while right gripper holding needle
8 Orient needle while left gripper holding needle
9 Rotate the open right gripper wrist
10 Rotate the open left gripper wrist
11 Rotate the right gripper wrist while holding needle
12 Rotate the left gripper wrist while holding needle
13 Rotate right wrist while holding needle and move towards tissue insertion point
14 Insert needle through tissue until needle protrudes other side
15 Rotate wrist and move towards protruding needle with left gripper.  Includes left gripping and right releasing.
16 Rotate/pull needle out of tissue with left gripper.
17 Draw thread out, while left holding needle, using the pully technique.
18 Draw thread out, while right holding needle, using the pully technique.
19 Draw thread out by pulling with right gripper, left gripper holding needle
20 Draw thread out by pulling with left gripper, right gripper holding needle
21 Thread caught or wrapped around right gripper.  Shake or move gripper to release thread from gripper.
22 Thread caught or wrapped around left gripper.  Shake or move gripper to release thread from gripper.
23 Thread bunched in working area or in the way.  Move thread out of the way.
24 Rotate/pull needle out of tissue with right gripper.
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Once a complete list was prepared of the subtasks observed during the participant 

testing, a Hierarchical Task Analysis was constructed.  A surgical phase-based task 

grouping of the subtasks was arranged.  Due to the three experience levels of participants 

that were recorded, a variety of task deviations and non-value-added subtasks were 

observed and included in the task analysis. 

The objective of performing a “four-throw suturing” was simplified to a “one 

throw suturing task” since the tasks and subtasks were identical for each throw.  The new 

objective of a one-throw suture was divided into 4 main phases (tasks): 

1) Pre-suture Preparation 

2) Needle Adjustment and Orientation 

3) Insert Needle into Tissue 

4) Pull Out Needle and Thread 

To complete a one-throw suture, the 4 main tasks had to be completed in order.  It 

is important to note that task 2, Needle Adjustment and Orientation, was not a value-

added phase and was not necessary for completion of the task.  The subtasks within Task 

2 were, however, commonly used by all participants although less frequently by the 

higher performing participants. 

Each task was further divided into subtasks, drawn from the 23 subtasks observed 

during participant testing (Table 2).  If applicable, an order of operation was included 

under the heading “Plan.”  Finally, a “Recovery” column described the errors or subtask 

deviations that occurred during participant testing and the subtask steps that would be 

necessary for recovery.  The final Hierarchical Task Analysis created included a Task, 
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Plan, Subtasks, and Recovery information.  Table 3 shows the final Hierarchical Task 

Analysis of a robotic-assisted laparoscopic one-throw suturing task (Table 3). 

Table 3.  A Hierarchical Task Analysis of a Robotic-assisted Laparoscopic One-Throw Suturing Task. 

 

2.3.2 Experimental Validation of the Task Analysis 

To validate the Hierarchical Task Analysis model of a one-throw suturing task, 

two observers compared their subtask labeling for coding reliability.  As emphasized 

before, the advantage of using an established task analysis method, such as a Hierarchical 

Task Analysis, is that it has a structured, reproducible, and therefore an understandable 

way of breaking down a goal and its subtasks.  Comparing each observer’s task analysis 

against one another’s was used to determine consistency and therefore how 

Surgical Hierarchical Task Analysis of a Laparoscopic One Throw Suture

No. Task Plan No. Subtasks Recovery

1.3 Needle hand off (5 or 6)

2.1 Orient needle (7 or 8)

2.2 Needle hand off (14 or 15)

Thread bunched in working 

area.  Move thread out of 

the way (23).

Dropped needle during 

subtask 3.1 or 3.2.  

Repeat Task 1, Task 2 and 

Task 3 as necessary.

Dropped needle.  Repeat 

Task 1 and Task 2.

Dropped needle.  Repeat 

1.1, 1.2, 1.3 in consecutive 

order.

Thread caught or wrapped 

around gripper.  Shake or 

move gripper to release 

thread from gripper (21 or 

22).

Unable to push needle out 

through desired exit point 

due to poor needle 

orientation.  Pull needle 

out and repeat Task 2 and 

3 as necessary.

Pull thread out of tissue until 

taut (19 or 20)

Insert needle into tissue until 

needle protrudes other 

side(14)

Rotate Wrist holding needle 

until needle is pointing 

towards insertion point and 

move needle tip to insertion 

point (13)

Reach and grasp needle 

gripper open (1 or 2)

Move above working area 

with needle (3 or 4)

Pull thread out of tissue like 

a pulley (17 or 18)

Adjust wrist angle while 

holding needle (11 or 12)

Rotate wrist not holding 

needle (9 or 10)

Move non-holding wrist 

towards protruding needle 

(15)

Rotate/pull needle out of 

tissue (16 or 24)

1.1

1.2

2.3

2.4

3.1

3.2

4.1

4.2

4.3

4.4

1

2

3

4

Pre-suture preparation

Needle adjustment and 

orientation

Insert needle into tissue

Pull out needle and thread Do subtasks 4.1, 4.2, 4.3, 

4.4 in consecutive order, 

repeating 4.4 as necessary

Do subtasks 3.1, 3.2 in 

consecutive order

Do subtasks 1.1, 1.2, 1.3 in 

consecutive order

Do any of subtasks 2.1, 

2.2, 2.3 or 2.4 necessary 

until needle is perpendicular 

to gripper and ready for 

insertion
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understandable the subtask definitions were, how well the subtasks were distinguished 

from the other subtasks, and how reproducible the model was. 

In addition to the Hierarchical Task Analysis model, a two-hand process chart 

[53] using Therbligs [40] was used to train the secondary observer (Table 4).  The 

Therbligs model added additional information on what each end-effector was doing 

during each subtask.  A rudimentary breakdown of the subtasks used in the Hierarchical 

Task Analysis Model gave insight into precisely what elementary motions composed 

each subtask.  The Therbligs, designated by symbols (Table 5) in Table 4, were divided 

into a value added and non-value added group [53]. 

Table 4.  A two-hand process chart of the Gilbreths’ Therbligs that make up the subtasks of the Hierarchical 

Task Analysis of a one-throw suturing task. 

 

Task
Subtask

Left hand description
Symbol Time (sec) Time (sec)

Symbol Right hand description

1.1 Pick up needle
RE        

G
3 3 UD Wait

1.2
Move above working area 

with needle
M 2 2 RE

Move to middle without 

needle

1.3 Hand off needle RL 3 3 G Grasp needle

2.1 Orient Needle

RE        

G        

P          

RL

4 4 H Wait

2.2 Take needle from RH
RE        

G
3 3 RL Give needle to LH

2.3 Orient/rotate wrist P 4 4 UD Wait

2.3 Wait UD 4 4 P Orient/rotate wrist

2.4 Wait UD 3 3 PP
Adjust wrist angle while 

holding needle

2.4
Adjust wrist angle while 

holding needle
PP 3 3 UD Wait

3.1 Wait UD 3 3 PP

Rotate Wrist until 

needle pointing to 

insertion point

3.2 Wait UD 7 7
M         

PP

Move needle tip to 

insertion point

3.3 Wait UD 10 10 U

Insert/push needle into 

tissue until needle 

protrudes other side

4.1 Reach for protruding needle
RE        

G
8 8

H        

RL

Hold needle until 

handoff occurs

4.2
Rotate/pull needle out of 

tissue
M 9 9 UD Wait

4.3 Hold needle H 6 6

RE       

G       

M       

RL

Pull Thread out of 

tissue until taut

1

2

3

4

Pre-suture preparation

Needle adjustment and 

orientation

Insert needle into 

tissue

Pull out needle and 

thread
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Table 5.  Therbligs Symbol key.  The Therbligs were divided into two groups, value added and non-value added 

micro-activities. 

 

Ten samples for each of the 22 gesture subtasks were randomly selected from the 

parsed time-stamped video data from the first 3 participants tested.  Twenty-two gesture 

subtasks were used for the validation because the novices tested did not use two gestures 

used by the physicians.  Both the lead observer and secondary observer were given 220 

samples of videos to label.  The observers were asked to label each sample moment in 

time with a subtask label used in the Hierarchical Task Analysis.  Inter-observer and 

Intra-observer agreement scores were calculated using Cohen’s Kappa [62] to validate 

the Hierarchical Task Analysis model.  A confusion matrix of each of the two observers, 

the lead observer and the secondary observer, were created.  Each observer’s labeling of 

the 220 samples of video was compared against the primary observer’s original subtask 

labels. 

An inter-observer agreement score was calculated by comparing the secondary 

observer’s sample video labels with the lead observer’s video labels.  A confusion matrix 

was constructed from the results (Table 6).  The headings along the rows were the 

original subtask label used by the lead observer.  The column headings were the labels 

Symbol Therblig

Effective Therbligs - Advances the Task

RE Reach

M Move

G Grasp

RL Release

PP Pre-Position

U Use

Ineffective Therbligs - Does not Advance the Task

P Position

UD Unavoidable Pause

H Hold
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submitted by the secondary observer.  Matching labels would fall on the main diagonal of 

the matrix. 

Table 6.  A confusion matrix of the lead observer’s initial labels compared against the secondary observer’s 

labels.  The x-axis is the lead observer’s initial sample label and the y-axis is the secondary observer’s label. 

 

The proportion of agreement between the two observers (po) can be computed by 

summing the proportion of agreement along the main diagonal of the agreement matrix 

(Equation 2.1).  To account for general observer agreement probability due to chance, the 

proportion of each observer’s subtask usage (pc) is multiplied together (Equation 2.2).  

The final coefficient of agreement (k) describes the proportion of agreement between two 

observers, removing agreement due to chance (Equation 2.3). 
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The inter-observer coefficient of agreement between the secondary observer and 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 20 21 22 23

1 0.024 0 0 0.009 0 0 0 0.009 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0.018 0.003 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0.015 0.003 0 0.003 0 0.006 0 0 0 0.006 0 0 0 0 0 0.003 0 0.009 0 0

4 0 0 0 0.012 0.003 0 0.009 0 0 0.024 0.003 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0.021 0.009 0 0 0 0 0 0.006 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0.006 0 0.012 0.003 0.009 0 0 0.006 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0.009 0 0.033 0 0 0 0.018 0 0.006 0.003 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0.003 0 0.012 0 0 0 0.015 0 0 0 0 0 0 0 0 0 0

9 0 0 0.003 0 0 0.015 0 0.009 0.027 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0.012 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0.003 0 0.003 0 0 0.006 0 0 0 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 0.018 0 0 0 0 0 0 0 0 0 0

13 0 0 0 0.009 0 0 0 0 0 0.021 0.009 0 0.027 0.012 0 0 0.003 0 0 0 0 0

14 0.009 0.003 0 0.003 0 0 0 0 0 0 0.003 0 0.006 0.03 0.006 0.003 0.003 0 0 0.006 0.018 0.018

15 0 0.018 0 0 0 0 0 0 0 0 0 0 0 0 0.033 0.012 0.003 0.003 0 0 0.012 0.009

16 0.003 0.003 0 0 0 0 0 0 0 0 0 0 0 0 0.003 0.03 0.009 0.003 0 0 0 0

17 0 0.003 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.027 0 0 0.006 0 0

19 0 0 0.021 0 0 0 0 0 0.003 0 0.006 0 0.006 0 0 0 0 0.036 0 0 0.003 0

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.024 0.009 0 0

21 0.009 0 0.003 0 0 0 0 0 0.009 0 0 0 0 0 0 0 0 0 0 0.009 0.012 0

22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.003 0 0 0 0.021 0.006 0 0

23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.018

Accuracy: 0.533 0.4 0.333 0.267 0.467 0.267 0.733 0.267 0.6 0 0 0.4 0.6 0.667 0.733 0.667 0.6 0.8 0.533 0.2 0 0.4
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the lead observer’s surgery labels was calculated to determine the inter-rater reliability.  

The kappa for instantaneous label accuracy was k = 0.4032, p < 0.001.  The moderate 

agreement score was a consequence of ambiguous subtask boundaries.  In other words, 

the transition point at which one subtask ends and another begins is often blurred by the 

participant beginning the next subtask while another subtask is still being executed or 

completed.  To test the secondary observer’s general agreement with the initial subtask 

labels assigned, the previous and following subtask was also included as correct subtask 

label answers.  A new confusion matrix was constructed to incorporate the subtask ranges 

(Table 7). 

Table 7.  A confusion matrix of the lead observer’s initial labels compared against the secondary observer’s 

labels.  A range of the preceding, current, and following subtasks were accepted as correct answers when 

computing agreement.  The x-axis is the lead observer’s initial sample label and the y-axis is the secondary 

observer’s label. 

 

The inter-observer coefficient of agreement between the secondary observer and 

the lead observer’s surgery labels with a one subtask acceptance window was calculated.  

The kappa score for agreement accuracy was k = 0.7715, p < 0.001. 

Intra-observer agreement was also calculated comparing the lead observer’s initial 

subtask labels with his subtask labels of randomly selected sample videos (Table 8).  The 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 20 21 22 23

1 0.027 0 0 0 0 0 0 0.009 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0.027 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0.036 0.003 0 0 0 0.003 0 0 0 0.006 0 0 0 0 0 0 0 0.003 0 0

4 0 0 0 0.042 0 0 0.003 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0.024 0.003 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0.03 0.003 0.006 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0.009 0 0.039 0 0 0 0.003 0 0.003 0.003 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0.003 0 0.027 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0.003 0 0 0.006 0 0 0.03 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0.012 0 0 0 0 0.045 0 0 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0.003 0 0 0.006 0 0.03 0 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 0.039 0 0 0 0 0 0 0 0 0 0

13 0 0 0 0 0 0 0 0 0 0 0.003 0 0.033 0 0 0 0.003 0 0 0 0 0

14 0.006 0.003 0 0 0 0 0 0 0 0 0.003 0 0.003 0.042 0 0.003 0.003 0 0 0.006 0 0

15 0 0.012 0 0 0 0 0 0 0 0 0 0 0 0 0.045 0.003 0 0.003 0 0 0 0.009

16 0.003 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.039 0 0.003 0 0 0 0

17 0 0.003 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.039 0 0 0 0 0

19 0 0 0.003 0 0 0 0 0 0 0 0.006 0 0.006 0 0 0 0 0.039 0 0 0 0

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.025 0 0 0

21 0.009 0 0.003 0 0 0 0 0 0.009 0 0 0 0 0 0 0 0 0 0 0.036 0 0

22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.02 0 0.045 0

23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.036

Accuracy: 0.6 0.6 0.8 0.933 0.533 0.667 0.867 0.6 0.667 1.00 0.667 0.867 0.733 0.933 1.00 0.867 0.867 0.867 0.55 0.786 1.00 0.8
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kappa score for intra-observer agreement was k = 0.7703, p < 0.001.  A one subtask 

acceptance window was also applied to compute the Intra-observer agreement (Table 9).  

An intra-observer agreement score of k = 0.8786, p < 0.001, was found. 

Table 8.  An intra-observer confusion matrix of the lead observer’s initial labels compared against the lead 

observer’s labels of random video samples.  The x-axis is the lead observer’s initial sample label and the y-axis is 

the lead observer’s second subtask label assignments. 

