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Abstract

This thesis describes the initial design process for an application of continuum robotics

to endoscopic surgical procedures, specifically dissection of the colon. We first introduce

the long-term vision for a benchtop dual-instrument endoscopic system with intuitive haptic

controllers and then narrow our focus to the design and testing of the instrument manipulator

itself, which must be actuated through the long, winding channel of a standard colonoscope.

Based on design requirements for a target procedure, we analyze simulations of two types

of continuum robots using recently established kinematic and mechanic modeling approaches:

the concentric-tube robot (CTR) and the concentric agonist-antagonist robot (CAAR). In

addition, we investigate solutions to the primary engineering challenge to this system, which

is accurately transmitting joint motion through flexible, hollow shafts. Based on our study

of the manipulator simulations and transmission shafts, we select instrument designs for

prototyping and testing. We present approaches for controlling the position of the robotic

instrument in real-time using an input device, and demonstrate the degree of control we can

achieve in various configurations by performing time trial experiments with our prototype

robotic instruments. Our observations of the manipulator during testing inform us of sources

of error, and we conclude this report with suggestions for future work, including shaft design

and alternative continuum manipulator approaches.
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Chapter 1

Background & Motivation

1.1 Existing Medical Robots

Over the last 20 years, the use of robots to assist surgical procedures has increased rapidly.

The advancements made in actuation, instrumentation, processing power, and materials

have allowed surgical robots to be designed with greater positioning accuracy and dexterity.

Additionally, there has been an increase in surgeon acceptance of robotic tools, especially as

more intuitive controls and input devices are integrated with robot manipulation.

No single robot has had a greater impact on the growth of medical robotics than the

Da Vinci system by Intuitive Surgical [17]. Initially designed for laproscopy, the Da Vinci

system is now available in several models and is cleared for many procedures. It is the only

system with over a thousand installations worldwide and has been studied in over 10,000

peer-reviewed publications [29]. Although the Da Vinci has been proven capable in many

procedures, the recent rise of research into robot-assisted surgery has driven the development

of a diverse set of robots, many of which are designed for specific procedures. Other examples

of successful surgical robots include the Pathfinder and the Renaissance for neurosurgery

[12] [18], the Sensei X for catheter positioning [24], and many others. Each of these robots

has improved the performance and increased the occurrence of minimally invasive surgery

(MIS), which has become a foundational source of research in the field of medical robotics.

It has been shown to reduce hospital time, cost, and patient trauma. The continuation of
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robotics research can improve the accuracy and control aspects of existing minimally invasive

procedures, as well as open up possibilities of new and previously impossible procedures.

1.2 Research Trend: Continuum Robotics

The work presented in this thesis falls within the specific research trend of continuum robotics

for surgical procedures. While traditional robot structures have enabled better performance

in many procedures, it has recently been of great interest to explore the capabilities of

continuously flexible manipulators for reaching surgical sites in the body that are difficult

to access. Robots with these type of structures can conform to curved paths and can easily

be miniaturized to fit through small access ports. This allows natural orifices in the body

to become a feasible alternative for tool entry, and reduces the need for invasive approaches.

As discussed in a recent survey by Burgner-Kahrs et. al, several examples of continuum

robot systems have been developed that demonstrate unique aptitude for many procedures

located in remote areas of the body [5].

As shown in Figure 1.1, a variety of tasks can be accomplished using continuum

manipulators. Although many continuum robotic systems have been developed, all of them

share similar mechanical characteristics because of the necessity of highly elastic members

that contribute to overall robot flexibility. In recent years, researchers have developed

mathematical modeling and control techniques that enable accurate manipulation of soft

robot structures. This progress has enabled successful surgical verification experiments that

raised awareness of the high potential of continuum robots for surgery. In this thesis, we

seek to apply continuum robotics to one of the more difficult to access workspaces in the

human body, the colon. In the following section, we highlight the importance of minimally

invasive surgery for endoscopic procedures and define the overarching goal of the study.

1.3 Description of Purpose

This year, thousands of Americans diagnosed with colorectal cancer will need surgery to

dissect and potentially resect portions of the colon. Minimally invasive surgical techniques

2



Figure 1.1: Continuum robots in surgery: (Top Left) Engh et al. utilize duty-cycle spinning of
a bevel-tipped needle to achieve nonlinear trajectories [7]. (Top Right) Burgner et al. teleoperate
a concentric-tube manipulator during a realistic surgical scenario [4]. (Bottom Left) Goldman
et al. designed a telerobotic system for transurethral surveillance and surgical intervention using
a flexible manipulator [8]. (Bottom Right) Burdette et al. perform an ex vivo liver ablation
experiment using a steerable needle device [3].

have demonstrated equivalent oncologic outcomes with significantly reduced postoperative

complications. However, this still requires major intra-abdominal surgery. Laparoscopic

techniques are not easily adaptable to the cylindrical workspace of the colon. In order for

patients and surgeons to maximize the benefits of MIS, technological advances in flexible

manipulation are required to enhance currently used endoscopic surgical tools. Our goal is

to provide these advances with flexible robotic tool manipulators to enhance the dexterity

and strength of current tools while providing intuitive control and maximizing visualization

with smaller manipulators.

While some early (T1) rectal cancers near the anal verge can be removed with laparoscopic

instruments passed through the anus or introduced via the abdomen, and small, pre-

invasive polyps and lesions can be treated with endoscopic mucosal resection (EMR) during

colonoscopy, as colorectal tumors grow larger and deeper into the submucosa, the surgical
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procedure becomes more difficult and time consuming. Colonic endoscopic submucosal

dissection (ESD) is difficult due to the thin walls, narrow lumen, acute angulations in

the colon [36], and inherent risk of perforation. ESD can potentially further minimize

operative risks for patients by removing the need for colon resection for pre-malignant polyps

[14]. However, its widespread practice has been hindered by the difficulty of manipulating

dissection tools endoscopically [15] and the subsequent risks due to this difficulty.

Patients with advanced colorectal cancer require full-thickness resection. Currently, this

procedure requires either an open (for large sections) or laparoscopic (for smaller sections)

approach to repair the opening in the colon wall. Laparoscopic colorectal surgery reduces

postoperative complications, yet still carries with it a hospital mortality of 1%, anastomotic

leak of up to 10%, and conversion to open surgery of 18% [36]. Therefore, surgeons are

exploring an endoscopic approach to pre-malignant colorectal neoplasms called endoscopic

full-thickness resection (EFTR) [11, 22, 28]. A safe and reliable endoscopic system that can

perform full-thickness resection would allow surgeons to remove potentially pre-malignant

tissue when lab testing is unclear or unachievable in order to avoid additional operations

and local recurrences [23]. Reviews of EFTR have been mixed, and the consensus is that

the technique of EFTR is developing, but the inability to close the resection defect reliably

is a major obstacle [1].

