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Current surgical devices are mostly rigid and are made of
stiff materials, even though their predominant use is on soft
and wet tissues. With the emergence of compliant mecha-
nisms (CMs), surgical tools can be designed to be flexible
and made using soft materials. CMs offer many advantages
like monolithic fabrication, high precision, no wear, no fric-
tion and no need for lubrication. It is therefore beneficial to
consolidate the developments in this field and point to chal-
lenges ahead. With this objective, in this paper, we review
the application of CMs to surgical interventions. The scope
of the review covers five aspects that are important in the
development of surgical devices: (i) conceptual design and
synthesis, (ii) analysis, (iii) materials, (iv) manufacturing,
and (v) actuation. Furthermore, the surgical applications of
CMs are assessed by classification into five major groups,
namely, (i) grasping and cutting, (ii) reachability and steer-
ability, (iii) transmission, (iv) sensing, (v) implants and de-
ployable devices. The scope and prospects of surgical de-
vices using CMs are also discussed.

1 Introduction
Compliant mechanisms (CMs) are designed to achieve

transfer or transformation of motion, force, or energy
through elastic deformation of flexible elements. Devices
that implement CMs can be traced back to as early as 8000

BC in the form of bows, which were the primary hunting
tools [1]. While reviewing the history of urethral catheteri-
zation, Bloom et al. [2] noted that ancient Chinese medical
texts used lacquer-coated compliant tubular leaves of allium
fistulosum (bunched onion) as catheters. They also mention
that Sushruta, the author of ancient Indian surgical text, de-
scribed tubes of gold and silver coated with ghee (clarified
butter) used for catheterization. Ancient Greek and Roman
surgeons too are known to have used flexible silver tubes
in surgery. Over the years, CMs have seen several applica-
tions in surgical procedures. Furthermore, the applications of
CMs have been extended to aerospace and automotive indus-
tries, microelectromechanical systems (MEMS), actuators
and sensors, high precision instruments, and robots [3, 4].

CMs have gained significant attention in the last few
decades as they offer many advantages over traditional rigid-
body mechanisms. A CM has monolithic structure, which
reduces the number of assembly steps, thus simplifying the
fabrication process and requiring reduced maintenance [5].
High precision is attained and the need for lubrication is
eliminated due to absence of contact among members that
causes wear, friction, backlash, and noise [6].

The merits of CMs have led to a proliferation of stud-
ies that implement CM, especially in the medical field [7].
Many variants of CMs have been designed as surgical de-
vices to perform various functions. The structural compli-
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ance integrated in the main body of a device is exploited to
perform object manipulation tasks such as grasping, cutting,
retracting and suturing for surgical procedures in the form
of ablation, laproscopy, endoscopy, and biopsy, to mention
a few. Additionally, easy miniaturization of CMs enables
the device to reach remote difficult-to-access surgical sites
as seen in the design of several continuum manipulators [8].
CMs also serve a secondary function in the device to trans-
mit force/motion, as observed in some surgical robots [9,10].
Applications of CMs are found in microactuators, MEMS
and micro-scale surgical devices as well [11–14]. Force
sensing using CMs to monitor tool-tissue interaction has also
been demonstrated, which serves as a feedback for safe op-
eration of the device inside the human body [15,16]. The po-
tential of CMs made using biocompatible materials has been
realized in the development of biomedical implants, stents
and deployable devices [17–19].

There is a growing body of literature that provides a use-
ful account of the design process of CMs [6, 20]. However,
there is no detailed investigation into the different aspects to
be considered while designing surgical devices using CMs.
It poses a problem for those with little to no experience in
the medical field on what approach to follow, to go from ini-
tial concept to final prototype. This paper aims to provide
an overview of this process which involves five major as-
pects: (i) CM conceptual design and synthesis, (ii) analysis,
(iii) material selection, (iv) fabrication methods, and (v) ac-
tuation methods. Furthermore, this paper also reviews the
existing literature on surgical devices that use CMs by clas-
sification into five major groups: (i) grasping and cutting, (ii)
reachability and steerability, (iii) transmission, (iv) sensing,
(v) implants and deployable devices. We conclude this pa-
per by addressing the associated challenges and provide an
outlook on future scope.