 

Table 9.  An intra-observer confusion matrix of the lead observer’s initial labels compared against the lead 

observer’s labels of random video samples with a one subtask acceptance window size.  The x-axis is the lead 

observer’s initial sample label and the y-axis is the lead observer’s second subtask label assignments. 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 20 21 22 23

1 0.04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0.003 0.039 0 0 0 0 0 0 0 0 0 0 0 0 0.003 0 0 0 0 0 0 0

3 0 0.003 0.026 0 0 0.006 0 0 0.003 0 0 0 0 0 0 0 0 0.007 0 0.003 0 0

4 0.003 0 0 0.017 0 0.006 0 0 0 0 0 0 0 0.002 0 0 0 0 0 0 0 0

5 0 0 0 0.003 0.039 0 0.003 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0.013 0 0 0.028 0 0.004 0.008 0 0 0 0 0 0 0 0 0 0 0.003 0 0

7 0 0 0 0.003 0 0 0.037 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0.03 0 0 0 0 0 0 0 0 0 0 0 0.003 0 0

9 0 0 0.006 0 0 0 0 0 0.035 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0.017 0 0 0 0 0 0.045 0 0 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0.003 0 0.006 0.006 0 0 0 0.045 0 0.003 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0.006 0 0 0.011 0 0 0 0.045 0 0 0 0 0 0 0 0 0 0

13 0 0 0 0.004 0 0 0 0 0 0 0 0 0.036 0 0 0 0 0 0 0 0 0

14 0 0 0 0 0 0 0 0 0 0 0 0 0.006 0.026 0 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0.004 0.036 0 0 0 0 0 0.003 0

16 0 0.003 0 0 0 0 0 0 0 0 0 0 0 0 0 0.039 0 0 0 0.003 0 0

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.006 0.039 0 0 0 0 0

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.032 0 0.003 0 0

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.045 0 0.019 0

21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.006 0.005 0 0.03 0 0

22 0 0 0 0 0 0 0 0 0 0 0 0 0 0.002 0.006 0 0 0.002 0 0 0.023 0

23 0 0 0 0 0 0 0 0 0 0 0 0 0 0.012 0 0 0 0 0 0 0 0.045

Accuracy: 0.882 0.867 0.571 0.364 0.857 0.625 0.813 0.667 0.765 1.00 1.00 1.00 0.8 0.565 0.8 0.867 0.867 0.7 1.00 0.667 0.5 1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 20 21 22 23

1 0.045 0.003 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0.039 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0.03 0 0 0.006 0 0 0.003 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0.042 0 0 0 0 0 0.021 0 0 0.009 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0.042 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0.003 0 0 0.024 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0.003 0 0.045 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0.006 0 0.042 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0.003 0 0 0.006 0 0 0.042 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0.024 0 0 0 0 0 0 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0 0 0 0.042 0 0 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 0.045 0 0 0 0 0 0 0 0 0 0

13 0 0 0 0 0 0 0 0 0 0 0.003 0 0.036 0 0 0 0 0 0 0 0 0

14 0 0 0 0.003 0 0 0 0 0 0 0 0 0 0.045 0 0 0 0 0 0 0 0

15 0 0.003 0 0 0 0 0 0 0 0 0 0 0 0 0.042 0 0 0 0 0 0.008 0

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.042 0 0 0 0 0 0

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.045 0 0 0 0 0

19 0 0 0.006 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.045 0 0 0 0

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.032 0 0 0

21 0 0 0.003 0 0 0.003 0 0.003 0 0 0 0 0 0 0 0.003 0 0 0 0.045 0 0

22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.003 0 0 0 0.014 0 0.037 0

23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.045

Accuracy: 1.00 0.867 0.667 0.933 0.933 0.533 1.00 0.933 0.933 0.533 0.933 1.00 0.8 1.00 0.933 0.933 1.00 1.00 0.7 1.00 0.818 1.00
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2.4 Discussion and Conclusion 

Numerous task analyses have mapped conventional manual laparoscopic 

surgeries.  These task analyses provided insight into a typical laparoscopic procedure, 

which is important for training future surgeons and nurses, estimating lengths of a 

procedure, and identifying where an error might have occurred.  A Hierarchical Task 

Analysis of a robotic operation provides the same valuable information as well as insights 

into the differences between manual and robotic procedures.  This understanding is 

invaluable in determining how best to train a surgeon on a robotic platform and whether 

the steps in training a surgeon on a robotic system should be different than a manual 

laparoscopic training schedule. 

The pool of participants had 3 main groups of people: Naïve, residents, and 

attending surgeons.  Naïve participants were drawn from the local student population.  

They were trained exclusively on the Zeus MicroWrist platform by a non-surgeon.  The 

techniques that the naïve participants were introduced to were designed for efficient 

execution of the four-throw suturing task.  Because all naïve participants were trained by 

the same person, their techniques did not greatly vary.  The resident surgeon that 

participated in this research was experienced in open laparoscopic surgeries.  None of her 

surgeries, however, were performed on a robotic-assisted laparoscopic platform.  Of the 3 

surgeons tested, two of the surgeons considered themselves Zeus MicroWrist surgeons.  

Both of these surgeons logged in many hours on the platform and expressed comfort with 

the system interface.  The third surgeon was primarily an open laparoscopic surgeon but 

had trained on and performed surgeries with the da Vinci surgical robot. 

One distinct difference was observed between the participants that could 

differentiate the participants into two groups.  All 4 of the naïve participants and one of 
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the Zeus surgeons used their left end-effector to rotate and pull the needle out of the 

tissue during a throw (Table 10, Figure 6).  The two other surgeons and the resident 

surgeon drew their needle out with their left end-effector (Table 11, Figure 6).  The task 

analysis model did allow for this technique difference since it contained subtasks that 

could be executed by either the left or the right end-effector for any task. 

Table 10.  Drawing a needle out of tissue using the left end-effector. 

 

Table 11.  Drawing a needle out of tissue using the right end-effector. 

 

 

Figure 6.  In the image on the left, the participant is using the left end-effector to draw out the needle.  In the 

image on the right, the right hand is used to draw out the needle.  Please note that the right end-effector is on the 

left side of the image and the left end-effector is on the right side of the image. 

No. Task Plan No. Subtasks Recovery

4 Pull out needle and thread Do subtasks 4.1, 4.2, 4.3, 

4.4 in consecutive order, 

repeating 4.4 as necessary

4.1 Move non-holding wrist 

towards protruding needle 

(15)

Thread bunched in working 

area.  Move thread out of 

the way (23).

4.2 Rotate/pull needle out of 

tissue with left gripper (16)

4.3 Pull thread out of tissue like 

a pulley (17)

Thread caught or wrapped 

around gripper.  Shake or 

move gripper to release 

thread from gripper (21 or 

22).

4.4 Pull thread out of tissue until 

taut (19)

No. Task Plan No. Subtasks Recovery

4.2 Release needle with right 

gripper and move towards 

protruding needle.  Includes 

right gripping and left 

releasing (25)

4 Pull out needle and thread Do subtasks 4.1, 4.2, 4.3, 

4.4, 4.5 in consecutive 

order, repeating 4.5 as 

necessary

Move non-holding wrist 

towards protruding needle 

(15)

Thread bunched in working 

area.  Move thread out of 

the way (23).

4.3 Rotate/pull needle out of 

tissue with right gripper (24)

4.4 Pull thread out of tissue like 

a pulley (18)

Thread caught or wrapped 

around gripper.  Shake or 

move gripper to release 

thread from gripper (21 or 

22).

4.5 Pull thread out of tissue until 

taut (20)

4.1
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It is acknowledged that the training for these two groups of participants was 

different and did account for the difference in the “pull out needle and thread” task.  It is, 

however, worth noting that when considering only the surgeons and resident participants, 

tasks that were dominantly left end-effector movements (Table 10) required needle 

orientation (Task 2, Table 4) prior to inserting the needle into the tissue 4 out of 25 throw 

attempts.  In tasks that had the left end-effector drawing the needle out of the tissue 

(Table 11) prior to inserting the needle into the tissue, needle orientation was required 29 

out of 30 attempts. 

Needle orientations (Task 2, Table 4) frequency was different between the two 

techniques most likely due to the subgoal that the participant had during each subtask of 

Task 4 (Table 10 and Table 11).  In trials that used the left end-effector to draw out the 

needle, the point at which the needle was handed off to the right end-effector was 

executed once all the tread was drawn out of the tissue (at the end of subtask 4.4, Table 

10).  At this point in the task, the participant was mainly concerned with exchanging the 

needle from the left gripper to the right gripper so that the needle would be positioned for 

insertion into the tissue (Task 3, Table 4). Where the needle is drawn out with the right 

end-effector (Table 11), needle orientation is not a concern at that stage in the task.  In 

addition, while the thread is being drawn out of the tissue, the needle is often rotated 

during the pulling of the tread.  Since needle orientation accounts for a large proportion 

of the suturing task, this technique may be worth avoiding. 

The method of using the right end-effector to draw out the needle has a functional 

history.  In non-robotic open laparoscopy, there is an absence of a wrist joint.  The 

reduced degree-of-freedom in these tools makes it impossible to draw out the semicircle 



35 

 

 

needle out of the tissue without dragging the end point, scraping the tissue as it passes.  

This can lead to tearing of internal tissue, and therefore is avoided.  With the addition of a 

wrist joint in the robotic systems, a needle can be drawn out cleanly.  As a result, the 

switching of end-effectors may be a remnant vestigial technique. 

Laparoscopic surgery, by nature, has a lot of physical limitations that the surgeons 

are taught to work around.  Many of these limitations, however, may be eliminated by 

advancements in robotic-assisted laparoscopic platforms. The identification of a 

technique difference shows the necessity for task analysis to be performed on new 

systems.  The insight that this task analysis presented emphasizes the need to consider not 

only acclimation training when learning to perform a procedure on a robotic platform, but 

to also fully explore the differences in subtask executions that are made possible.  In 

some cases, emphasis should be placed on unlearning certain techniques or specifically 

using a different technique, as seen in the example of extracting a needle. 

The inclusion of a Therbligs model (Table 4) made the identification of the 

subtask difference possible.  Therbligs divide a task analysis into operations performed 

by each individual hand.  The Hierarchical Task Analysis initially performed was 

designed to accommodate the later development of the Therbligs table.  Knowing how 

deep to dive into a Hierarchical Task Analysis, or establishing subtask stopping rules, is 

often difficult to identify.  The subtasks used in this Hierarchical Task Analysis could 

have been broken into smaller subtask, or could have provided less detail by not 

including a hand use distinction.  The findings presented in this research show the 

importance of including handedness in the Hierarchical Task Analysis. 

The Hierarchical Task Analysis performed on a four-throw suturing task was the 
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first task analysis conducted on a robotic laparoscopic surgical robot.  The ideal method 

for drawing out a needle needs further investigation, however, is not covered in the scope 

of this research.  Additional task analyses on other tasks in a robotic system will build a 

better understanding of the differences between manual and robotic procedures. 

2.5 Limitations 

There were limitations to this study.  In suturing, the boundaries between gestures 

are often blurred.  During many subtasks, especially when preformed by highly skilled 

participants, surgeons typically begin a successive subtask while a current subtask is still 

in execution.  Due to this overlap, a distinct cutoff point between one task and another 

was hard to identify, assuming that it existed.  Since more than one subtask could be in 

execution during a moment in time, an observer could label that moment in time with one 

subtask label while another observer label it with another subtask.  In this case, both 

observers would be correct in their labeling.  To overcome this, an acceptance window of 

one subtask to either side of the “correct” label was deemed correct.  This was necessary 

since random time instants were chosen as a validation method, and not a time window, 

which would provide a better picture of the observer’s interpretation of a time series.  A 

one-way test of independence was implemented to find the Cohen’s kappa score.  If more 

time was permitted, having both observers perform a complete subtask labeling of the 

video would allow for a true two-way test of independence. 

There were also limitations in the video editing software.  Labeling and time-

stamping the videos had a resolution of a second due to the limitation of available 

software.  Identifying the cutoff between one task and the next, therefore, was done to the 

nearest second.  For many of the subtasks, a resolution of a second was sufficient.  There 
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were, however, a few instances where a subtask would only last one second.  A frame-by-

frame analysis would have produced better accuracy when it came to labeling these 

shorter subtasks.  The feasibility of time-stamping the videos at a sub-second level would 

have been unrealistic due to the time needed to go into that level of detail and the number 

of videos being processed. 

Chapter 3:    Automatic Detection and Classification of 

Surgeon Gestures 

3.1 Background and Significance 

3.1.1 Introduction 

The incorporation of computers and robotic surgical systems as well as recent 

improvements in three-dimensional tracking systems have led to a better understanding 

of the performance elements of human task execution during surgeries.  A significant 

amount of research has been conducted over the past ten years examining movement 

characteristics that automatically differentiate people by skill level.  Surgeon gesture 

identification has been used to compare surgeons, evaluate their skill, and is becoming 

more relevant with the increasing popularity of robotic-assisted microsurgical platforms. 

The ability to quickly and automatically identify skill is very desirable since it 

translates into more efficient objective metrics that can save time and money in the 

training process.  For most surgeons, the interface of robotic surgery is very new, making 

the training process more crucial.  Most of these studies use some form of signal 

acquisition and processing system that tracks movement sensors or video feeds and 

evaluates the data through a feature processing stage. 
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Feature processing generally consists of normalizing the extracted signals and 

then processing the data through a classifier (e.g., linear discriminant analysis (LDA) or 

principal components analysis (PCA) are two methods commonly used).  Finally, a 

probabilistic classifier, such as the Naïve Bayes classifier or decision tree for example, is 

used.  In some studies [57, 58, 65-69], the Hidden Markov Model is used to help increase 

the strength of these classifiers. 

3.1.2 Classification Algorithms 

 

Classification algorithms are used to automatically sort data (termed cases) into 

groups (termed classes) based on shared characteristics.  The advantage of using a 

classification algorithm is that they provide a consistent method of classifying data while 

having enough flexibility to categorize a variety of problems at a faster rate than a human 

[70].  Classification occurs by assigning cases into classes by matching up identifiable 

features within each case. 

Classes are created by teaching a classifier how to identify which class a case 

belongs in, and can either be done through supervised or unsupervised methods.  

Unsupervised methods allow a classifier to identify similar features within cases and 

automatically sort the cases accordingly.  Unlike the unsupervised technique, the 

supervised method trains the classifier by entering training data with cases having a pre-

assigned class association [70].   These cases should embody the same identifiable 

features that future cases will contain.  In other words, the training data are used to create 

a guideline from which the classification algorithm will use to assign cases to classes. 
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There are a variety of classifiers and processing techniques used in skill analysis 

and gesture identification.  K-means algorithm [71], Linear Discriminant Analysis [57, 

58, 72], and Bayes classifiers [57, 73] are some of the classifiers used in past studies. 

Fisher’s Linear Discriminant Analysis (LDA) is the most commonly used 

classifier.  LDA assigns cases into classes by dividing the data in a 2-D area by a set of 

lines.  In 3-D space, the volume is divided by a plane.  From this division, a classification 

function can be created.  The disadvantage of LDA is that the division is relatively 

simplistic.  In more complex data sets, with multiple independent variable features and a 

non-linear dispersion of data points, LDA cannot properly divide the data set. 

Artificial Neural Networks are non-linear machine learning data techniques that 

store and recall information drawn from trained data.   A neural network is composed of a 

hierarchy of node layers and pathways.  Pathways connect each node from one layer to 

every node of the next layer.  Typically, the last layer has n nodes (and outputs), where n 

is the number of trained classes.  The first layer has m nodes, where m is the number of 

elements in the input data.  The inputs to each node are multiplied by a set of weights, 

and the neuron performs a transformation upon its weighted inputs.  The transformed data 

is then passed to the next layer of neurons.  The system is trained to set one of the n 

outputs high and the rest low.  Data are classified when the output of one of the last layer 

nodes has a higher value than the other nodes [74]. 

The Bayes classifier is an optimal statistical classifying method that tries to 

classify cases based on an approach that minimizes error.  Bayes classification 

incorporates weighting to create a division boundary which separates classes based on the 

probability of each occurring.  Bayesian classifiers assume that the components of a case 
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are independent of one another.  However, Bayes classifiers perform well particularly 

because they require fewer parameters than other classifiers.  As a result, the models have 

a lower variance when estimating occurrence probabilities [75]. 

Decision tree classifiers fall under a group of hierarchical classifiers that allow 

rejection of a class assignment at intermediate levels.  For this reason, decision trees 

reduce computation time by eliminating unlikely classes during computation.  Decision 

trees are made up of “leaves” that signify classifications and “branches” that signify 

feature conjunctions that can lead to a leaf.  Each internal node corresponds to a feature 

within a case.  As the decision tree moves from root to leaf, the path progresses by 

choosing a path that matches features within the case [76]. 

