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Abstract

Floods rank as the deadliest and most frequently occurring natural hazard worldwide, and in 

2013 floods in the United States ranked second only to wind storms in accounting for loss o f life and 

damage to property. While flood disasters remain difficult to accurately predict, more precise forecasts 

and better understanding o f the frequency, magnitude and timing o f floods can help reduce the loss of 

life and costs associated with the impact of flood events.

There is a common perception that 1) local-to-national-level decision makers do not have 

accurate, reliable and actionable data and knowledge they need in order to make informed flood-related 

decisions, and 2) because of science-policy disconnects, critical flood and scientific analyses and 

insights are failing to influence policymakers in national water resource and flood-related decisions that 

have significant local impact. This dissertation explores these perceived information gaps and 

disconnects, and seeks to answer the question o f whether flood data can be accurately generated, 

transformed into useful actionable knowledge for local flood event decision makers, and then 

effectively communicated to influence policy.

Utilizing an interdisciplinary mixed-methods research design approach, this thesis develops a 

methodological framework and interpretative lens for each o f three distinct stages o f flood-related 

information interaction: 1) data generation—using machine learning to estimate streamflow flood data 

for forecasting and response; 2) knowledge development and sharing— creating a geoanalytic 

visualization decision support system for flood events; and 3) knowledge actualization—using heuristic 

toolsets for translating scientific knowledge into policy action. Each stage is elaborated on in three 

distinct research papers, incorporated as chapters in this dissertation, that focus on developing practical 

data and methodologies that are useful to scientists, local flood event decision makers, and 

policymakers. Data and analytical results o f this research indicate that, if  certain conditions are met, it is 

possible to provide local decision makers and policy makers with the useful actionable knowledge they 

need to make timely and informed decisions.
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Chapter 1 Introduction

1.1 Background

Floods are the most frequent naturally occurring and deadly hazards worldwide. In 2013, floods 

in the United States ranked second only to wind storms in accounting for loss o f life and damage to 

property (IFRC, 2014). While many factors remain unknown about the causes and full nature o f flood 

disasters, and they remain difficult to accurately predict, more precise forecasts and better 

understanding o f the frequency, magnitude and timing o f floods can help reduce the loss o f life and 

costs associated with the impact o f such events. For almost a century, the United States Government has 

been collecting flood hazard damage estimates and impact cost reports. The primary purpose o f these 

efforts has been to save human life and livelihood by better prediction, preparation and mitigation of 

flood events. In 1983, Congress ordered the U.S. Army Corps o f Engineers to begin providing annual 

reports o f flood damages and estimated yearly costs o f damage, starting as far back as possible.

Multiple reports demonstrate that over the decades, flood damage estimates have increased from $10 

million in 1926, to $86 million in 1962 (Pielke, 2002), expanding to $672 million estimated in 1992, 

jumping to $4.7 billion in paid flood insurance claims by 2006 (Michel-Keijan, 2010), and again 

increasing at a rate o f $7.9 billion per year through 2015 (NOAA, 2016). According to FEMA, since 

1978, the National Flood Insurance Program alone has paid more than $55 billion on flood insurance 

claims (FEMA, 2016). This flood insurance program is voluntary, however, and the majority of 

property owners in flood impact areas do not carry insurance, so it is not representative o f the full cost 

o f flooding.

Flood hazard data and research analysis can provide emergency management personnel, local, 

state, and federal policymakers and residents with better information to aid in such flood management 

activities as flood policy, better evacuation planning, and road closures to save lives and property. 

Timely flood-inundation information provides local emergency responders, government agencies and 

the general public with assessments o f flood extent during certain peak-flow flood events.

Despite the recognized need for information, there is a common perception that 1) local-to 

national-level decision makers do not have accurate, reliable and actionable data and knowledge they 

need in order to make informed flood-related decisions, and 2) because o f science-policy disconnects, 

critical flood and scientific analyses and insights are failing to influence policymakers in national water 

resource and flood-related decisions that have significant local impact.
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Lack o f  reliable streamflow flood  data

During flooding events, decision makers and first responders depend on streamflow and flood 

inundation information for situational awareness, giving them the ability to effectively allocate 

resources, enable evacuations, and reduce property losses. Risk awareness is largely dependent on the 

collection, analysis, and communication o f accurate hydrologic data from various sources, one of the 

most important being real-time and historical streamflow data provided by U.S. Geological Survey 

(USGS) streamgages. These gages can be damaged by high water and debris, however, and stop 

transmitting data. Because uninterrupted transmittal of accurate streamflow data is critical for 

hydrological prediction systems and effective decision-making based on flood forecasts and unfolding 

real-time events, any missing data due to disruption has significant and wide-ranging implications 

(NHWC, 2006; Holmes et al., 2012). To address this issue, the weather forecasting community has long 

sought to develop functioning and effective streamflow prediction models, the importance o f which is 

reflected in a growing body of literature that focuses on streamflow dynamics.

Inadequate flood  event decision support framework and actionable information at the local level

In order to make effective decisions, first responders and other key local level decision makers 

involved in flood emergency management require both timely ground-level and contextualized flood 

information and the means o f making sense of, and drawing insight from, that information. Local 

decision makers formulate and implement plans and anticipate and respond to flood events based on 

many hydrologic factors, but the most critical decisions are dependent upon an awareness o f the three 

variables of knowing when (historical, real-time and forecasted times), where (temporal location of 

streamflow and inundation), and how much (depth, volume and inundation extent, velocity) the 

flooding is occurring or will occur. For true situational awareness, decision makers need to know when 

and where the rising rivers will occur or are occurring, what depth the inundation is at locations of 

concern, what points, places and people o f interest are being affected, and where potential access and 

evacuation routes and directions exist for first responders.

Despite technological advances and new research in areas related to flood analysis and 

decision-making, challenges remain, particularly in the area of providing accurate streamflow and flood 

inundation data for remote and/or ungaged streams (Ganora et al., 2009), developing high resolution 

digital elevation models for producing highly granular and locally scalable geovisual flood maps (real­

time and predictive), and delivering reliable, useful flood data to local decision makers during flood 

events (Brakenridge et al., 2012). Even when these complex issues are addressed, the challenge remains 

o f making sense o f large amounts o f data in such a way as to be easily understood and effectively
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utilized by individual practitioners, while at the same time providing a common operating picture and 

knowledge framework across the various groups involved in flood emergency management.

Science-policy disconnect: the influence o f  science on policy

Science research is providing new insights and methodological tools regarding flood prediction 

and information that can be used to advance national and regional flood hazard preparedness. To be 

applicable, however, this knowledge needs to be integrated and shared collaboratively with analysts and 

decision makers, and then communicated in such a way that it adequately informs those who create the 

policies that address this need. Currently, the process of flood data dissemination is complex, often 

leaving gaps in emergency management and policy collaboration between federal, state, and local 

levels. Too often, by the time flood-related decisions are implemented by decision makers in local 

communities, the communities are already in harm’s way when flooding occurs.

Traditionally policymakers have called upon science and other fields o f knowledge to produce 

and disseminate more relevant information for better decision making. Such information, it is argued, 

would improve the process by clarifying issues and choices and help decision-makers successfully 

make the rational judgments that lead to desired outcomes (McNie, 2007). Increasing the supply of 

accurate scientific information does not alone address this issue if decision makers do not perceive the 

information to be relevant or useful. Yet, funding often continues for research that does not correlate 

with the knowledge needs o f the users (Cash et a l ,  2003).

Both researchers and decision makers share the perception—for different reasons—that 

research has limited influence on policy. While scientists believe they are not being heard nor their 

research received, policymakers often perceive that the research is not relevant or useful. There has 

been considerable discussion over the last decade or so devoted to how to best bridge the perceived 

divide between science and policy and make information more useful to decision makers.

From the call for more and "better" science to the perception and receptivity o f decision makers 

to that science, an interpretive lens has been designed for refocusing on these issues o f research 

structuring, funding, and results framing. Over the past decade and a half, this focus on policy utility 

has spawned numerous studies, calls for action, research methods, and models for science-policy 

interfaces (SPIs) and decision making. Many, if  not most, o f these studies are written by or for scientists 

and specialists and are aimed at improving the shape o f research, packaging research results, and 

crafting more effective communication in order to achieve greater influence o f science on policy­

making. However, despite the growing body of analytic literature and improvements, the perception
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persists that science continues to have relatively little impact on policy, regardless o f this new focus on 

receptivity.

Research overview

This dissertation explores the perceived information gaps and disconnects listed above, and 

seeks to answer the question o f whether flood data can be accurately generated, transformed into useful 

actionable knowledge for local flood event decision makers, and then effectively communicated to 

influence policy. This question specifically frames the three interrelated issues and questions in this 

dissertation, namely:

1. Is there a way to produce accurate forecast and real-time flood data even when streamgages are 

missing or not transmitting?

2. Can this forecasted data and relevant ancillary data be communicated as visualized geoanalytic 

knowledge that is easily understood by local decision makers and useful in supporting flood 

event related decisions?

3. What factors impact the transfer o f flood hazards and other scientific knowledge so as to 

influence policy-makers’ decisions and actions?

1.2 M ethodology approach

1.2.1 Interdisciplinary approach

To address these issues and answer the primary question, this dissertation utilized an 

interdisciplinary, three-phase, mixed-methods research design approach and developed a 

methodological framework and interpretative lens for each o f three distinct stages o f flood-related 

information interaction: 1) Data generation—using machine learning to estimate streamflow flood data 

for forecasting and response (result elements: hard data; prediction); 2) Knowledge development and 

sharing— creating a geoanalytic visualization decision support system for flood events (result elements: 

unbiased collaborative data); and 3) Knowledge actualization—using heuristic toolsets for translating 

scientific knowledge into policy action (result elements: informed decision making).

Since these questions spanned several academic disciplines, an interdisciplinary approach 

provided the best context to explore the multifaceted aspects o f this research. The core areas researched 

across the disciplines are: 1) flood hazards and watershed level prediction analysis, 2) integrating 

remote sensing and in-situ data using geospatial enabled interface tools to create flood forecasting and 

visualization resources, and 3) understanding o f how science-policy interface impacts policy makers’ 

decisions through the lens o f social science research.
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1.2.2 Research design and mixed methodology

The choices of the research design and methodology were made early in the research process 

according to the determination as to which provided the best approach in answering the research 

questions.

Considering the interdisciplinary areas o f inquiry and types o f research involved in addressing 

the underlying dissertation queries, a mixed method research approach was chosen as the most 

appropriate option. M ixed Methods research involves the collection, analysis and mixing o f both 

quantitative and qualitative data (Creswell and Clark, 2011), with quantitative research analysis using 

numbers, equations, and modeling, and built on answering “closed-ended” questions, and qualitative 

research built on communication, interviews, and human investigation using “open-ended” questions 

(Rea and Parker, 2005). This mixed methodology is also related to the dissertation's pragmatic 

philosophical worldview and research methods (see Figure 1.1). The combination o f methods allows 

the researcher to answer both basic science and applied real-world questions, and provides a more 

complete picture o f the research problem (Gliner et al., 2009).

Research Approach: Mixed Method
Quantitative & Qualitative

Praamatic: Research
Situations,'^  Philosophical
Consequences W o r l d v i e w

Research Explanatory:
• Sequential,

Design Problem-Centered, 
Real-World Oriented, 
Experimental Focused

Methods
Data Collection, Data Analysis,

Questions, Validation, Interpretation 
Conclusions

Figure 1.1 Integration o f  three-phase framework fo r  research
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Table 1.1 Advantages and disadvantages o f  the three research approaches

Quantitative Research Qualitative Research Mixed Methods Approach

In situ & remote sensed data 
(close-end questions)

Process & inquiry 
(open-ended questions)

New pattern & new theme

Ability to apply multiple research 
analysis tools together into one research 
project

Best approach to focus on any one 
unique research area vs. combined 
research platform

Analysis using broad methodology 
analysis approach on human inquiry 
application research

Advantage Disadvantage Advantage Disadvantage Advantage Disadvantage

Cover larger 
research civil 
engineering field 
studies

Not able to focus 
on one area or 
inquiry

Integration of 
science and 
policy

Balance 
between both 
areas of research

Comparing 
relationship 
between 
instrumentation 
& policy

Connections lost
comparisons
/perspectives

Cooperative
research

Limited time in 
the field for 
research

Cooperative
research

Research on 
both flood & 
drought

Merging datasets 
Quan & Qual

Unable to 
combine research

Integration of 
Machine 
Learning (ML) 
Statistics

No useful 
outcomes from 
ML

Integration of 
grounded 
theory analysis

No useful 
outcome from 
research

Develop better 
instrumentation

Unable to connect 
research

Add to civil 
engineering 
literature review

Complexity to 
develop new ideas

Add to
literature
review

Interviews not 
available for 
publication

Add to literature 
review

Unable to 
combine complex 
results

Building on
instrumentation
variables

Unable to
understand
variables

Building on 
intervening 
variables

Unable to
understand
variables

Positive or null 
results

Loss of
connecting
complexity

My research philosophy integrates four key concepts: pragmatic: building on important 

concepts for situational awareness for water flow dynamics and consequences o f action if  flooding 

impacts a whole community; explanatory: in which the researcher first conducts “basic” science 

(quantitative analysis) basing the research on real water flow impact in order to explain patterns found 

within; sequential: underpinning the idea that research builds on a progression o f data, and the previous 

data integrates with other datasets or results into the next research step in the methodology; and finally 

experimental: here the “cause-effect interface” come together in science and policy. Inland river 

systems were chosen in Chapters 2 and 3 to utilize a case study approach for research. The Boise River, 

Idaho, and Tanana River, Alaska, were the two central analysis focal points, but several other riverine 

systems were added for purpose of quality control, quality assurance, baseline comparative analysis, 

and diversity o f physical regions to test this study's hypothesis and models during the sequential and
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experimental research phases. This phase o f research strategy centered around hard science and civil 

engineering applications by collecting current and historic data quantitatively and utilizing in situ and 

remote sensed instruments, and which could be analyzed later to evaluate flood impact on flood prone 

communities.

The three core design elements and studies o f this overall research are outlined in a schematic 

(Figure 1.2) that visually portrays the research approach and how Chapters 2, 3, and 4 interact and build 

on basic and applied research (Joyner et al., 2013).