Our overarching hypothesis is that a robot-assisted endoscopic tool manipulation system

can reduce difficulty, risk, and procedure time for colorectal tumor resection and decrease

the number of invasive procedures required for large section tissue removal. In the following

section (1.4), we first define basic design requirements for an endoscopic instrument. We

then explore the suitability of two types of continuum robotic structures in Chapter 2. Both

of these robots require rotary actuation, and in Chapter 3, we describe the challenge of

transmitting rotation through an endoscope and investigate various solutions.

1.4 Design Specifications

Through a literature review of procedure requirements and discussion with experienced

surgeons, we have established (1) a desired workspace, (2) size constraints on the instrument

4



Figure 1.2: Benchtop robotic instrument system mockup

manipulators such that they can be deployed through tool-port channels in currently

available colonoscopes and allow standard tools to pass through the lumen, and (3) an

accuracy requirement for effective surgical teleoperation. These parameters have been

organized in Table 1.1.

The established specifications are used throughout this study to evaluate the suitability

of several instrument manipulator designs. These values are baseline goals, and as

demonstrated in later stages of this endeavor, we discover additional design requirements

that may be specific to each type of manipulator (e.g. torsion minimization in the CTR via

overlap constraints). We also develop design restrictions through information gained from

testing physical prototypes. However, the basic parameters organized in Table 1.1 allow us

to take first steps in manipulator design. Figure 1.2 illustrates the long-term system goal for

Table 1.1: Table of design specifications for instrument

Specification Value

Workspace Volume (Cylinder) Diameter: 4-6 cm, Length: 8-10 cm [13]

Working Channel Size Diameter: 2.8 and 3.8 mm [31]

Maximum tool size Diameter 1.9 mm

Accuracy < 1 mm [9]
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the benchtop robotic instrument manipulator. The scope of the work presented here does

not include integration of haptic feedback or dual-channel instruments, but we hope that

the findings will support the development of such a system.

6



Chapter 2

Manipulator Design

In the following sections, two types of continuum robots are considered for endoscopic

deployement: the concentric-tube robot (CTR) and the concentric agonist-antagonist robot

(CAAR). We first introduce the concept and kinematics of each type of robot and discuss

their unique characteristics. We conclude the chapter with analysis of manipulator workspace

and resolution in either case, providing insight into necessary design features for successful

endoscopic deployment.

2.1 Concentric-Tube Robots

As shown in Figure 2.1, concentric-tube robots consist of multiple precurved elastic tubes

that are arranged concentrically. The base of each tube is independently axially rotated and

translated by an actuation system in order to change the distal shape of the tube collection

and control the pose of the tip. Recently, concentric-tube manipulators have been developed

for several surgical procedures, such as cardiac [27], transnasal [33], and lung surgery [34].

Because of the ability to precurve very small elastic tubes, manipulators of this type are able

to work in very small spaces. We investigate the possibility of an independently controlled

concentric-tube manipulator for endoscopic deployment, and Figure 2.2 depicts our initial

system design.

7



Figure 2.1: Concentric tube manipulators can be manufactured to needle sizes, as shown
on the left. Many degrees of freedom are achieved by grasping the base of each tube and
both translating in the axial direction and rotating about the centerline axis.

2.1.1 Overlap Constraint

In prior analysis of concentric tube kinematics, most pre-curved tubes have been designed

with a single section of curvature at the distal end of the tube. For these types of designs,

curved sections on separate tubes frequently overlap, causing an increase in internal moments

and creating torsion. Therefore, we constrain the design space to avoid the overlap of curved

sections altogether and thereby eliminate the potential for torsional instability [6, 26]. We

hypothesize that designs of this type are advantageous for robots which require a long,

winding transmission path, as is the case in endoscopic procedures.

In our proposed class of designs, we let all outer tube designs contain straight sections at

their distal ends, with lengths that are greater than or equal to the length of the sum of all

curved section lengths on smaller tubes. Then, tubes with pre-curvature contain segments

which follow the order: straight → curved → straight. This is in contrast to most prior

designs, which have simply been straight-curved. We define Lsi and Lci as the lengths of the

straight and curved distal sections of the ith tube, beginning from the base. Then, assuming

there are at most two straight sections and one curved section in each tube design, the new

8
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Figure 2.2: Initial system design.

section length constraint can be described as

Lsi ≥
i−1∑
k=1

Lck . (2.1)

Overlap of curved sections is then only possible when an inner tube is withdrawn far enough

that its tip is further retracted than the tip of the next outer tube. This type of actuation

does not result in any useful configurations, and therefore is disallowed in any control scheme.

2.2 CTR Modeling

In order to meet the design specifications, we modeled the kinematics of a collection of nested

concentric tubes. The modeling is based on the work done by Rucker et al., which applied

geometrically exact Kirchhoff rod theory to pre-curved concentric tubes under arbitrary

external point and distributed wrench loading [25]. Friction is neglected in this modeling

framework, but as discussed in Ref. 25, its effects do not appear to dominate prototype

behavior.
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Table 2.1: Table of concentric tube kinematics variables.

Variable Definition

g1 Transformation describing the deformed backbone shape of the collection

of tubes

ui,j Curvature of the ith tube about the local j axis, where the innermost

tube is i = 1

θi Angular rotation of the ith tube about the local z-axis with respect to the

1st tube

e3 Unit vector on local z-axis ([0 0 1]T )

R1 Rotation matrix for the first tube relative to global reference frame

Rθi Rotation matrix (about the z-axis) for the ith tube relative to the 1st tube

by the angular amount θi

f Distributed applied load

l Distributed applied moment

K Stiffness matrix

E Young’s modulus

I Second moment of area of tube cross section

G Shear modulus

J Polar moment of inertia of tube cross section

10



2.2.1 Kinematics Overview

The derivation of the model below is described in Ref. 25. The resulting multi-tube

kinematics and statics are defined by a set of first order differential equations for the set

{g1,u1, u2,z, ..., un,z, θ2, ..., θn}, as follows:

ġ1 = g1ξ̂, where ξ =
[
eT3 uT1

]T
(2.2)

 u̇1,x

u̇1,y

 =−K−1
n∑
i=1

(
Rθi(Ki(θ̇i

dRT
θi

dθi
u1 − u̇∗i ) + (ûiKi + K̇i)(ui − u∗i )