2 Design Aspects
This section presents the various methods used during

the design process of surgical devices that use CMs. The
process begins with synthesis of the CM, followed by op-
timization to satisfy the intended functional requirements
and constraints are identified. Various methods of generat-
ing or synthesizing CMs have been explored by researchers.
Howell [4] describes four techniques used in the synthe-
sis of CMs: Freedom and Constraint Topologies (FACT);
Building Blocks; Topology Optimization; and Rigid-Body-
Replacement. Hegde and Ananthasuresh [21, 22] introduced
a Selection Maps method for conceptual design and synthesis
of CMs. The five aforementioned synthesis methods are ex-
plained briefly in Table 1. However, many compliant surgical
devices are designed without explicit use of these conven-
tional synthesis methods. This may be because the synthe-
sis methods developed for CMs mostly apply to input-output
transmission characteristics rather than guiding and maneu-
vering. The scope of the expected functions of surgical de-
vices, described later in the paper, offers a huge opportunity
for designers. Therefore, the synthesis methods and subse-
quent classification of devices is not discussed in detail in

this review.
During synthesis of CM, selection of suitable material is

crucial to ensure failure prevention. It is generally desirable
to have large deformation of a CM, while ensuring the strain
is small and the stress stays within limits. This depends on
the Young’s modulus and the failure strength of the material.
From a clinical standpoint, other criteria that need to be con-
sidered are the biocompatibility, chemical resistance, elastic-
ity, transparency, strength, temperature resistance, and most
importantly, sterilizability of the chosen material [23]. Ta-
ble 2 describes the materials and different fabrication meth-
ods that are suitable for making surgical devices. The four
commonly used 3D printing technologies for rapid proto-
typing compliant surgical devices are also described in Ta-
ble 2. While punching and blanking technique is used in
meso-scale compliant grippers, electrical discharge machin-
ing (EDM) is most widely used for micro-scale fabrication
of flexure-based continuum manipulators and grippers. Pop-
up book MEMS fabrication is an emerging multi-material
technique of fabricating MEMS and micro-scale surgical de-
vices. Milling and laser cutting are conventional subtractive
manufacturing methods used for surgical manipulators and
their constituent parts like wrist and end effector. Although
injection molding was not typically used in the making of
surgical devices reviewed in this paper, it is an economical
way of mass manufacturing implants and medical plastics.

The method of actuation is an important aspect to be
considered in the design of a CM. Based on the specific func-
tion that the CM serves in the design, various actuation meth-
ods have been demonstrated in literature. Table 3 presents
commonly-used actuation methods of CMs which are suited
to surgical applications, along with their advantages and lim-
itations. Cable-driven actuation is the most widely used
method among continuum manipulators and steerable instru-
ments. Shape memory alloys (SMAs) and piezoelectric ma-
terials are seen more in high precision devices and for mi-
cro/nano manipulation. While fluidic actuation is used in
few flexible surgical instruments, there is a gradual increase
towards the use of magnetic actuation in designing surgical
devices for precise contactless control.

3 Surgical Applications
This section presents a review of the different surgical

applications of CMs. The applications of CMs in surgical
devices can be broadly classified into five major groups: (i)
grasping and cutting, (ii) reachability and steerability, (iii)
transmission, (iv) sensing, and (v) implants and deployable
devices. Fig. 2 is an overview of this classification show-
ing examples of surgical devices designed for each of these
groups of applications, while Fig. 1 depicts the distribution
of the number of surgical devices in each group. These are
explored in detail in the remainder of this section.

3.1 Grasping and Cutting
CMs have been used to develop forceps, scissors,

graspers, and needle holders for performing different sur-
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Fig. 1. Contribution of different surgical applications of compliant
mechanisms, showing the distribution of the number of surgical de-
vices reviewed in this paper in each application group.

gical tasks such as grasping, cutting, suturing, and holding
tissue. For instance, Frecker et al. [24, 25] designed a mul-
tifunctional compliant instrument with forceps and scissors
using topology optimization and fabricated a 5.0 mm diam-
eter stainless steel prototype. Subsequently, a miniaturized
prototype was developed by applying size and shape opti-
mization [26,27]. Recently, a compliant forceps with serpen-
tine flexures was designed to overcome the problem of paral-
lel motion found in traditional forceps with ‘U’ shaped flex-
ure [28]. Cronin et al. [29] demonstrated an endoscopic su-
turing instrument by optimizing a compliant design that pro-
vides sufficient puncture force with maximum distal opening
of the suture arms.