A Hidden Markov Model (HMM) is a probabilistic classifier that attempts to 

identify a class given the previous class.  Each class has a transitional probability matrix 

associated with it and can be used to weight probable class transitions [77]. 

3.1.2.1 Implementations in Manual Surgery 

In manual minimally invasive surgery, the tool tracking is often recorded through 

external means; magnetic trackers for example.  Cristancho [78, 79] used a Polhemus 

3SPACE Fastrak six degrees-of-freedom electromagnetic system to track conventional 

manual laparoscopic tools and used Principal Components Analysis (PCA) to determine 

the main contributors to overall task variability and to depict performance as a function of 

the level of training. The three groups tested were novices, novices with training, and 

experts. Their results showed a significant intergroup variation.   

Richards et al. [71] applied force and torque sensors to manual laparoscopic tools 

and found a significant difference in the force and torque signatures of basic movements 
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between novice and expert surgeons using a K-means algorithm.  Rosen et al. [68] 

extended this research and were able to correctly classify 87.5% of the time which 

surgeon was an expert and which was a novice by adding Hidden Markov Models to 

Richards et al.’s [71] work.    Rosen et al. [80, 81] were able to refine this technique to 

further identify surgeons’ level of training. 

3.1.2.2 Implementations in Robotic Surgery 

A group of studies used an available data feed from the da Vinci platform which 

downloaded 192 kinematics values including elapsed time, position, orientation, grip (7 

degrees-of-freedom), and the linear and angular velocities of the end-effector and the 

master controller to help identify surgeon skill.  This information was recorded at 11 Hz 

using the Application Programming Interface which ensured that an operation would not 

be affected by downloading these signals [57]. 

Murphy [72] recorded which techniques were used by participants to complete a 

task.  His process recorded motions from da Vinci that were automatically classified 

using LDA and an isolated motion recognition algorithm.  Murphy used this information 

to record seven surgical gestures and used them to identify skill based on the absence, 

presence, or order of these gestures.  He noted that the more experienced surgeon spent 

less time passing the needle from one gripper to the other.  In addition, the more 

experienced surgeon did not adjust the needle orientation.  He showed that when the 

more experienced surgeon handed off the needle or picked up the needle, it was done in a 

way that the orientation would be appropriate for the next subtask.  When using an 

automatic motion identifier, Murphy’s system identified gestures for the most 

experienced surgeon with only a 2.6% error, 22.5% error for the moderately experienced 
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surgeon, and 17.5% error for the least experienced surgeon.  Murphy associated the 

quantitative difference in accurate gesture identification to more deliberate and consistent 

motion by the more experienced surgeons.  When testing the classification accuracy over 

just two surgeons with similar techniques, the system correctly identified 58.05% of the 

eight gestures evaluated in the study. 

Verner et al. [82] used flight paths of both the surgical tools (end-effectors) and 

the hand manipulators from the da Vinci system.  Their work looked at elapsed time, grip 

position, and 3-D movement to show a significant difference between a novice and an 

expert using the system.  They demonstrated that novice users had excess movement and 

that experts were about 15% faster with their right hand and over 50% faster with their 

left hand when compared to novices. 

Speidel et al. [73] used image data collected from the endoscope by highlighting 

visual features and key points to identify movement characteristics.  From this technique, 

they were able to identify elements such as trajectories, velocity and shape of the 

instruments.  This group also used a Bayes classifier (trained with 60 samples) with the 

purpose of automatically identifying future gestures. 

Padoy et al. [65] utilized information on which laparoscopic instruments were 

active during a surgery to characterize surgery phases.  For phases that shared the same 

combination of instruments, an Adaptive Dynamic Time Warping (ADTW) algorithm 

was used to weigh the more significant instruments to help distinguish between 

neighboring phases.  AdaBoost, a concatenation of weak classifiers, was used for 

classifying their phases.  Their group demonstrated that the ADTW technique provided 

only 0.3% incorrect segmentation labels of a surgery, significantly better than 8.9% error 
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when using a Hidden Markov Model.  When combined with information extracted from 

the endoscopic image with Hidden Markov Model, Padoy et al. [66] reduced their error to 

7.6% overall. 

Lin et al. [57] created a system that segmented motions gathered from the da 

Vinci system using linear discriminant analysis, Bayes classifiers and Hidden Markov 

Models.  Their process was able to achieve better than 90% accuracy for gesture 

recognition with both novices and expert surgeons.   They used eight surgeon gestures to 

classify the motions recorded in their experiments.  The gesture classes were: 

1) Reach for needle 

2) Position needle 

3) Insert and push needle through tissue 

4) Move to middle with needle (left hand) 

5) Move to middle with needle (right hand) 

6) Pull suture with left hand 

7) Pull suture with right hand 

8) Orient needle with both hands 

These surgical gestures were based on the recommendations from a senior cardiac 

surgeon.  Of these eight surgical gestures, Lin et al. [57] found that the expert surgeon 

tested did not use surgical gesture #5 and surgical gesture #7.  In addition, the 

intermediate surgeons only used surgical gesture #4 sparingly.  Since some gestures were 

used less frequently than others, they consolidated some of the gestures for the purpose of 

increasing the overall classification rate. 

Their consolidation was conducted separately for the expert surgeons and 

intermediate surgeons and were grouped based on the resulting classification accuracy 

rather than a logical or a functional similarity between gestures.  The combined surgical 

gestures were tested for accuracy in their different combinations.  For example, gestures 

#5 and #6 were combined into one class and surgical gestures #7 and #8 into another 
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class resulting in six total surgical gesture classes.  Four different motion class 

combinations for expert users and six different motion class combinations for 

intermediate users were tested and compared.  The highest correct classification rate was 

94% while the lowest was 87%. 

Reiley et al. [58] also used the da Vinci but extended the research of  Lin et al. 

[57] by increasing the participant pool used.  They used eleven surgical gestures, adding 

three gestures to Lin’s vocabulary; right hand assisting left while pulling suture, loosen 

up more suture, and end trial.  In their processing stage, however, five of their motions 

were consolidated into one gesture class.  For data processing, they compared LDA, a 

Gaussian Mixture Model and a 3-state Hidden Markov Model.  They tested their method 

on participants with a variety of skill levels that were not used to train the neural network 

and achieved an average top classification rate of 70.94%. 

Reiley et al. [67] further developed their Hidden Markov Model to be a gesture 

specific classification of skill.  They used 8 gesture classes: 

1) Reach for Needle 

2) Position Needle 

3) Insert Needle Through Tissue 

4) Transferring Needle from Left to Right 

5) Moving to Center with Needle in Gripper 

6) Pulling Suture with Left Hand 

7) Pulling Suture with Right 

8) Orienting Needles 

They were able to correctly classify 75% of expert surgeons’ gestures, 59% of 

intermediates’ gestures, and 76% of novices’ gestures.  Skill level was correctly 

identified 100% of the time.  Varadarajan et al. [69] used gesture specific Hidden Markov 

Models and state specific LDA to improve gesture recognition accuracy.  They also used 
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an unsupervised classification algorithm to find identifiable elementary sub-gesture 

motions.  Their maximum classification accuracy was 87%. 

3.1.3 Motivation 

The major weakness of the approaches discussed above is that they were ad hoc 

and did not rely on a structured decomposition of the task.  The elements were anecdotal 

and or arbitrary, and in some cases, abstract and symbolic only.  The importance of using 

a structured task analysis method is that it provides a reproducible framework that 

provides consistency and can be generalized to be applied to other platforms.  Using a 

structured approach also makes the data more acceptable and interpretable since the 

creation of a gesture breakdown would follow guidelines and rules.  Additionally, a 

thorough task analysis could help ensure that a robust system could be less brittle to less 

common gestures occurring during surgery deviations, errors, and error recovery. 

The referenced studies did demonstrate a capability to automatically identify 

surgeon gestures and skill level with acceptable accuracy.  In the papers published by Lin 

et al. [57, 83] however, an example where a task list was used, the gestures classified 

were movements from an expert and an intermediate surgeon.  Although they 

successfully demonstrated that a system could be used to identify surgical gestures with 

great accuracy, a lack of variability presented some question as to the robustness of the 

system.   The limited number of gestures identified in their study does not accommodate 

for noise that may stem from a mistake or surgery deviations.  If, for instance, a surgeon 

makes a poor stitch and must correct it by undoing it, the classification system would 

certainly misclassify the task for lack of correct options to choose from. 
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To make a classification system more robust, a thorough evaluation of the actions 

or gestures that are likely to appear during a task must be conducted.  This task analysis 

must include all the subtasks that typically appear as well as the subtasks that occur 

during errors and error correction phases.  A Hierarchical Task Analysis, a top down 

approach to modeling a system and the actions needed to complete a task, or any other 

formal task analysis method had not been conducted on a robotic laparoscopic procedure 

prior to this research. 

A Hierarchical Task Analysis is an ideal method for charting robotic-assisted 

microsurgical cases because it provides a framework that is ideal for decomposing tasks 

into smaller subtasks and eliminates the need to undertake a cognitive task study.  

Equally important, the Hierarchical Task Analysis is one of the most common methods of 

task analysis used, making it a strong choice for ensuring acceptability. 

In some gesture classification schemes used in past studies, gesture classes were 

consolidated to improve the overall gesture categorization accuracy.  The resulting 

consolidated classes lose their meaning since the consolidated gesture classes did not take 

into account the type of gestures grouped together.  In context, the gestures were very 

different from one another.  For example, Lin et al. [57] combined the gesture “Move to 

middle with needle (right hand)” with “Pull suture with left hand”; two very different 

gestures into one class.   Similarly, the gesture “Pull suture with right hand” was 

combined with “Orient needle with both hands” into another class.  Each gesture is very 

different from the other, and combining them creates confusion as to which subtask was 

actually executed.  If the latter class is identified, for example, an observer would be left 
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guessing whether the surgeon was pulling a suture or orienting a needle based on the 

classifier. 

A Hierarchical Task Analysis provides a strong framework for breaking down 

surgical tasks and subtasks.  In addition, a look into errors and recovery allows a 

classification system to continue providing gesture classifications during task errors, 

making the overall system more robust and applicable to surgical tasks at all skill levels.  

This creates a system that is more resilient to noise and facilitates automatic gesture 

classification to be used in a real surgery scenario. 

Perhaps the most important aspect of developing an automatic classification 

system using classes that are based on a structured task analysis is that the identified 

classes are understandable to humans.  Often, with automation, systems are designed to 

react to inputs in without relaying interpretations of system status or chosen course of 

action.  This “black box” approach can leave an operator unaware of undesired changes 

to the system.  Even desired changes can give operators a challenge in identifying what 

actions an automated system has taken [84].  Developing a system that can provide 

operators with meaningful information on status interpretations and future or suggested 

actions can eliminate or correct miscommunication. 

3.1.4 Summary 

Using a structured task analysis method provides a reproducible framework that 

offers consistency and can be generalized to be applied to other platforms.  The 

hierarchical task analysis method is a strong candidate for studying a surgical procedure 

because it breaks down a procedure into small goals, tasks, and subtasks.  This 

decomposition can give an observer the subtask resolution to identify tasks prone to error.  
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Past research groups have not used a structured task analysis methodology to chart a 

surgical task (Table 12). 

Table 12.  Summary and comparison of past research groups’ research on automatic gesture of phase 

classification with the work conducted in this research. 

 

A variety of automatic classification methods have been used as well by past 

research groups [57, 58, 66, 68, 71-73, 78, 82].  There is no ideal classifier for this type 

of application.  The technique that must be used, however, is training the classifier 

through supervised learning.  Using supervised learning ensures that the identified classes 

will have human-interpretable classes that can be analyzed for training, task design, and 

interface design intervention.  Using an unsupervised learning method could provide 

reliable classes without meaning or context. 

3.2 Materials and Methods 

3.2.1 Participants 
 

Eight participants from three skill levels were studied in this task analysis: 4 

novices (naïve), 1 intermediate (residents), and 4 experts (attending physicians).  Three of 

the attending surgeons had previously performed surgeries with the Zeus MicroWrist 

robot and one had performed surgeries with the da Vinci robot.  The resident had no prior 

experience with robotic surgical systems but had laparoscopic experience.  Two 

observers were used in the study.  The University’s Human Investigation Committee 

approved this study. 

Reference Cited Platform Tracking Method Automatic Classification Task Analysis

Cristancho (2008) Manual Laparoscopy Polhemus Magnetic Tracking PCA No

Richards (2000) Manual Laparoscopy Force and Torque Measurements K-Means Algorithm No

Rosen (2001) Manual Laparoscopy Force and Torque Measurements K-Means Algorithm & HMM No

Murphy (2004) da Vinci Application Programming Interface LDA No

Verner (2003) da Vinci Application Programming Interface ANOVA No

Speidel (2006) da Vinci Endoscope Image Processing Bayes No

Padoy (2007) da Vinci Instrument Utilization AdaBoost & HMM No

Lin (2006) da Vinci Application Programming Interface LDA, Bayes, & HMM No

Reiley (2008) da Vinci Application Programming Interface LDA, Gaussian Mixture, & HMM No

Golenberg, Current Work Zeus Microwrist Signal Crimp Read PCA, Decision Tree Yes
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3.2.2 Apparatus 

The Zeus Micro-Wrist surgical robot was used in conjunction with an Aesop arm 

(Intuitive Surgical, Sunnyvale, CA) controlling a 10mm 0° endoscope (Karl Storz 

Endoscopy, Culver City, CA).  A training box, acting as a control fixture for the testing 

environment, was used to stabilize the end-effector needle drivers and the laparoscopic 

camera.  The two end-effectors were introduced through port openings on opposite sides 

of the working environment.  The endoscope presented an overhead view of the testing 

area.  A Samsung Digital Color Camera SOD14C (Samsung, Samsung Town, Seoul, 

South Korea) was used to record each participant’s trials for post-hoc analysis. 

A system for reading encoder signals directly from the Zeus surgical platform was 

developed for this study (Figure 7).  Unlike the da Vinci Application Program Interface, a 

direct link providing input signals was not available through the Zeus platform.  Micro-

controller based hardware was developed to enable data acquisition from the position 

sensors within the master controller [85].  This hardware transmitted signal from the 

wrist, elbow, slider, gripper, shoulder, and wrist roll joints for each master controller as 

well as the clutch status at about 20 Hz (see Figure 8 for an example of the input 

interface).  
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Figure 7.  A picture of the Surgeon Interface Control box with data acquisition hardware added. 

 

Figure 8.  A diagram depicting master hand controller on the Zeus MicroWrist surgical robot. 

Joint readings were taken from the output signal cable that carried the voltages 

sent out by each joint’s encoder.  Two joint encoders (shoulder and roll) transmitted 

information through digital pulses of 5V.  The remaining joint encoders (elbow, slider, 

yaw, and gripper) transmitted information through an analog ramping voltage (Table 13).  
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As the digital pulse encoder signals were read, they were added or subtracted to 

determine their most up-to-date location by the signal acquisition hardware [85]. 

Table 13.  The signal map for the master controllers on the Zeus MicroWrist surgical robot. 

 

The digital to analog converter (DAC) was unable to accept negative numbers, so 

the analog encoder voltages were converted to a positive number.  The resolution of the 

digital to analog converter had a 12 bit resolution.  Since the signal was binary, the 

converted range spanned from 0V to 4,096V (2
12

).  The analog voltage signals were 

converted and saved as a decimal value (Equation 3.1), where 
+
Vin is 12V, 

-
Vin is -12V, 

and Vout is the voltage read in from the encoder.  Both the analog and digital signals 

were assigned a time stamp as well. 