)∣∣∣∣
x,y

−K−1
(

ê3R
T
1

∫ `

s

f(σ)dσ +RT
1 l

)∣∣∣∣
x,y

(2.3)

u̇i,z = u̇∗i,z +
EiIi
GiJi

(
ui,xu

∗
i,y − ui,yu∗i,x

)
+

˙(GiJi)

GiJi

(
u∗i,z − ui,z

)
− 1

GiJi
eT3R

T
i li (2.4)

θ̇i = ui,z − u1,z. (2.5)

Variable definitions are listed in Table 2.1. Each variable can be expressed as a function

of arc length s, and all dots denote a derivative with respect to s. The * superscript refers

to the variable before it undergoes deformation in the nested state, which means solutions

require tube pre-curvatures that are some known functions of arc-length. The ̂ operator

refers to a conversion of an element of R3 to its corresponding element in so(3), as defined

in Ref. 19. The x and y curvature components of the outer tubes are not necessary for

describing the shape of the manipulator because in a collection of nested concentric tubes,

the deformed curves of all tubes follow the same trajectory. The main distinction from a

single rod is that the tubes are free to twist independently about the local tangent z-axis.

The entire system is constrained by actuator inputs (rotations and translations) at the

proximal end and static equilibrium conditions at the distal end. To implement the forward

kinematics, we solve the resulting boundary value problem by numerically integrating the

first order system described in Equations 2.2 - 2.5 for a given set of actuator inputs and

guessed initial curvatures at the entry point of the manipulator. A shooting method is then

11



Figure 2.3: At overlap of deformed curvature step transitions, the manipulator Jacobian is
discontinuous. Relative translation of the tubes at across this overlap point causes an instantaneous
change in direction of end effector velocity.

used to iteratively find the initial curvatures that satisfy the static equilibrium at the distal

end.

2.2.2 Jacobian Discontinuities

Traditionally, concentric-tube robots are designed with discrete sections of pre-curvature

and abrupt transitions between sections in order to maximize dexterity. Consequentially,

the axial sliding motion of one tube with respect to another will result in discontinuous end-

effector motion at certain points in the workspace. In Figure 2.3, an example concentric-tube

design is shown in a configuration where two sources of deformed curvature discontinuity

overlap. Sections of initially straight tube are colored blue, and pre-curved sections of tube

are colored in red. Specifically, the end of the outer tube occurs at the exact same arc-

length location as the step change in pre-curvature of the inner tube. At this configuration,

the manipulator Jacobian is discontinuous. As a demonstration of this behavior, Figure

2.4 shows a series of plotted manipulator poses corresponding to a similar concentric-tube

design to what is shown in Figure 2.3. The plotted poses are simulated by solving the

forward kinematics model using the method described in Section 2.2, where the inner tube

is translated in the distal direction by increments of 0.1 mm. In this simulation, the abrupt

change in motion direction occurs when the point of inner tube pre-curvature transition

aligns with the tip of the outer tube. This event happens halfway through the translation

of the inner tube. This discontinuous motion can be a source of error for inverse kinematics
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Figure 2.4: Multiple manipulator shapes are simulated as the actuators sweep through a
problematic configuration, and the plot is focused on the distal ends in order to highlight tip
position. Red lines represent the distal end of the manipulator, and the black line connects all
of the end effector positions to represent the motion profile. As the tubes are actuated through
an overlap of parameter discontinuities, the motion of the manipulator end effector encounters an
abrupt change in direction.
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approaches that use a finite difference approximation of the Jacobian. When a desired

motion must converge to or pass through points of Jacobian discontinuity, these methods

may produce erratic end effector motion if the target error becomes less than the finite

difference step. This can be easily avoided by choosing a step size that is appropriately

small. Alternatively, it may be desirable to model smooth pre-curvature transitions since it

not only precludes any discontinuities, but also can more accurately model tube geometry. In

a recent study, Ha et al. designed concentric tubes with piecewise straight sections in order

to avoid pre-curvature overlap and reduce elastic instability [10]. Their model used sigmoid

functions to approximate pre-curvature transitions because their manufactured tubes did not

achieve a truly instantaneous step change as modeled. These sigmoid curves can be plotted

with logistic functions with the general form

f(x) =
L

1 + e−k(x−x0)
, (2.6)

where L is the magnitude of the step change, x0 is the location of the transition midpoint,

and k is the steepness of the transition curve. A linear combination of multiple logistic

functions can be used to approximate tube designs with multiple discontinuous changes

in pre-curvature. Ideally, the functional approximations will mimic the physical tube

curvature exactly. This greatly depends upon the choice of steepness factor k, where large

magnitudes of k will cause transitions to occur almost instantaneously over very small arc-

length travel. This modeling approach also allows kinematics models to solve the system of

differential equations (2.2 - 2.5) in a single integration, without subdividing the manipulator

length. This means that choices of k for all pre-curvature functions are limited by the

ability of numerical techniques to integrate over smooth, fast changes that closely resemble

discontinuous changes. Decreasing the integration step size will enable many numerical

solvers to handle this issue, but it comes at the cost of computational efficiency.
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Figure 2.5: The CAAR accomplishes planar bending through relative translation of the tube
bases. Movement of the offset backbones causes a moment at the distal end, resulting in bending.
The design shown here consists of uniform cut geometry, resulting in a bending shape of constant
curvature.

2.3 Concentric Agonist-Antagonist Robots

The concentric agonist-antagonist robot (CAAR) is a recently proposed continuum robot

design that uses push-pull actuation to achieve bending in a plane [20]. It consists of

concentric, elastic tubes which are fixed together at the distal end and not free to slide

relative to one another as in the case of concentric-tube robots. To create conditions for

bending, material is selectively removed from each tube such that the neutral bending

axis is offset from the centerline (see Figure 2.5). When the tube bases are translated

in opposite directions, the forces induced by the offset backbones generate a moment at

the manipulator tip, and bending occurs. This design is similar to the wrist developed by

York et al, which actuated a notched elastic tube by pulling a tendon [30, 37]. However,

the CAAR uses push-pull motion of two backbones to bend within a full plane instead of

a half-plane. A key advantage in this design is that bending can be achieved through a

large range of angles without experiencing any of the elastic instabilities observed in many

concentric-tube manipulators. In particular, the CAAR can pass through the completely
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Figure 2.6: The four basic geometrical parameters shown here determine the shape of the CAAR
during actuation.

vertical configuration with ease, whereas this motion is impossible for many highly pre-

curved concentric-tube robots. By tuning the geometry design for material removal, the

CAAR is able to curl into high-curvature shapes within small regions such as the colon

workspace. In the following section, we introduce the kinematic equations that relate the

tube base translations to end effector displacement. We use this framework to design a

manipulator that can be endoscopically deployed.