Several forms of grasping tools have been investigated
which utilize the flexibility and stiffness that a CM can of-
fer with different geometry, materials and fabrication tech-
niques. For example, an underactuated compliant gripper
made of five phalanges was designed to have large shape-
adaptation capability and the deformation was shared by
many joints so as to increase the lifetime of the device [30].
A polymer-based MIS shaft instrument was developed using
a hybrid effector mechanism combining compliant joints and
conventional pin joints [31]. A three-fingered laparoscopic
grasper for finger articulation was designed using flexures,
leading to distribution of the grasping force, and thereby
minimizing tissue perforation [32]. A multi-material de-
sign was utilized for a compliant narrow-gauge surgical for-
ceps for laparoscopic and endoscopic procedures [33]. Large
grasping forces were realized through a hybrid design ap-
proach by having some regions with high stiffness and other
regions with greater flexibility to provide larger jaw open-
ings. In subsequent work, a design optimization routine was
carried out to maximize the tool performance, validating the
grasping potential of a meso-scale contact-aided compliant
forceps [34, 35]. Recently, the grasping performance of a
compliant surgical grasper was enhanced by functional grad-
ing which introduces material with elastic nonlinearity at cer-
tain segments of the grasper, while reducing the maximum
overall stress [36].

The introduction of robot-assisted surgery has led to
many designs of CM-based grasping end effectors, in order
to deliver efficient manipulation with high dexterity. Piccin
et al. [37] showed that a flexible needle grasping device for
medical robots has a higher threshold force and stiffness be-
fore slipping, compared to a rigid-body needle grasping de-
vice. In another work by Forbrigger et al. [38], the distal
dexterity of a brain tissue resection robot was enhanced by
a magnetically-driven forceps made with flexible beams and
eliminating the need for an external mechanical or electrical
transmission to actuate the end effector.

The monolithic nature of CMs makes them easier to fab-
ricate when compared to the pivoted jaw configurations of
current grasping tools [39]. Hence, CM was used in develop-
ing a disposable compliant forceps for HIV patients in which,
the Q-joints methods was employed to replace a conventional
pin-joint [40]. Later, Sun et al. [41] synthesized the shape of
a disposable compliant forceps for traditional open surgical
applications using topology optimization. Subsequently, an
adaptive grasping function of the forceps to overcome dam-
aging sensitive organs during both open surgery and robot-
assisted minimally invasive surgery (MIS) was devised using
topology optimization [42].

At micrometer scale, CM-based microgrippers and mi-
cromanipulators have been developed based on flexure
hinges and cantilever beam structures. A microgripper made
up of piezoelectric bending unimorphs was demonstrated by
Haddab et al. [43]. Accurate manipulation of a hybrid com-
pliant gripper was achieved using a combination of flexure
hinges and a bias spring [44]. Ease in grasping and accu-
rate tool positioning of a micro-forceps was provided by op-
timizing the jaw design to minimize actuation force, internal
stresses, and size [45]. Yang et al. [46] demonstrated the
opening and closing of the jaws of a compliant micrograsper
and microcutter for ophthalmic surgery, by using a cylindri-
cal package tube pulled through the device. While the use of
CMs contributes to the elimination of Coulomb friction and
backlash, they have some inherent drawbacks. As noted in
the design of a low cost flexure-based handheld mechanism
for micromanipulation, a drift in the major axis is caused by
the imperfect rotation of most compliant joints [47]. Flex-
ure hinges have limited range of angular motion depend-
ing on the geometry and material properties of the hinge,
and cantilever structures fail to produce perfect parallel mo-
tion [44, 48]. However, topology optimization aided by intu-
ition has been used to design CM grippers with parallel-jaw
motion.

3.2 Reachability and Steerability
This section describes applications of CMs to increase

range of motion and enhance steerability of the surgical in-
struments to reach difficult to reach surgical sites inside the
body. Single-port laproscopic and endoscopic procedures
are adversely affected by limited maneuverability of surgi-
cal instruments through confined spaces and narrow visual
view inside the human body. Therefore, a steerable endo-
scopic instrument was developed using three coaxial tubes
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that slide together concentrically to form a single tube [49].
The design offers additional flexibility due to narrow cuts in
the tube and more room in the lumen as the steering mech-
anism resides in the tubular wall. A review on the different
joint types used in the steerable tips of MIS instruments is
described by Jelı́nek et al. [50]. To maximize the span of
an endoscopic camera, Simi et al. [51] modelled a compliant
joint in a magnetic levitation system and potential to reduce
instrument collision inside the body was shown. Similarly,
a flexure-based foldable and steerable CM was reported for
providing stereo vision capture in laparoscopic surgery with
a pair of miniature cameras [52].