 
  4096

( )

Vin Vout x

Vin Vin



 




 (3.1) 

The total allowable displacement of each joint (see Table 13) was measured using 

an infrared tracking system called Polaris Accedo (Northern Digital Inc, Waterloo, 

Ontario, Canada).  Dividing the total movement range by the signal range, whether it was 

a voltage range or a pulse count, gave the per unit conversion from voltage to degrees or 

millimeters.  The position tracking hardware [85] sent out the data in packets that 

contained the displacement of each joint and a corresponding timestamp. 
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3.2.3 Task and Experimental Procedure 

Three skill levels of participants were recruited for testing; novice (naïve), 

intermediate (resident surgeons), and expert (attending surgeons).  The experiment 

incorporated a surgeon’s task, suturing, to ensure relevancy and acceptance of the 

research; suturing was chosen because of its prevalence in operations. 

The four novice participants were trained to complete the suturing task using the 

Zeus platform and given time to practice until the participants were able to accurately 

suture 4 throws in less than 6 minutes.  Practice time was also given to both intermediate 

and expert participants to allow for acclimation to the Zeus robotic system.  Each 

participant was asked to complete a four-throw suturing task on a glove box (an 

aluminum box with a top cavity over which a latex rubber glove is stretched, see Figure 

9), using a 3-0 silk suture, measuring 15 cm long. 

 

Figure 9.  A completed four throw suture on an aluminum glove box. 
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Square targets were printed on a latex skin to provide a suturing guide for 

participants to follow.  The square targets were 1 mm in size and spaced 5 mm apart 

(Figure 9).  A successfully completed suture would have run through eight total square 

targets.  For this task, participants were provided with an overhead endoscope view of the 

testing area [59].  Encoder readings as well as a video of the trial were collected for 

gesture classification.  The videos were used for post-hoc analysis. 

3.2.4 Constructing a Classification Library 

From the collected information, a supervised training method was chosen to train 

a machine learning algorithm, specifically a J48 Decision Tree.  A supervised method for 

creating the subtask library was chosen because the classes were based on a Hierarchical 

Task Analysis of a four throw suturing task.  The intention of using a top-down approach 

to create a classification library was so that the classifier could and would identify 

subtasks that were relevant to the observers.  Training a classification algorithm using a 

supervised training method entailed pre-labeling data cases and using the automatic 

classification algorithm to determine which signals identify one class from another. 

The first stage of constructing the classification library was to feed the classifier 

with coded (subtask labeled) data.  The encoder readings collected during each subject 

test needed to be assigned a subtask label so that the classification algorithm could group 

the data accordingly.  Before the data could be evaluated, the data had to be manually 

categorized to help train a classification system.  Since the encoder readings did not 

present a human observer with identifiable indicators as to the subtask being executed, a 

method was devised to provide context to the extracted data.  To do this, a video capture 

system was created to record actions perform at the test-bed site.  Software was written to 
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synchronize the recorded encoder readings with a video feed of the patient-side test-bed 

so that identifiable movements could be recognized by a human.  The reason the test bed 

was chosen over the master controller side was to provide a view of what was being 

performed.  The video was time stamped and synchronized with the extracted jointed 

data.  The synchronization of both data sources, encoder readings and the patient-side 

video, enabled the manual gesture labeling of the joint data during post-testing analysis 

(Figure 10). 

 

Figure 10.  A diagram of the gesture labeling process.  Both encoder signals from the surgeon-side master 

controller and a video recording of the patient-side test bed are combined through manual video analysis to 

creature a gestured-labeled data set. 

In addition to the positional encoder readings downloaded from the motion 

tracking hardware (Table 13), velocity data were derived.  Encoder state information is 

helpful in determining master controller arrangements in space.  Encoder position 

information, however, does not describe the change of a state.  Including velocity 

information describes the change in a participant’s movements; whether they are slowing 

down or moving faster.  The derived velocity data were included in the data set used. 

A video-capturing program was used to synchronize a video of the end-effector 

movements and the master controller signals downloaded from the Zeus platform (Table 
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13).  Using the video recorded, a time breakdown of all the movements observed was 

made during post-hoc analysis.  Video parsing was the first step necessary for the 

construction of a training library that served as a basis for classification.  From this video, 

manual gesture class labeling was conducted.  Table 14 provides an example of the 

gesture class labeling. 

Table 14.  An example of a charted parsed video of a participant performing a suturing task.  Start and end 

times as well as label drawn from a Hierarchical Task Analysis was assigned to every moment of each 

participants’ trial. 

 

Once the data signals were parsed, the data was trimmed to eliminate movements 

executed while the clutch was not engaged.  Clutching is used to re-index the master 

controller.  The movements executed while the clutch is not engaged are purely non-

value-add.  During this time, the operator is either re-centering/positioning the master 

controller or pausing. 

The remaining data were normalized and transformed using linear discriminant 

analysis.  Feature normalization ensured that regardless of the joint, the encoders could 

be compared against each other.  For example, the left shoulder’s encoder pulse count can 

range from 10,000 to 14,243.  If a classification system was to compare the left 

shoulder’s pulse count to the right shoulder’s pulse count reading, which ranges from 

10,000 to 5,795, it may perceive a pulse count reading of 10,000 as reaching only the 

middle point in movement capacity (Table 13).  Normalization was calculated over each 

joint by first finding the mean and then the standard deviation of the set.  Each individual 

start time end time HTA Class # New Description

0:00:01 0:00:04 1 Reach for and grab needle with right open gripper

0:00:04 0:00:08 4 Move above working area with needle, right hand holding needle

0:00:08 0:00:12 13 Rotate right wrist while holding needle and move towards tissue insertion point

0:00:12 0:00:18 14 Insert needle through tissue until needle protrudes other side

0:00:18 0:00:21 15 Rotate wrist and move towards protruding needle with left gripper.  Includes left gripping and right releasing.

0:00:21 0:00:24 16 Rotate/pull needle out of tissue with left gripper.

0:00:24 0:00:25 17 Draw thread out, while left holding needle, using the pully technique.

0:00:25 0:00:28 19 Draw thread out by pulling with right gripper, left gripper holding needle

0:00:28 0:00:31 19 Draw thread out by pulling with right gripper, left gripper holding needle

0:00:31 0:00:35 21 Thread caught or wrapped around right gripper.  Shake or move gripper to release thread from gripper.
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datum point (one joint reading) was normalized by subtracting the mean of the set from 

the datum point value and dividing it by the standard deviation of the set.  Equation (3.2) 

is the normalization equation used, where i is a datum point and j is the joint. 

     2

1
j j j

j

N i L i 


   (3.2) 

After normalization, the data are concatenated with a time window spanning 16 

data readings prior and following each data point.  The readings provide a classifier 

context as to what occurred prior to each point in time and what followed each data 

reading.  The data were then passed through a Principal Component Processor, available 

on Weka 3.6.1 package.  Using Principal Component Analysis was necessary due to the 

large data set used in this research.  From the 30 trials collected, a 159,011 x 991 sized 

matrix was created.  Principal Component Analysis was needed to reduce the size of the 

attributes.  For example, for one participant’s data, using Principal Component Analysis 

reduced the number of attributes from 991 to 220, making the data set computationally 

easier to process.  Finally, the data were tested using a J48 Decision Tree Classifier, 

which was also available through Weka.  J48 Decision Tree classification was chosen 

because of its ability to handle a large data set in a short period of time.  These two 

characteristics made J48 Decision Tree a great candidate for this application.  Figure 11 

shows a block diagram illustrating the steps required for data processing. 

 

Figure 11.  A depiction of the data processing steps. 
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3.2.5 Experimental Design and Analysis 

A video of every trial was recorded for post analysis from each of the 8 

participants, 4 trials each, totaling to 32 videos.  Two trials were removed from the data 

set because they did not meet the maximum time requirements leaving a total of 30 

processed videos.  Time stamping of the videos was performed on Microsoft Office Excel 

2007 (Microsoft, Redmond, WA).  The data were pre-processed on conducted using code 

developed in MATLAB R2009a (The MathWorks, Natick, MA).  Principal component 

analysis and a decision tree learning algorithm were used to process the data on Weka 

3.6.1 (The University of Waikato, Hamilton, New Zealand). 

3.3 Results 

Twenty-four total classes were used for training.  All data were pre-processed 

with principal components analysis.  Classification was conducted using a J48 decision 

tree learning algorithm.  A random sampling of time slices, a 10-fold cross-validation 

method [86], was used to verify the accuracy of the automatic gesture classification 

system. 

Participants from three skill levels were recruited for this study.  The J48 decision 

tree classification algorithm was trained with data from each skill level individually as 

well as across all skill levels to test how well the model could be generalized across all 

participants. 

3.3.1 Local Temporal and Resolution Features 

Although the number of participants was relatively small for training purposes, 

the data used for processing were computationally large, leading to processing time of 

over 24 hours for data from one skill level.  A quick test on the effect on classification 

accuracy of sampling rate and temporal window size was conducted.  For testing 
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purposes, one participant’s 4-trial data set was used.  The data were preprocessed by 

principal component analysis and then classified using a J48 decision tree with a 10 fold 

cross-validation. 

An evaluation of the effect of varying the temporal window size on classification 

accuracy was conducted.  Eight window sizes, designated by the number of temporal 

readings included on both the proceeding and following side for each moment data point, 

were processed and compared (Table 15).  The accuracy of automatically classifying 

subtasks using a temporal window size of 14 or greater time point readings on either side 

of each data point (data point + 14 * 2 = 29 points in total) levels off at about 95% 

(Figure 12).  A window size of 16 time points was chosen to compute all future 

classification accuracies because of the computation time improvement and high 

accuracy over similar window sizes.  
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Table 15.  A table presenting the effect on accuracy of the temporal window size of each data point. 

 

 

Figure 12.  An evaluation of the effect on accuracy of the temporal window size of each data point. 

Similarly, the effect of sampling rate was evaluated.  The system developed to 

read master controller input signals collected data at a rate of 20 Hz.  Through Matlab, 

three data sets were prepared to compare the accuracy of sampling rates of 3 Hz, 7 Hz, 

and 20 Hz (Figure 13).  A sampling rate of 20 Hz was chosen to process the data 

collected for this study. 

Size Accuracy Size of Tree Number of Leaves

2 91.6099 1455 728

6 92.7303 1297 649

10 94.0952 1099 550

14 95.1385 965 483

16 95.0596 961 481

18 95.166 885 443

22 95.1998 975 488

26 95.9039 831 416

89

90

91

92

93

94

95

96

97

2 6 10 14 16 18 22 26

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy
 (

%
)

Window Size on Each Side of Data Point



60 

 

 

 

Figure 13.  An evaluation of the effect on accuracy of the sampling rate read from the master controller. 

3.3.2 Data Set Processing Results 

The data were processed in two groupings, naïve participants and experienced 

participants.  All data were preprocessed using principal component analysis and 

classified using a J48 decision tree classifier.  

The data from the participants were classified using two techniques.  The first 

technique trained the classifier with complete trials and left out complete trials for testing 

(Table 16).  The second method employed a ten-fold cross-validation which randomly 

selected data time points from the all the trials to be reserved for testing (Table 21).  The 

data for processing was divided into two groups, naïve participants and medical doctors. 

Using 4 trials from one of the naïve participants for testing, and training the 

classification library with the other three naïve participants’ 12 trials, a classification 

accuracy of 24.2988% was achieved (Table 17).  The low classification accuracy for the 

set was expected due to the small sample size.  In addition, the fourth participant, whose 
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data were used for test, was the least skilled.  Reprocessing the data only using the three 

best participants, saving the third participant’s trials for testing resulted in a classification 

accuracy of 43.7723% (Table 18).  Again, the low classification score was expected due 

to the small training set used.  Classifying trials from just one participant, reserving 1 out 

of the 4 trials for training, resulted in a classification accuracy of 56.8899% (Table 19).  

Similar to the naïve group, the trials from the medical doctors were used, saving all the 

trials from one participant for testing, producing a classification accuracy of 23.6258% 

(Table 20).   

Table 16.  A summary of the achieved classification accuracy using leave one out cross-validation. 

 

Not all of the subtask classes were used by each participant due to differences in 

task execution techniques.  Participants with a strong background in manual laparoscopic 

surgery transferred suturing techniques used in manual laparoscopic surgery over to the 

surgical robot platform.  The Hierarchal Task Analysis from which the subtask classes 

are based on supports these differences in techniques.  As a result, participants can 

successfully complete a suturing task with some differences in the list of their subtasks 

used. 

Validation Run Train Test Classification Accuracy
4 Naïve Participants 3 Participants 1 Participant 24.30%
4 Medical Doctor 3 Participants 1 Participant 23.63%
Three best Naïve 2 Participants 1 Participant 43.77%
One Naïve Participant 3 Trials 1 Trial 56.89%
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Table 17.  A confusion matrix from the automatic classification testing a naïve participant’s movement data 

against a library trained by data from three other naïve participants. 

 

Table 18.  A confusion matrix from the automatic classification testing a high performing naïve participant’s 

movement data against a library trained by data from two other high performing naïve participants. 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 21 22 23 Accuracy

122 1 6 6 0 46 26 4 0 0 2 0 15 53 21 13 0 0 0 0 3 1 0.3836

244 173 0 71 50 47 337 0 0 0 0 0 50 56 70 72 15 0 2 0 18 2 0.1436

23 13 99 3 3 219 15 22 3 0 0 0 77 0 0 30 2 114 10 0 0 3 0.1564

121 0 60 236 41 84 37 7 0 0 23 0 361 115 54 12 0 24 0 0 56 4 0.1917

39 0 9 88 15 154 7 0 0 0 0 1 51 53 34 0 7 108 18 0 11 5 0.0252

308 5 47 276 6 898 16 40 4 0 16 3 330 13 47 127 21 346 37 0 2 6 0.3533

214 6 0 422 66 595 224 23 0 0 70 0 593 194 356 43 0 0 0 0 53 7 0.0783

7 0 1 0 0 49 0 4 6 0 0 0 3 0 0 0 0 29 0 0 0 8 0.0404

27 0 0 0 11 125 0 3 0 0 0 6 0 25 0 0 9 42 8 0 0 9 0.0000

38 8 0 45 13 15 39 0 0 0 7 0 126 50 87 0 0 0 0 0 25 10 0.0000

247 0 0 275 51 154 73 0 0 0 28 0 908 261 73 1 2 17 0 0 38 11 0.0132

56 0 12 0 9 57 0 4 0 0 0 37 17 2 0 1 0 19 5 0 0 12 0.1689

457 0 4 449 23 240 121 0 4 0 156 0 980 492 169 0 47 73 13 0 64 13 0.2977

576 0 6 497 81 409 391 0 1 0 34 0 500 814 394 9 11 7 0 0 79 14 0.2137

181 56 0 160 267 143 421 14 0 0 25 0 588 612 1156 105 0 0 0 4 93 15 0.3022

230 78 21 0 5 298 1 17 5 0 0 1 7 17 30 525 54 118 25 0 0 16 0.3666

146 0 45 211 44 84 0 6 17 0 0 0 35 21 0 62 455 736 55 0 31 17 0.2336

237 0 80 134 2 106 0 21 10 0 0 14 4 13 0 4 32 1650 55 0 7 19 0.6965

2 0 24 0 0 18 0 0 0 0 0 0 0 0 0 6 0 118 9 0 0 21 0.0508

50 10 0 25 15 7 39 0 0 0 12 0 95 22 44 12 0 0 0 0 8 22 0.0000

182 9 10 38 30 70 24 14 10 0 12 0 141 84 53 83 26 82 8 0 17 23 0.0190

1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 17 19 20 21 22 23 Accuracy

62 0 32 35 21 59 3 224 13 8 0 94 62 41 46 36 60 0 7 0 0 1 0.07721

16 57 0 4 0 59 0 4 0 5 0 1 14 39 83 0 1 0 0 0 0 2 0.201413

3 2 87 0 0 17 0 36 17 0 15 0 0 3 13 16 52 0 37 0 0 3 0.291946

6 0 9 112 27 24 32 35 0 50 0 97 72 31 3 9 6 0 0 0 1 4 0.217899

0 23 0 0 5 37 9 73 0 16 0 19 8 117 17 0 0 0 0 7 0 5 0.015106

1 10 61 1 0 314 0 306 17 2 6 73 3 30 71 25 202 0 11 0 0 6 0.27714

1 36 0 40 29 12 38 28 0 29 0 67 84 37 10 0 0 0 0 0 26 7 0.086957

0 0 0 0 0 24 0 48 9 0 0 0 0 2 44 2 10 0 0 0 0 8 0.345324

0 0 7 0 0 16 0 7 17 0 0 0 0 0 8 6 37 0 1 0 0 9 0.171717

4 0 0 67 6 19 3 18 0 10 0 81 7 3 0 0 0 0 0 0 0 11 0.045872

0 0 17 0 0 12 0 46 0 0 22 0 0 0 0 0 3 0 0 0 0 12 0.22

13 7 0 173 30 16 34 66 0 114 0 1084 512 87 1 5 4 0 0 7 26 13 0.497476

27 0 0 24 8 3 151 239 0 35 0 447 1201 130 0 10 6 0 0 0 3 14 0.525832

10 19 0 49 30 16 24 23 0 34 0 55 101 681 44 4 9 0 0 0 23 15 0.606952

26 7 7 0 0 38 1 13 17 0 2 0 0 7 306 46 102 0 1 0 0 16 0.534031

17 0 31 0 0 39 0 2 7 4 0 0 0 0 28 356 168 0 26 0 0 17 0.525074

0 0 87 0 0 321 0 11 33 0 0 0 0 0 23 68 1825 0 34 0 0 19 0.759784

0 0 0 13 0 0 61 0 0 8 0 39 18 24 36 0 0 0 0 0 0 20 0

0 0 21 0 0 55 0 0 34 0 4 0 0 0 27 48 29 0 21 0 0 21 0.087866

0 0 0 28 0 1 16 0 0 5 0 34 9 20 19 0 0 0 0 6 0 22 0.043478

7 0 11 8 0 0 0 0 0 19 0 3 23 11 10 5 2 0 0 0 0 23 0
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Table 19.  A confusion matrix from the automatic classification testing one naïve participant’s movement data 

from one trial against a library trained by data from three other trials from the same participants. 