2.4 CAAR Modeling

As shown in Figure 2.6, the basic shape of the CAAR is parameterized by four design

features, assuming no pre-curvature exists in either tube: (1) cut depth g, (2) cut section

height h, (3) uncut section height c, and (4) number of cut segments n. In Ref. 20, Oliver-

Butler et. al characterized the effects of varying the cut section height and orientation about

the centerline axis. In our endoscopic design case, we choose to simplify the design space

by using uniform cut geometry. In this constrained parameter set, the manipulator will

always bend into circular arcs of constant curvature. For these uniformly bending CAAR
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manipulators, the planar shape is fully determined by the total arc length sL and the angle

of the end effector from the horizontal. The angle can be easily computed using the distance

between the centroids of each cut tube (ȳ1 + ȳ2) and the relative translation of the two tubes

(∆q):

θ =
∆q

ȳ1 + ȳ2
. (2.7)

Depending on cut geometry, the centroids of each tube may require careful computation.

For a detailed explanation of an example neutral axis calculation, see Ref 20. Once the end

effector angle is found, the total arc length along the manipulator centerline is simply the

sum of each section length:

sL = (nh− ȳθ) + c(n− 1) + b. (2.8)

where ȳ is the neutral axis of the larger tube and b is any length beyond the last cut section.

Given both θ and sL, it is simple to build a base-to-tip transformation in the x-z plane,

based on work done by Webster et al in Ref. 35:

Tbend =


cos θ 0 sin θ sL(1−cos θ)

θ

0 1 0 0

− sin θ 0 cos θ sL sin θ
θ

+ q2

0 0 0 1

 . (2.9)

It is desirable to also rotate the tubes axially in order to sweep the planar range of

the manipulator through 3-dimensional space. We can easily define a rotation angle ψ

that describes the tube base rotation about the z-axis. Then, the updated end effector

transformation can be found by simply pre-multiplying Equation 2.9 by

Trot =


cosψ − sinψ 0 0

sinψ cosψ 0 0

0 0 1 0

0 0 0 1

 , (2.10)
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which completes the necessary set of equations for computing the forward kinematics.

2.5 Manipulator Simulation Analysis

2.5.1 CTR Workspace

We began our workspace simulations by defining the basic structure of each manipulator. The

CTR is composed of 3 nested concentric tubes that follow the curvature guidelines specified

in Section 2.1.1. We determined the reachable workspace of the manipulator by uniformly

sampling the actuation space with a resolution of 2 mm in translation and 30 degrees in

rotation. At each sampled point, the forward kinematics was solved within the user defined

tolerance. The point cloud in Figure 2.7 represents the set of Cartesian coordinates that the

robot could reach. This set was generated using the design parameters found in Table 2.2.

The large values of proximal straight section lengths are required for full travel through a

standard colonoscope, and this parameter does not affect the workspace of the manipulator.

For context, we simulated the bounds of the colon (in pink), and the 140 degree field of view

of the colonoscopic camera (in brown). An iterative simulation process was performed in

order to characterize the effect of the other design parameters. Early in the design process

we discovered that in a 3-tube assembly, any pre-curvature in the outermost tube greatly

reduced the reachable workspace within the colon wall. This is because the overlap constraint

has an accumulating effect on the length of distal straight sections for outer tubes, and this

reveals a trade-off introduced by the overlap constraint. We therefore limited 3-tube designs

Table 2.2: CTR manipulator design parameters for workspace simulation.

Tube OD
(mm)

ID
(mm)

Pre-
Curvature
(m−1)

Proximal
Straight
Length
(mm)

Pre-Curved
Length
(mm)

Distal
Straight
Length
(mm)

Inner 2.54 2.25 40 1574 20 0

Middle 2.87 2.57 35 1624 25 20

Outer 3.43 2.92 0 1674 0 45
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Figure 2.7: The workspace of the concentric tube manipulator with an overlay of the colon
in pink and the field of view of the colonoscope in gray. A hole in the center of the workspace
grows as the manipulator is inserted further into the colon.
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Figure 2.8: The workspace of the CAAR with an overlay of the colon in pink and the field
of view of the colonoscope in gray. Unlike the CTR, the CAAR has a uniform reach in the
xy-plane regardless of insertion depth.

to have straight outer tubes. Then, increasing pre-curvature and pre-curved lengths of the

middle and inner tubes yielded workspaces with increasingly better coverage but diminishing

spatial resolution. We observed that all CTR workspace simulations exhibited a changing

xy-plane dexterity as the manipulator was inserted further into the colon along the z-axis.

At relatively high z-coordinates, the CTR contains a large cone-shaped hole in the center of

its workspace in which it cannot maneuver.

2.5.2 CAAR Workspace

To simulate the CAAR workspace, we performed a forward kinematics loop similar to the

one described in the previous subsection. The example manipulator consists of two tubes

with cut geometry listed in Table 2.3. The workspace was generated by iterating each tube

base translation by 2 mm and rotating both tubes simultaneously by 30 degrees. At each
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Table 2.3: CAAR manipulator design parameters for workspace simulation.

Tube OD (mm) ID (mm) n c(mm) h(mm) g(mm) b(mm)

Inner 2.0 1.1 6 2.9 2.9 0.5 2.9

Outer 3.2 2.4 6 2.9 2.9 0.4 2.9

configuration, we used the transformations described in Equations 2.9 and 2.8 to compute

the end effector position and plotted all the data on the spatial plot shown in Figure 2.8.

Because of the constant curvature design, the CAAR workspace is evenly distributed inside

a cylindrical shape. The depth of insertion into the colon does not change the xy-plane

dexterity, which is an advantage in comparison to the CTR workspace. Changing the cut

and uncut section lengths h and c can expand or shrink the workspace volume, and the cut

depth g affects the degree of constant curvature bending. Additionally, the orientation of

the end effector at the simulated colon wall is advantageous for performing tasks there.

2.5.3 Resolution Analysis

We measured positional accuracy of both types of robots by limiting joint resolution

according to the selected stepper motors for the actuation system (see Chapter 4). We

modeled this limitation by computing the resolution of the instrument tip using the minimum

step angle specification of 1.8◦ for each motor, which converts to 0.025 mm of translation

through the lead screw. More precision is possible through microstepping, but for preliminary

analysis, we consider motor control to be without this capability. The computation for the

resolution shown in Figure 2.9 was performed for the same designs analyzed in Section

2.5.1. In order to show end effector spatial resolution across the workspace, we sampled the

actuation space to find an initial set of >3000 nominal manipulator configurations. For each

point in this group, an additional subset of points was solved corresponding to a minimum

step by each actuator away from the nominal point. Then, we calculated the maximum

Euclidean distance that the end effector could travel away from the nominal configuration

by referencing the subspace bounded by the new subset. This maximum Euclidean distance
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Figure 2.9: The spatial resolution of the CTR end effector is represented as the color of
each point in the workspace.
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Figure 2.10: The spatial resolution of the CAAR end effector is represented as the color
of each point in the workspace.
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represents a measure of spatial resolution in that it defines an upper bound on the end

effector displacement that is caused by minimum actuator steps. Figures 2.9 and 2.10 show

a workspace point cloud for each type of robot, in which the color scale represents the spatial

resolution.