Continuum manipulators are devices that can be pre-
cisely steered inside the body to reach difficult-to-access sur-
gical sites. CMs have been used to design flexible minia-
turized continuum manipulators for robot-assisted surgery.
For example, a 2 degree-of-freedom (DoF) flexible distal tip
for enhanced dexterity of endoscopic robot surgery was con-
structed with a flexible tube cut into a structure consisting of
a series of rings connected by thin elastic joints [53, 54]. A
similar design was used in a flexible micro manipulator for
neurosurgery [55, 56]. A two-section tendon-driven contin-
uum robot with a backbone cut into flexures from a pipe was
designed to enhance tip positioning and offer large viewing
angles in endoscopic surgery [57, 58]. A multi-arm snake-
like robot for MIS was developed using flexible overtube
structure as a spine which guides endoscope and other instru-
ments, and two manipulator arms at its tip made of three sep-
arate flexure hinge sections [59]. Since beam flexure struc-
tures suffer from stress concentrations in the corners, as well
as fatigue, a snake-like surgical robot composed of flexible
joints based on helical spring was designed [60]. Further-
more, to prevent axial compression, circular rolling contacts
were introduced at each turn of the helix. Recently, a contact-
less mode of actuation and steering of a monolithic metallic
compliant continuum manipulator with flexures using mag-
netic fields was demonstrated [61].

Notched-tube compliant joint mechanisms are variants
of aforementioned continuum manipulators, where different
shapes, sizes and patterns of notches made on tubes can en-
able different DoFs and range of motion [62]. For instance,
a flexible manipulator arm for single port access abdominal
surgery was made from a superelastic nitinol tube with tri-
angular notches [63–66]. A needle-sized wrist made from
a nitinol tube with rectangular cutouts was developed to in-
crease the DoF and dexterity of needle laparoscopic surgery
(needlescopy) surgical tools [67,68]. Eastwood et al. [69] de-
signed asymmetric notch joints for surgical robots and noted
that decreasing the joint’s tube diameter and increasing notch
depth favours compact bending of the manipulator, but leads
to significant reduction in stiffness. Hence, a contact-aided
compliant notched-tube joint for surgical manipulation was
introduced to improve the stiffness and bending compact-
ness, while operating in confined workspaces [62]. In an-
other work, a cable-driven dexterous continuum manipula-
tor (DCM) comprising two nested superelastic nitinol tubes
with notches was designed for removing osteolytic lesions
with enhanced volumetric exploration [70–78]. In subse-

quent work, a flexible ring currette made of thin and long
pre-curved ring nitinol strips was designed to pass through
the open lumen of the DCM [79]. The integration of DCM
to a da Vinci actuation box (Intuitive Surgical, Inc., USA)
as a hand-held actuator was also shown [80, 81]. In related
work, a flexible cutter and an actuation unit to control the
DCM were designed to study its buckling behavior during
the cutting procedure [82]. The designs of a debriding tool
that passes through the lumen of DCM and a steerable drill
following a curved-drilling approach to remove lesions were
also investigated [83,84]. Subsequently, by using the curved
drilling technique, a bendable medical screw made of two
arrays of orthogonal notches along its shaft was devised for
internal fixation of bone fractures [85, 86].

Concentric tube robots (CTRs) are a special type of con-
tinuum manipulators that are made of multiple precurved
elastic tubes that are concentrically nested within one an-
other [87]. CTRs have been deployed for “follow-the-leader”
insertion and their steering is not affected by the tissue inter-
action forces [88]. Thus, they have found several applica-
tions as steerable needles and miniaturized surgical manipu-
lators [89].

Some surgical manipulators rely on CMs to enhance ar-
ticulation. For instance, a compliant articulation structure for
surgical tool tips using nitinol was designed to increase the
functional workspace and deliver a large blocked force [90].
Other work studied the use of corner-filleted flexure hinge-
based compliant joints in a compliant grasper integrated to
a 2-DoF surgical tooltip, and circular guide members were
added to strengthen the load carrying capacity of the slender
compliant joints [91]. Later, a 3-DoF surgical tooltip with
modified serpentine flexures and magnetic coupling was de-
veloped [92]. Arata et al. [93] designed a prototype of 2-DoF
articulated laparoscopic surgical instrument using a CM to
move two spring blades at the tip. Thereafter, a 4-DoF com-
pliant manipulator was proposed consisting of springs de-
signed to deform locally, reducing the bending radius [94].
A subsequent study on the variation of range of motion and
rigidity of elastic moments revealed that to achieve a higher
range of motion, there will be a trade-off with the lower val-
ues of output force and the precision, and vice versa [95].