 

Table 20.  A confusion matrix from the automatic classification testing a surgeon’s movement data against a 

library trained by data from three other surgeon participants. 

 

1 2 3 4 5 6 7 8 11 12 13 14 15 16 17 19 21 23 Accuracy

0 0 0 0 29 2 0 0 0 0 35 2 0 0 0 0 0 56 1 0

0 33 0 0 0 0 0 0 0 0 0 0 12 35 0 0 0 0 2 0.4125

0 0 42 0 0 0 0 0 0 0 0 0 0 0 10 8 0 0 3 0.7

0 1 0 6 0 0 2 0 2 0 34 9 0 0 3 0 0 2 4 0.101695

0 25 0 0 16 13 42 0 19 0 2 9 62 44 6 0 0 0 5 0.067227

0 6 19 4 61 206 0 61 0 0 99 0 20 8 0 2 3 8 6 0.414487

0 3 0 0 17 0 0 0 0 0 0 0 0 8 0 0 0 11 7 0

0 0 2 0 0 13 0 75 0 0 0 0 9 26 8 6 0 0 8 0.539568

0 0 0 10 0 0 0 0 1 0 0 1 4 0 0 0 0 4 11 0.05

0 0 0 0 0 8 0 9 0 0 1 0 0 22 0 0 0 0 12 0

0 0 0 19 1 8 45 8 10 0 380 129 54 0 0 0 0 0 13 0.58104

0 0 0 1 0 0 0 5 11 0 38 515 3 0 0 0 0 79 14 0.789877

0 30 0 0 0 0 9 0 9 0 0 0 103 28 0 0 0 11 15 0.542105

0 7 0 0 0 16 0 14 2 0 0 0 14 72 12 1 0 0 16 0.521739

0 0 1 0 0 0 0 1 0 0 0 0 7 11 140 74 5 0 17 0.585774

0 0 25 0 0 10 0 39 26 0 0 0 0 12 79 1075 21 2 19 0.83398

0 0 6 0 0 9 0 0 0 0 0 0 19 8 6 69 3 0 21 0.025

0 0 0 0 0 17 0 0 0 0 0 10 51 0 3 18 0 0 23 0

1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 17 18 19 20 21 22 24 Accuracy

313 3 33 180 93 267 94 175 11 0 29 91 85 72 43 70 0 203 67 18 3 61 1 0.163789

14 82 29 34 28 51 16 88 14 0 29 41 15 56 44 80 11 32 98 18 5 8 2 0.103405

9 0 21 13 0 8 0 7 0 0 0 0 0 0 18 42 0 21 6 7 0 5 3 0.133758

8 9 12 92 72 16 47 4 0 0 38 53 57 19 8 5 0 6 21 2 2 76 4 0.16819

32 19 4 137 488 262 241 94 2 30 129 255 308 363 52 70 5 42 188 25 28 20 5 0.17466

104 9 25 22 219 1022 137 387 24 0 16 192 21 94 143 208 3 339 105 171 5 20 6 0.312921

82 0 6 76 203 149 243 61 7 0 23 86 96 313 12 48 0 12 149 0 17 7 7 0.15283

11 6 14 1 16 150 78 60 1 0 5 21 11 76 32 43 0 17 54 1 0 12 8 0.098522

17 0 3 0 0 19 0 7 2 0 0 0 6 0 0 6 0 14 0 23 0 0 9 0.020619

0 0 0 23 3 15 34 0 0 0 0 19 19 8 0 0 1 0 9 0 2 4 10 0

7 1 0 13 7 11 13 0 0 0 19 23 10 0 0 5 0 0 6 0 0 2 11 0.162393

38 2 0 173 79 71 91 27 0 0 144 711 87 5 17 7 0 3 17 0 0 38 13 0.470861

29 5 3 349 94 70 148 23 0 0 113 491 591 13 25 9 0 24 18 0 0 26 14 0.29099

0 0 0 8 52 28 39 9 7 0 0 0 39 135 8 26 11 26 13 7 2 0 15 0.329268

9 6 12 0 33 58 0 13 0 0 0 0 0 24 66 14 0 22 30 6 1 0 16 0.22449

0 0 2 0 0 0 0 1 0 0 0 0 0 0 17 18 0 6 0 0 0 15 17 0.305085

1 0 14 22 51 43 17 10 0 0 30 46 0 47 0 116 36 21 35 0 0 41 18 0.067925

40 0 28 1 14 111 0 75 3 0 0 1 1 6 60 88 0 377 20 32 0 10 19 0.434833

38 3 1 15 75 29 21 0 0 3 25 27 14 243 26 73 15 15 179 0 9 33 20 0.212085

5 0 28 0 6 7 0 28 0 0 0 0 0 14 34 43 0 48 0 58 0 0 21 0.214022

0 0 0 4 21 0 2 0 0 0 4 26 2 0 0 17 7 0 41 0 12 0 22 0.088235

29 10 17 35 31 36 20 16 21 0 24 19 74 15 10 72 16 84 32 9 2 130 24 0.185185
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The low classification accuracies attained using entire trails as the testing data were due to the small sample 

sized used in this study.  To compensate, a decision tree classification algorithm using 10-fold cross-validation 

was used in combination with principal component analysis for preprocessing.  The average classification 

accuracy for data processed over one participant’s four trials was 94.5562 % (Figure 14).  The confusion matrix 

for each participant can be found in Appendix B.  Processing the data from all four naïve participants together 

resulted in a classification accuracy of 91.8254% (Table 22).  Processing the data from all four doctors together 

resulted in a classification accuracy of 90.7657% ( 

Table 23).  Including the data from all eight participants resulted in a 

classification accuracy of 92.2462 % (Table 24). 

Table 21.  A summary of the achieved classification accuracy using 10-Fold cross-validation. 

 

 

 

Figure 14.  Classification accuracy for individual participant data using a principal components analysis and 

decision tree classifier with a 10-fold validation.  The average classification accuracy was 94.5562%. 

Validation Run Test Classification Accuracy
4 Naïve Participants 10 Fold 91.83%
4 Medical Doctors 10 Fold 90.77%
Average One Participant 10 Fold 94.56%
All 8 Participants 10 Fold 92.25%
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Table 22.  A confusion matrix for all four naïve participants’ data using a principal components analysis and 

decision tree classifier with a 10-fold validation. 

 
 

Table 23.  A confusion matrix for all four doctors’ data using a principal components analysis and decision tree 

classifier with a 10-fold validation. 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 20 21 22 23 Accuracy

1783 4 3 14 5 11 13 1 2 0 4 1 20 27 13 15 6 6 0 2 1 1 1 0.922878

6 2048 2 5 4 7 9 5 0 4 4 1 4 5 27 29 0 0 0 1 1 4 2 0.945522

5 4 1592 6 1 45 0 6 11 0 1 11 0 0 1 10 19 132 0 22 0 0 3 0.853162

23 4 5 2121 6 14 52 0 3 1 79 0 115 90 18 2 7 8 4 2 11 10 4 0.823689

5 2 0 6 1094 15 13 1 1 0 10 0 15 13 36 3 8 5 0 0 0 3 5 0.889431

10 9 50 23 16 5700 20 11 22 1 13 13 36 4 8 19 13 61 0 24 2 8 6 0.940129

8 10 0 52 11 15 4100 2 1 5 65 0 71 45 50 4 1 4 1 1 10 11 7 0.917842

1 2 9 1 2 25 2 849 3 0 1 0 3 1 4 5 1 4 0 0 0 4 8 0.925845

3 0 21 2 0 24 3 6 772 0 1 4 3 2 1 8 16 31 0 11 0 1 9 0.849285

0 0 0 1 3 3 4 0 0 492 7 0 5 4 34 1 0 0 0 0 1 0 10 0.886486

15 6 1 76 8 17 72 0 2 3 2677 0 142 46 16 1 15 6 1 0 8 9 11 0.857738

1 4 16 0 0 16 0 4 3 1 1 374 0 0 3 7 2 5 0 1 0 1 12 0.851936

18 3 0 116 10 34 69 4 4 7 119 1 8848 360 30 1 20 7 0 0 9 11 13 0.9149

42 3 0 76 7 8 39 0 0 3 37 0 353 9816 99 4 1 4 0 0 4 4 14 0.934857

17 20 0 20 17 9 60 1 0 13 27 1 17 121 7970 52 1 2 0 0 24 13 15 0.950507

14 48 16 3 0 23 4 7 2 0 1 4 4 1 74 3663 89 27 0 9 2 1 16 0.917585

2 1 23 6 3 16 3 2 11 0 3 1 16 3 3 92 4069 196 0 21 0 6 17 0.908868

8 3 91 6 0 55 0 7 35 0 4 4 11 9 1 21 162 9713 0 71 0 4 19 0.951788

0 1 0 1 1 0 2 0 0 0 0 0 2 0 2 0 0 0 188 0 2 0 20 0.944724

0 0 28 0 0 11 0 2 8 0 1 3 0 0 0 18 22 103 0 793 0 1 21 0.80101

2 6 0 12 2 1 10 0 0 3 13 0 10 7 33 2 1 0 5 0 526 3 22 0.827044

3 11 3 15 5 12 13 2 1 0 8 0 10 15 12 9 3 10 0 0 2 917 23 0.872502

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Accuracy

4356 22 1 48 35 39 42 11 7 0 15 1 27 72 14 4 5 2 35 7 9 0 1 32 1 0.910345

19 1561 5 7 2 7 7 16 0 0 1 0 3 5 4 17 3 0 5 10 1 0 0 11 2 0.92696

5 5 745 4 3 28 1 7 4 0 0 0 0 0 3 7 10 1 43 2 16 0 0 4 3 0.838964

37 3 1 2588 60 26 67 2 0 1 48 0 99 92 17 0 0 4 7 32 4 11 2 27 4 0.827366

34 6 2 74 6064 123 151 38 3 1 22 2 46 67 47 13 16 5 13 38 5 14 5 26 5 0.889802

27 13 13 29 115 10136 83 123 18 4 19 4 71 25 43 34 7 2 73 9 30 0 1 21 6 0.929908

41 5 1 66 136 100 5012 15 1 4 49 0 92 104 36 1 1 3 2 32 1 7 6 8 7 0.875764

12 6 15 7 29 151 7 2505 6 2 0 2 1 5 3 16 4 1 24 4 14 0 0 1 8 0.889876

8 2 1 1 3 20 3 19 549 0 0 1 0 1 0 2 1 1 12 0 4 0 0 1 9 0.872814

2 0 0 1 3 5 2 2 0 522 3 0 1 5 5 0 0 0 0 1 0 1 0 0 10 0.943942

26 2 0 52 21 16 45 2 0 1 1100 0 86 35 5 0 0 0 2 0 0 0 3 7 11 0.784034

0 0 3 0 2 3 0 0 0 0 0 89 0 0 0 0 0 0 0 0 2 0 0 0 12 0.89899

28 2 1 114 36 64 89 3 1 0 76 0 5843 204 7 2 7 1 1 17 0 1 2 16 13 0.896853

68 4 0 92 80 22 72 5 2 4 27 0 199 8167 62 2 1 2 5 8 0 1 1 20 14 0.923451

13 4 5 7 52 41 36 17 3 1 3 0 6 62 4305 29 0 0 11 19 1 6 0 4 15 0.930811

7 15 5 0 9 31 5 13 4 0 0 0 0 1 31 1694 23 0 23 11 6 0 0 2 16 0.901064

6 0 8 3 8 11 4 3 3 1 1 0 1 5 2 33 1504 5 70 11 6 0 0 7 17 0.888889

3 2 0 3 7 3 3 1 0 0 1 0 3 1 0 2 3 664 0 31 0 0 0 5 18 0.907104

21 3 33 5 13 76 9 25 6 0 2 0 2 5 2 27 69 2 6949 12 42 3 0 11 19 0.949706

11 11 10 26 33 6 24 5 0 4 9 0 18 10 17 10 3 22 17 5329 2 17 0 36 20 0.948221

10 2 8 1 8 36 0 21 7 0 0 1 0 4 4 7 5 0 60 0 1429 0 0 2 21 0.890343

0 1 0 7 14 2 7 1 0 1 0 0 1 6 3 3 0 4 4 19 0 573 0 3 22 0.882897

1 1 0 5 5 3 7 0 0 0 1 0 4 2 0 0 0 0 1 5 0 1 401 0 23 0.91762

41 5 5 36 30 27 17 4 0 0 15 0 21 29 4 7 15 6 13 26 0 1 1 2184 24 0.878166
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Table 24.  A confusion matrix for all eight participants’ data using a principal components analysis and decision 

tree classifier with a 10-fold validation. 

 

3.4 Discussion and Conclusion 

 

The results presented in this chapter demonstrate that combining automatic 

classification algorithms with a class library based on a Hierarchical Task Analysis is not 

only feasible but can also produce high classification accuracies.  The relatively low 

classification accuracy scores obtained using the technique of testing on a complete trial 

or set of trials demonstrates the need to include a larger participant pool for training.  For 

this type of validation, approximately 1/4
th

 of the data were reserved for testing while the 

remaining data were used for training the classification library.   As reflected by the 

results using this technique, this proportion is not suitable for robust training. 