Figure 1.2 A u thor’s basic research schematic fo r  an interdisciplinary, mixed methods approach 

1.2.3 Research Study 1 - Flood data generation

Overview

This study (see Chapter 2 Streamflow Hydrology Estimate using Machine Learning (SHEM) 

Research) addresses whether a predictive estimate can accurately replicate actual streamflow data 

during a streamgage failure scenario, and do so in a sufficiently timely manner to be useful to decision 

makers and first responders. SHEM is a new methodology that incorporates machine learning and big- 

data testing to quickly and accurately impute missing data from a variety o f both historical and real­

time data sources when a streamgage station stops transmitting streamflow information. The
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methodology is based on the hypothesis that the multiple sources o f water entering a river system 

impact the streamflow in a proportionate manner, and that this proportionality can be calculated to 

create interpolated data that can be used to fill the gaps when one or more o f the gages becomes 

inoperative.

Based on the preceding quantitative analysis, this methodology was tested on the Boise River 

and validated on three other rivers, resulting in an integrated qualitative evaluation analysis (Creswell,

2015). The sequential research development then is used to demonstrate research progress for decision­

making concerning future flood hazards resources for any given watershed and flood inundation 

mapping along river systems.

Results reveal a high correlation between SHEM-estimated missing data and actual recorded 

data for tested periods. Training using available long-term hydrology datasets from other watersheds is 

bound to refine the machine learning, making SHEM more scalable for global applicability and 

improving the accuracy o f predictions. Using SHEM, missing streamflow information can be accurately 

estimated to maintain data continuity and empower first responders to make timely decisions during 

flooding events.

Research Approach - Study 1

The approach o f this study built on quantitative research literature concerning existing ground- 

based water resources, flood hazard platforms and looked at how remote sensing and machine learning 

can add resource capacity for ground-based instrumentation (streamgages).

During flooding events, streamgages damaged by high water and debris can stop transmitting 

data, thus significantly limiting the situational awareness. Because uninterrupted transmittal of accurate 

streamflow data is critical for decisions based on unfolding real-time flood events, any missing data due 

to disruption has significant and wide-ranging implications. To explore this question regarding lost 

streamflow data, a case study analysis was conducted that compares and contrasts hydrologic waterflow 

with outcomes resulting from historic streamflow data. The river system selected to apply the case 

study style o f research was the Boise River in Idaho. This research approach utilized quantitative 

science, statistics, computer aided analysis, and civil engineering hydrology applications by collecting 

current and historic data using in-situ instruments.

Advancements in research technology are producing multiple new sources o f hydrological data 

from in-situ platforms resulting in civil and environmental applications for both engineering fields. The 

in-situ and possible remote sensing data available from these new sources can be used complementarily
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to provide answers to critical water resource management and flood inundation questions. The 

quantitative analyses that identify which combination o f data resources will offer the most effective 

methodology for quantifying hydrological variables will establish new best practices for water 

resources and flood hazard management.

1.2.4 Research Study 2 - Knowledge development and sharing

Overview

This second study (Chapter 3 - "Flood Forecasting GIS Water-flow Visualization Enhancement 

(WaVE): A Case Study") explores how flood data can be transformed into useful actionable knowledge 

that can be developed, shared and used by flood event decision makers.

This third chapter introduces and describes the testing and results o f Water-flow Visualization 

Enhancement (WaVE), a new geospatial visualization framework and decision support toolset designed 

for first responders, water resource managers, scientists and other decision makers. W aVE’s extensible 

and flexible framework and toolset transforms historic, real-time and forecasted streamflow and flood 

inundation data into accurate actionable intelligence, enables down-scaled geospatial analysis and 

visibility, and provides users with easy-to-use and customizable decision support tools.

Using WaVE, stream flows are predicted using computer modeling methodologies with highly 

technical water flow information, geological baseline data, forecasted weather prediction models, and 

earth science applications. WaVE's toolsets integrate this complex data and then automatically generate 

a dynamic multi-scaled visual hydrography and topography map. Testing WaVE's geoanalytic 

visualization tools, river discharge flow scenarios are portrayed in such a way that the water community 

can view the visual map as a web service and allow timely decisions.

Research Approach - Study 2

The research of Study 1 (Chapter 2) is extended in the research o f Study 2 (Chapter 3) with 

qualitative “open-ended” inquiry, thus building the mixed methodology. The qualitative research 

approach provided the best process for communicating to the policy decision making community the 

developing resources for flood hazards needed by floodplain managers, scientists and first responders. 

An in-depth literature review process furthered the scope o f the present understanding o f where flood 

hazard forecasting methodology is heading, and the need to build localization of critical flood hazard 

data resources.
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1.2.5 Research Study 3 - Knowledge actualization

Overview

Research Study 3 (Chapter 4 - " Bridging Science-Water Policy Action Boundaries:

Information influences on U.S. congressional legislative staff decision making") provides an 

interpretative lens for exploring how policy-makers practically interact with information, make 

decisions, and act upon policy-related information. To explore the influence o f information in crossing 

water policy knowledge boundaries and linking policy decision-making and action, a grounded theory 

research study was conducted with key congressional legislative staff in the U.S. House and Senate 

involved in federal water policy development and oversight. Federal legislative water policies are 

largely shaped and developed by senior congressional legislative staff, whose policy priorities, 

decisions and actions are influenced by policy-related information. This research implemented a 

framework called RCL that focuses on three quality criteria agreed upon by many as essential for 

transferring information across knowledge boundaries and influencing policy— relevance (salience), 

credibility, and legitimacy (RCL) (Cash et al., 2002). In response to the perception that research has 

limited influence on policy because it is neither relevant nor useful, considerable discussion has taken 

place to identify how best to bridge the so-called divide between science and policy and make 

information more useful to decision makers.

Research approach - Study 3

This mixed methods study used at its core a "qualitative" grounded theory (GT) methodology 

(Corbin and Strauss, 2008), with an embedded "quantitative" component for comparison and contextual 

analysis. This policy decision making approach relies upon the knowledge and experience of 

congressional legislative water resources staff for the purpose o f better understanding the gaps between 

science and policy for future flood hazard science.

1.3 Organization of the dissertation

Chapters 2, 3, and 4 have been written and designed for three different peer reviewed journal 

publications. Therefore, this dissertation followed the publication manuscript guidelines outlined by the 

University o f Alaska for journal publication. Using this framework and multiple research 

methodological processes within each chapter, this research examined not only a science landscape 

process question, but also a human interface question critical to health, safety, and the possible 

reduction o f life-threatening situations to local communities living in potential flood hazard watersheds. 

The mixed methods research approach builds from a 21st century concept of shaping effective research
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science and communicating the science to decision makers in order to support good science and create

good policy.
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Chapter 2 Streamflow Hydrology Estimate using M achine Learning (SHEM ) Research1

2.1 Abstract

Continuity and accuracy o f near real-time streamflow gauge (streamgage) data are critical for 

flood forecasting, assessing imminent risk, and implementing flood mitigation activities. Without these 

data, decision makers and first responders are limited in their ability to effectively allocate resources, 

implement evacuations to save lives, and reduce property losses. The Streamflow Hydrology Estimate 

using Machine Learning (SHEM) is a new predictive model for providing accurate and timely proxy 

streamflow data for inoperative streamgages. SHEM relies on machine learning (“training”) to process 

and interpret large volumes (“big data”) o f historic complex hydrologic information. Continually 

updated with real-time streamflow data, the model constructs a virtual dataset index o f correlations and 

groups (clusters) o f relationship correlations between selected streamgages in a watershed and under 

differing flow conditions. Using these datasets, SHEM interpolates estimated discharge and time data 

for any indexed streamgage that stops transmitting data. These estimates are continuously tested, scored 

and revised using multiple regression analysis processes and methodologies. The SHEM model was 

tested in Idaho and Washington in four diverse watersheds, and the model’s estimates were then 

compared to the actual recorded data for the same time period. Results from all watersheds revealed a 

high correlation, validating both the degree of accuracy and reliability o f the model.

2.2 Introduction

Continuity and accuracy o f streamflow gauge (streamgage) data are critical for hydrological 

prediction systems and effective decision-making in flood forecasting and flood impact reduction 

activities during flood events (Holmes et al., 2012). There are two main categories o f impact reduction 

activities, mitigation and risk awareness (knowledge of the actual and potential elevation and spatial 

extent o f flooding). Risk awareness is largely dependent on the collection, analysis, and communication 

o f accurate hydrologic data from various sources, one o f the most important of which is real-time and

1 Petty, T. R. and P. Dhingra (in press). Streamflow Hydrology Estimate using Machine Learning (SHEM) 
Research. Journal o f  the American Water Resources Association.
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historical streamflow data provided by U.S. Geological Survey (USGS) streamgages. In the U.S., flood 

forecasting is the responsibility o f the National Weather Service (NWS).

The elevation and volume of water flow within any watershed basin typically fluctuate in 

accordance with such weather events and variables as melting snow, rain, surface runoff, subsurface 

flow and, in regulated streams, by such variables as dams, storage reservoirs, and levees. Streamgages 

are devices that monitor and test surface bodies o f water within watershed basins, with their primary 

function generally being the hydrologic measurements o f water level surface elevation (also referred to 

as 'gage height' or stream 'stage'). The volumetric amount o f water flowing in a stream (discharge) is 

calculated with a formula that uses a mathematical rating curve to correlate stage measurements (in 

feet) to corresponding discharge measurements (in cubic feet per second). Physical discharge 

measurements are collected over both time and range of stages (from low flow to flood stage) to 

develop the rating curve, and the stage-discharge relation varies for every streamgage according to 

stream topography. But because of the strong mathematical relation between elevation and discharge, a 

continuous record o f streamflow can be calculated by continuously measuring water elevation (Kiang et 

al., 2013).

Although multiple private and public entities use and operate streamgages throughout the U.S., 

the primary source o f streamgage data is the USGS, a federal agency tasked with overseeing the 

deployment, operation, and maintenance o f streamgages. In partnership with more than 800 cooperating 

national, state and local agencies, the Water Resources Division of the USGS is responsible for roughly 

8,000 streamgages that continually collect and communicate current stage and discharge data (USGS,

2016). The USGS makes the recorded streamflow data available through the National Streamflow 

Information Program (NSIP) (Hirsch and Norris, 2001).

Streamgages commonly measure and record these data at fixed intervals of between 15 and 60 

minutes. More than 90% of this information is automatically uploaded from streamgages in the national 

network and transmitted through the Geostationary Operational Environmental Satellite system in near 

real-time to the USGS’s National W ater Information System (NWIS), a network that collects, processes 

and stores national water data. The NWIS has more than 850,000 station years o f time-series surface 

water data (e.g., stream elevation levels and discharge, rainfall, and reservoir and lake levels), much of 

which is publicly available via the NWIS web portal (U.S. Geological Survey, National Water 

Information System. Accessed June 10, 2016 http://waterdata.usgs. gov/nwis/sw) .

Streamflow data are also transmitted in near real-time directly to the NWS and the U.S. Army 

Corps of Engineers (USACE), where the data are used to prepare daily forecasts and to make other
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decisions. USACE uses USGS streamflow data and NWS precipitation predictions for such flood 

mitigation activities as managing hundreds o f flood control reservoirs, floodway outlets, diversions, 

levees, and navigation locks. Water managers need timely and accurate forecasts and streamflow data to 

predict inflows to reservoirs and pool elevations to determine downstream discharge, as well as for 

daily decisions regarding adjustment o f water elevation levels in reservoirs to minimize downstream 

flooding and maximize storage (NHWC, 2006). During flooding events, decision makers often rely on 

real-time water elevation and time data, along with ancillary information such as river velocity and 

depth, for situational awareness and such emergency operations as fighting floods, evacuations, closing 

bridges, rivers, and roads, etc. (Holmes et al., 2012; Kirchner, 2006).

During flooding events, streamgages damaged by high water and debris can stop transmitting 

data, thus limiting the situational awareness of decision makers and first responders and their ability to 

effectively allocate resources, enable evacuations, and reduce property losses. Because uninterrupted 

transmittal of accurate streamflow data is critical for decisions based on flood forecasts and unfolding 

real-time events, any missing data due to disruption has significant and wide-ranging implications 

(NHWC, 2006; Holmes et al., 2012).

To address this issue, the weather forecasting community has long sought to develop 

functioning and effective streamflow prediction models, the importance o f which is reflected in a 

growing body of literature that focuses on streamflow dynamics. Existing research models provide 

useful techniques for examining streamflow advancements, with promising implications for 

interpolation and extrapolation of discharge rate, including: hydrology streamflow modeling (Gupta et 

al., 1999, 2005), hydrological time series modeling (Salas et al., 1988), hydrological daily streamflow 

series (Smakhtin, 1999), hydrological spatial patterns (Grayson and Bloschl, 2000), hydrological 

statistical methods (Helsel et al., 2002), watershed calibration models (Duan et al., 2003), watershed 

discharge rate modeling (Yang et a l ,  2004), hydrological space-time runoff (Skoien and Bloschl, 2006 

and 2007), altered streamflow modeling (Armstrong et al., 2008), streamflow prediction (Mohoamoud, 

2008), river discharge modeling (Sauqueth, 2006; Sauqueth et al., 2008), streamgage streamflow 

modeling (Archfield and Vogel, 2010), prediction in ungaged basins (Hrachowitz et a l ,  2013), and 

complex networks for streamflow dynamics (Sivakumar, 2014; Sivakumar and Woldemeskel, 2014; 

Sivakumar et al., 2015). Booker and Woods (2014) have also analyzed the physical and empirical 

research to compare and contrast the effectiveness o f hydrological estimates.

Challenges still exist when streamgage loss or damage results in missing information and an 

inability to accurately predict streamflow. Some studies have focused on estimating missing streamflow
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data in gaged catchments using regression tools and other methodologies (Sivakumar and 

Woldemeskel, 2014; Tencaliec et al., 2015; Ng et a l ,  2009). These approaches have generally 

employed models o f varying complexity that analyze wide-ranging multivariate parameters (e.g., 

distance relationships, variability, location attributes, degree o f regulation) and processes (Booker and 

Snelder, 2012), which require significant time and resources to construct predictive estimates from 

large amounts of historical data (Pechlivanidis et al., 2011; Ye et al., 2012). Despite advancements in 

methodologies and tools, significant limitations remain if  existing predictive models are to be used in 

actual flood events when decision makers need real-time data or quickly-generated proxy data that are 

accurate and reliable.

A promising tool for meeting this need is machine learning. Machine learning is a developing 

field o f study into how computers can learn without explicit programming, i.e., a type o f artificial 

intelligence whereby computers assimilate data and then use algorithms to make increasingly accurate 

predictions as they are exposed to new data (Cheamanunkul and Freund, 2014). A growing number of 

researchers are studying how machine learning can be applied to hydrology (Booker and Snelder, 2012; 

Booker and Woods, 2014; Pechlivanidis et al., 2011).