The flexibility provided by CMs can be extended to pos-
itively affect some specific surgical applications. For in-
stance, a compliant endoscopic ablation probe composed of
an array of compliant tines was designed to generate tar-
get spherical heating zones, and improve the distribution of
heat in the ablation zone [96, 97]. A 3 DoF microrobotic
wrist for needlescopy was fabricated using MEMS technol-
ogy [98, 99]. It was based on a CM derived from a reference
parallel kinematics mechanism architecture with three legs,
which offered increased instantaneous mobility. A compliant
instrument for preparing the subtalar joint for arthroscopic
joint fusion was developed, having a shaft design which
was compliant in only one direction and stiff in the other
two directions to resist and transmit machining forces [100].
In subsequent work, a sideways-steerable instrument joint
was designed for meniscectomy that increases range of mo-
tion and reachability within the knee joint while operating
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through small portal of the body [101, 102]. It consisted
of a compliant rolling-contact element (CORE) which was
rotated by flexural steering beams configured in a parallel-
ogram mechanism. Steerability of kinked bevel-tip needles
was improved through the use of a flexure-based needle tip
design while minimizing tissue damage, as the flexure keeps
the needle in place during insertion [103].

3.3 Transmission
Transmission refers to the use of CMs in augmenting an

actuator in the transfer of force, displacement or energy. In
some surgical devices, CMs made for force or displacement
transmission serve as an input or feedback for the principal
function of the device. For example, the translation motion
of a medical robot for ENT (ear, nose and throat) surgery
was provided using compliant linear joints fabricated by 3D
printing [9]. Yim et al. [104] showed passive deformation
and recovery of a magnetically actuated compliant capsule
endoscopic robot, by having its structure based on a Sarrus
linkage and circular flexure hinges.

The traditional compliant rolling-contact element
(CORE) joint involves joining two half cylinders with flex-
ures. Derived from CORE, the Split CORE was integrated to
a wrist design provided by Intuitive Surgical Inc. to create a
3 DoF gripping mechanism [105]. Lan et al. [10] developed
an adjustable constant-force forceps for robot-assisted surgi-
cal manipulation to aid in grasping soft tissues. It employs
a compliant constant-torque mechanism made using flexible
arms to transmit the required force to forceps tips. The
motion of a flexure-based parallel manipulator for an active
handheld microsurgical instrument was tracked in order to
cancel the hand tremors using piezo-actuators [106]. Awtar
et al. [107] developed FlexDexTM, a minimally invasive
surgical tool frame that is attached to the surgeon’s forearm
to enhance dexterity and provide intuitive control. The
design projects a two-DoF virtual center of rotation for
the tool handle at the surgeon’s wrist using transmission
strips, making it stiff about one axis and compliant in the
orthogonal axis.

In microsurgery applications, the concept of pop-up
book MEMS has found a few applications. For example,
pop-up components made of flexible hinges were designed
to realize an articulating microsurgical gripper and a flexural
return spring to passively open the gripper [13]. A multi-
articulated robotic arm was fabricated by introducing soft
elastomeric materials into the pop-up book MEMS process,
and mounted on top of an endoscope model demonstrating
potential surgical applications such as tissue retraction [14].

A drawback of CMs is that energy efficiency is chal-
lenged due to energy storage in the flexible members of the
mechanism [108]. Herder and Van Den Berg [109] intro-
duced the principle of a statically balanced compliant mech-
anism (SBCM) to circumvent this problem for a partially
compliant statically balanced laparoscopic grasper (SBLG),
in which a negative stiffness mechanism negates the elastic
forces of the CM. Drent and Herder [110] developed a nu-
merical optimization model for total range of motion of a

SBLG with normal springs (with non-zero free length) and
a constant force transfer function. Powell and Frecker [111]
designed a compensation mechanism of a compliant forceps
for ophthalmic surgery using a rigid link slider-crank mech-
anism with a nonlinear spring, which balances the potential
energy of the CM. de Lange et al. [112] used topology op-
timization for a SBCM, which resulted in reduced actuation
force of a SBLG. Tolou and Herder [113] modelled a par-
tially compliant SBLG using pairs of pre-stressed initially-
curved pinned-pinned beams made of linear elastic material
that resulted in reduced Von Mises stress and balancing error.
Hoetmer et al. [114] investigated a building block approach
in designing SBCM, since the pseudo-rigid-body method
and the topology optimization did not consider an optimiza-
tion process and the stress constraints, respectively. Subse-
quently, the first physical demonstration of SBCM with fully
compliant elements was shown by taking into account stiff-
ness, range of motion, and stress [115]. Lassooij et al. [116]
used pre-curved straight-guided beams that are preloaded
collinear with the direction of actuation of a fully compli-
ant SBLG with a near zero stiffness, also demonstrating its
bi-stable behaviour. Earlier, Stapel and Herder [117] had car-
ried out a feasibility study of a fully compliant SBLG using
the pseudo-rigid-body method. In subsequent work, Lamers
et al. [118] developed a fully compliant SBLG with zero
stiffness and zero operation force.