A ten-fold cross-validation technique was used as an alternative.  Using this 

method for validation made it much more likely that the training data included an event 

that would be used during testing.  The extremely high classification accuracy 

demonstrates this point.   It is worth noting that the classification score was the lowest, 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Accuracy

2873 9 6 24 22 19 13 9 12 1 5 0 10 25 20 10 5 2 26 8 9 0 1 15 1 0.919654

7 2254 7 3 4 6 3 2 0 0 0 0 5 4 10 32 4 1 6 6 2 3 3 4 2 0.952663

2 7 1055 0 7 30 0 6 5 0 0 2 1 0 1 8 13 0 50 3 18 1 1 1 3 0.871181

16 2 0 2778 38 13 54 1 0 1 69 1 78 76 8 2 5 0 10 16 0 2 1 17 4 0.871393

13 5 4 42 4991 102 88 17 4 0 40 0 51 45 52 10 15 3 13 31 2 2 1 13 5 0.900253

26 3 21 17 105 8590 47 66 23 1 21 5 50 16 33 25 21 7 72 5 24 3 7 13 6 0.933594

13 4 2 59 97 53 5317 8 1 4 47 0 92 64 39 0 5 0 3 15 0 10 7 6 7 0.909511

12 1 12 2 21 71 15 1839 4 0 0 5 2 1 10 12 8 1 23 1 8 0 0 3 8 0.896636

11 4 4 1 4 19 0 14 698 0 0 1 2 0 0 1 5 0 14 1 8 0 0 0 9 0.886912

0 4 0 5 3 1 0 0 0 582 3 0 2 4 4 0 0 1 0 4 0 1 0 0 10 0.947883

9 2 0 58 39 16 39 2 0 7 2689 0 81 38 9 0 6 2 2 8 0 2 0 4 11 0.892466

0 0 2 0 1 12 1 4 3 0 0 230 0 1 0 1 0 0 2 0 2 0 1 0 12 0.884615

16 2 0 100 33 67 75 3 3 1 84 0 7678 238 19 0 14 2 3 11 0 4 2 9 13 0.917982

16 5 0 49 58 20 62 7 1 2 25 0 194 9444 72 1 4 0 3 10 1 1 2 9 14 0.945724

7 9 0 12 46 35 41 9 0 2 7 0 19 78 6350 35 3 2 3 21 1 3 3 1 15 0.949604

16 36 12 3 12 35 0 5 2 0 0 0 0 0 49 2821 35 4 30 9 5 0 1 2 16 0.916802

14 1 11 9 10 23 6 7 2 0 2 2 10 10 2 29 2847 1 93 12 17 0 3 6 17 0.913378

0 1 0 2 2 6 2 0 0 0 1 0 0 4 4 3 2 526 1 13 0 1 0 1 18 0.924429

31 6 59 4 16 90 8 20 17 0 1 1 6 2 2 31 83 2 7836 12 87 0 3 7 19 0.941374

12 8 0 23 31 12 20 0 2 6 9 0 15 7 28 14 5 11 12 3643 2 16 6 15 20 0.934822

5 4 12 1 1 29 0 11 3 0 0 0 0 1 1 12 14 1 91 1 1397 0 0 1 21 0.881388

2 1 0 7 3 0 3 0 0 0 2 0 3 3 5 0 0 1 0 15 0 618 3 3 22 0.923767

0 2 1 4 3 7 9 1 0 2 7 1 4 1 5 2 2 0 2 6 0 5 651 0 23 0.91049

22 6 3 16 17 11 7 1 1 0 5 0 11 5 2 2 9 4 7 21 1 1 3 1324 24 0.895199
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regardless of which classification technique was used, when classifying data from all 8 

surgeons together.  This was expected due to the wide range in techniques found in this 

group, as discussed in Chapter 2.  Including all 8 participants increased the classification 

accuracy and reaffirms the need to recruit a larger participant pool for future studies. 

As with other classification systems, such as voice recognition or hand writing 

interpretation software, training is often needed on a subject-to-subject level to optimize 

accuracy.  From the 8 participants, a difference in task technique was identified.  

Conduction a final user level calibration will help the classification system recognize 

subtasks based on a user’s tendencies.   

This research presents a novel approach to definition classes by incorporating a 

Hierarchical Task Analysis for use in an automatic classification system.  The achieved 

leave-one-out validation classification accuracy of a high 56.89% is comparable to the 

system developed by Murphy et al. who were able to correctly identified 58.05% of the 

eight gestures identified in their study [72].  Reiley et al. incorporate Hidden Markov 

Models to improve their classification accuracy to an average top classification rate of 

76.69% [58].  Dividing their participant pool by skill level, they were able to correctly 

classify 75% of expert surgeons’ gestures, 59% of intermediates’, and 76% of novices’ 

[67].  Still the highest correct classification rate was 94% produced by Lin et al. who used 

arbitrary data mining to increase their classification accuracy [57] (see Table 25).  Their 

classification accuracy is comparable to the 94.56% classification accuracy achieved 

using the 10-fold cross-validation used in this research.  It is expected that with a larger 

number of participants, the classification accuracy produced by the methods used in this 
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research can be improved to higher levels as well.  An incorporation of a Hidden Markov 

Model could also greatly improve the classification results.   

Table 25.  A review of past research groups’ findings using automatic gesture classifiers. 

 

A transition probability matrix was created (see Appendix B, Table 34 and Table 

35) from the data gathered for this study.  The table was created by determining the 

single step transition probability (see Equation 3.2).  Each X1 state (left column of Error! 

Reference source not found.) had j probability of transitioning from the previous state 

X0 (right column of Error! Reference source not found.).  The transition probability 

matrix describes a one-step gesture class transition probability given a preceding known 

state.  Its incorporation in a future automatic classification system will likely improve the 

overall classification accuracy, but was out of the scope of this research. 

  (3.2) 

Based on fundamental motions derived from observational studies and structured 

via Hierarchical Task Analysis, the results of this aim brings automatic gesture 

classification systems closer to acceptance through higher ecological validity.  If the 

benefits of augmented surgeon movements, automatic surgical tasks, or training systems 

are to be realized, a system that is robust enough to be applied to the real world is 

necessary.  Using classes that are based on a structured task analysis approach results in 

very clear information that, when automatically classified and presented, any trained 

individual can understand.  Testing classes that are understandable and unambiguous 

allows the human to observe how an autonomous system interprets an event.  Not only is 

Research Group # of Gesture Classes Classification Technique Validation Classification Accuracy

Murphy et al. (2004) 8 LDA & HMM Unspecified 56.89%

Reiley et al. (2008) 11 (Collapsed into 7) HMM Leave One Out 76.69%

Reiley et al. (2009)

3 Skill Levels (8 

Gestures) HMM Leave One Out 59% - 76%

Lin et al. (2006) 8 (Collapsed into 5) LDA & Bayes 12-Fold 90% - 94%
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this transparency important for general adoption, but it can help avoid miscommunication 

and inform an operator of what changes may be made to a system. 

Ultimately, implementing a Hierarchical Task Analysis study of robotic 

laparoscopic surgery in combination with gesture recognition would have a far reaching 

impact in the surgery arena.  Currently, automatic classification of gestures is primarily 

used to identify intermediate versus expert surgeons.  With a more robust library of 

classes and the ability to recognize errors, an automatic gesture classification system 

could be used to keep a log of a surgery, both for skill assessment and insurance 

purposes, augment surgeon motions based on very clear subtask identifiers, and even lead 

to automatic surgical task execution. 

Although high classification accuracy was achieved, it is important to 

acknowledge that there is need to further develop a system that can be implemented in 

surgical applications that includes safeguards.  Transparency is one vital measure to 

ensure that all who are involved agree on the identified system state and resulting course 

of action.  Due to the rapid changes in subtasks, it should not be expected that an 

individual can process all the identified subtasks presented to him, and react if needed.  

For this reason, safe guards such as magnitude limitations to any change in a system need 

to be included.  Additionally, all the automatic classification was conducted during post-

processing.  Methods to increase processing speed need to be explored so that automatic 

classification can occur in near real time.  

It is important to emphasize that although the research presented in this 

dissertation was performed on a robotic-assisted microsurgical platform, the methods 

used and the results that were obtained should be considered generalizable.  From the 
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task analysis method chosen to the classification algorithm used, all techniques can be 

applied to any other human machine interface.  
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Chapter 4:    Discussion and Conjecture, Towards  Intelligent 

Interfaces 

4.1 Research Summary 

4.1.1 Task Analysis 

Robotic surgical platforms are becoming more common in the surgical arena.  

Their wide acceptance has led to the adoption of new training techniques and methods for 

evaluating skill [87].  The implementation of these new training methods emphasize that 

the operation of robotic-assisted laparoscopic platforms have different control elements 

that justify special training. 

Task analyses are often used for training purposes to chart the process of a goal 

and to identify key areas for training.  These areas may warrant special consideration due 

to their difficult nature or simply being prone to error.  As expected, a number of task 

analyses have been performed on manual laparoscopic procedures.   

This research included the first Hierarchical Task Analysis of a robotically 

assisted four-throw suturing task.  Charting the subtasks performed during suturing led to 

the identification of a difference in the technique used to draw out a needle from tissue.  

Although both techniques were adequate for this subtask, one method was more 

commonly followed by a series of non-value added needle orientation adjustments.  This 

technique may be a vestigial motion that surgeons carried over from manual laparoscopic 

operations and is no longer necessary in a robotic procedure.   

Although further investigation of this difference is necessary, it is out of the scope 

of this research.  It does, however, emphasize the importance of conducting a structured 
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task analysis of robotically assisted laparoscopic procedures.  When a new process 

justifies a new training curriculum, it requires a task analysis to identify the differences 

that this new method of surgery presents, what needs be learned, and what needs to be 

un-learned. 

A one-way Cohen’s kappa test of independence was used to validate the 

Hierarchical Task Analysis model.  The test was conducted using a time stamped and 

subtask labeled model constructed by a lead observer as the ground truth model.  Both 

intra-rater and inter-rater agreement were calculated.  The intermediate observer had low 

moderate agreement, k = 0.4032, with the gold standard time study.  This class labeling 

difficulty was expected due to the fuzzy boundary nature of time studies.  A window of 

one subtask label to either side of the “correct answer” was used to add up to two 

additional accepted answers to the correct subtask label list.  This modified acceptance 

window brought up the inter-rater agreement level to substantial agreement, k = 0.7715.  

The same comparison was performed to calculate the intra-rater agreement score.  The 

unmodified intra-rater agreement score was k = 0.7703, showing substantial agreement.  

Including a one subtask time window improved the kappa score to almost perfect 

agreement of k = 0.8786. 

The addition of an acceptance window is an appropriate method of accounting for 

the fuzzy boundary points of subtasks.  The kappa score calculated for this agreement, 

however, gives an upper bound agreement score since it does not incorporate the added 

probability of agreement due to chance with the up to three acceptable subclass labels.  A 

modification to Cohen’s Kappa could be investigated in future studies to make the small 

adjustment to the probability due to chance, pc, used in his calculation. 
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4.1.2 Automatic Classification of Surgeon Subtasks 

 

Automatic classification methods are a recent although widely research method 

for quickly and consistently identifying human performance attributes.  On robotic 

laparoscopic surgical platforms, automatic classification systems have been used to 

identify surgical skill.  Some research groups use a surgeon gesture breakdown of a 

surgical task to classify, and then identify skill.  Their gesture list, however, is based on 

second hand recommendations and not from a structured task analysis.  In addition, 

gestures were often combined into a single class to increase overall classification 

accuracy through data mining.  Although these groups achieved high classification 

accuracy, their aim was to determine skill and not the surgical gesture for any future 

means.  Their consolidation of classes, as well as the lack of a task analysis to define their 

gestures, reduced the connotation of their classes and therefore lowered their systems 

application potential.  

This research decomposed a suturing task into its subtasks using a Hierarchical 

Task Analysis approach.  The task analysis was validated in the first chapter and the large 

number of subtasks (24 classes) defined in this task analysis minimizes its classification 

brittleness during potential error modes or task deviations.  Although the number of 

classes identified in the task analysis triples other studies, a high classification accuracy 

of 95.06% was achieved.   

The results from this dissertation can have an impact on surgeon training and 

surgery timelines.  In training, surgeons learn to master tasks by repetition.  A low 

proficiency rating can be attributed to longer path lengths, more noise in their subtasks, or 

simply the occurrence of certain subtasks or gestures.  Using the Hierarchical Task 
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Analysis developed in this dissertation, individual subtasks can be automatically and 

instantly identified to a fine detail and any lack of proficiency can be localized to specific 

subtasks.  Details such as which hand was used, in what ways a subtask varied in 

comparison to an expert, and to what extend a participant needs to improve on a subtask’s 

execution can now be automatically identified and in minutes.  The time saved by using 

an automatic classifier can have a large cost savings benefit and could potentially lead to 

faster training times.   

As with most human-machine interfaces, keeping a system transparent so that a 

human is kept aware of a system state can help reduce and eliminate miscommunication.  

Providing a user with added valuable information on an automated system’s 

interpretation of a situation, improves situation awareness which is vital to successful 

human-machine interaction [84].  The method developed in this dissertation improves 

upon other research groups’ classification system by using a structured subtask library.  

Classes are never combined for the sake of improved classification accuracy, and as a 

result, an identified class has a clear definition and meaning.  These identified classes can 

be presented during an operation, providing system transparency, and ensuring that all 

involved agents have agreement on the interpretation of the system state. 

As with many aspects of engineering, the applications of task analyses are 

changing with the advancement of technology.  Task Analysis has been applied, in 

different forms, from simple motion studies to complex surgical tasks as presented in this 

research.  The coupling of a structured task analysis with an automatic classification 

system is the first of its kind.  The combination of a task analysis and classification 

systems is a natural fit, however, there are fundamental elements associated with task 
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analysis that need to be examined to fully benefit from the combination of the two 

techniques.  One of the main challenges of constructing the Hierarchical Task Analysis of 

a four-throw suturing task was identifying how deep to dive when creating the subtasks.  

A general guideline for determining how finite to make a task analysis’ subtasks is to 

establish the stopping point based on the resolution needed to identify the cause or point 

of an error.   

In the case of the Hierarchical Task Analysis performed in this study, the stopping 

point was based on creating a subtask library that contained unique subtasks that only had 

one purpose in their execution.  In other words, “rotate and put out needle” for example, 

would only be executed for the purpose of pulling out a needle from tissue to further 

progress a successful suture throw.  If elemental movement subtasks such as push, pull, 

or rotate were chosen, then their usage would be common during many different types of 

suturing phases.  To meaningfully identify a surgery phase in such a case, one would 

have to look at combined patterns of these elementary motions to identify a possible 

“needle hand-off” or a “draw thread out of tissue,” for example.   

The subtasks used in this research varied in length from a little under a second to 

more than 10 seconds.  The difference in subtask duration was not necessarily due to a 

larger number of elementary motions.  Often, these longer subtasks were due to slower 

motions during subtasks that required finer motions when precision mattered.  In other 

cases, depth perception played a role in participant confidence, also resulting in slower 

motions.  In a Hierarchical Task Analysis, a difference in subtask length is not a concern.  

In the case where a task analysis is combined with an automatic classification system, 

subtask length variation can affect the classification process. 
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Window sizes are included in classification systems to give context to a data point 

so that a picture of what occurred prior to and following that data point can be included.  

Window sizes are determined by the size of the event being classified.  In the case where 

one subtask can last many times long than another, a large window size based on the 

larger class might be used.  As a result, a sorter subclass can get lost in the non-associated 

data of surrounding subclasses. 

Task analyses are evolving to meet new needs, and when combining them with 

automatic classification systems, a subtask’s time span must be considered.  A study of 

how task analyses should be constructed when used for this purpose needs to be 

conducted.  New stopping points for subtasks should be considered and rules for 

addressing varying time lengths should be studied. 

Future task analyses can take application into consideration.  Depending on how 

the task analysis will be used, subtasks can either be grouped together by surgery phase to 

reduce complexity while still maintaining the operational meaning of that new subtask.  

Similarly, subtasks can be broken down into elementary motions to further identify areas 

of difficulty for a surgeon.  

4.2 Contributions 

The contributions presented in this dissertation can be broken into two distinct 

areas: 1) the Hierarchical Task Analysis of a four-throw suturing task using a surgical 

robot and 2) the automatic subtask classification of a four-throw suturing task performed 

on a surgical robot.   
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4.2.1 Hierarchical Task Analysis of a Robotic Suturing Task 

The Hierarchical Task Analysis, with validation, is the first structured task 

analysis applied on a surgical robot.  To increase the impact of this work, 3 skill levels 

were studied including 3 attending surgeons, 1 resident, and 4 naïve participants.  In 

addition to the Hierarchical Task Analysis chart, a two-hand process chart using 

Gilbreths’ Therbligs was included.  Combining both methods identified a potential 

problem in some of the surgeons’ techniques that would otherwise have gone unnoticed.  