This article introduces SHEM, a new methodology that incorporates machine learning and big- 

data testing to quickly and accurately impute missing data from a variety o f both historical and real­

time data sources when a streamgage station stops transmitting streamflow information. SHEM is based 

on the hypothesis that the multiple sources o f water entering a river system impact the streamflow in a 

proportionate manner, and that this proportionality can be calculated to create interpolated data that can 

be used to fill the gaps when one or more o f the gages becomes inoperative.

In this article, the authors address whether a predictive estimate can accurately replicate actual 

streamflow during a streamgage failure scenario, and do so in a sufficiently timely manner to be useful 

to decision makers and first responders.

The remaining sections o f this article (1) examine the design and methodologies used in the 

SHEM model to develop, test, validate and score proxy streamflow data, and describe a case study of 

how the model was applied and tested using streamgages in the Boise River Watershed in Idaho, (2) 

discuss issues and implications o f results from the model and the case study, and (3) summarize the 

authors’ conclusions.
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2.3 M ethods

SHEM uses an integrated three-phase approach (Figure 2.1) to build a model and set of 

methodologies that can be used to estimate timely, accurate streamflow proxy data for any given USGS 

streamgage.

1

Phase 1 Phase 2 Phase 3
(Gathering) (Training) (Performing)

Historical ► Flood Event
Data & Machine & Estimated

Correlation Learning Value

Figure 2.1 Diagram o f  basic SHEM research approach: Gathering, Training and Performing.

The design process flow and methodologies used in the three phases are described below 

(Figure 2.2).
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Phase 1 (Gathering)

Streamgage Correlation Analysis

Build Clustering
Input stream Format, Find Correlations of Streamgages

data from clean, betwen gages + Correlations
NWIS prepare Pearson's Y

(Historical Indexing) 
(yearly event)

Phase 2 (Training)

Building Machine-Learning3 3 (input)... using one gage
Analysis: Training with SHEM J  as mjssjng & uti|jzjng

remaining gages

Input stream 
data from 

NWIS

Format,
clean,

prepare Reliability Training/ 
re-test 

data sets

Machine 
Learning 

for Streamgages 
(output)

Prepared Dataset 
(weekly/monthly) 

(Historical Indexing)

Phase 3 - step A (Performing)

Flooding Event - Retrieve correlation and prepared datasets from Phase 1 and 2

Identify gage SHEM Clustering Get related
with missing of Stream gagesL^fc gages in

data (Phase 2) same cluster

Phase 3 - step B (Performing) (note: steps A&B occur within milliseconds computer time analysis) 

Flooding Event Prediction Results

Flooding Event

Input stream Format, nput from Phase 2 Failed Streamgage:

data from clean, SHEM Model Estimated Streamflow
available gages prepare Machine Learning & Time Values

NWIS (Produce both: 
Score & Graph)

Figure 2.2 Design o f  the SHEM  research methodology phases.
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2.3.1 Phase 1: Gathering (streamgage correlation analysis)

Phase 1 involves selecting a regional watershed o f interest and building a historical baseline of 

streamgage data obtained from the NWIS-Web datasets by entering time and discharge data for each 

streamgage. Streamgage data from NWIS are imported, formatted, cleaned, and prepared. Depending 

on the age o f the streamgage, the gathered data can cover multiple decades.

To quantify the discharge rate network pattern within the watershed and to create a historical 

profile (a yearly event), SHEM then uses two regression analysis methodologies to find correlations 

between streamgages and clusters o f streamgage correlations. The Pearson product-moment correlation 

coefficient (commonly referred to as Pearson's r), which measures the degree o f linear correlation 

between two variables (Ganora et al., 2009), is used to identify the correlation among the streamgages. 

The reliability and validity o f these correlation results are analyzed using sweep parameter, tests and 

scoring. Once validated, the results are again formatted and cleaned. Next, clustering coefficient 

analysis is used to examine the connections within the streamflow network and group the streamgages 

into sets (clusters) according to degrees o f specific correlation (Sivakumar and Woldemeskel, 2014; 

Koo et al., 2005).

To validate the correlation clusters, SHEM uses established peer-reviewed methodologies (the 

same as used in research studies listed in the Introduction). Reference analysis is used to determine 

relationships among streamgages in closest geographical proximity (Helsel and Hirsch, 2002). Distance 

relationship correlation selects reference streamgages that are spatially correlated with an ungaged 

catchment (Archfield and Vogel, 2010). These two analyses and their output are then used by two other 

methodologies for validating the clusters: network dynamics, which clusters complexity and variables 

within watershed basin and streamflow theory processes (Sivakumar, 2007; Sivakumar and Singh, 

2012), and virtual streamgage estimates for ungaged streams, which determine streamflow accuracy via 

index streamgages that are relationship-dependent (Smakhtin and Batchelor, 2005; Mohamoud, 2008; 

Patil and Stieglitz, 2012; Booker and Woods, 2014).

2.3.2 Phase 2: Training (building m achine-learning analysis)

In the second phase, SHEM takes output (regression analysis of relationships between 

streamgages) from Phase 1 and uses machine learning to build a platform that constructs predictive 

algorithms, while simultaneously continuing to import, format, clean and prepare new data from NWIS. 

The machine first uses this information to identify patterns o f high correlation relationships and 

clustering factors (Rokach and Maimon, 2005) o f the streamgages in any given watershed, and to learn 

the variability between each o f the streamgages. It is during this second phase that the greatest number
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o f datasets are accessed, as SHEM incorporates the variables o f the historic discharge rate and time 

relationship. Using Reliability Training, SHEM retests the datasets and uses machine learning to output 

weekly and monthly streamgage datasets.

The next step is to build and predict the relationship between the complex datasets from Phase 

1 and the newly constructed datasets. To predict the discharge rate outcome required for building a 

near-real time hydrology estimate model that can be used during a flood event, four regression 

techniques (i.e., Monte Carlo Model, Multi-Classification Model, Boosted Decision Tree Model, and 

the Random Forests Model) were tested. From these, Random Forests (Breiman, 2001) was chosen, as 

it was found to be most effective in building and predicting these relationships.

Random Forests (RF) works by combining many regression ensembles, referred to as 

“regression trees,” to produce more accurate sets o f data patterns. Using this technique, SHEM shapes a 

basic principal method process using machine-learning by combining many “regression trees” into a 

mutual selection o f streamflow analysis to produce a more accurate regression computation (Cutler et 

al., 2007; Booker and Woods, 2014).

The process builds its big data structure using long-term historical data from each gaging 

station, plotting the correlations of relevant streamgages, analyzing complex watershed relationships, 

and placing the RF o f streamgages into a discharge rating percentage correlation to demonstrate 

proportionality and relevance for estimated discharge rate and time parameters (Lin and Jeon, 2006). 

These two parameters were chosen for estimating streamflow because the RF analysis depends on the 

value o f random vectors.
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Figure 2.3 SHEM  machine learning process.
The schematic depicts the calculation analysis o f  Phases 1 and 2 used by SHEM  in machine learning and 

its complex interaction with Random Forest and other regression analysis methodologies.

The correlated hydrology data patterns produced by the RF technique are further analyzed and 

refined by the SHEM machine learning process by employing the iterative mathematical models of 

Sweep Parameter, Training Model, Cross Validation, Score Model and R Script (Figure 2.3).

When a streamgage fails, loses discharge data, and/or stops sending a data signal, SHEM uses 

the machine-learning process to analyze the correlated relationship of data from that failed streamgage 

with the data from other functional streamgages included in the common correlations and relationship 

clusters index. The streamflow data from each o f the streamgages serve as predictive discharge rate and 

time reference points in establishing correlation relationships with the other streamgages. The resulting 

prediction model produces accurate regression computations that identify historical streamflow 

relationships. A discharge rate pattern, also known as an RF dataset, starts to develop through the 

combined data generated by each streamgage. The SHEM training model then applies its predictive 

regression algorithm to these datasets to estimate the discharge rate within a watershed at the location 

where the streamgage failed.

This model can be applied to any streamgage that has been correlated with a set o f related 

streamgages. As discussed later, the time it takes to initialize the model (i.e., complete Phases 1 and 2)
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for a set o f indexed streamgages depends on the number o f streamgages in the set, the amount of 

historical data to be analyzed, and the computing resources available. When the first two phases o f the 

SHEM model are applied to that set—the platform is built, tested and validated, and an index of 

historical relationships and clustered correlations is created—estimated proxy data (generated in Phase 

3) are immediately available to be substituted for missing data for any indexed streamgage in the set 

during a flood event. The initial setup o f Phases 1 and 2 is a one-time event for each set o f indexed 

streamgages, and subsequently requiring only annual updates of datasets (for constructing historical 

profiles) for Phase 1, and weekly and monthly updates o f streamflow datasets in Phase 2.

2.3.3 Phase 3: Perform ing

The third phase o f SHEM takes place during an actual flood event, and involves two steps that 

occur milliseconds after the completion o f Phase 2 and that build on the datasets and predictive model 

constructed and trained during the first two phases. In a flood event, SHEM first identifies the missing 

streamgage data, retrieves correlated datasets from the first two phases, i.e., from the machine learning 

and the clustering o f streamgages, and then finds related streamgages in the same cluster. In the second 

step, which occurs within milliseconds o f the first step, SHEM then makes, tests, validates and scores 

flood event data estimates. It takes the clustered data, prepares and inputs these data (while continually 

adding new and formatted data from the indexed NWIS gages), imports the output from Phase 2 into 

SHEM's machine learning, and, depending on the execution parameters established, automatically 

estimates streamflow and time values for the missing data from the failed streamgage as soon as the 

streamgage stops transmitting. These proxy data are then tested, and the results o f the tests are scored 

and graphed.

2.3.4 Case Study: SHEM methodology applied to the Boise River W atershed

To demonstrate and test the methodology o f SHEM, the Boise River Watershed was selected as 

a case study because of the availability o f many years of informationally-rich, well-documented 

streamgage data for the watershed. Together with near real-time data, this historical data can be 

measured using outcome analysis, and then tested and retested for reliability. During a flood event, 

large amounts of information from functioning streamgages can be used to estimate highly reliable and 

accurate discharge water rates of failed or “offline” streamgages.

The first phase of SHEM began by selecting a target streamgage with missing data and a set o f 

related functioning streamgages (without missing data) from which correlations and clusters were 

identified. Nineteen USGS gages in regulated and unregulated streams in the Boise River Watershed
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(Figure 2.4) were originally evaluated. Eight were selected according to the following criteria: 

demonstrated data consistency, provision o f proper data fields, full functionality for a sufficient length 

o f time, and the fulfillment o f basic data-collection inventory practices. Eleven streamgages did not 

meet these criteria and were therefore eliminated.

USGS National Water Information System-streamgages and spatial map at http://waterdata.usgs.gov/id/nwis/nwis 
Figure 2.4 USGS streamgage locations in the Boise River Watershed, Idaho.

The process o f formatting the data began when the eight streamgages were screened and 

selected. In this case study, five years of data (2011 to 2015) were analyzed from the eight selected 

Boise River streamgages in both unregulated and regulated streams. The raw big data from each 

gauging station were organized into three categories: (1) streamgage station ID, (2) date and time 

stamp, and (3) discharge rate. To later find the missing values in the data, a calendar was created with 

start and end dates that correlated to each o f the eight streamgages. Then, to analyze discharge rates 

from multiple streamgages, the data from all the streamgages were merged and brought into a single 

dataset defined by the restructuring and formatting process (Figure 2.2).

SHEM then inserted the streamgage dataset into two regression-analysis applications. Pearson’s 

r identified the correlation among the streamgages, and clustering coefficient analysis was then used to 

examine the connections within the Boise River network o f streamflow relationships. As a final step in 

Phase 1, SHEM utilized a custom R Script python program (R Development Core Team, 2015) to 

strengthen the correlation relationship o f the Boise River streamgage datasets with Pearson's r and 

clustering coefficient method and analysis. Using applied statistical metrics for strong correlation 

analysis (Cowan, 1998), a cutoff specific for this case study was set, i.e., any streamgage with greater 

than 0.75 accuracy was considered to be correlated. As discussed in the subsequent section on case 

study results, the correlation analysis measured how the two variables (flow rate and time) directly 

strengthened their relationship as a positive correlation (Figure 2.5).
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Figure 2.5 Graphical visualization o f  fluctuating discharge rate.
Select unregulated and regulated streams in the Boise River Watershed Basin over 2013 Calendar Year. These 

datasets p lo t the discharge rate (cubic fe e t per second) on the Y-axis and the calendar (number o f  days) 
parameters on the X-axis fo r  the specific streamgages indicated by ID  numbers and color-coded on the graphs. 

The firs t graph depicts patterns o f  discharge fo r  three unregulated streams. The relationship o f  the patterns in the 
three unregulated streams is designated by SHEM  to be statistically significant. The second and third graphs 

depict the complexity o f  streamflow fluctuation and discharge rate patterns in fou r and five regulated streams.
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Figure 2.5 (continued)

For Phase 1 of the Boise River case study, the processes o f selecting streamgages, cleaning and 

preparing the five years o f data, and building correlation datasets, together took a couple o f days of 

processing time.

As applied to the case study, the second phase o f SHEM highlights the significant use of 

machine learning and training, whereby the five years' worth of Boise River streamflow data gathered 

in Phase 1 were used to build a modeling process in Phase 2 for future prediction of a flooding event 

(Phase 3). SHEM tested the streamgage data built in Phase 1 by using a splitting data process to show 

accuracy and error in prediction (Refaeilzadeh et al., 2009). For the purposes of testing and training the 

machine learning process, the data from the five years were split in an 80:20 ratio o f four years to one 

year (Martin, 1997). The testing and training resulted in SHEM learning the relationship and time 

parameters among all correlated streamgages in the Boise River and creating a historical index o f those 

correlations and relationship clusters.

Validation o f  methodology

To confirm the validity and reliability o f the Phase 1 and 2 data results, the following three 

standard methods were used to calculate error analysis: Root Mean Squared Error (RMSE), Mean
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Absolute Error (MAE) and R square (RSQR) (Moriasi et a l ,  2007). Standardized prediction values 

were indexed for each method. Employing a machine-learning calculation, this error analysis builds on 

previous data modeling research on efficiency for bias (Nash and Sutcliffe, 1970) and research on 

scaling analysis and problems in hydrology (Gupta, et al., 1986).

Building thousands o f discharge rate datasets from each streamgage using the RF process 

revealed the proportional correlation among the other streamgages. Identifying these discharge rate 

patterns strengthened SHEM's predictive capability (Breiman, 2001; Lin and Jeon, 2006).