3.4 Sensing
Sensing application refers to the use of CMs in detect-

ing or measuring physical quantities. Several kinds of sen-
sors rely on the change in deflection or stiffness of CMs in
conjunction with other transducers like optical sensors and
strain gauges to measure physical parameters. Alternatively,
vision-based force sensing integrated with miniature grippers
was reported by Reddy et al. [119]. Subsequently, a compli-
ant end-effector to passively limit the force in tele-operated
tissue-cutting using the vision-based force sensing for haptic
feedback was demonstrated [120].

Force sensing forms an integral part of different surgical
applications that involve tissue palpation, pulling and push-
ing of tissue during biopsy, to name a few. A miniature mi-
crosurgical instrument tip force sensor during robot-assisted
manipulation was developed using a double-cross flexure
beam configuration [121]. It can provide uniform force sen-
sitivity in all directions at the instrument tip by altering the
vertical separation between the beam crosses. A force-torque
transducer based on flexural-jointed Stewart platform was in-
tegrated to an MIS instrument’s tip to enable 6-axis force
sensing capability [122].

Magnetic resonance imaging (MRI)-compatible force
sensors, in particular, benefit from a CM-based design as the
metallic and electric elements can be placed outside MRI.
The force sensing element typically consists of an elastic
body which deforms under the influence of an applied force,
which in turn is measured by a transducer like optical fiber.
For example, high accuracy and high sensitivity to displace-
ment was demonstrated using optical micrometry by sup-
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porting the force detector with thin annular plates which con-
vert applied force into minute displacement [123]. Later, a
parallel plate structure was chosen to design a uniaxial force
sensor due to its directionality and simplicity, offering better
accuracy including hysteresis characteristics and axial inter-
ference than the previous design [124].

Different types of flexible elements can be adapted in the
design of force sensors. Analysing the mechanical design of
sensing elements, a polymer torsion beam guided in rotation
by a ball bearing and supported by compliant linkages was
proposed in the development of an MRI-compatible torque
sensor [125]. The sensor design was further improved for
a 2-DoF haptic interface by using a sensing body made of
two blades fixed between the optical head and the reflective
target [126]. The blade causes a displacement of the optical
head upon application of force by the subject and prevents
deformation in other directions, thereby minimizing cross-
sensitivity. Later, an ultrasonic motor torque sensor using
flexible hinges was also developed [127]. A 3-axis optical
fiber force sensor for MRI applications was designed using
a 3-DoF compliant platform made of 3 identical cantilever
beams with their supports, offering flexibility in response
to axial forces and bending moments and high stiffness to
withstand axial torque [128]. A 3-axis optical force sensor
made of two parallelogram-like segments of helical circu-
lar engravings that can provide intrinsic axial/ lateral over-
load protection during prostate needle placement was devel-
oped [129]. Similarly, a triaxial catheter tip force sensor
having flexures and integrated reflector was developed for
cardiac procedures [130]. The flexures are designed so that
the axial and lateral forces cause different deformation of the
flexures which leads to different amounts of light getting re-
flected and detected by the photo detectors.

A challenge with multi-axial force sensors lies in the de-
coupling of forces along the axes as observed in the study
by Gao et al. [131]. Linear decoupling methods proved to
be inaccurate since local deformation of flexures affects the
strains measured. A method to decouple pulling and grasp-
ing forces of a 2-DOF compliant forceps was derived using
the serial connections of two torsional springs which was
realized by optimizing the shape of two circular-type flex-
ure hinges [16]. However, rotational perturbation of forceps,
sideway forces acting at the forceps, and fabrication errors
introduced disturbances in the force measurement. Gonenc
et al. [45] demonstrated axial-transverse force decoupling in
their flexure design of micro-forceps for robot-assisted vit-
reoretinal surgery. Peirs et al. [132] decoupled the defor-
mations caused by axial and radial forces of a micro opti-
cal force sensor for minimally invasive robotic surgery, us-
ing four identical parallelograms placed in an axisymmetric
arrangement. Fifanski et al. [133] developed a flexure-based
in-vivo force sensor that can measure forces in 3D using in-
dividual optical fibers. As flexure-based force sensors cause
undesirable transverse moments, twists and lateral deflec-
tions, making it difficult to measure forces along the different
axes, Tan et al. [134] presented a potential solution of decou-
pling the force measurements using topology optimization to
design the elastic frame structure.