2.6 Discussion

Based on the results of the workspace and resolution analyses we performed, it is possible to

design a set of CTR and CAAR manipulators that fulfill the design requirements introduced

in Chapter 1. However, the CTR design required highly pre-curved sections of tubing to

access a comparable workspace to the CAAR, which may cause instability problems. In

addition, the CAAR has better access to the center of the colon than the CTR and an overall

more uniform workspace. Both manipulators have enough end effector spatial resolution to

navigate the colon, even if driven by an inexpensive stepper motor actuation system. It is

possible to improve the resolution by replacing the actuation system, but it likely comes

with much higher motor prices.

The following chapter discusses the design of the transmission tubes which lie inside the

colonoscope and connect the distal manipulator to the motors. The manipulator design

analysis we have discussed so far assumes that the motor translation and rotation can be

perfectly transmitted to the end of the colonoscope. This is not necessarily the case, and

solving this issue poses a primary engineering challenge for this system.
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Chapter 3

Transmission Design

In order to deploy a continuum robot out of the end of a standard colonoscope, the instrument

structure must have sufficient length to travel more than 7 feet through a tool channel

(see Figure 2.2). Our initial design of the surgical system assumed that the section of the

manipulator that lies entirely inside the colonoscope could be made of any available tubing

material that met the size restrictions of the tool channels. However, early investigation

of interaction between commonly-used tubing for continuum robots and the colonoscope

revealed that the transmission tubes must be significantly more flexible than previously

thought. We desire that the natural flexural rigidity of the colonoscope should not be greatly

increased by the addition of the manipulator.

Also, as shown in Figure 3.1, the entry port for the tools contains an abrupt angle

of approach, which only allows tubes with higher strain limits to pass through. This

further restricts the range of shafts that will physically pass through the tool channels of

the colnoscope. The following sections explain the process by which we approximated the

flexural rigidity of the colonoscope and our proposed solutions for transmission design.
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Figure 3.1: The tool entry at the proximal end of the colonoscope contains a sharp angle to pass
through.

Figure 3.2: Colonoscope flexural rigidity experiment.

26



Table 3.1: Colonoscope bending test data.

L (m) Applied Force (kg) Deflection (m) EI (Nm2)

0.1 0.25 0.003 0.0307

0.1 0.40 0.040 0.0274

0.1 0.56 0.050 0.0272

0.2 0.08 0.067 0.0276

0.2 0.14 0.107 0.0238

0.2 0.25 0.140 0.0211

0.2 0.30 0.150 0.0196

0.3 0.08 0.165 0.0271

0.3 0.13 0.197 0.0307

0.3 0.19 0.227 0.0256

3.1 Colonoscope Constraints

3.1.1 Colonoscope Bending Test

In order to define a maximum permissible flexural rigidity for the robot transmission section,

a simple experiment was performed to approximate the flexural rigidity of the colonoscope.

The experimental setup is shown in Figure 3.2. We used the same rod model introduced

in Section 2.2 to describe the shape of a section of the colonoscope as a cantilevered elastic

rod, where we assumed that the colonoscope exhibits linear elastic deformation under load

excluding the actuated distal section. Using a spring scale with a digital read-out, we applied

a load in the x direction to the end of the bending section of the colonoscope. The opposite

end of this section was fixed using a clamp. Since the experiment was performed on a flat

surface, the effect of gravity is negligible. By measuring the deflection of the colonoscope at

the location of the load, we can solve the boundary value problem of static equilibrium by

guessing the flexural rigidity EI of the colonoscope along with the values of the unknown

state variables at the cantilevered end. The results of this experiment are shown in Table 3.1.

Three segments of different length were tested using varying applied forces. The values of EI

vary in the range of 0.02−0.03 Nm2, with the average being 0.0261 Nm2. The inconsistency

in these values can be attributed to unknown elastic behavior of the colonoscope, as it is not

composed of uniform material. We use these results to establish an approximate specification
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Table 3.2: Transmission design requirements.

Requirement Value

Flexural Rigidity (Nm2) ≤ 0.026

Max. Elongation (mm) ≤ 5

Max. Windup (deg) ≤ 90

for the stiffness of endoscopic robot transmissions. As an example comparison, the combined

flexural rigidity of three Nitinol tubes in parallel that fit inside the colonoscope tool channels

equals 0.3125 Nm2, which is much higher than desired. This result indicates that the

manipulator will require a significantly more compliant transmission section than previouly

thought in order to decrease the overall flexural rigidity that is added to the colonoscope.

3.1.2 Transmission Requirements

Using the results of the colonoscope bending test and observations of alternative tubing

options, we developed a set of desired requirements for the transmission tubing. These are

listed in table 3.2. The maximum elongation and rotational windup values do not necessarily

correspond to an error metric for the manipulator, but we hypothesize that transmission

designs which meet the requirements will function well enough for compensation in the

control approach. For example, the 5 mm elongation requirement ensures that the bending

motion of the manipulator does not lag significantly behind the relative translation of the

tubes due to elastic axial stretching, and can be adjusted for in real-time. All of the tubes

selected for further study in the following sections meet the flexural rigidity requirement.

3.2 Candidate Transmission Designs

3.2.1 Notched Transmission Approach

In our initial manipulator design, we planned to create an instrument made entirely of Nitinol

because this material has proven ideal for many concentric-tube studies. However, since we

discovered that Nitinol tubes with appropriate diameters would greatly increase the flexural
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Figure 3.3: A solid model of a stainless steel notched tube design for the robot transmission,
based on the work done Lee et. al[16].

rigidity of the colonoscope, we proposed a machined metal tubing alternative. We modeled

a manipulator with a transmission made of structurally modified stainless steel tubes, which

are joined to Nitinol sections at the distal end. The stainless steel tubes have a Young’s

Modulus of around 200 GPa (an increase by a factor of 3 from the Nitinol tubes). In order

to decrease the flexural rigidity, these tubes were designed with notched arranged in a pattern

similar to the one studied in Ref. 16. Figure 3.3 depicts a solid model of a representative

notched tube, for which we determined stiffness values by applying finite element analysis

to designs of this type under defined loading. This particular design was shown to decrease

flexural rigidity while maintaining a relatively high torsional stiffness. The notches were

designed so that the flexural rigidity of the colonoscope was only increased by 50% due to

the stainless steel transmission tubes.