The detection of this procedural difference during a four-throw suture emphasizes the 

importance of this task analysis.  Additionally, the necessity to break down subtasks to a 

fine enough level in which both hands are charted was demonstrated by the essential 

inclusion of the Therbligs process chart for identifying the technique difference.  One of 

the major difficulties during the planning and construction of a task analysis is 

determining the resolution level of the subtasks.  This research helps establish an upper-

bound of subtask sizing when working with high-precision-level two-hand manual task, 

such as suturing with a robotic platform. 

4.2.2 Automatic Classification of a Robotic Suturing Task 

The automatic classification of a four-throw suturing task represents the first 

mathematical validation of a Hierarchical Task Analysis.  It is also the first structured 

task analysis applied to an automatic classification system performed on a robotic 

surgical platform.  The subtasks chosen to base classes on, originating from the 

Hierarchical Task Analysis, demonstrated that a detailed, 24-class library could perform 

as well as classification models that use a third as many classes.  The 24 classification 

library is more robust and more capable of accurately classifying subtasks during errors 
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or task deviations.  This classification library is also able to accommodate for different 

suturing techniques.   

The high classification accuracy demonstrated in this research proves that 

accuracy does not have to be penalized with a higher number of classes.  The number of 

subtasks and the detail in which these subtasks are divided into strengthen the robustness 

of automatic classifiers applied to robotic-assisted laparoscopic platforms.  The increased 

number of classes is necessary to reduce the brittleness of gesture classification systems 

vulnerable to surgical task errors and other event variability.  If an automatic gesture 

classification system is to be used in real surgical scenarios, it must be able to cope with 

variability within subtasks movements.  This is especially true if multiple surgeons with 

different levels of skill are to use the automatic gesture identification system. 

The impact of this contribution is that it brings automatic gesture classification 

systems closer to acceptance through higher ecological validity.  If the benefits of 

augmented surgeon movements, automatic surgical tasks, or training systems are to be 

realized, a system that is robust enough to be applied to the real world is necessary.   

Finally, this research paves the way for future intelligent interfaces that can use 

information on surgery stages based on subtasks to enhance the surgical experience and 

overall surgeon performance.  A gesture classification system could be used to 

intelligently augment a surgeon’s motions by enhancing or assisting in a subtask, taking 

into account both a surgeon’s skill level and the current task at hand.   

 

 



79 

 

 

4.3 Desiderata and Future Work 

 

4.3.1 Expanding the Task Analysis 

The Hierarchical Task Analysis of a four-throw suturing task used in this 

dissertation functioned well as a proof-of-concept for the contributions presented in this 

research.  A larger pool of participants should be recruited to conduct the subject test so 

that more differences in techniques as well as more task deviations can be recorded and 

studied.  Additionally, this research can be extended further by conducting a Hierarchical 

Task Analysis on a complete operation.   

Regarding the vestigial subtask technique identified in Chapter 2, a closer 

investigation of robotic laparoscopic tasks should examine the effect of training on 

retained techniques.  Medicine is far from labeling manual laparoscopic surgery obsolete 

and the current curriculum for training surgeons reflects this reality.  A comparison of a 

complete robotic-assisted laparoscopic surgery with its manual counterpart can reveal 

other techniques that can be eliminated in robotic-assisted laparoscopic procedures.  

These results will lead to a new way of training surgeons on robots, placing extra 

attention and emphasis on vestigial techniques that are no long necessary and that can in 

fact, be counterproductive. 

4.3.2 Towards Platform Specific Training 

Performing a Hierarchical Task Analysis and digitizing a surgical task performed 

on a robot-assisted laparoscopic platform has made the identification of vestigial 

techniques possible.  Tracking the differences between manual versus robot-assisted 

laparoscopic procedures provides a much clearer picture on what difference exist 

between these two surgical techniques.  The benefits of added degrees of freedom and 
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improved visualization have made some techniques unnecessary.  The vestigial technique 

identified as a result of the Hierarchical Task Analysis demonstrated that surgeons carried 

over techniques from manual laparoscopy surgery to robot-assisted laparoscopic surgery.  

A study needs to be conduct to investigate where these vestigial techniques occur.  Once 

these technique differences are identified, the training curriculum should place focus on 

presenting surgeons with these differences.  Current robot-assisted surgical platform 

training curriculums focus on acclimation to the robot rather than on the technique 

difference that make the surgical experience different.  Training surgeons how to execute 

subtasks using techniques that take advantage of their platform’s capabilities can improve 

surgeon performance.   

Training can also look at hand movements to evaluate the differences between a 

training surgeon’s movements to an expert surgeon’s movements.  With the added 

capability of digitizing a surgical task, the training curriculum can become much more 

focused.  Recordings of an expert’s executions of surgeon tasks and subtasks can be used 

to identify through comparison the areas a training surgeon must focus on to achieve 

proficiency.  Providing instant feedback on a training surgeon’s areas for improvement, 

such as overly exaggerated sweeping motions or poor needle-into-tissue entry angles for 

example, can be accomplished through comparison to a the same motions performed by 

an expert surgeon.  The quick turn-around of using an automated system can give quick 

feedback so that a training system can be accordingly adjusted during a training session.  

4.3.3 Intelligently Augment Surgeon Inputs 

The research in this dissertation represents the first step to achieving meaningful 

autonomous augmentation of surgery task.   A thorough task analysis of robotic surgeries 
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provides a way to structure the information a robot would need to appropriately assist a 

surgeon.  Hand movement recordings can be used as an input for a robotic system to 

identify surgeon intentions.  Now that a system has been developed to accurately and 

unambiguously identify subtasks, a robot could intelligently assist a surgeon based on the 

current subtask being executed.  A robot could also anticipate upcoming surgeon needs 

based on charted anticipated objectives and subtask order.   

Augmented surgeon inputs have the potential to improve the surgeon-robot 

interface and enhance surgery performance.  The gap between robotic and manual 

surgery times could be reduced by streamlined robot-assisted tasks, errors could be 

minimized or eliminated by preventing unintended movements, and accuracy could be 

improved.   

One major difference between robotic-assisted and conventional manual 

laparoscopic surgery is the transfer of control of the endoscope to the main surgeon.  In 

manual laparoscopic surgery, another surgeon is responsible for this role.  The endoscope 

driver must anticipate where the surgeon would like the camera to point, which can be a 

challenge.  Although the control of the camera eliminates the need for this extra surgeon, 

transferring the control to the surgeon is adding an additional task to an already 

overloaded surgeon.  For this reason, allowing a robot to automatically control the zoom 

based on the surgeon’s task has a great opportunity to contribute to a surgeon’s 

performance.  Ellis et al. [19] demonstrated that the zoom level had a significant effect on 

surgeon performance.  Removing the task of camera control from the surgeon would 

relieve the surgeon of a task and ensure quick and responsive camera control.   
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Augmenting the surgeon’s hand movements can have an even greater impact.  

When knot tying, for example, a surgeon must rotate the end-effector two to three times 

to wrap the thread around the end-effector.  During this sequence, the wrist of the end-

effector must be kept bent at a right angle to prevent the thread from slipping off of the 

end-effector.  A system could automatically dampen the wrist movement to prevent the 

surgeon from unintentionally straightening the wrist.  In addition, the system could 

exaggerate the rotation of the end-effector by scaling the surgeon’s wrist joint inputs so 

that the surgeon would not have to re-index multiple times during this phase.  Changing 

the motion scale on each joint individually to either dampen or exaggerate an input signal 

would help augment a surgeon’s movement in a way that would make them more 

effective and efficient. 

The main difficulty is the processing time that is currently required to evaluate the 

recorded data.  Using a trained library will reduce the processing time substantially.  In 

addition, using a Hidden Markov Model will help eliminate unlikely class options, further 

shortening the time it takes to assign a class.   Faster read encoder read in rates may also 

help in processing the data.  The data used to process the gestures included encoder 

position information and derived velocity information.  Acceleration data was not derived 

because the read rate was not high enough.  Deriving the acceleration of the encoders 

would be calculated by averaging over 4 encoder position.  To maintain the read rate used 

in this research, a read in rate of 100 Hz would be necessary, far beyond the capabilities 

of the hardware developed.  Otherwise, the resulting resolution would not be adequate for 

describing human motion through gesture identification.  An alternative and more 

accurate method for gathering velocity and acceleration data would be to use 
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potentiometers.  Attaching potentiometers to the joints locations would provide accurate, 

non-derived, velocity and acceleration data at the necessary read rate.      

As of now, there are no research groups that have used gesture classification in 

real time during a surgeon’s task.  The bridge from post-hoc analysis to implementation 

creates the opportunity to have meaningful enhancements to the surgeon robot interface.   
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APPENDIX B 

Table 26.  The confusion matrix for naïve participant 1 using a principal components analysis and decision tree 

classifier with a 10-fold validation. 

 

Table 27.  The confusion matrix for naïve participant 2 using a principal components analysis and decision tree 

classifier with a 10-fold validation. 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 21 22 Accuracy

350 0 0 2 0 0 0 0 0 0 0 0 4 4 3 0 0 0 0 1 0.964187

0 23 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0.958333

0 0 339 1 8 0 0 4 0 0 0 0 0 0 2 2 39 2 0 3 0.853904

0 0 1 342 4 17 0 0 1 1 0 9 15 4 0 0 0 0 0 4 0.86802

1 0 7 1 1024 2 0 4 0 0 0 6 1 1 3 3 18 0 0 6 0.956116

0 0 0 8 2 1125 0 0 2 8 0 16 5 6 0 1 0 0 0 7 0.959079

0 0 0 0 0 0 43 0 0 0 0 0 0 0 1 0 0 0 0 8 0.977273

0 0 9 0 5 0 0 170 0 0 0 0 0 0 2 0 12 0 0 9 0.858586

0 0 0 2 0 2 0 0 36 0 0 0 0 0 0 0 0 0 0 10 0.9

0 0 0 0 1 8 0 0 0 183 0 4 0 1 0 0 0 0 0 11 0.928934

0 0 0 0 1 0 3 0 0 0 16 0 0 0 0 0 0 0 0 12 0.8

1 0 0 13 11 16 0 0 0 10 0 2692 57 12 1 1 1 0 0 13 0.956306

5 0 0 4 0 4 0 0 0 0 0 61 2334 14 0 0 1 0 2 14 0.962474

2 0 0 3 1 10 0 0 0 4 0 9 18 1877 14 0 0 0 3 15 0.967027

3 0 1 0 11 0 3 1 0 0 0 0 0 17 1183 21 12 0 0 16 0.944888

0 0 0 0 5 0 0 0 0 0 0 0 0 2 20 963 21 1 0 17 0.951581

0 0 41 0 20 0 0 3 0 0 0 0 0 4 9 41 2506 4 0 19 0.953577

0 0 3 0 1 0 0 0 0 0 0 0 0 1 0 0 4 130 0 21 0.935252

0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 57 22 0.95

1 2 3 4 5 6 7 8 11 12 13 14 15 16 17 19 21 22 23 Accuracy

168 0 1 0 1 0 0 0 0 1 5 1 2 0 0 1 0 0 2 1 0.923077

0 321 2 1 0 4 0 4 1 0 1 0 1 3 0 0 0 1 3 2 0.938596

0 0 196 1 0 7 0 4 0 0 0 0 1 1 2 26 3 0 0 3 0.813278

1 0 0 126 2 1 0 0 2 1 5 0 0 0 0 0 0 0 0 4 0.913043

0 2 0 0 386 8 6 1 0 1 3 9 0 0 0 0 0 0 0 5 0.927885

0 2 11 3 7 972 0 13 7 2 21 4 3 2 0 13 0 0 1 6 0.916117

0 0 0 0 5 2 259 0 1 0 4 4 0 0 0 0 0 0 1 7 0.938406

0 1 2 0 3 18 0 541 1 3 1 0 0 2 0 1 3 0 0 8 0.939236

0 0 1 1 3 4 5 0 158 0 3 4 0 0 0 0 0 0 0 11 0.882682

0 0 0 0 1 3 0 1 0 95 0 0 0 0 0 0 0 0 0 12 0.95

2 1 1 2 3 16 2 1 5 1 1446 34 4 0 0 1 0 0 2 13 0.95069

2 0 0 7 2 7 1 0 0 0 43 1792 7 0 0 0 0 1 3 14 0.960858

0 1 2 0 1 1 0 1 0 0 5 9 675 6 3 7 0 0 1 15 0.948034

1 2 1 0 0 2 0 2 0 0 0 0 9 447 13 17 1 0 0 16 0.90303

0 0 0 0 0 1 0 0 0 0 0 0 5 10 690 48 2 0 0 17 0.912698

0 0 18 0 0 7 0 1 0 2 0 0 13 17 42 3377 16 0 0 19 0.966791

0 0 1 0 0 0 0 3 0 0 0 0 0 0 2 29 184 0 0 21 0.840183

0 1 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 56 0 22 0.933333

0 2 0 0 1 0 0 0 0 1 2 2 1 1 0 0 0 0 148 23 0.936709
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Table 28.  The confusion matrix for naïve participant 3 using a principal components analysis and decision tree 

classifier with a 10-fold validation. 

 

Table 29.  The confusion matrix for naïve participant 4 using a principal components analysis and decision tree 

classifier with a 10-fold validation. 

 

 