Other factors to be considered while designing force
sensors include thermal sensitivity, hysteresis, plastic defor-
mation and friction due to contact between internal com-
ponents that can alter the elastic behaviour of flexures
[135]. Kumar et al. [136] developed a force sensor us-
ing a compliant version of the Sarrus mechanism and strain
gauges. Their elastic model could not address the hys-
teresis, viscoelastic effects, and non-linearities in the pro-
totype caused by fabrication process. To increase the sen-
sitivity of force sensors, Krishnan and Ananthasuresh [137]
evaluated several displacement-amplifying compliant mech-
anisms (DaCMs) and proposed a general design methodol-
ogy using application-specific topology optimization. Fur-
thermore, a study by Turkseven and Ueda [138,139] showed
that a DaCM-based force sensor with lower sensitivity can
enhance the performance of the sensor by reducing hysteresis
and improving signal-to-noise ratio. CMs can also be used to
passively sense force and respond in surgical situations. An
instance of this was discussed in the context of endoscopy
simulation [140], which could also be used in virtual surgi-
cal trials. In this work, a CM was designed to convert radial
force experienced by the inner rim of a ring into circumferen-
tial motion of the ring that can be measured using an encoder.

3.5 Implants and Deployable Devices
Implants are medical devices embedded inside the body

via surgery to replace or enhance damaged biological tis-
sue. Within this review, different applications of implants
designed using CMs are discussed. FlexSuReTM, a spinal
implant based on the geometry of Lamina Emergent Tor-
sional (LET) joint was developed to restore normal motion
to the degenerate spine [141]. The LET joint is made from a
lamina, and torsion of beams results in flexibility in multiple
directions similar to the intervertebral disc. An intraocular
implant with CM-based silicon linkages was designed to am-
plify the displacement of a piezoelectric bender and provide
an almost tilt-free translational displacement of the lens for
optical imaging quality [142]. Krucinski et al. [143] showed
that the flexural stresses of bioprosthetic heart valves can be
reduced by incorporating a flexible or expansile supporting
stent into the valve design.

Within the context of this paper, deployable devices re-
fer to CMs designed to change in shape and size that facil-
itate insertion of the surgical device in a compact form to
reduce invasiveness of the procedure. For example, Chen
et al. [144] designed an intra-cardiac magnetic resonance
imaging (ICMRI) catheter consisting of folded imaging coil
during vascular navigation (4.5 mm in diameter). Upon de-
ployment, it forms a circular loop (40 mm in diameter) to
image a 40mm field of view. Herrmann et al. [145] devel-
oped a bistable heart valve prosthesis that can be folded in-
side a catheter and percutaneously inserted for delivery to
the patient’s heart for implantation. In designing cardicov-
ascular stents, topology optimization was used to generate
optimal geometry of stent cells and maximize the stiffness
of the point of application of forces, thereby maintaining
structural integrity [146]. However, plastic strains can cause
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non-uniformity in the expanded portion of the stent. Hence,
James et al. [18] used topology optimization to design a bi-
stable stent that snaps-through to a stable expanded config-
uration, relying on the geometric non-linearity of the struc-
ture.

Origami-based designs have emerged as a powerful tool
in developing deployable devices for MIS [19]. According to
Edmondson et al. [147], “Origami can be viewed as a com-
pliant mechanism when folds are treated as joints and pan-
els as links.” A pair of origami-inspired surgical forceps was
developed to ease the fabrication and sterilization process
of robotic forceps. Increase in flexibility while maintaining
rigidity was achieved by ultilizing multi-layer lamina emer-
gent mechanisms (MLEMs) in the design process. (MLEMs
are a type of CM made from multiple sheets (lamina) of
material with motion out of plane of fabrication, to achieve
specific design objectives [148]). Subsequently, small grip-
pers (3 mm in diameter) were developed for the Intuitive
Surgical’s da Vinci robotic surgical systems which can be
deployed inside the body during surgery [149]. Salerno et
al. [150] integrated an origami parallel module to generate
rotations and translation of a compliant gripper. Recently,
Kuribayashi et al. [151] designed a self-deployable origami
stent graft using hill and valley folds. Bobbert et al. [152]
fused the origami, kirigami, and multi-stability principles
to fabricate deployable meta-implants. It was also shown
that the mechanical properties of the implant can gradually
increase, depending on the design of kirigami cut patterns
that determine the porous structures allowing bone regener-
ation. Halverson et al. [17] developed a disc implant based
on CORE to mimic the biomechanics of human spine. Later,
Nelson et al. [153] demonstrated a deployable CORE joint
(D-CORE) using curved-folding origami techniques to en-
able transition from a flat state to a deployed functioning
state. Origami works well with flexible non-metallic ma-
terials, thus making them ideal for MRI-guided procedures
which is hazardous in the presence of magnetic materials.
Recently, an MR-conditional SMA-based origami joint using
CORE for potential applications in endoscopy was demon-
strated [154].