However, for the notched patterns that achieved the desired flexibility, the spacing and

notch width dimensions were in sub-millimeter ranges. This requires highly precise and time-

consuming machining of thin-walled tubes, which is beyond the capability of the available

university facilities. We obtained quotes from laser cutting manufacturers that exceeded the

budget of this project. In addition, one of the goals of the overall system design is to provide

an affordable, modular benchtop system. We therefore continue our study with alternative

transmission designs and leave investigation of structurally modified transmissions to future

work.
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Figure 3.4: 3D-printed transmission composed of 10-inch long segments joined together.
The inner lumen allows passage of a cable for grasping actuation of a surgical instrument.

3.2.2 FDM Printed Tube

We also investigated the transmission capabilities of available 3D printing materials using

fused deposition modeling (FDM). There are several materials that have been recently

produced that have excellent flexural properties and strain limits. We found that the

Eastman AmphoraTM 3D Polymer HT5300 is optimal for slender, flexible structures. It

has a flexural modulus of 1575 MPa and a 7% strain limit; this makes for tubes with high

amounts of recoverable bending and sufficient axial stiffness. Figure 3.4 contains a tube

printed with HT5300 that can be inserted through the entire colonoscope. Since the length

of this tube must be approximately 2000 mm to reach the distal end, we could not print the

entire length on available printers. Instead, we printed 10 inch segments that were joined

together with Loctite and small joint tubing pieces. The resulting structure is a highly

flexible tube with an inner lumen that allows a cable for surgical graspers to pass through.

3.2.3 Purchased Tubes

As shown in Figure 3.5, we considered several commercial tubing options for the transmission

design, including plastics such as PEEK (polyetheretherketone) and Nylon, as well as carbon

fiber and a sample of helically-wrapped metal strand tubing obtained from Fort Wayne

Metals. In addition, we considered designs of the CAAR robot which used a surgical grasper
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Figure 3.5: Several off-the-shelf tubing options were considered for transmission design.
(Top Left) Helical Hollow Stranded tubing is composed of helically wrapped strands of
steel or Nitinol and is well-suited for transmitting torsion through curved paths (credit FW
Metals). (Top Right) Nylon tubing provides high axial stiffness and a lubricious surface for
sliding against inner tubes. (Bottom Left) PEEK plastic tubing is an alternative to steel
tubing and is available in very small sizes. (Bottom Right) Carbon fiber tubes are available
in large straight lengths, and small diameter sizes have enough flexibility to integrate into
the colonoscope.
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Figure 3.6: We acquired several surgical graspers for teleoperation experiments and
investigated the use of the grasper shaft as the inner transmission.

in place of the inner tube. Bending motion can be achieved with an uncut inner tube, the

tradeoff being a smaller moment arm which leads to higher actuation forces. Figure 3.6

shows an example of a grasper typically used in endoscopic procedures.

The variety of materials and shaft structures provides many potential combinations of

transmission tubing to actuate the robot. In the next section, we list the tested combinations

and assess the their ability to drive the tube motion.

Table 3.3: Transmission design results under full actuation range for both straight and
looped transmission paths.

Material Type
Straight Curved

Elongation (mm) Windup (deg) Elongation (mm) Windup (deg)

Nylon Outer 4 45 10 No distal rotation

HT5300 Inner <1 10 5 >360

HHS Outer 8 <1 19 3

HHS Inner 22 0 30 10

PEEK Inner <1 10 3 270

Carbon Fiber Inner 0 0 0 0 (choppy)

Surgical Grasper Inner 7 22 3 95
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3.3 Performance

The available sizes of the purchased tubes as well as the time cost of manufacturing the

3D printed tubes restricted the possible combinations for testing. We completed a single

3D printed tube with an outer diameter of 2.2 mm and an inner diameter of 1 mm. This

tube always functioned as the inner tube in any transmission design combination. Similarly,

the only available sizes of PEEK and carbon fiber that met the flexibility requirement had

small outer diameters and were only suitable for the inner tube. We found appropriate

sizes of Nylon and HHS tubes that allowed them to function as outer tubes. All of the

tube combinations that are listed here passed the flexural rigidity requirement by inserting

them into the colonoscope and testing the ability to loop the combined system. In order to

ensure their functionality during realistic colonoscopic scenarios, we tested the elongation

and windup of each tube for both straight and curved constrained shapes. We used a radius

of curvature of approximately 30 cm. The tubes were fitted with both CTR and CAAR

prototypes printed out of HT5300 and actuated such that the full range of the workspace

was accessed. In Table 3.3, we recorded the maximum observed elongation and windup

during this process.

As seen in Table 3.3, most of the available flexible tubes we acquired were suitable as inner

tube transmissions. Of the two outer tube options, the helical hollow strand tube provided

better rotation to the distal end. Several inner tube transmissions were tested, and the best

options included PEEK plastic, carbon fiber, and HT5300 filament. However, the current

printing methods are not able to manufacture HT5300 tubes small enough to fit inside the

available outer HHS tubes. Therefore, we chose to move forward with transmission designs

containing PEEK, carbon fiber, and HHS tubes. None of these options can be expected to

perfectly transmit translation and rotation to the distal end, but any lag in the movement

may be correctable with an intuitive controller. In the following chapter, we describe the

prototype manipulator that is tested for teleoperation and discuss its positioning capability.

33



Chapter 4

Prototyping & Testing

4.1 Manipulator Prototyping

Many needle-sized continuum robots have been manufactured out of Nitinol (a nickel-

titanium alloy) because of its superelastic properties. Our design study instead used

3D-printed tubes in order to rapidly design and test manipulators. Additionally, it was

cost-effective to tune the printing process for such small sizes of manipulators. Future

development of the prototypes will likely include Nitinol manufacturing, but the 3D-printed

material served the purposes of this initial study.

The printed prototypes were made of the same filament described in Section 3.2.2, since

it has excellent strain limits and flexural properties. We used both a Makerbot Replicator 2

Figure 4.1: Sample CTR prototype made of HT5300 filament.
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Figure 4.2: Because of difficulty manufacturing small, thin-walled concentric tubes,
alternative CAAR concepts were considered. On the left, a large channel is added to the
outside of the colonoscope to accomodate a larger CAAR robot that attaches to a surgical
grasper. On the right, a surgical grasper is used as the inner tube.

and a Make-it Pro M to create prototypes with layers as thin as 0.1 mm. Figure 4.1 contains

an example of a printed concentric-tube manipulator, and Figure 4.2 contains early printed

concepts of the CAAR manipulator integrating with a surgical tool. The final design we

tested in teleoperation is shown in Figure 4.3.