To measure the value o f the error analysis as applied to the Boise River, the training and 

correlation o f the output data were again computed using the RF process for each correlated streamgage 

dataset (Figure 2.3). This test/retest process is used to validate and determine “goodness-of-fit” and 

reliability, o f the scoring model o f this streamgage dataset (Legates and McCabe, 1999).

Together, the processes involved in Phase 2 for the case study required between six to twelve 

hours o f computer processing time. By the end o f Phase 2, an index o f correlations and relationship 

clusters for all eight streamgages was generated.

In the third phase o f the case study, SHEM was ready to use the index and apply the trained 

model from Phases 1 and 2 to support a flood event when any o f the eight might fail. Watershed data 

that were prepared, documented, analyzed and indexed by SHEM in Phases 1 & 2 were available to 

instantly predict missing data during a flood event when a streamgage went “offline.”

To imitate a flood scenario for this case study, the authors individually applied a protocol to 

each streamgage whereby SHEM had no predetermined data available from the streamgages, while still 

collecting data from the other streamgages. SHEM then estimated the discharge rate and the time 

parameters for each non-functioning streamgage based entirely on the other streamgages’ actual data 

and the already-documented correlation among the functioning streamgages. SHEM’s estimated flow 

and time prediction were recorded. At that point, actual information for that time was retrieved, and 

predictive values and actual values for that streamgage were graphed for comparison (Figure 2.6).

2.4 Results and discussion

Initial results from testing the SHEM model in the Boise River Watershed Basin case study 

indicated a "good" to "high" correlation o f accuracy between estimates and actual historical data.
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Figure 2.6 Results o f  estimated and actual discharge rates & times.
For calendar year 2013 the three graphs portray the case study o f  viable correlations o f  estimated and 

actual discharge rates and time parameters (six months and one year) o f  two regulated (1320600 & 
13213000) and one un-regulated (13185000) stretch o f  the Boise River from  streamgage locations.

27



Prediction results for DischargeRate 13213000

1 31 61 91 121 151 181 211 241 271 301 331 361
Day

Figure 2.6 (continued)

These results were replicated and validated through multiple tests o f missing datasets chosen 

randomly from the eight streamgages in the case study (Table 2.1).
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Table 2.1 Correlation accuracy among eight Boise River streamgages. Depicts the accuracy o f  the correlation 
between streamgage streamflow data using the two parameters o f  elevation and time. M ost o f  the streamgages 
were tested two to three times by correlating their data with different gages. The firs t accuracy association fo r  the 
eight sample streamgages showed an average correlation o f  0.92, the second (for seven gages) averaged 0.84, 
and the third (for five  gages) averaged 0.85, thus all showing high correlation using the two basic parameters o f
stream discharge and time.

USGS First Correlated Second Correlated Third Correlated
Gage ID Streamgage name Streamgage & Accuracy Streamgage & Streamgage &

# Association Accuracy Association Accuracy Association

13185000 Twin Springs Boise 
River NF 13086000 0.99 13200000 0.79

13186000 Featherville Boise 
River SF 13185000 0.99

13200000 Mores Creek near 
Arrowrock 13185000 0.79 13206000 0.78 13213000 0.79

13202000 Lucky Peak Boise 
River 13190500 0.83 13206000 0.84 13206305 0.87

13190500 Anderson Ranch 
Boise R SF 13202000 0.84 13206305 0.78 -- --

13206000 Glenwood Bridge 
Boise R 13213000 0.97 13202000 0.84 13206305 0.95

13206305 Eagle Boise River 13206000 0.99 13213000 0.93 13202000 0.87

13213000 Parma Boise River 13206000 0.97 13206305 0.93 13200000 0.79

Average 0.92 0.84 0.85
Median 0.97 0.84 0.87

To further validate the reliability o f these results, the model was subsequently applied to three 

other watershed basins in Washington State—Naselle, Willapa, and Satsop. These basins included both 

regulated and unregulated streams. The results from applying the model in these locations were 

rigorously tested and validated. These results, which showed similarly high correlation and predictive 

factors, were then compared to those o f the initial case study. Comparison o f all the locations affirmed 

the validity and reliability of the SHEM methodology, and demonstrated that the model could be 

applied in other locations with the same high degree o f replicability, clarity, stability, definition of 

parameters, and correlation accuracy.

Constraints on model effectiveness and utility

While the case studies validated the functionality and accuracy o f the methodology, the 

effectiveness and utility o f the model are largely dependent upon both the time and computing 

resources required for building machine learning correlation indices and the availability o f adequately- 

sized and accurate historical streamflow datasets. The time it takes to build the SHEM platform in 

Phases 1 and 2 depends on the number o f streamgages and amount o f historical data used, as well as the 

computational processing resources available. While the model can be applied to any correlated set of 

streamgages (regardless of the number o f streamgages in the set), in order to generate near real-time
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proxy estimates for missing data for one or more streamgages in the set, the model must be initialized 

for each set by completing Phases 1 and 2. In the Boise River case study, the process o f cleaning, 

confirming and preparing the five years o f data in Phase 1 took one to two days, while the data 

processing in Phase 2 took between six to twelve hours. However, depending on the computational 

resources available, these processing times can be significantly shortened once the procedures and 

processes are standardized and optimized. Lowering the processing times in Phases 1 and 2 is necessary 

if  SHEM is to be deployed and applied to large regions or nationwide.

Because the scope o f the initial application and testing o f SHEM focused on the production of 

timely and accurate estimates, the model used only two key data parameters— stream stage (elevation) 

and time. These parameters were chosen because o f their high statistical correlation, their central 

importance in flood forecasting and mitigation, and the wide availability o f USGS streamflow data. 

Limiting the analysis to two parameters also reduced processing time and computational resource 

requirements, as well as the complexity and potential for error.

For both ungaged regulated and unregulated environments, SHEM requires adequate historical 

stream stage and time data from correlated streams in order to calculate accurate estimates. The 

accuracy o f the model’s results depends on the availability and processing o f sufficient historical data to 

both train the machine learning model and enable SHEM to develop its index of clustered correlations. 

As shown in the research o f Sivakumar and Singh (2012) and Sivakumar et al. (2015), accuracy is also 

affected by the degree o f complexity and variability involved in streamflow fluctuation. The smaller the 

amount o f historical streamflow data and the greater the complexity o f streamflow fluctuation, the 

higher the error potential in predictability. However, the greater the amount of historical streamflow 

data, the lesser the degree to which complexity o f streamflow fluctuation affects the accuracy (Gupta et 

al., 1999, 2005).

Opportunities fo r  further research

As highlighted by Archfield and Vogel (2010), technologies and research related to gaged and 

ungaged streamflow have made steady progress, though the need remains for methodologies and tools 

that quickly and more effectively access, analyze, and predict streamflow information in ungaged river 

systems. This need appears to be made even more acute given the limited resources available for 

replacing and expanding needed streamgage stations, as well as the implications o f these limitations for 

flood forecasting and mitigation, water resources, water security, natural disasters, environmental 

challenges, ecosystem management, and agricultural resources.
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During the development and testing o f the initial model, the authors determined that SHEM's 

underlying machine learning and analytical processes could be used to extend the current research on 

streamflow estimates— such as that o f Archfield and Vogel (2010), Sivakumar (2014), Mohamoud 

(2008), Booker and Woods (2014)—and be used to extrapolate estimated data from ungaged streams as 

well as interpolate data estimates from gaged streams with missing data.

Furthermore, the SHEM model could potentially be applied in remote ungaged catchment areas 

by building on recent models and research (Srinivasan et al., 2015; Li and Wong, 2010; Brakenridge et 

al., 2012; Gleason and Smith, 2014; Gleason et al., 2014) on generating streamgage data using new 

technologies related to remote satellite sensing and measurement (e.g., synthetic aperture radar), digital 

aerial surveillance (e.g., video, photo, thermal imaging) from unmanned aerial vehicles and manned 

aircraft, and other telemetry methodologies. Using these tools, SHEM could potentially construct and 

build historical index datasets and correlated clusters o f stream stage and time relationships and train 

itself to produce streamflow data estimates for any watershed basin in the United States or the world.

Another potential area o f study, elaborated below, is the use of SHEM to identify the optimal 

locations to position physical streamgages for measuring discharge, or identify locations for conducting 

remote monitoring and telemetric measurement in areas that are too inaccessible for physical 

streamgage positioning. Extending the research o f Hrachowitz et al. (2013) on long-term prediction 

analysis and Ganora et al. (2009) on duration curve prediction for ungaged basins, SHEM could apply 

the three-phase approach (Figure 2.1) to estimate streamflow for ungaged regions. While SHEM can 

train itself and construct estimates for these ungaged water catchments using historical discharge 

datasets derived from remote telemetry, the model is faced with a challenge when such measurements 

are available for shorter time periods than those normally used for constructing relationship datasets and 

training the machine learning model. To address this challenge o f generating adequate historical data 

correlations, SHEM could integrate or utilize the results o f Gleason and Brakenridge’s previously 

mentioned river watersheds models based on remote sensing and telemetry capabilities that calculate 

streamflow discharge, together with incorporating or utilizing the results o f Cheamanunkel and 

Freund’s computer assimilation data predictions (2014) and Booker and W oods’ hydrology machine 

learning. More research and study is required to determine the efficacy o f using these new remote 

telemetry tools for creating streamflow data histories.

As referenced in an earlier section, another area o f future study is the addition of other 

correlated streamflow parameters (e.g., such as the topographical attributes and precipitation parameters 

used by Skoien and Bloschl, or extending the research o f Archfield and Vogel and Gupta related to the
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parameters of stream discharge and time) to retest the model in order to determine the effects of 

additional correlated variables on processing time, resource requirements, and the accuracy of 

estimates, particularly when limited streamflow data histories are available.

2.5 Conclusions

Streamflow data from USGS streamgages are critical for flood forecasting, assessing imminent 

risk, and planning and implementing flood mitigation activities. The research topic o f interest was 

whether a predictive estimate can accurately replicate actual streamflow during a streamgage failure 

scenario, as well as to do so in a sufficiently timely manner to be useful to decision makers and first 

responders. The SHEM model was specifically designed to construct accurate and timely proxy 

streamflow data estimates that can be substituted for missing data when streamgages stop transmitting 

accurate data.

To test the model, the Boise River Watershed Basin was chosen as the site for the initial case 

study, and five years o f streamflow data from eight streamgages in the watershed were correlated, 

clustered and analyzed. Employing machine learning and a variety o f regression methodologies and 

statistical validation tools, SHEM created a virtual streamflow relationship index o f the Boise River 

Watershed. Using those relational datasets and clusters—which are continually updated with new real­

time data— SHEM was able to quickly produce accurate proxy discharge and time data for any indexed 

streamgage that stopped transmitting data. The model was tested by randomly removing actual data, 

generating and substituting estimated proxy data in place o f the missing data, and then comparing the 

proxy estimates with the corresponding actual data that had been removed. SHEM tested and validated 

the reliability o f the predicted value estimates through rigorous integrated testing methodologies, and 

then scored and graphed the output.

The accuracy and reliability o f the Boise River case study results were further validated when 

the model was subsequently applied to three other watershed basins in Washington, all o f which 

indicated similarly high correlation and predictive factors.

The results o f these error analysis methods affirms the scientific integrity o f the SHEM 

methodology. When these statistical processes and equations are applied to streamflow hydrology 

datasets, they effectively produce a result that can be used by first responders and decision makers 

responding to flooding events.
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The SHEM construct affirmatively supports the authors' question o f whether a predictive 

estimate can accurately replicate actual streamflow during a streamgage failure scenario, and in a timely 

manner so as to be useful to decision makers and first responders.
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Chapter 3 Flood Forecasting GIS W ater-flow Visualization Enhancem ent 

(W aVE): A Case Study2 

3.1 Abstract

Riverine flood event situation awareness and emergency management decision support systems 

require accurate and scalable geoanalytic data at the local level. This paper introduces the Water-flow 

Visualization Enhancement (WaVE), a new framework and toolset that integrates enhanced geospatial 

analytics visualization (common operating picture) and decision support modular tools. WaVE enables 

users to: (1) dynamically generate on-the-fly, highly granular and interactive geovisual real-time and 

predictive flood maps that can be scaled down to show discharge, inundation, water velocity, and 

ancillary geomorphology and hydrology data from the national level to regional and local level; (2) 

integrate data and model analysis results from multiple sources; (3) utilize machine learning correlation 

indexing to interpolate streamflow proxy estimates for non-functioning streamgages and extrapolate 

discharge estimates for ungaged streams; and (4) have time-scaled drill-down visualization o f real-time 

and forecasted flood events. Four case studies were conducted to test and validate WaVE under diverse 

conditions at national, regional and local levels. Results from these case studies highlight some of 

WaVE's inherent strengths, limitations, and the need for further development. WaVE has the potential 

for being utilized on a wider basis at the local level as data becomes available and models are validated 

for converting satellite images and data records from remote sensing technologies into accurate 

streamflow estimates and higher resolution digital elevation models.

3.2 Introduction

In order to make effective decisions, first responders and other key local level decision makers 

involved in riverine (channel) flood emergency management require both timely ground-level and 

contextualized flood information and the means to make sense of and draw insight from that 

information.

2 Petty, T. R., N. Noman, D. Ding, and J. B. Gongwer (2016). Flood Forecasting GIS Water-Flow Visualization 
Enhancement (WaVE): A Case Study. Journal o f  Geographic Information System, 2016, 8, 692-728.
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Local decision makers formulate and implement plans and anticipate and respond to flood 

events based on many hydrologic factors, but the most critical decisions are dependent upon an 

awareness o f the three variables o f knowing when (historical, real-time and forecasted times), where 

(temporal location o f streamflow and inundation), and how much (depth, volume and inundation extent, 

velocity) the flooding is occurring or will occur. For true situational awareness, decision makers need to 

know when and where the rising rivers will occur or are occurring, what depth the inundation is at 

locations o f concern, what points, places and people o f interest are being affected, and where potential 

access and evacuation routes and directions exist for first responders.

Despite technological advances and new research in areas related to flood analysis and 

decision-making, challenges remain, particularly in the area o f providing accurate streamflow and flood 

inundation data for remote and/or ungaged streams, developing high resolution digital elevation models 

for producing highly granular and locally scalable geovisual flood maps (real-time and predictive), and 

delivering reliable, useful flood data to local decision makers during flood events (Chapman et al.,

2015). Even when these complex issues are addressed, the challenge remains o f making sense of large 

amounts o f data in such a way as to be easily understood and effectively utilized by individual 

practitioners. At the same, it is vital to provide a common operating picture and knowledge framework 

across the various groups involved in flood emergency management.

