2,230 research outputs found

    Workshop sensing a changing world : proceedings workshop November 19-21, 2008

    Get PDF

    Wiley Interdiscip Rev Comput Stat

    Get PDF
    Forecasts support decision making in a variety of applications. Statistical models can produce accurate forecasts given abundant training data, but when data is sparse or rapidly changing, statistical models may not be able to make accurate predictions. Expert judgmental forecasts-models that combine expert-generated predictions into a single forecast-can make predictions when training data is limited by relying on human intuition. Researchers have proposed a wide array of algorithms to combine expert predictions into a single forecast, but there is no consensus on an optimal aggregation model. This review surveyed recent literature on aggregating expert-elicited predictions. We gathered common terminology, aggregation methods, and forecasting performance metrics, and offer guidance to strengthen future work that is growing at an accelerated pace.R35 GM119582/GM/NIGMS NIH HHSUnited States/U01 IP001122/IP/NCIRD CDC HHSUnited States/2022-03-01T00:00:00Z33777310PMC799632111017vault:3684

    Validation of the Air Force Weather Agency Ensemble Prediction Systems

    Get PDF
    Air Force Weather Agency\u27s (AFWA) Ensemble Prediction Systems (EPS), Global Ensemble Prediction System (GEPS), 20km Mesoscale Ensemble Prediction System (MEPS20) and 4km Mesoscale Prediction System (MEPS4), were evaluated from April to October 2013 for 10 locations around the world to determine how accurately forecast probabilities for wind and precipitation thresholds and lightning occurrence match observed frequencies using Aerodrome Routine Meteorological Reports (METARs) and Aerodrome Special Meteorological Reports (SPECIs). Reliability diagrams were created for each forecast hour detailing the Brier skill score (BSS) to depict EPS performance compared to climatology for each site and score composition through reliability, resolution and uncertainty. To illustrate how the BSS changed, the score and its decomposition were plotted for all forecast hours. This study showed that all three EPS suffered from a lightning overforecasting bias at all locations and most forecast hours. For wind speeds, it was clear that decreased model grid spacing allowed better resolution of terrain features, producing a better BSS. Likewise, precipitation was better resolved with increased horizontal resolution as explicit resolution of precipitation processes outperformed cumulus parameterization schemes

    Flood hazard hydrology: interdisciplinary geospatial preparedness and policy

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2017Floods rank as the deadliest and most frequently occurring natural hazard worldwide, and in 2013 floods in the United States ranked second only to wind storms in accounting for loss of life and damage to property. While flood disasters remain difficult to accurately predict, more precise forecasts and better understanding of the frequency, magnitude and timing of floods can help reduce the loss of life and costs associated with the impact of flood events. There is a common perception that 1) local-to-national-level decision makers do not have accurate, reliable and actionable data and knowledge they need in order to make informed flood-related decisions, and 2) because of science--policy disconnects, critical flood and scientific analyses and insights are failing to influence policymakers in national water resource and flood-related decisions that have significant local impact. This dissertation explores these perceived information gaps and disconnects, and seeks to answer the question of whether flood data can be accurately generated, transformed into useful actionable knowledge for local flood event decision makers, and then effectively communicated to influence policy. Utilizing an interdisciplinary mixed-methods research design approach, this thesis develops a methodological framework and interpretative lens for each of three distinct stages of flood-related information interaction: 1) data generation—using machine learning to estimate streamflow flood data for forecasting and response; 2) knowledge development and sharing—creating a geoanalytic visualization decision support system for flood events; and 3) knowledge actualization—using heuristic toolsets for translating scientific knowledge into policy action. Each stage is elaborated on in three distinct research papers, incorporated as chapters in this dissertation, that focus on developing practical data and methodologies that are useful to scientists, local flood event decision makers, and policymakers. Data and analytical results of this research indicate that, if certain conditions are met, it is possible to provide local decision makers and policy makers with the useful actionable knowledge they need to make timely and informed decisions

    Model Diagnostics meets Forecast Evaluation: Goodness-of-Fit, Calibration, and Related Topics

    Get PDF
    Principled forecast evaluation and model diagnostics are vital in fitting probabilistic models and forecasting outcomes of interest. A common principle is that fitted or predicted distributions ought to be calibrated, ideally in the sense that the outcome is indistinguishable from a random draw from the posited distribution. Much of this thesis is centered on calibration properties of various types of forecasts. In the first part of the thesis, a simple algorithm for exact multinomial goodness-of-fit tests is proposed. The algorithm computes exact pp-values based on various test statistics, such as the log-likelihood ratio and Pearson\u27s chi-square. A thorough analysis shows improvement on extant methods. However, the runtime of the algorithm grows exponentially in the number of categories and hence its use is limited. In the second part, a framework rooted in probability theory is developed, which gives rise to hierarchies of calibration, and applies to both predictive distributions and stand-alone point forecasts. Based on a general notion of conditional T-calibration, the thesis introduces population versions of T-reliability diagrams and revisits a score decomposition into measures of miscalibration, discrimination, and uncertainty. Stable and efficient estimators of T-reliability diagrams and score components arise via nonparametric isotonic regression and the pool-adjacent-violators algorithm. For in-sample model diagnostics, a universal coefficient of determination is introduced that nests and reinterprets the classical R2R^2 in least squares regression. In the third part, probabilistic top lists are proposed as a novel type of prediction in classification, which bridges the gap between single-class predictions and predictive distributions. The probabilistic top list functional is elicited by strictly consistent evaluation metrics, based on symmetric proper scoring rules, which admit comparison of various types of predictions

    Challenges in Complex Systems Science

    Get PDF
    FuturICT foundations are social science, complex systems science, and ICT. The main concerns and challenges in the science of complex systems in the context of FuturICT are laid out in this paper with special emphasis on the Complex Systems route to Social Sciences. This include complex systems having: many heterogeneous interacting parts; multiple scales; complicated transition laws; unexpected or unpredicted emergence; sensitive dependence on initial conditions; path-dependent dynamics; networked hierarchical connectivities; interaction of autonomous agents; self-organisation; non-equilibrium dynamics; combinatorial explosion; adaptivity to changing environments; co-evolving subsystems; ill-defined boundaries; and multilevel dynamics. In this context, science is seen as the process of abstracting the dynamics of systems from data. This presents many challenges including: data gathering by large-scale experiment, participatory sensing and social computation, managing huge distributed dynamic and heterogeneous databases; moving from data to dynamical models, going beyond correlations to cause-effect relationships, understanding the relationship between simple and comprehensive models with appropriate choices of variables, ensemble modeling and data assimilation, modeling systems of systems of systems with many levels between micro and macro; and formulating new approaches to prediction, forecasting, and risk, especially in systems that can reflect on and change their behaviour in response to predictions, and systems whose apparently predictable behaviour is disrupted by apparently unpredictable rare or extreme events. These challenges are part of the FuturICT agenda
    • …
    corecore