4.2 Actuation System Design

We made several design choices for the actuation system to achieve compactness, modularity,

and accuracy. The core of the mechanical design takes advantage of the inherent collinearity

of nested concentric tubes by aligning the actuation of all joint variables on one guide rail.

Hollow-shaft stepper motors serve as actuators and allow the rotation of each tube to be

driven directly, without gearing, while at the same time allowing several tubes to pass through

the center of its frame. We used Nanotec NEMA 17 stepper motors to drive the translation

and rotation of each tube. The motors are rated for up to 25 N-cm in our desired speed

range, greater than the loads necessary to actuate the robot by a factor of 10-20. This

ensures the motors will not miss steps due to high load torques. We arranged the motors

on a cart and guide rail system as shown in Figure 4.4. The carts and rail are THK-SSR

series caged-ball linear motion guides. Each cart carries two motors: one is threaded onto
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Figure 4.3: Final design of the instrument manipulator (CAAR).

a stationary lead screw to drive the linear motion of the cart, and one grips and rotates a

concentric tube. Since the carriage sub-assembly can be duplicated for each concentric tube

in a given design, assembly and disassembly of multiple tube designs is straightforward and

time efficient. The system is easily modified for use in a variety of continuum manipulators,

since many existing robot designs require prismatic and revolute joint motion aligned on a

single axis.

Our stepper motors are driven by L6470 AutoDriver boards from Sparkfun. They offer an

advantage in low-level access to motor commands, have relatively large electrical capacities,

and are inexpensive. Each driver can be sent commands through SPI communication,

reducing time and wiring complexity. The boards are controlled through the serial

communication pins of an Arduino Uno. The AutoDrivers are able to receive motion

commands and execute them independently while monitoring current level. Because the

step counter for each motor is offset by the initial position at startup, we designed a zeroing

scheme that makes use of limit switches mounted on the carriages. The switches are wired in

parallel with distinct resistors and then connected to a single analog input on the Arduino.
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Figure 4.4: The actuation module consists of three dual motor carriages that translate and
rotate the pre-curved concentric tubes while maintaining an accurate and rigid actuation
platform.

4.3 CAAR vs. CTR

As discussed previously, we prototyped both concentric-tube and CAAR manipulators.

During initial testing of the prototypes, it became clear that the CTR designs were less

advantageous for 3-DOF endoscopic manipulation than the CAAR designs. Although the

CTR designs were constrained according to the restrictions described in 2.1.1, the overlap

of pre-curved tube sections with straight tube sections still generated enough axial moment

to severely wind up transmission tubing during relative tube rotation and produce strong

snapping to minimum energy configurations. By contrast, the CAAR does not require any

relative rotation of both tubes and therefore does not induce the same kind of wind up effect.

In addition, although both types of robots are well-suited to traverse the outer wall of a

cylindrical workspace such as the colon, the CTR contains a hole in the center of its workspace

because of its instability in near-straight configurations. The CAAR does not have this issue

and is physically able to pass through the center of the workspace. The kinematic mapping

of the CAAR does contain a singularity at the exactly straight configuration. However, the

inverse kinematics control approach discussed in the next section has proven successful at

handling this configuration.
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Figure 4.5: Open-loop teleoperation process from input device to actuation

4.4 Real-Time Control

We tested several basic methods of real-time position control, some more intuitive than

others. All approaches were open-loop, since the stepper motors provide sufficient torque to

handle tasks within the scope, and the measurement of end effector motion is qualitative in

this study. The diagram in Figure 4.5 illustrates the flow of the open-loop control scheme

we used to manipulate the CAAR prototype. A user manipulates the joystick and trigger

buttons on a standard Xbox controller in order to intuitively move the robot in either end-

effector Cartesian space or joint space. A MATLAB control scheme reads the controller

data and scales it into desired robot motion. Depending upon the type of control approach

being used, the MATLAB script will also solve the inverse kinematics for the joint values

if necessary. The commanded joint values will be converted to motor steps and sent to the

Arduino, which handles the low-level motor commands.

4.4.1 Low-Level Motion Commands

Initial testing of the stepper motor driver library revealed that the motors moved more

smoothly when controlling speed instead of step angle. However, we desire to use an input

device to continuously specify joint positions. In order to use the motor speed commands,

we use a simple proportional control expression that gains the difference between the most

recent commanded motor position and the most recently achieved motor position:

q̇i = Kp(q
command
i − qreadi ), (4.1)
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where Kp is a gain, qcommandi is the commanded position, and qreadi is the most recently

updated position of the motor. The AutoDriver independently records and transmits the

current step count while executing motion commands. Although this does not close the loop

like the function of an encoder, it does provide real-time position data that is accurate to

the extent that the stepper motors complete commanded steps.

4.4.2 Position Control Approaches

We developed two useful methods for solving the inverse kinematics problem in real-time.

Ideally, the user would specify end effector motion in a global fixed frame and be able

to view the motion for visual feedback. We can find solutions to the inverse kinematics

using optimization techniques, but we found that it can be beneficial to allow the user

to simply control joint space variables. This is because it becomes simpler to distinguish

tube translation from rotation and overcome unexpected movement due to friction or elastic

energy buildup.

Inverse Kinematics Solving

It is possible to solve for exact inverse kinematics solutions. By examining Equations 2.7,

2.9, and 2.8, we can solve for q1 and q2 using an optimization algorithm on the relatively

simple nonlinear expressions for the x- and z-coordinates. However, the rotation angle ψ is

related to the end effector position by

ψ = tan
y

x
, (4.2)

and there are two solutions for any given set of x and y coordinates. Additionally, it is not

trivial to perform rotations that exceed values of ±2π.

Instead of finding exact joint values, we solved the inverse kinematics with a resolved

rates approach that uses an approximated manipulator Jacobian. Although this method is

likely less efficient than others, it is more than capable of handling real-time implementation.