In this article, we introduce and test Water-flow Visualization Enhancement (WaVE), a new 

geospatial visualization framework and decision support (DS) toolset designed for first responders, 

water resource managers, scientists and other decision makers. WaVE's extensible and flexible 

framework and toolset transforms historic, real-time and forecasted streamflow and flood inundation 

data into accurate actionable intelligence, enables down-scaled geospatial analysis and visibility, and 

provides users with easy-to-use and customizable DS tools.

The following sections o f this article (1) provide background information on flood geospatial 

analytics and decision support; (2) describe the three development phases of the WaVE design 

framework, including future development o f the framework for enhancing the platform and review of 

case studies that test and demonstrate WaVE's capabilities; (3) discuss issues and implications o f results 

from the model and the case study; and (4) summarize the authors’ conclusions.
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3.3 Background

3.3.1 Flood data— where, when and how much

Two groups in particular require and utilize local-to-regional scaled historical, real-time, and 

forecasted riverine water flow and flood inundation data—floodplain water managers and first response 

emergency management teams.

The first group, floodplain and water resource managers, require these data for effective 

planning and operations. They gather and assimilate data from research scientists, issue warnings and 

alerts, create emergency plans for flood scenarios, communicate flood stages to the community, and 

create predictive models. W ater resource managers, such as those from the U.S. Army Corps of 

Engineers (USACE), use flow data and precipitation predictions for such flood mitigation activities as 

managing flood control reservoirs, floodway outlets, diversions, levees, and navigation locks. They 

need timely and accurate forecasts and flow data to predict inflows to reservoirs and pool elevations in 

order to determine downstream discharge, as well as to make daily decisions regarding adjustment of 

water elevation levels in reservoirs to minimize downstream flooding and maximize storage (Hester et 

al., 2006).

Similarly, first responders and emergency management operations—both before and during 

actual flooding events—rely on historical and real-time water elevation, time, and water velocity data 

for situational awareness and executing such emergency operations as fighting floods, evacuations, 

closing bridges and roads, etc. When and how these tasks are implemented can determine the degree to 

which lives and property are saved (Holmes et al., 2012; Kirchner, 2006).

For these groups, time sensitive decisions are often based on information and attributes related 

to fluctuations in channel and flood water. The elevation and volume o f water flow within any 

watershed basin typically fluctuate in accordance with such weather events and variables as melting 

snow, rain, surface runoff (the flow over the earth's surface of excess water from storm water, snowmelt 

or other sources), subsurface flow, and in regulated streams by such variables as dams, storage 

reservoirs, and levees. Heavy precipitation and snowmelt runoff in upstream areas o f a catchment can 

cause high water volumes in river streams, full capacity in river reservoirs, and riverine flood 

inundation (i.e., extending beyond its channel boundaries) o f normally dry areas. The extent o f flood 

inundation is influenced by such factors as channel depth, volumetric discharge, stream velocity and 

geomorphological features outside o f the channel.
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Two hydrologic data parameters—water elevation and time—are essential for addressing these 

issues. Using these two fundamental pieces o f geospatial information, hydrologists can calculate: (1) 

the volume rate (Q) o f water flow (also referred to as streamflow, discharge or flow rate) in a channel— 

calculated as the product o f a cross-sectional area (A) and the mean velocity (u) o f a stream, and 

typically expressed as cubic feet/second (f3/s) or cubic meters per second (m3/s); and (2) the inundation 

o f water that extends outside o f normal channel banks.

Traditionally, these streamflow data have been recorded using physical streamgages, devices 

that monitor and test surface bodies o f water within watershed basins and that primarily function to 

measure water level surface elevation. For hydraulic models and flood maps in the United States, the 

most important source of real-time and historical streamflow data records is provided by the U.S. 

Geological Survey (USGS), a federal agency tasked with overseeing the deployment, operation, and 

maintenance o f roughly 8,000 streamgages throughout the U.S.

3.3.2 Flood mapping

Different models and measurement tools historically have been used to identify or predict flood 

situations that occur in a variety o f geographical and topographical landscapes. These have ranged from 

traditional static flood maps, historical flood tables, datasets and statistics developed by analysts and 

cartographers, to newer tools that leverage developments in digital elevation and terrain that feature 

modeling, geospatial analysis and geovisualization, and that integrate hydraulic models with visualized 

geospatial data and interactive flood maps. Analysts and planners can use digital inundation maps 

overlaid on city maps and combined with other overlaid geographic information systems (GIS) layers to 

assess potential flood risks and damages. These tools are used to help predict flood occurrences and 

inundation extent, achieve situational awareness during events, and communicate risks and 

consequences of current and predicted flooding.

Digital maps are created by superimposing "layers" o f pixel or raster-based images that 

represent geocoded geomorphological features on "top" o f digital elevation models (DEMs)—digital 

models or three-dimensional representations o f terrain surfaces (Farr et al., 2007). These models are 

developed using terrain elevation data acquired and recorded by such means as direct land surveys, 

remote sensing, and photogrammetry. Some earlier coarse resolution DEMs were interpolated from 

digital contour maps based on direct land surveys, although increasingly these models are higher 

resolution and generated from remote sensing.
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Modern hydrological flood mapping models combine data from historic flood inundation maps 

with real-time data to predict inundation o f current and future flood events. To visualize flood data, a 

hydraulic model is combined with a digital ground surface elevation model according to a grid cell 

layout, whereby the digital representation o f the elevation o f surface water is overlaid onto a time- 

sequenced digital representation o f ground surface elevation in a geospatially corresponding grid area to 

determine how far flooding will extend beyond normal channel banks. Inundation extent is then 

calculated for each grid cell.

The vertical accuracy and spatial resolution (ground surface area within a grid cell) o f the base 

DEM (primary topography) influences the degree o f accuracy o f hydraulic models and flood maps 

(David et al., 2013; Vaze et a l ,  2010). The higher the number o f cells in a unit area, the greater the 

resolution and scalability (i.e., the finer the resolution o f rasterized data at smaller distances from 

ground surface elevation, the more accurate the representation o f ground surface topography).

Developments in the field o f remote sensing (RS)—the passive recording or active detection 

and measurement of objects and areas by aerial sensor technologies—have enabled greater efficiencies 

in creating more accurate digital elevation maps, measuring streamflow, and analyzing and predicting 

floods. RS was traditionally largely passive, conducted using manned or unmanned aircraft and, to a 

lesser extent, land-based applications. This method uses such sensing instruments as infrared and film 

photography to gather and record information about the radiation (from the sun or other sources) 

reflected or emitted by the target area or object. The reach and options o f passive RS increased 

significantly with the launching o f Landsat in 1972 and the advent of satellite platform-based RS. By 

contrast, active sensors emit energy to detect remote targets and then measure the radiation reflected 

back or backscattered from those targets. Advances in active RS using satellite, airborne and terrestrial 

altimetry technologies have led to increased insights into river flow dynamics and provide alternatives 

to traditional methods.

Hydrological model-based analysis used in flood forecasting and building static hazard maps 

for situational awareness historically have been dependent on discharge data from in situ streamgage 

networks. While foundational to much of hydrologists' understanding o f surface water, gage networks 

are limited in the information they can provide about local floodplain flow and watershed dynamics. 

During a flood event, these in situ sources provide only a one-dimensional, point-based set o f surface 

water data (Juracek and Fitzpatrick, 2009), without addressing the additional challenge o f extrapolating 

downstream volume after the water passes the monitor and predicting what the water will do if  it rises 

and extends beyond its normal channel. The limited availability o f in situ streamflow measurement
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resources hampers flood detection in river areas and restricts the ability to validate real-time flood 

forecasting models (Madsen and Skotner, 2005). Furthermore, these streamgages are physically 

vulnerable and can stop transmitting critical flood water data during storm events or at other critical 

times.

This risk was illustrated in the August 2016 flood event in Baton Rouge, Louisiana. During the 

floods, 15 USGS streamgages were damaged or destroyed (Burton and Demas, 2016). For three key 

days during the storm, stations in critical locations stopped sending vital near real-time data to first 

responders (see Figure 3.1) who relied on the data for situational awareness about the rising o f the river, 

warning and evacuating at-risk people, and taking steps to protect property (U.S. Geological Survey,

2016).
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Figure 3.1 USGS hydrographs from  the National Streamflow Information Program.
Illustrations o f  the streamflow condition and equipment malfunction during the August 10-15, 2016, 

Baton Rouge, LA, flood  event. http://waterdata.usgs.gov/la/nwis/rt.

These risks are among the reasons that RS is increasingly being advocated as a complement to 

in situ streamflow measurement and for providing vital data where no streamgages exist (Schumann, 

Bates et al., 2009; Gleason et al., 2014; Revilla-Romero et al., 2014). This interest is reflected in the 

growing body of research related to validating inundation maps used during actual flood events, RS 

models and applications, techniques for working alongside in situ methods, and building proxy 

streamflow measurement models (Baldassarre et al., 2009) (Giustarini et al., 2011) (Chen et al., 2014) 

(Wanders et al., 2014) (Revilla-Romero et al., 2015).

RS is also increasingly being used for developing DEMs of higher resolution and greater 

accuracy. Today, flood inundation maps are commonly derived from passive microwave sensors or 

moderate resolution spectroradiometer imagery (i.e., MODIS and Landsat TM) (Tarpanelli et al., 2013; 

Domeneghetti et al., 2014; Gleason et al., 2014). Testing and experimental remote sensing systems are 

being set up to detect and map spatial resolution in near real-time, as well as monitor ongoing floods by
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comparing imagery with on-the-ground data information obtained from flood disasters (Jongman et al., 

2015). Results from studies indicate that daily spatial resolution results and measurement data from 

passive microwave satellite observations and satellite altimeters (Roux et al., 2010; Callow and Boggs, 

2013; Allen and Pavelsky, 2015) correlate well with in situ streamflow and are suitable for analyzing 

and predicting streamflow and flood events at national and regional scales.

The demand for higher spatial resolution, accurate DEMs, and hydraulic and channel flow 

routing model output that can be scaled from the regional to local level, has spurred the growth of 

related research and applied resources. In the U.S., an important step toward this goal is the continual 

development and enhancement o f The National Map (TNM), the collaborative effort o f USGS and its 

partners to provide publicly-available digitized topographic data—elevation, boundaries, transportation, 

structures, land cover, geographic names, hydrography, aerial photographs, etc. In 2011, the U.S. 

Government completed the National Enhanced Elevation Assessment, a result o f which is the 3D 

Elevation Program (3DEP), an initiative launched by the USGS. Its initial services and products begun 

in 2015, 3DEP collects and adds to the seamless layers o f TNM's high-quality topographic and 

enhanced elevation light detection and ranging (lidar) data for the coterminous United States, Hawaii 

and the U.S. territories, and interferometric synthetic aperture radar (InSAR, or commonly abbreviated 

as IfSAR) data for Alaska (Arundel et al., 2015).

This first active RS source, lidar, is a surveying and elevation measuring technology that works 

by actively illuminating (pulsing) a target with laser light—different parts o f the visible and near- 

infrared sections o f the electromagnetic spectrum—and measuring the distance of the return signal of 

the pulse reflected back (Kinzel et al., 2012), thus providing the precise location of the target (e.g., 

surface area, vegetation, hard surface buildings, etc.). Conventional lidar measures only the elevation of 

water surfaces, but specific spectrum laser light (blue-green wavelength) can penetrate water and be 

used for river bathymetry (Pan et al., 2015). While lidar can be carried out with terrestrial, airborne, 

satellite, or mobile platforms, most enhanced elevation scanning and measurement for elevation models 

is carried out using airborne platforms such as fixed-wing manned aircraft or unmanned aerial vehicles 

(UAVs), the latter being explored and developed as an economical alternative to manned aircraft, 

particularly in more remote areas.

IfSAR, on the other hand, is an active RS technology generally used in places like Alaska, 

where cloud cover and the remote locations o f target areas make the use o f lidar less effective and 

relatively impractical. Radar from satellites can penetrate overcast weather and provides valuable 

continued round-the-clock imagery during storm events (Stoker et al., 2016). This active sensing
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technique combines two or more synthetic aperture radar (SAR) images that are derived from recording 

the stereoscopic effect caused by the differences in the phases o f radiation waves that return from the 

target area after it is struck by a narrow radar beam transmitted from an antenna on a satellite platform- 

based sensor.

In addition to lidar and IfSAR, other laser scanning (LS) technologies for airborne (ALS), 

mobile (MLS) and set-terrestrial (TLS) laser scanning platforms are also being developed for flood 

mapping support (Gordon et al., 2015).

A growing body of research studies has focused on flood impact at the regional watershed 

level, some o f which have analyzed the results from RS flood extent and in situ streamflow 

measurements (Brakenridge and Anderson, 2006; Tarpanelli et al., 2013). Other research has explored 

the use o f data from multispectral and microwave sensors to supplement in situ stream data (Tarpanelli 

et al., 2015). Some studies have explored the use o f inundation maps derived from higher resolution 

images to ground truth, while others have focused on testing and validating the accuracy and 

effectiveness o f using RS image datasets for flooding events and inundation maps (Huang et al., 2014; 

Memon et al., 2015). Once RS images and derived data are recorded, it greatly impacts the efficacy of 

the tool for measuring real-time, local impact during flood events, given that satellites used for those 

events may not be at the optimal location for the right times and durations required for best coverage. 

Despite these limitations, streamflow time series from simulated satellite RS models have been 

developed, tested, and are starting to improve flood inundation maps (Schumann, Baldassarre et al., 

2009; Khan et al., 2011; Chapman et al., 2015).

3.3.3 Flood data visualization for decision support

Streamflow and flood inundation data from traditional and RS sources can be analyzed and 

visualized using either stand-alone flood mapping tools or those integrated into sets of other emergency 

management decision support systems (EMDSS)—computerized or hybrid human and computer-based 

information systems used by organizational management to facilitate the solving o f unstructured and 

partially-structured problems and making decisions related to planning, management, and operations 

processes (Rolland et al., 2010). The appropriate use of EMDSS can help emergency management 

teams address workload and labor requirements, schedules and deadlines, resource availability and 

other constraints, and assist them in making more effective time-sensitive labor assignments and 

resource allocations (Rolland et al., 2010). High-profile emergency response decision failures during 

disaster events like Hurricane Katrina and other large-scale national and international flood scenarios 

have highlighted the need for better decision-making processes and systems (Comfort, 2007; Thompson
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et al., 2006). The growing public perception of this need has been reflected in the field of theoretical 

and applied research on EMDSS for floods and other crises (Walle and Turoff, 2008), as well as in the 

development o f systems, hardware and communication technologies to assist practitioners in these 

areas.