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 20 21 22 Accuracy

1034 1 0 5 0 2 2 0 0 0 3 0 11 1 9 0 1 0 0 0 0 1 0.967259

1 573 2 1 0 3 1 0 0 0 0 0 0 0 5 4 0 2 1 0 0 2 0.966273

1 1 552 0 1 11 0 1 3 0 0 1 0 0 0 3 5 12 0 4 0 3 0.927731

5 2 0 681 6 5 1 0 0 3 19 0 46 24 16 1 0 0 1 0 2 4 0.83867

0 0 0 5 196 5 0 0 0 0 5 1 4 1 2 0 0 0 0 0 0 5 0.894977

1 1 2 8 2 1346 0 3 6 0 6 2 4 0 4 0 1 2 0 1 0 6 0.969042

0 0 0 5 3 1 124 0 0 0 4 0 7 4 9 0 0 0 0 0 2 7 0.779874

2 0 3 0 0 0 0 190 2 0 0 0 0 0 0 0 0 1 0 0 0 8 0.959596

0 0 8 0 0 13 0 1 426 0 0 1 0 0 0 1 0 4 0 1 0 9 0.936264

0 0 0 0 0 0 0 0 0 57 0 0 1 0 0 0 0 0 1 0 0 10 0.966102

3 0 0 26 8 5 7 0 0 0 514 0 41 5 7 0 0 0 0 0 1 11 0.833063

0 0 0 0 0 5 0 1 0 0 0 94 0 0 0 0 0 0 0 0 0 12 0.94

5 0 0 37 4 2 1 0 0 0 52 0 1895 36 7 0 0 0 1 0 3 13 0.927558

7 0 0 14 0 0 8 0 0 0 9 0 40 2311 12 0 0 0 0 0 0 14 0.962516

11 6 0 9 2 0 1 0 0 0 5 0 16 21 1823 8 0 1 1 0 3 15 0.955952

1 5 1 0 0 5 0 0 1 0 0 1 0 0 8 759 25 7 0 0 0 16 0.933579

0 0 3 0 0 2 0 0 4 0 0 0 0 0 3 9 710 28 0 0 2 17 0.932983

0 0 20 0 0 1 0 1 3 0 0 0 0 0 0 4 22 1653 0 11 0 19 0.963848

0 0 0 3 0 1 0 0 0 0 0 0 3 1 2 0 0 0 188 0 1 20 0.944724

0 0 7 0 0 1 0 0 0 0 0 0 0 0 0 3 1 19 0 424 0 21 0.931868

1 1 0 8 2 0 1 0 0 0 0 0 8 2 1 0 0 0 2 0 151 22 0.853107

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 21 22 23 Accuracy

305 0 0 4 0 0 1 0 0 0 0 0 1 2 4 0 0 1 0 0 0 1 0.959119

1 1177 5 1 0 4 1 0 0 1 0 0 0 0 0 15 0 1 0 0 1 2 0.975145

0 9 586 1 1 7 1 1 3 0 0 1 1 0 1 3 2 10 3 0 3 3 0.92575

2 3 2 1078 5 4 14 0 0 2 48 0 30 22 4 3 8 4 0 1 1 4 0.875711

0 0 0 1 567 2 1 0 0 1 4 0 1 0 4 1 11 2 0 0 0 5 0.952941

0 0 11 5 4 2472 5 1 9 1 3 4 1 1 0 7 0 8 3 0 7 6 0.972463

1 4 0 10 1 8 2744 0 0 2 28 0 24 6 13 7 1 0 0 4 6 7 0.959776

0 0 1 0 0 4 0 92 2 0 0 0 0 0 0 0 0 0 0 0 0 8 0.929293

0 0 1 0 0 8 0 0 234 0 1 0 4 0 2 1 4 1 0 0 0 9 0.914063

0 0 0 1 3 2 6 0 0 408 4 0 3 5 20 1 0 0 0 3 0 10 0.894737

1 1 0 39 2 2 35 0 0 5 1960 0 46 12 5 1 6 5 0 3 5 11 0.921053

0 1 3 0 0 2 0 0 2 0 0 207 1 0 0 0 1 2 0 0 0 12 0.945205

1 0 0 36 1 1 35 0 2 1 41 1 3060 69 5 4 15 10 0 7 3 13 0.929526

0 0 1 20 0 0 7 0 1 1 9 0 65 3663 35 0 4 0 0 2 1 14 0.96167

4 0 0 3 4 0 10 0 0 24 8 0 8 22 3717 17 0 0 0 7 1 15 0.971765

0 9 1 4 2 7 8 0 6 1 1 0 1 3 8 1359 13 3 0 1 5 16 0.949022

0 0 0 5 4 2 0 0 3 0 3 0 14 4 1 15 1857 37 0 0 3 17 0.953285

0 2 5 1 4 8 0 0 4 0 1 2 9 0 0 1 53 2275 0 1 3 19 0.960321

0 0 2 0 0 5 0 0 0 0 0 0 1 0 0 2 0 1 165 0 1 21 0.932203

0 0 0 3 0 0 3 0 0 2 6 0 2 4 14 2 1 0 0 298 4 22 0.879056

1 5 5 3 0 3 1 0 0 1 10 0 3 1 2 5 4 0 0 1 848 23 0.949608
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Table 30.  The confusion matrix for a resident surgeon using a principal components analysis and decision tree 

classifier with a 10-fold validation. 

 

Table 31.  The confusion matrix for attending surgeon 1 using a principal components analysis and decision tree 

classifier with a 10-fold validation. 

 

 

 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 19 20 21 22 23 24 Accuracy

1704 6 0 10 1 13 11 0 2 0 4 0 2 6 2 2 1 2 0 0 0 2 1 0.963801

8 483 0 3 2 6 1 0 1 0 0 0 4 0 1 2 0 2 1 0 0 1 2 0.937864

0 0 197 0 1 9 0 0 1 0 0 0 0 1 0 0 4 0 1 0 0 0 3 0.920561

17 3 0 1452 13 10 23 2 2 0 19 0 31 16 2 0 3 14 0 4 2 10 4 0.89464

2 0 0 12 1645 31 15 2 3 1 8 0 9 4 9 0 4 6 1 0 1 2 5 0.937322

13 6 7 4 24 3715 21 16 11 0 4 1 12 5 12 17 3 5 5 2 1 7 6 0.954767

10 2 0 19 20 26 2111 0 4 2 4 0 16 16 8 0 0 7 0 1 2 4 7 0.937389

2 3 2 0 3 12 1 757 6 0 0 0 0 0 4 0 0 1 1 0 0 2 8 0.953401

2 1 3 1 2 14 3 5 356 0 0 2 0 0 4 0 1 1 1 0 0 0 9 0.89899

0 2 0 0 0 1 0 0 0 369 0 0 2 0 1 0 0 0 0 0 1 1 10 0.97878

2 0 0 21 9 5 7 0 2 1 782 0 24 12 1 0 0 2 0 0 0 2 11 0.898851

0 0 0 0 2 1 0 1 1 0 0 54 0 0 0 0 0 0 0 0 0 0 12 0.915254

6 0 0 27 9 6 8 0 1 0 20 0 2150 45 0 0 0 8 0 0 1 5 13 0.940507

4 0 0 18 5 1 11 0 0 2 3 0 39 3057 19 0 0 1 0 1 2 1 14 0.966182

5 4 0 3 9 19 6 2 1 3 1 0 4 16 1694 5 3 9 1 3 3 1 15 0.945313

2 2 1 1 1 19 1 0 0 0 0 0 0 0 2 401 2 1 2 0 0 1 16 0.919725

1 0 3 3 0 3 0 0 0 0 0 0 0 0 0 2 1199 7 0 1 1 2 19 0.981178

2 1 0 23 5 9 9 1 0 0 0 0 13 7 6 2 7 3301 0 13 1 23 20 0.964359

1 0 3 0 1 11 0 0 2 0 0 0 0 0 3 1 1 0 294 0 0 0 21 0.927445

0 0 0 2 1 2 1 0 0 0 3 0 1 0 0 0 0 17 0 285 1 1 22 0.907643

1 0 0 5 3 2 5 0 0 1 0 0 1 0 0 0 0 2 0 2 237 0 23 0.915058

5 2 0 11 3 7 6 0 0 0 3 0 4 4 1 0 1 14 0 2 2 1060 24 0.942222

1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 17 19 20 21 22 24 Accuracy

847 5 0 6 1 2 0 0 1 0 0 4 8 0 1 0 0 1 1 0 6 1 0.95923

8 363 0 0 0 0 0 0 0 0 0 0 0 2 0 0 2 0 1 0 0 2 0.965426

0 0 57 0 0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 3 0.95

3 0 0 611 8 5 8 0 1 0 1 6 6 0 0 0 0 5 0 1 1 4 0.931402

2 1 1 13 1015 10 11 3 0 2 0 6 11 1 0 1 1 6 1 0 4 5 0.932048

4 1 1 2 13 1264 7 10 0 6 1 8 2 2 1 1 1 0 6 0 0 6 0.950376

3 0 0 13 18 5 1028 4 0 2 0 14 14 0 0 0 0 8 0 0 2 7 0.925293

0 0 0 0 1 22 0 333 1 0 0 0 0 0 0 0 0 0 0 0 0 8 0.932773

2 0 0 0 1 1 0 0 55 0 0 0 0 0 0 0 0 0 0 0 0 9 0.932203

0 0 0 0 6 3 2 0 0 118 0 3 6 0 0 0 0 0 0 0 0 11 0.855072

0 0 0 0 0 3 0 0 0 0 36 0 0 0 0 0 0 0 1 0 0 12 0.9

1 0 0 7 7 6 15 0 0 2 0 759 32 0 0 0 0 2 0 0 5 13 0.907895

10 1 0 9 8 4 10 0 0 3 0 25 1763 4 0 0 0 6 1 0 3 14 0.954521

0 1 0 0 0 0 0 0 0 0 0 0 2 153 2 0 0 0 0 0 1 15 0.962264

1 2 0 0 0 0 0 0 0 0 0 0 0 1 107 0 8 0 0 0 0 16 0.89916

0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 137 0 0 0 0 0 17 0.985612

0 0 0 1 0 6 0 0 0 0 0 0 0 0 2 0 417 1 9 0 0 19 0.956422

1 0 0 3 4 1 2 0 0 0 0 0 5 1 1 0 0 869 0 0 8 20 0.97095

1 0 1 0 2 5 0 0 0 0 3 0 0 0 1 0 10 0 472 0 0 21 0.953535

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 37 0 22 0.948718

9 0 0 2 5 0 3 0 0 0 0 1 3 0 0 0 0 4 0 0 632 24 0.959029
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Table 32.  The confusion matrix for attending surgeon 2 using a principal components analysis and decision tree 

classifier with a 10-fold validation. 

 

Table 33.  The confusion matrix for attending surgeon 3 using a principal components analysis and decision tree 

classifier with a 10-fold validation. 

 

1 3 4 5 6 7 8 9 10 11 13 14 15 16 17 18 19 20 21 22 23 Accuracy

218 0 0 0 1 1 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 1 0.977578

0 415 0 0 10 0 1 1 0 0 0 0 2 2 6 0 16 0 4 0 0 3 0.908096

2 0 271 7 3 4 0 0 0 3 8 2 0 0 1 0 0 0 0 0 0 4 0.900332

3 0 5 1126 7 6 3 0 0 4 2 6 9 0 1 0 0 0 0 0 0 5 0.960751

0 13 0 12 2288 5 21 3 0 2 15 0 5 1 7 3 27 0 5 0 0 6 0.950561

1 0 2 6 2 745 0 0 0 3 4 3 4 0 0 0 0 0 0 0 0 7 0.967532

0 3 0 1 28 0 997 0 0 0 0 0 0 3 8 1 4 0 10 0 0 8 0.945024

0 0 0 0 4 0 2 67 0 0 0 0 0 0 3 0 1 0 0 0 0 9 0.87013

0 0 0 0 0 1 0 0 34 0 0 0 2 0 0 1 0 1 0 0 0 10 0.871795

1 0 3 4 2 3 0 0 0 247 13 2 0 1 0 0 0 0 0 0 2 11 0.888489

0 0 7 1 17 10 1 0 0 5 1801 33 4 1 0 0 1 0 0 1 1 13 0.956452

0 0 2 2 2 2 0 0 1 0 36 1721 29 0 0 1 0 0 0 1 1 14 0.957175

0 0 2 4 12 3 2 0 1 2 3 19 2183 25 3 0 0 0 0 2 0 15 0.965502

0 2 0 1 3 0 4 0 0 0 0 0 26 946 30 0 17 0 1 1 0 16 0.917556

0 4 0 2 6 0 2 0 1 0 1 0 1 23 1411 4 37 0 2 0 0 17 0.944444

0 0 0 1 0 0 1 0 0 0 2 0 1 2 1 188 0 2 0 0 0 18 0.949495

0 13 0 2 16 0 6 3 0 0 1 2 0 9 40 0 4686 0 12 1 0 19 0.978084

0 0 0 1 0 2 0 0 2 0 0 1 2 1 0 1 0 448 0 0 0 20 0.978166

0 6 0 0 2 0 7 0 0 0 0 0 1 3 3 2 26 0 467 0 0 21 0.903288

0 0 0 2 0 0 0 0 0 0 0 1 3 1 0 0 2 1 0 149 0 22 0.937107

0 0 0 0 1 0 0 0 0 4 0 2 0 0 0 0 0 0 0 0 171 23 0.960674

1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 17 18 19 20 21 22 24 Accuracy

1840 13 1 6 7 4 3 0 1 0 0 5 14 2 1 0 0 0 3 1 0 10 1 0.962847

10 762 1 2 1 1 0 0 1 1 0 0 3 1 4 0 0 3 0 3 0 0 2 0.960908

5 0 140 0 1 1 0 0 2 0 0 0 0 0 1 0 0 7 0 0 0 0 3 0.89172

4 0 0 494 10 0 4 0 0 0 9 6 10 1 0 0 1 0 3 0 3 3 4 0.90146

12 2 0 10 2601 60 52 0 0 3 3 15 3 18 0 0 1 4 10 2 1 2 5 0.92926

4 2 1 1 49 3114 32 8 5 2 2 31 3 3 2 0 0 3 2 5 1 2 6 0.951711

4 4 0 4 54 36 1452 1 0 1 4 13 5 4 0 0 4 0 0 1 2 1 7 0.913208

0 1 2 0 4 14 1 586 0 0 0 0 0 0 0 0 0 0 0 1 0 0 8 0.962233

0 1 2 0 0 2 0 2 89 0 0 0 0 0 1 0 0 0 0 0 0 0 9 0.917526

5 0 0 0 3 3 2 0 0 122 0 1 0 0 0 0 0 0 0 1 0 0 10 0.890511

0 0 0 1 2 3 7 0 0 0 97 6 0 0 0 0 0 0 0 0 1 0 11 0.82906

2 2 0 13 21 27 14 0 0 0 2 1395 28 3 0 0 0 0 0 0 0 3 13 0.923841

20 4 0 7 9 1 2 0 0 0 0 23 1956 5 0 0 0 1 0 0 0 7 14 0.961179

4 1 1 4 14 6 3 0 0 0 0 0 17 356 4 0 0 2 1 0 0 0 15 0.861985

1 3 0 0 0 1 0 0 0 0 0 0 2 4 278 0 0 1 4 0 0 0 16 0.945578

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 57 0 0 0 1 0 0 17 0.966102

1 0 0 0 4 0 4 0 0 0 0 1 0 1 0 0 512 0 8 0 1 2 18 0.958801

3 1 8 0 5 5 0 0 0 0 0 0 0 0 2 0 1 837 2 3 0 1 19 0.964286

5 0 1 2 8 2 1 1 0 1 0 0 1 1 1 0 6 5 803 0 1 5 20 0.951422

3 4 4 0 4 9 0 1 0 0 0 0 0 1 3 1 0 6 0 240 0 0 21 0.869565

0 0 0 2 1 0 4 0 0 0 2 0 0 0 0 0 0 0 1 0 127 0 22 0.927007

11 3 0 8 4 5 2 0 0 0 0 2 9 1 0 0 2 0 3 0 1 652 24 0.927454
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Table 34.  A summation of the occurrences state transitions to be used for a one-step transition probability matrix.  The numbered columns on the left denote the 

previous class state.  The numbered row on the top denote the next possible class state. 
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Table 35.  A one-step transition probability matrix.  This matrix represents the probability of moving from one class to the next, given the previous state.  The numbered 

columns on the left denote the previous class state.  The numbered row on the top denote the next possible class state. 
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Robotic microsurgery provides many advantages for surgical operations, 

including tremor filtration, an increase in dexterity, and smaller incisions.  There is a 

growing need for a task analyses on robotic laparoscopic operations to understand better 

the tasks involved in robotic microsurgery cases.  A few research groups have conducted 

task observations to help systems automatically identify surgeon skill based on task 

execution.  Their gesture analyses, however, lacked depth and their class libraries were 

composed of ambiguous groupings of gestures that did not share contextual similarities. 

A Hierarchical Task Analysis was performed on a four-throw suturing task using 

a robotic microsurgical platform.  Three skill levels were studied: attending surgeons, 

residents, and naïve participants.  From this task analysis, a subtask library was created.  

The Hierarchical Task Analysis subtask library, a computer system was created that 

accurately identified surgeon subtasks based on surgeon hand gestures.  An automatic 

classifier was trained on the subtasks identified during the Hierarchical Task Analysis of 
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a four-throw suturing task and the motion signature recorded during task performance.  

Using principal component analysis and a J48 decision tree classifier, an average 

individual classification accuracy of 94.56% was achieved. 

This research lays the foundation for accurate and meaningful autonomous 

computer assistance in a surgical arena by creating a gesture library from a detailed 

Hierarchical Task Analysis.  The results of this research will improve the surgeon-robot 

interface and enhance surgery performance.  The classes used will eliminate human 

machine miscommunication by using an understandable and structured class library 

based on a Hierarchical Task Analysis.  By enabling a robot to understand surgeon 

actions, intelligent contextual-based assistance could be provide to the surgeon by the 

robot. 

Limitations of this research included the small participant sample size used for 

this research which resulted in high subtask execution variability.  Future work will 

include a larger participant population to address this limitation.  Additionally, a Hidden 

Markov Model will be incorporated into the classification process to help increase the 

classification accuracy.  Finally, a closer investigation of vestigial techniques will be 

conducted to study the effect of past learned laparoscopic techniques, which are no longer 

necessary in the robotic-assisted laparoscopic surgery arena. 
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