The approach is a damped-least squares algorithm that was first proposed by Wampler,

which finds actuator motion corresponding to desired end effector motion by minimizing a
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customized objective function [32]. The general form of the objective function is

F =
1

2

(
(J q̇− ξ̇0)

TW0(J q̇− ξ̇0) +
m∑
i=1

(q̇− vi)
TWi(q̇− vi)

)
, (4.3)

where q̇ is the actuator velocity vector, ξ̇0 is the desired end-effector twist vector consisting of

linear and angular velocities, and J is the manipulator Jacobian. Wi are weighting matrices

for prioritizing tasks, where W0 gains the tracking accuracy. vi are vectors of desired actuator

velocities that can be used for damping or avoiding undesirable configurations. By setting

∂F
∂q̇

= 0, we can find actuator velocities q̇ that minimize F . For our simulations, we set

vi = 0 to achieve damping and let m = 1, which results in

q̇ = (JTW0J +W1)
−1(JTW0ξ̇0). (4.4)

The manipulator Jacobian is approximated using a finite difference approach, where the ith

column of the spatial Jacobian is computed as

Ji =

[
Tnew − Tnominal

δqi
T−1nominal

]∨
, (4.5)

where Tnominal is the current end effector transformation, and Tnew is the end effector

transformation corresponding to a small change in the ith joint value δqi. The ∨ operator

converts the skew symmetric matrix product to a 6-D vector. A more detailed description

of this notation can be found in Ref. 19.

Joint Space Control

We also allowed the user to directly control the basic actuation motions (bending, z-axis

rotation, z-axis insertion) as shown in Figure 4.6. This control approach required no model

calculations and simply scaled three signals from the Xbox controller to the approporiate

proportions. In many robots, this approach leads to very unintuitive control because of

the complicated mapping from joint space to task space. However, because the CAAR
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Figure 4.6: Joint space control directly maps user input to the three basic movements
shown here.

manipulator has relatively simple forward kinematics, it is not overly difficult to learn control

in joint space.

4.5 Results

In our first teleoperation experiment, we tested the inverse kinematics control approach

by attaching the CAAR manipulator directly to the motor carriage system. This ensured

that the commanded joint values were exactly at the base of the manipulator. The Xbox

controller was mapped to xyz-position commands using the left joystick for motion in the

xz-plane and triggers for the y-axis insertion. The basic setup is shown in Figure 4.7. In this

case, the control of the end effector was easily learned for a variety of users. We performed a

few trials of pick-and-place tasks in this setup, as shown in Figure 4.8. We defined a simple

task of moving a hoop from one peg to an adjacent peg. All tasks were completed in around

a minute.

We also performed the same pick and place tasks with the manipulator inserted through

the colonoscope, using two transmission designs. Both designs used HHS tubing for the
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Table 4.1: Time trial data for pick-and-place task with direct motor mounting.

Trial Time (sec)

1 48

2 65

3 51

4 49

5 62

Figure 4.7: Position control of the manipulator end effector was intuitive with direct
mounting to the actuation unit.
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Figure 4.8: The pick and place task was performed within a minute on average when the
manipulator was mounted directly on the motors.

outer tube. The inner tubes were made of PEEK and carbon fiber. It was significantly

more difficult to position the end effector with the transmission through the colonoscope. In

fact, the time trials could only be performed with the joint space control mapping discussed

previously because the elongation in the outer HHS tube affected the bending motion enough

to produce inaccuracies between the physical manipulator and the model, and the twist in

both transmission tubes caused the same issue.

The data is recorded in Table 4.2. We planned to performed the trials in both straight

and looped colonoscope configurations for each transmission design. However, the looped

colonoscope appeared to amplify the elongation and windup effects, hindering the control of

the manipulator tip. The motion of the end effector became very choppy and erratic, and it

was not possible to finish the peg tasks with the rough motion.

There are many likely sources of error. During bending sequences, we observed significant

axial rotation coupled to the planar bending even though no rotation was commanded. This

is possibly due to unwinding of the HHS tube in tension and compression, or due to any

twist in the inner tubes becoming untwisted through tension. Additionally, the transmission

which used PEEK inner tubing exhibited choppy “snapping” during rotation and insertion.

This is likely due to the slight precurvature of the PEEK tube, since it was manufactured in

a spool. The transmission which used carbon fiber inner tubing provided smoother rotation

and translation in general, resulting in improved time scores for the straight configuration.
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Table 4.2: Time trial data for pick-and-place task, deployed through the colonoscope.

Trial

Time (sec)

PEEK Carbon Fiber

Straight Looped Straight Looped

1 177 - 109 -

2 195 - 85 -

3 190 - 148 -

4 205 - 82 -

5 181 - 58 -

This is likely due to the absence of pre-curvature in the carbon fiber tube. However, the

carbon fiber design was not completely free of some elastic instability. The cross-sectional

geometry of the carbon fiber is not manufactured in a smooth uniform circle, and this can

cause jumps in rotation. Additionally, the available carbon fiber tubes had inner diameters

that would not allow the standard surgical grasper cables to pass through. We instead used

thin steel wire to actuate the graspers, but again the available wire is manufactured in spools

with pre-curvature and likely contributed to the choppy motion experienced at the tip during

the looped configuration.
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Figure 4.9: The CAAR manipulator deployed through the colonoscope.
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Chapter 5

Conclusions & Future Work

We have investigated two types of concentric-tube continuum manipulators and explored

their capability to function as endoscopic robotic instruments. The ability to design these

types of flexible structures at needle sizes could lead to promising surgical applications such

as endoscopic submucosal dissection. We have shown that in particular the CAAR will

sufficiently operate within the small cylindrical workspace of the colon, and we prototyped

example manipulators using FDM filament with sufficient mechanical properties.

The inherent need for axial rotation in both of these types of manipulators presents a

difficult design problem. Most available tubing that sufficiently transmits torsion along a

length of >7 feet is not flexible enough to adapt to the bending of the colon. Hollow Helical

Stranded tube is possibly the best option for higher-diameter tubing, and it may be worth

fine-tuning the stranding parameters (strand diameter, helix pitch) to optimize the axial

and torsional rigidity. In smaller diameter transmissions, the lower cross-sectional moment

of area allows stiffer materials to be used. However, it is difficult to access small-diameter

tubing that has no precurvature, since most manufacturers stock their off-the-shelf tubes in

spools. Carbon fiber may be the easiest to find readily available, but it is worth investigating

the custom manufacturing of long, straight tubing in many material options.

We have also successfully implemented a simple position control approach for the CAAR

robot, which demonstrated its usefulness in accessing small workspaces such as the colon.

It will be worth testing the actuation system described here with a Nitinol prototype of the

CAAR robot in order to evaluate the stiffness output and the required actuation forces.
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Additionally, it may be worth broadening the design space to continuum robots that

are actuated entirely by translation motion through the colonoscope in order to avoid the

challenge of transmitting axial rotation. Future design work may include investigating the

capability of flexible backbone robots with multiple planes of bending, such as the parallel

continuum robot developed in Ref.’s 2 and 21. We hope the work presented here supports

the development of a surgical instrument manipulator that enables better surgical care for

endoscopic procedures.
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