The development o f EMDSS has been further enabled by advances in data storage, retrieval 

and processing technologies that greatly increase the potential accuracy and efficiency o f these systems. 

Technologies now exist for creating platforms that can combine many different data sources (including 

discharge data derived from such active and passive remote sensors as lidar and active sensor SAR), 

compute billions o f data elements to identify multivariate correlations across diverse environments, 

analyze and multi-scale that data, and transform that data into customizable and visualized knowledge 

needed by decision makers.

One area o f significant growth in the past few years is the processing o f “big data”—data sets 

that are too large for computation by traditional computing. It is estimated that since the 1980s the 

world's per-capita capacity to store data has doubled every 40 months (Hilbert and Lopez, 2011). Large 

data sets related to streamflow and flood inundation, plus myriad ancillary emergency management data 

that in the past required the computing power of supercomputers, can now be processed by running 

massively parallel software on tens-to-thousands o f powerful and smaller servers in multiple locations, 

all linked together in a "grid". These grids form virtual supercomputers that can also utilize "cloud 

computing"—remotely-located shared processing and storage resources for computers and applications 

that are available on-demand from anywhere for customers with high-speed Internet connections.

This rapid growth in available and interrelated data and the need to process and make sense of 

it all has overwhelmed traditional data analysis methods. A promising area being explored as a potential 

solution is machine learning, a developing field o f study o f how computers can learn without explicit 

programming—a type o f artificial intelligence whereby computers assimilate data and then use 

algorithms to make increasingly accurate predictions as they are exposed to new data (Cheamanunkul 

and Freund, 2014). A growing number o f researchers are studying how machine learning can be applied 

to hydrology (Booker and Snelder, 2012; Booker and Woods, 2014). Even with the use o f machine 

learning and other means to analyze large amounts o f statistical and other structured data, there still 

remains the challenge o f presenting analytic results in such a way as to be easily accessible and 

understood, both by analysts and by decision maker practitioners.

One approach to this issue has been to provide users with visual and graphical representations 

o f data analysis. Such information visualization attempts to help users comprehend, analyze and make
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sense out of large-scale data sets by representing that data in graphical and other visual display means. 

Visual analytics, on the other hand, have been described as interactively combining information 

visualization and data mining by integrating human factors and data analysis with visualization in order 

to assist analytical reasoning (Keim, 2010). Bertini and Lalanne (Bertini and Lalanne, 2009) argue that 

the goal of visual analytics should be to combine natural and artificial intelligences through the 

collaboration o f human abilities and the power o f data mining. Visual analytics help provide a means of 

exploring and analyzing large amounts of data to support complex problem solving and decision 

making by combining the data storage and processing of computers with the exploration (finding, 

action) and verification (insight, hypothesis) loops o f knowledge generation (Sacha et al., 2014).

The integration of flood maps with other tools are examples of a subset of information 

visualization and visual analytics called geovisual analytics (or geospatial visual analytics)— a 

multidisciplinary field that seeks to develop new approaches to solving complex problems related to 

geographical space and objects, events, processes and phenomena within that geo-temporal context 

(Maceachren et al., 2004). It is multidisciplinary in that it combines information, scientific and 

geographical visualization with the computational processing capabilities of statistical analysis and 

modeling, machine learning, data mining, and geographical analysis and modeling (Andrienko et al., 

2011).

3.4 M ethods

3.4.1 W aVE design framework

In response to the need for visualizing and characterizing flood water and related impact 

factors, WaVE is being designed and developed in collaboration with and for first responders, water 

managers and other decision makers to provide flood decision makes with a common operating picture 

and decision support. It consists o f a geospatial analytics visualization framework and DS toolset 

(currently under development) that transforms historic, real-time and forecasted streamflow and flood 

inundation data into accurate analytic results, down-scaled visibility, and customizable DS tools. The 

geospatial design, research and testing for the study areas are performed and developed using an Esri 

ArcGIS (Version 10.3) platform.

WaVE's extensible and flexible framework and toolset is designed to provide users with easy-to-use 

and customizable tools to:

• Generate moderate to highly granular and interactive geovisual real-time and predictive flood 

maps that can be scaled down to show discharge, inundation and water velocity (and ancillary
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geomorphology, hydrology and elevation data) at any point along a mapped stream at the 

national and regional levels, with some locations providing enough high resolution data to 

enable maps to also be available on a local level.

• Integrate data from multiple sources and analysis results from commercial, open source or 

user's own tools and models.

• Utilize machine learning correlation indexing to interpolate streamflow proxy estimates for 

non-functioning streamgages and extrapolate discharge estimates for ungaged streams, while 

also providing a streamflow baseline to use computational analysis to test and rate the degree of 

reliability o f the various geospatial data sources and forecast estimates being analyzed.

• Supply ancillary GIS data visualization o f environmental features, alternate evacuation routes, 

city and community analysis o f socio-economic demographics, webcams, points o f interest, 

e.g., residences, schools, roads, hospitals (see Figure 3.2).

Figure 3.2 Screenshot o f  an interactive Texas flooding ArcG IS Story Map.
An example o f  ancillary flood  data that can be integrated into WaVE—Screenshot o f  an interactive June 

2016 Texas flooding ArcGIS Story Map, showing Civil A ir Patrol fligh t path with clickable markers o f  aerial
reconnaissance photos o f  flood area.

WaVE's common operating geospatial intelligence applications and toolsets for decision 

makers are developed through a three-phase process: (1) Gathering, (2) Processing, and (3) Performing. 

These three phases are described in Table 3.1.
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Table 3.1 Key variables and three phases o f  the WaVE design process.

Key Variables of 
Flood Water Flow 

and Inundation

When 
Where 

How much

Time (historical, real-time, forecasted) 
Location and extent 

Volumetric discharge and velocity

Phase 1 
(Gathering)

Phase 2 
(Processing)

Phase 3 
(Performing)

What Streamflow and inundation Geospatial Flood event decision support

(Content / Tools) data Platform Common operating geovisual
Historical Framework intelligence system and applications
Real-time
Forecasted

Applications/toolsets Server, desktop & mobile-based

How Selection Integration Geovisualization
Inputs & aggregation Mapping Scalable localization

(Functions) Preparation (clean, code and Analysis & estimation Interactive customization
scale) Testing & evaluation 

Validation & scoring
Contextualization

3.4.1.1 Phase 1— Gathering

The first phase consists of selecting, aggregating, and preparing historical, real-time and 

forecasted streamflow and inundation data.

Selection

The first phase begins by selecting the primary historical and forecasted streamflow and flood 

inundation datasets WaVE will use for preparing its baseline analyses, model results, estimate 

comparisons, and geovisual tools. WaVE develops its baseline datasets from historical and forecasted 

data derived from weather forecasts provided by the following American and European forecasting 

modeling systems: the U.S. Weather Research and Forecasting Hydrological (WRF-Hydro) model and 

the European Centre for Medium-Range W eather Forecasts (ECMWF) model. In Phase 1, WaVE 

begins building its baseline by gathering datasets from either WRF-Hydro or ECMWF to complete the 

baseline o f its framework.

For coverage o f the U.S., WaVE uses historical and forecasted gridded discharge and 

inundation data from WRF-Hydro. This modeling extension package was developed by the federally 

funded U.S. National Center for Atmospheric Research (NCAR) and its research partners, and through 

affiliated research projects.

WRF-Hydro is both a community-based and supported stand-alone hydrological modeling 

system and coupling architecture designed to link multi-scale process models of the atmosphere and
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terrestrial hydrology on different spatial grids, as well as to provide accurate and reliable streamflow 

prediction across scales. WRF-Hydro integrates the following hydrological models: column land 

surface models, terrain routing models (overland, subsurface flow modules), and channel and reservoir 

routing models (hydrologic and hydraulic modules). WRF-Hydro receives data (one-way coupling) 

from gridded meteorological analysis models, nowcasts and forecasts, as well as data (two-way 

coupling) from weather and climate predictions—using Multi-Radar/Multi-Sensor System radar-gauge 

observed precipitation data, High Resolution Rapid Refresh, Rapid Refresh, and Climate Forecast 

System forecast data. It also receives critical numerical prediction results from the global computer 

models and variation analyses o f the Numerical Weather Prediction and U.S. National Weather 

Service's Global Forecast System (GFS).

Within WRF-Hydro, the GFS model is essential for the forecasting component for WaVE as it 

generates medium-range forecasts every six hours for up to 16 days out, with decreasing resolution after 

10 days. WRF-Hydro inputs this data using its driver and data assimilation tools, and then processes this 

data, conservatively regridding and downscaling as needed for use in its various models. The WRF- 

Hydro system features possible component configurations for streamflow prediction, including 5 

channel flow schemes (Gochis et al., 2015). As described later, one o f these, RAPID-Muskingum for 

NHDPlus, is used by WaVE.

WaVE can also use ECMWF as an option to utilize flood forecasting. ECMWF is an 

independent intergovernmental organization based in the United Kingdom that operates one of the 

largest supercomputer complexes in Europe and has the world's largest archive o f numerical weather 

prediction data (ECMWF, 2016). ECMWF's operational global meteorological forecasting model, the 

Integrated Forecast System (IFS) inputs and assimilates meteorological data collected and transmitted 

by satellites and earth observation systems, and uses these data in computerized atmospheric models to 

generate medium-range (up to 15 days ahead), monthly, and seasonal weather forecasts. Every twelve 

hours, IFS generates deterministic and ensemble operational forecasts of up to ten days out. IFS' 

deterministic forecasts are double the resolution o f the ensemble forecasts, but require more 

computational resources, whereas the ensemble forecasts use a variation o f Monte Carlo analysis and 

generate a representative sample o f possible forecast predictions by running the model 51 times in 

parallel under slightly different initial conditions (Ye et al., 2013). ECMWF makes publicly available 

some of the IFS model's most important forecast data and calculations, which can be incorporated into 

WaVE.
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Both the ECMWF (Pappenberger et al., 2009) and WRF-Hydro systems provide precipitation 

forecasts and precipitation runoff predictions that are plotted according to a geospatial grid, 

transforming rainfall runoff forecasts from weather-hydro forecast models into gridded streamflow 

(discharge) runoff predictions and inundation forecasts (Alfieri et a l ,  2014; Yucel et al., 2015).

Input and aggregation

To input gridded discharge runoff and inundation prediction data, WaVE creates connectivity 

files and inflow files from ECMWF and WRF-Hydro runoff database tables, and then creates RAPID- 

Muskingum parameter files and subset files.

Data downscaling and preparation

Because gridded forecast data from ECMWF and WRF-Hydro are provided at the global or 

regional level, there is a spatial resolution gap between the forecast values and local impact 

assessments. Even if  one can zoom in to see higher resolution of surface areas or objects within a grid 

cell, there is still only one forecast for the entire area, thus potentially providing a completely inaccurate 

runoff prediction at the local level. As the highest resolution global model is neither detailed enough 

nor scalable, its usefulness at the local level is significantly limited (Snow et al., 2016). Since the global 

model result cannot be used directly, this spatial resolution gap needs to be bridged so that the scaled 

forecast values can correspond to the local level resolution (Seyyedi et al., 2014).

WaVE framework tools bridge the spatial resolution gap by downscaling the forecasted 

streamflow runoff and inundation data from the global and regional models for later input into flow 

routing models. Downscaling is a two-step process (see Figure 3.3) using Python Geoprocessing 

Workflows: (1) Create weight table by overlaying catchments on a computational grid, and (2) Create 

inflow file by computing the weighted average runoff for each catchment. Dividing the downscaling 

process into two steps increases efficiency because once the weights are computed and the table created 

(the most time consuming part o f the conversion and downscaling process), these weights can be reused 

with a new forecast.
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Figure 3.3 The two-step downscaling process.

In the first step, weight tables are created (and continually updated) from the previously created 

files derived from WRF-Hydro or ECMWF runoff and geogrid data (a program in the Weather

static geographical data to the grids). These tables are developed by overlaying watershed catchments

base. This grid can be either low or high resolution. Watershed catchments (also referred to as drainage

of water. Smaller catchments drain hierarchically into larger catchments. The catchment data layer is 

represented by polygons generated from elevation data using a web service. As shown in Figure 3.4, 

forecast data are then run through a series o f geoprocessing operations to spatially overlay the gridded 

runoff forecast (at the top) with the watershed polygons (at the bottom), and the total runoff per 

watershed is summarized for each time step.

The grid cells associated with each catchment are identified and calculated using NHDPlus 

hydrological flow characteristics and terrain surface and digital elevation data. Each grid cell is given a 

relative weight (W) assigned at each geospatial gridded cell point (i) where the total area (Ai) o f each 

cell is divided by the catchment area (Acatchment) (see Equation 1).

A collection o f open source Python script tools (which can be extended or modified to support 

other types of runoff or forecast data) are then used to store the identification o f the catchment, cells

Research and Forecasting Model Preprocessing System that defines model domains and interpolates

on a computational grid o f the earth's surface and using a geospatial digital elevation map (DEM) as a

basins) are areas o f land where surface water comes together at a single point to drain into another body

i A i/Acatchment (1)

they fall into, and the associated weights in a file. This file serves as the weight table used in the second 

step o f the downscaling process.
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Figure 3.4 Gridded runoffforecast spatially overlaid on top o f  watershed polygons.

Total runoff is then calculated using the appropriate weights divided by the areas o f the 

contributing points.

The second step consists of creating an inflow file for the model forecast by computing 

weighted average runoff for each catchment. To do this, the WaVE tool extracts forecasted runoff time 

series (for all time steps) from each grid cell associated with a respective catchment, multiplies them by 

the appropriate weight (or area) to generate Q, or river discharge, and then adds all the grid cells. As 

shown in Equation 2, the total run-off (Runofftotal) for the combined catchment areas o f all cells is equal 

to the sum total of all the cells (X) o f cell grid run-off (Runoff) multiplied by the weight (Wi) for each 

cell grid point (i), and multiplied by the catchment area (Acatchment) for each cell (Equation 2).

Runofftotal = X (Runoff x W i x Acatchment) (2)

The process is repeated for all catchments. This step results in the weighted inflows that can be 

used to map streamflow and inundation.

3.4.1.2 Phase 2— Processing

Once prepared, in Phase 2, WaVE processes and integrates the data with results and output 

from other hydraulic and analytic models, estimates forecasts, analyzes, tests and evaluates results, and 

validates and scores results for accuracy and uncertainty.

Integration

In order to analyze and geovisualize the prepared data, WaVE integrates and utilizes a variety 

o f existing open source, public and commercial hydraulic, geospatial analytic, machine learning

52



algorithms, and geovisualization models and tools. As discussed later, WaVE's flexible framework 

allows it to easily add and integrate new and existing technologies from its geospatial application 

toolbox.