4 Discussion
This study set out with the aim of assessing the util-

ity of CMs in designing surgical devices. There are some
challenges that hinder the further development and imple-
mentation of these devices in clinical practice. A drawback
concerning CMs is the adverse effect of stress concentra-
tions and fatigue, especially in flexure-based designs under
cyclic loading. This is a major challenge in the medical field
where device failure is not acceptable. To tackle this issue,
there is a growing interest towards developing multi-material
CMs [155–158] and functional grading of CMs [36, 159], to
enhance structural integrity. The emerging concept of the so-
called 4D printing ushers in many more possibilities for us-
ing CMs in surgical applications [160]. This technology can
strengthen mechanical properties and create multi-material
programmable structures made of elastomers and soft ac-

tive materials like shape memory polymers which react to
environment stimuli such as temperature, moisture and mag-
netic field. Soft robotics is another emerging field of interest
which utilizes flexibility to function but is not classified un-
der CMs. Inspired by the softness and body compliance of
biological systems, continuum devices based on soft robotics
systems are designed using compliant materials [161].

The behaviour of CMs with geometric nonlinearity
caused by large deflections is disregarded in many studies
described in Section 3. Researchers have investigated this
behaviour of CMs using topology synthesis and other non-
linear modelling methods. It is beyond the scope of this pa-
per to discuss these approaches, and readers are advised to
refer to the following works: [162–166]. An interesting find-
ing of this study is the pivotal role of CMs in developing
a new class of force sensors for surgical procedures. How-
ever, much uncertainty still exists on the underlying convo-
luted issues of hysteresis, plastic deformation, among others
as discussed in Section 3.4. There is scope for improvement
by analysing and understanding the deformation of flexible
members of CMs under these complex conditions.

This review highlights the merits of CMs over conven-
tional rigid body mechanisms due to elimination of joint fric-
tion, backlash, wear, and need for lubrication. This aspect is
leveraged by integration of CMs with modern actuators such
as magnets, SMAs, and piezoelectric materials [167]. How-
ever, a major challenge lies in analysing an overall system
of CM consisting of multiple flexible members. While the
monolithic nature of most of the CMs simplifies the fabrica-
tion and assembly processes, the flip side is that the whole
design may fail if even one part of the mechanism breaks.
It is infeasible to restore and modify CM-based designs for
quick testing and improvement. Since the key functioning
of CMs depends on the stiffness and the resulting deforma-
tion, accurate fabrication is critical, which can lead to higher
production costs and lead time.

From a clinical standpoint, the protection of instruments
from contamination due to contact with fluids is important.
As a potential solution, some researchers have suggested soft
elastic coating of the instrument [61, 130, 168]. However,
further analysis of the implications of in-vivo operating con-
ditions on the instrument’s performance, while maintaining
sterilization, is necessary.

5 Conclusions
An overview of the design aspects of CMs in surgical

interventions is presented in this paper, discussing design
methodology, material selection and failure prevention, fab-
rication, and actuation methods. CMs provide many advan-
tages such as reduction of assembly steps, high precision, ac-
curancy and repeatability with the elimination of backlash,
friction and wear. This study has identified the virtues of
elastic deformation of compliant members in achieving de-
sired functions tailored for diverse surgical applications in-
cluding but not limited to laparoscopy, endoscopy, ablation,
ENT surgery, vitreoretinal surgery, to robot-assisted surgical
interventions. The challenges associated with these applica-
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tions related to biocompatibility of surgical instrument, fa-
tigue, stress concentration, energy efficiency, fabrication and
complex modelling methods of CMs are discussed. The do-
main of CMs is a niche area of research that has seen tremen-
dous growth in the last few decades and has raised many
questions in need of further investigation. The analysis un-
dertaken here extends our existing knowledge of CMs and
offers valuable insights for future research. This would help
in paving the way towards seamless integration of CMs in
designing safe, dexterous, efficient and cutting-edge surgical
devices.
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