Weighted inflow data from processed historical, real-time and forecasted streamflow runoff in 

Phase 1 can then be visualized by computing discharge and choosing selections from flow routing 

models. Once it is known how much water runoff comes from each watershed at each time step, WaVE 

models the flow routing in catchments using the Routing Application for Parallel Computation of 

Discharge (RAPID).

RAPID is a river routing model that can compute the flow and volume o f surface and 

groundwater inflows and water flows anywhere within river networks, and, assuming basic 

connectivity, can be adapted for any river network. To route the waterflow, RAPID uses a matrix 

version o f the commonly used Muskingum hydrologic routing method (David et al., 2016). Muskingum 

model uses uniform calculation procedures that build on river characteristics that include: (channel 

geometry, upper and lower watershed reach and length o f a river, surrounding topography, slope of the 

river) to estimate the river water flow parameters including both the inflow and outflow hydrology 

without intricate and time-consuming algebraic solutions (Karahan et al., 2013). The model parameters 

can be easily optimized to reflect the multivariate differences for individual sub-catchments (e.g., 

presence o f major manmade infrastructure) or water withdrawals on a river network. RAPID is written 

in FORTRAN and can be run on a wide range o f computing devices, from personal computers and 

networked servers to grid and cloud-based servers for evaluating big data (David et al., 2016). While 

other more sophisticated flow routing models could be used and would be appropriate at finer scales, 

RAPID works well for this WaVE process because it handles a large number o f watersheds.

For flow routing o f water networks within the United States, RAPID utilizes the NHDPlus 

dataset, an integrated geospatial hydrologic framework, and datasets built by the U.S. Environmental 

Protection Agency and U.S. Geological Survey. NHDPlus combines the vector National Hydrology 

Dataset (NHD) stream network and Watershed Boundary Dataset (WBD) hydrologic unit boundaries, 

together with the National Elevation Dataset (NED) gridded land surface, to show each NHD stream 

segment's local catchment area. A catchment area layer contains water flowline, sink-points, area 

features and bodies o f water. NHDPlus produces the stream network datasets' flowline attributes using 

five flow estimation models.

The first version o f NHDPlus (NHDPlus V1) launched in 2006, and NHDPlus version 2 (V2), 

debuted in 2012. Both feature the NHD 1:100,000-scale stream network and the 30-meter ground
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spacing (1 arc-second) NED. NHDPlus V2 features over a thousand isolated networks in the NHD,

NED coverage for over 40% of the country, and WBD expanded to cover all the U.S. (Wieferich et al., 

2015). Currently under development is the USGS High Resolution NHDPlus (HR-NHDPlus), with the 

stream network resolution increased to a 1:24,000-scale and the 10-meter ground spacing (% arc- 

second) NED (Moore and Dewald, 2016).

The model estimates streamflow by associating stream segments in each catchment with 

temperature, rainfall and runoff data. NHDPlus uses elevation to compute stream slope, streamflow and 

velocity, and other associated attributes (David et al., 2011).

Analysis and Estimates

In order to test the methodology for visualization analysis, a comparison and contrast system 

was developed to better understand the dataset relationships and dataset requirements for any given 

watershed tested. For this analysis, a watershed basin case study was developed in order to analyze for 

both a quantitative and qualitative measurement perspective regarding the interaction between 

watershed basin datasets available for each given watershed tested and the basic methodology 

correlation comparison between the given watersheds tested. (See summary analysis in the Study 

Regions section and the Discussion section.)

Mapping streamflow and inundation forecasts

For this large model array to be visualized, the data needs to be mapped. WaVE uses an 

integrated automated process to geoenable (i.e., associate with geospatial properties) and publish these 

runoff forecast data using a multi-scale temporal map service. The maps are published at multiple scales 

in order to be viewed and show varying degrees o f detail at different levels.

NHDPlus provides an identification number for each stream segment within a watershed. The 

time series for each identification number gets loaded into a geodatabase, where each stream reach is a 

mapped feature with an attached time series flow forecast. Knowing the associated time is particularly 

important in visualizing forecasted streamflow on a timescale. For flood awareness and mitigation, 

WaVE combines streamflow forecasts from NHDPlus with visualization o f flood extents (i.e., 

inundation mapping) and the impact by inputting data from a flood inundation database and using the 

multi-scale temporal map service to generate visualizations o f flood extents and impacts. This flood 

inundation database is rendered on a geo-enabled rating curve that correlates flood depth with flood 

extent for each watershed reach. To visualize water flow and understand depth for purposes of 

developing an inundation map, terrain is analyzed and pre-calculated for each modeling reach. Flood
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extent, depth o f flooding, and water surface elevation are all calculated for a series o f incremental 

depths. A pre-existing observed rating curve can be used, or a synthetic one can be derived based on 

proven and tested hydraulic assumptions.

Once the streamflow and inundation forecast data are prepared, the WaVE toolset can generate 

down-scalable flood maps using a Raster Function Template (RFT) model. Using the RFT model, 

several analytical functions available right out o f the box are chained together to create a complex 

model that can be used to perform on-the-fly analysis. This analytical capability can be extended using 

the Python Raster Function and Height Above Nearest Drainage (HAND) (Nobre et al., 2011). Flood 

maps are then created using a combination o f HAND Raster Mosaic, Catchment Raster and the 

resulting visual model. HAND is a terrain model that normalizes topography according to the local 

relative water heights found along the drainage network by combining flood inundation mapping 

catchments and flow lines with elevation (DEM). The model defines river channel geometry and flood 

inundation extent for 5 million kilometers o f stream reaches over the continental U.S.

3.4.1.3 Phase 3— Perform ing

In the third and final phase o f WaVE, the performing step is publishing the forecast data and 

mapping the results as web services. Forecasted visualization maps can be consumed in a wide variety 

o f web and mobile application services for a broad spectrum o f end users. The capabilities o f the 

applications are determined by the kinds of services that are published, as well as by the capabilities of 

the user applications. These variable map applications include: flow at a location, flow along a reach, 

depth at a location, and depth raster needs. By publishing the modeling results as web services, the 

results become widely accessible, not just to specialists in the science, water resources managers and 

emergency management communities, but to the concerned public, including residents living in a 

floodplain or business owners affected by potential floods.

The multi-scale temporal map services are then used by various web applications related to 

predicting and responding to hydrologic events. Configurable application template builders are 

available on a larger platform based toolset to easily create and publish interactive analytic applications 

(see Figure 3.5).
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Figure 3.5 Screenshot o f  an interactive June 2016 Texas flooding ArcGIS Story Map.
An example o f  ancillary flood  data that can be integrated into WaVE, showing moveable split screen 

comparing pre- and post-event satellite imagery o fflood  area.

Com plete Flood M anagem ent A story map f i  *  <? 0 $ r i

Figure 3.6 Screenshot o f  a dynamic interactive flood  inundation map and ArcGIS Story Map. 
An example o f  ancillary flood  data that can be integrated into WaVE.

56



Web applications like these are now much easier to create by using prebuilt configurable 

application templates or creating the user's own design using drag and drop widgets, including the user's 

published web maps, and mashing them up with other data. These apps can be 2D, 3D, time-enabled 

and combined with analysis tools, and can all be built responsively for browser, tablet, or phone. Based 

on the availability o f national, regional and local data, WaVE's GIS based pre- and post-processing 

tools are available to support a modular framework for runoff forecast impact analysis anywhere in the 

world by selecting either the WRF-Hydro or ECMWF forecasting model systems (see Figures 3.5 and 

3.6).

3.4.2 Building the future model— enhancing the fram ework for accuracy and localization

Transforming knowledge into action

In order to be confident that first responders are making decisions that accurately reflect the 

reality o f a crisis event, decision makers need to be confident that they have previously considered and 

made sense of all the relevant observations and information before they can strategize, plan, create and 

implement response scenarios (Walle and Turoff, 2008).

Muhren and Walle (2010) define this sense-making as contextualizing and making 

understandable a situation or scenario when there is an absence or loss o f meaning, a period often 

precipitated by "unforeseen changes in the environment which break the imaginary link between 

expectation and reality and force actors to reevaluate what they are doing and where they should go."

To make sense o f all the various bits o f structured and unstructured data and often conflicting human 

interpretations, responders need and search for the right frame o f reference they can use in order to 

interpret, contextualize and draw insight for making decisions and acting.

In crisis situations, where events often unfold very quickly and there is a high degree of 

uncertainty regarding what is known or needed to be known, responders usually either lack an adequate 

frame of reference (ambiguity) or are confronted with multiple, conflicting interpretations and frames 

(equivocality). Decision makers can develop an adequate frame of reference or reduce the equivocality 

o f multiple frames by making use o f a variety o f sources to notice what is going on around them, 

interact with others, and communicate with others to enable action. A well-designed EMDSS can 

provide the means for dealing with ambiguous or equivocal frames o f reference (Muhren and Walle, 

2010).

Having a common operating picture (knowledge base), the conditions for which must be 

developed before a crisis event, is essential for sharing information, coordination, focused action and
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support among different geographically diverse organizations and jurisdictions. While in reality, sense- 

making, decisions and actions are carried out at individual group levels according to roles and 

competencies, emergency management without a common operating picture tends to revert to hierarchy 

as a means of control (Comfort, 2007).

WaVE is an integrated support system that aggregates relevant hydrologic and ancillary data, 

analyzes that data, and publishes the geoanalytic results using commonly-shared (yet providing user- 

defined customization) geovisualization platform and toolsets for flood event situational awareness and 

EMDSS (see Figure 3.7).

Figure 3.7 Integrating geospatial analytics, visualization and machine learning.
WaVE's common operating picture framework and decision support toolset. Images courtesy o f  Esri.

Integrating Machine Learning fo r  enhancing river flow  accuracy

Accuracy and reliability o f data are critical for decision makers, not only as a basis for making 

time-sensitive and effective choices, but also as factors that influence the level to which decision 

makers trust, adopt and use these tools. The next phase o f development o f WaVE will likely integrate a 

hydrologic machine learning predictive model developed and tested by the authors (and currently under
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peer review for publication). This new model will interpolate and extrapolate streamflow and 

inundation data for gaged and ungaged catchment channels, and test, analyze and score the degree of 

both accuracy and uncertainty for results from other hydraulic models.

Developed in collaboration with researchers from Microsoft and leveraging the latest Esri GIS 

hydrology and Microsoft Azure cloud computing technologies, this new predictive model o f SHEM 

(either standalone or integrated with WaVE) can:

• Provide accurate and timely proxy streamflow data for inoperative streamgages (i.e., offline or 

damaged during flood events).

• Interpolate data from ungaged streams deemed to be similar to proximally indexed gaged 

streams.

• Be used to identify the optimal locations for positioning physical streamgages.

• Estimate streamflow in ungaged water catchments using datasets derived from satellites and 

other remote sensors.

• Create a virtual streamgage historical index for interpolation o f missing discharge data and 

extrapolation o f forecasted discharge.

• Compare and test runoff forecasts developed from WRF-Hydro and ECMWF models.

Using cloud computing to compute billions o f data elements, the model relies on machine 

learning to process (i.e., teach itself) and interpret large volumes (“big data”) o f historic complex 

hydrologic information. The model uses this information to construct a virtual dataset index of 

correlations and groups (clusters) o f relationship correlations between selected streamgages in a 

watershed and under differing flow conditions. These estimates are continuously tested, scored and 

revised using multiple regression analysis processes and methodologies. WaVE can then integrate this 

continually updated, forecasted and real-time streamflow data into its framework.

Integrating this machine learning correlation indexing model enables WaVE to utilize large 

volumes o f forecasted data to make more accurate predictions and better test local-downscaled 

inundation map models in the future.

Developing satellite remote sensing to derive streamflow data

The United States has upwards o f 8,000 streamgages, yet there is a continued demand from 

water resource managers and flood emergency managers for more streamflow information, especially 

during a flooding event. Many streams and large portions o f streams throughout the country lack in situ 

gauge measurement resources. In response to this lack o f streamgage availability, Gleason (Gleason and
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Smith, 2014) designed the At Many-stations Hydraulic Geometry (AMHG) model to derive streamflow 

discharge data estimates solely from multiple satellite imagery. This innovative computational riverine 

research is an example o f RS application being developed to meet the demands o f the quantity and 

quality o f data required for WaVE framework integration. In the AMHG model, Gleason describes its 

functional research relationship to river streamflow by using RS and computational analytic river flow 

width (w), mean streamflow depth (d), and mean velocity (v) in order to build a critical discharge (Q), 

where Q = wdv. Significant practical applications using this discharge data can be developed for the 

building o f inundation maps with W aVE’s framework, by using RS discharge river datasets, building a 

historical indexing river (Q) dataset system, and then integrating new methodology applications 

outlined in the machine learning analysis. Three of the four watersheds highlighted in the case study 

section below used AMHG methodology for measuring river discharge which can then be used for 

building historical and actual inundation maps using the streamflow estimation methodology and 

WaVE framework.

3.4.3 Study regions: Testing integration analysis

WaVE was studied and tested at watershed sites in four U.S. geographical regions, chosen for 

their diversity in topography, river geomorphology, climatic conditions, population in the environs and 

the amount of available data from various hydrologic computation models: (1) Southwest United States 

(Texas), (2) Central United States (Louisiana), (3) Northwest United States (Idaho), and (4) the far 

north Arctic region (Alaska). The broad variety o f local conditions in these settings belong to five o f the 

ten main land cover classes by GlobCover (GlobCover, 2016) and represent four of the five types of 

climate classification (see Table 3.2) (Peel et al., 2007).

Table 3.2 Land cover & climate characteristics o f  watersheds

Land cover (Peel) Climate (GlobCover)

Texas:
Colorado River Watershed

Sparse vegetation and crops, 
Urban

Arid

Louisiana: Mississippi River at Baton 
Rouge Region Watershed

Mosaic cropland or grassland, 
Urban

Temperate

Idaho:
Boise River Watershed

Closed to open forest, 
Mosaic cropland or grassland, 

Urban

Cold

Alaska:
Tanana River Watershed

Closed to open forest, 
Mosaic vegetation 

Urban

Sub-Polar
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The three-phase process o f Gathering, Processing and Performing, described in the methods 

section, was used to test WaVE in order to evaluate its capability and effectiveness in downscaling data 

from a global, national and regional level to the local level (as close as possible, depending on data 

availability and spatial resolution of the underlying hydraulic model and DEM), with the goal of 

transforming this data into a visualized local level flood inundation map. With the goal o f eventually 

incorporating into WaVE other application models that derive discharge for forecasting purposes, two 

additional models were tested: a machine learning hydrology estimation model and a satellite RS 

model.

Texas: Colorado River Watershed Basin

This Texas watershed basin has an arid climate with minimal seasonal rainfall, mixed sparse 

vegetation in the upper watershed, and irrigated crop vegetation. The region is directly impacted by 

irregular storms and hurricane events that can cause high flash floods in an area with a large population 

at the base o f the watershed, threatening significant property damage and loss of life. To help prevent or 

mitigate these flood risks, water managers and floodplain managers face the challenge o f balancing 

reservoir storage levels and flood control systems.

When WaVE was tested on the Colorado River watershed, it successfully downscaled the 

available data and produced a forecasted enhanced inundation map of the national and regional levels, 

but lacked adequate data to be able to downscale to the local level.

Figure 3.8 depicts an example of the dynamic, interactive and time-sequential WaVE 

screenshots o f the Colorado River watershed. They demonstrate streamflow estimation using 6 hour 

intervals over a 10-day occurrence highlighting the ability to simulate forecasted streamflow with 

precipitation impact o f national, state, regional, and partial local watershed regions. This same process, 

generating visual enhanced streamflow models, was also created on each of the other three watersheds 

with different outcomes.
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Figure 3.8 Plates created by WaVE demonstrating scaled levels o f  geospatial streamflow.
Forecasted and real-time images courtesy o f  Esri and designed using ArcG IS 10.3 and Arc Hydro.

Louisiana: Mississippi River, Baton Rouge Regional Watershed

A segment o f the Mississippi River within the Baton Rouge regional watershed basin, located 

in the central-southern U.S., was selected for its temperate climate, mosaic vegetation, and the broad 

river basin's high flood impact on local populations. Large volume water accumulation during rain 

runoff can result in high flood inundation, creating a flood hazard potential for the large number of 

residents, particularly in the Baton Rouge community.

When WaVE was tested on the Mississippi River within the Baton Rouge watershed, the model 

successfully downscaled the available data and produced an enhanced inundation forecast map at the 

national and regional levels, but lacked adequate data for downscaling to the local level. The two maps 

portrayed in Figures 3.9 are historically accurate, localized inundation maps that have been verified by 

local flood officials at the end o f the August 2016 flood event in Baton Rouge. Localized inundation 

maps like these were used to validate W aVE’s prediction o f inundation in all four study regions.
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Figure 3.9 Flood inundation map o f  August 2016 Baton Rouge Regional Area.
Images designed using ArcG IS 10.3 and Arc Hydro and the Federal Emergency Management

Association (FEMA) datasets.
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Idaho: Boise River Watershed

The Boise River basin is located in the Northwest United States, west o f the Rocky Mountains, 

with high mountain ranges and steep slopes east and north o f the city o f Boise. The land cover is 

closed-to-open forest and mosaic cropland. This watershed was selected for its combination o f high 

flood inundation events caused by irregular seasonal rainfall that can occur in early spring; the melting 

o f large accumulations of snow in the mountains creates high volumes o f spring runoff that can result in 

flash floods that threaten the state capital's large population and surrounding communities. In this 

watershed basin, water and floodplain managers have to balance water storage capacity for agriculture 

and water utilities with necessary flood control precautions and measures.

When WaVE was tested on the Boise River watershed, it successfully downscaled the available 

data and produced a forecasted enhanced inundation map of the national and regional levels, but lacked 

adequate data and adequate DEM spatial resolution to be able to downscale to the local level.

Figure 3.10 Forecasted inundation.
Plates demonstrating WaVE forecast and pre and post flood  inundation in downtown Boise. Images 

courtesy o f  Esri and designed using ArcG IS 10.3 and Arc Hydro and Google M ap services.

The images in Figure 3.10 highlight and demonstrate streamflow estimation using 6 hour 

intervals over a 10 day occurrence, illustrating the ability to simulate forecasted streamflow with 

precipitation impact on a state and regional level. However, lack o f high resolution datasets prevented 

WaVE from downscaling to the local level with the detail requested by emergency responders for the 

watershed region. This same process was implemented on each o f the other three watersheds with 

different outcomes.

The Boise River Watershed was specifically selected as part of this case study because of the 

availability o f many years o f informationally-rich, well-documented hydrology streamgage data for 

testing the machine learning methodology. Together with near real-time data, the historical data were 

measured and applied to acquire historical discharge rates that could be utilized for flooding events like
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the August, 2016 Baton Rouge flood event when streamgages stopped transmitting and information was 

lost as a result of the flood.

Although all four watersheds received preliminary testing for the machine learning process, the 

Boise River watershed provided the most complete data to utilize the methodology. The Texas and 

Louisiana watersheds demonstrated adequate hydrological in situ data to use this methodology in the 

future. The Alaska Tanana River watershed lacks the necessary in situ discharge data at this time to use 

the machine learning methodology.

Alaska: Tanana River Watershed

The Tanana River watershed is a large, glacially-defined riverine system formed by numerous 

mountain ranges and arctic streams within the central part o f Alaska. The region is characterized by a 

sub-arctic climate and land cover o f closed-to-open forest with mosaic vegetation. This watershed was 

selected because o f the complex flooding events caused by large amounts o f snow runoff in the spring 

that flow into and meet with ice sheets in the Tanana River. Since much o f the inland (non-coastal) 

Alaskan human population is located in the city o f Fairbanks and within the Tanana River drainage 

basin, this frontier city is often threatened with the possibility o f extensive riverine flood devastation 

(see Figure 3.11).

When WaVE was tested on the Tanana River watershed, it successfully used the available data 

to produce a broad national hydrology water map using both the WRF-Hydro and ECMWF. However, 

the lack o f in situ discharge measurement tools prevented the ability to gather the data needed to 

produce an enhanced inundation forecast map at even the regional level for the Tanana River. 

Anticipating these limitations, the AMHG remote sensing application was used as another means of 

forecasting inundation. Testing AMHG (Gleason et al., 2014) parameters and cross-referencing the 

research on several o f the lower latitude watersheds provided tangible research data for further 

investigation for the WaVE integration model. Analysis results are highlighted in Table 3.5 below. The 

need still exists to develop tools for gathering discharge data that will operate in this high northern 

latitude region.
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Figure 3.11 Aerial photo and Landsat image o f  Tanana River.
(1) Aerial photo (provided by U.S. Army Corps o f  Engineers) o f  the braided Tanana River outside 

Fairbanks. (2) Tanana River USGS Landsat imagery used to analyze and test the accuracy o f  AMHG
model's river discharge estimates.

Data analysis methodology and indicator and agreement comparison

Table 3.3 below provides a summary o f the assessment o f W aVE’s methodology for 

visualization downscaling for each case study flood inundation map analysis at the national, regional 

and local level.

Table 3.3 WaVE—Forecasted data visualization downscaling analysis (flood inundation map)

Case Study National Regional Local

Texas Yes Yes No

Louisiana Yes Yes No

Idaho Yes Yes No

Alaska Yes Partial No

Applying the WaVE methodology to each case study region, a comparative and contrasting 

quantitative and qualitative measurement analysis was created by testing available datasets within the 

full integration framework as a downscaling analysis (see Table 3.4).

The quantitative measurement analysis, that was conducted, compared and correlated the 

visualized map results o f forecasted (pre-) integrated datasets and actual (post-) integrated datasets, and 

evaluated the available forecasting datasets and the downscaling process for each study region. Using 

Pearson linear correlation coefficient (r), the formula for testing and analyzing the forecasting (pre-) 

and actual inundation (post-) event dataset for each watershed basin is as follows:
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r = If=i((x; -  x)(yt -  yj) -  VSf=i(̂ i -  x')21"=i(yt -  y)2 (3)

In this equation, (x) is the forecast dataset collection event, (y) the mean o f the actual dataset 

(post-) collection event, (x)is the mean of (x), (y) is the mean of (y), and (n) is the time (in days) o f a 

forecasting time scale event (Equation 3). Note: The forecasting datasets for each tested watershed 

contain multiple variables and integration processes for each location, measurement, and time, are not 

evaluated for dataset quantity. Therefore, testing with large quantity data methods, including root mean 

square, mean absolute error, and R-square error calculations was not performed on this regional case 

study project at this time.

Table 3.4 WaVE—Forecasted data visualization analysis o f  (pre-) and (post-) dataset detection

Case
Study

Forecasting
Downscaled

(pre-)
effectiveness

(post-)
effectiveness

Qualitative

Assessment

Time-Series
Effectiveness

Quantitative

Assessment

Correlation
Tested

Texas Partial Yes Yes Yes 0.61/poor

Louisiana Partial Yes Yes Yes 0.61/poor

Idaho Partial Partial Yes Yes 0.41/poor

Alaska Partial Partial Yes Partial 0.10/very poor

Future application models fo r  WaVE framework

All four watersheds received preliminary testing for the hydrology machine learning prediction 

model for discharge analysis using in situ measurement data and the AMHG model for discharge 

analysis using RS measurement data. During a flooding event, providing estimated forecasting 

discharge data and integrated WaVE methodology, a new estimated inundation map for first responders 

on a local level could be assessed. Table 3.5 summarizes the test results of all four watersheds for both 

the authors’ hydrologic machine learning model (previously described) and the AMHG model (Gleason 

et al., 2014).
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Table 3.5 WaVE framework—Forecasted data
Using machine learning & AM HG fo r  gauging river discharge and flood  inundation maps.

Case Study Machine Learning 
Discharge Value AMHG Discharge Value Comments

Texas Partial Not tested More testing required

Louisiana Partial Yes - 0.91/very good Good long term dataset

Idaho Good Yes - >0.80/good Good long term dataset

Alaska No Yes - <0.20/poor Minimal gauges/Braided River

3.5 Discussion

The purpose o f WaVE is to provide flood event decision makers with enhanced geoanalytic 

visualization (common operating picture) and user-customized DS toolsets for contextualizing, making 

sense o f and acting upon accurate and scalable hydrologic and ancillary flood data. The previously 

described case studies were conducted to test and demonstrate the functionality, reliability, and 

effectiveness o f the WaVE framework and toolsets (including the use of machine learning for 

estimating proxy streamflow data) under diverse geomorphology, streamflow and flood-related 

conditions at national, regional and local levels. Results from these case studies highlight some of 

WaVE's inherent strengths (both existing and potential), limitations, and the need for further 

development.

3.5.1 Capabilities and functional validation

Framework, downscaling, and visualization 

The primary goals o f the case studies were to:

• Input, aggregate, and prepare historical, real-time and forecasted data used in baseline analyses, 

models, estimate comparisons and tools.

• Demonstrate the ability to downscale and utilize national precipitation, flood forecasting, 

hydrography, and landscape topography datasets to the regional and local scale level 

(depending on DEM spatial resolution and availability o f streamflow and inundation data).

• Demonstrate the use o f hydrologic machine learning to produce accurate streamflow estimates 

that can be integrated into WaVE models.

• Transform this downscaled data into visualized local-level flood inundation forecasts and other 

useful actionable flood-related knowledge elements of where, when, and what.
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• Develop a precipitation, flood forecast visualization map for each o f the watersheds and 

compare their output maps with some form of calibration for pre-, mid-, and post- processing 

integration o f data sets for all technologies into functioning GIS platform characteristics for 

each of the watershed regions.

• Demonstrate how other models and model results can be integrated into, analyzed and 

geospatially visualized using WaVE.

Three o f the case studies—Texas, Louisiana, and Idaho—provide clear parameters and datasets 

for a fully integrated test analysis for the WaVE framework as applied to different types o f land use and 

local and regional roles in watershed flooding events. The fourth case study area—Alaska—was used to 

develop the data requirements. As discussed below, the lack o f ground station measurements results in a 

limited availability o f streamflow data and highlights the importance of RS as a source o f data.

All six goals o f the case studies were achieved to varying degrees according to the availability, 

quality, and spatial resolution o f the data. Overall, the results from the case studies indicate that WaVE 

can capably and effectively downscale forecast data, as well as transform that data on-the-fly into 

dynamic streamflow routing and inundation maps. Analysis o f forecasted case study map results, 

compared and contrasted with actual flood inundation maps, demonstrated a medium to high correlation 

and degree o f accuracy.

Ubiquity, flexibility and extensibility

Addressing fundamental limitations o f existing flood visualization tools and EMDSS, WaVE 

was intentionally designed to use a standard and widely available software architecture, together with a 

flexible and extensible framework that could be easily adapted to users' needs and integrate their 

existing tools and data. The lack o f ubiquitous, interoperable, flexible and extensible systems and 

standardized data formats are primary reasons why many decision makers and communities either don't 

acquire flood awareness and EMDSS or are unable to effectively utilize existing programs.

Which flood models and data acquisition methods are selected by users depends on many 

factors respective to those individual communities (Legleiter et al., 2014). For some floodplain 

communities, current and traditional flood modeling methods demonstrate tolerable flood analyses, 

supportable technical complexity, acceptable cost effectiveness, and leverage existing structures for in­

place procedures. Acquisition and adoption o f new technologies to build flood hazard prediction models 

may be unacceptable due to perceived costs—additional time and training requirements, the 

restructuring o f old programs, problems associated with the short-term loss o f flood programs, accuracy
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issues o f flood prediction tools, or even the increased cost o f hiring new staff. Furthermore, for many 

practitioners, these models and tools simply are not seen as sufficiently accessible or useful to justify 

acquisition and adoption. This is due to the fact that these models and tools are generally 

computationally complex, data-intensive, and accessible only to the domain experts who build them, 

frame the issues, model the results, and design the products they've determined practitioners need 

(Leskens et al., 2015). Plus, for many users, accessing near real-time data is expensive and often cost- 

prohibitive.

Other user groups are willing to undertake the transition because they perceive the realized and 

potential future benefits to be greater than short-term considerations and the cost of acquiring new 

emergency flood mapping resources or restructuring existing ones. For these groups, however, such a 

transition is complicated by the variances in user needs, availability o f required data and resources, and 

limitations of satellite-based flood detection systems (Revilla-Romero et al., 2015). The frequent lack 

o f data continuity from one region to another, the lack o f historic flood images, and the poor quality of 

available data often result in poor coverage datasets. Disruptions o f datasets often created by the use of 

different platforms and access points imagery by data providers further complicate flood map 

development.

To address many o f these limiting factors, the authors constructed WaVE to enable potential 

users to leverage already-owned and familiar building blocks o f architecture, platform, framework, 

mapping and GIS tools. The core WaVE framework is built upon Esri ArcGIS (v. 10.3) and Arc Hydro 

(v. 10.3) platforms and software architecture for three key reasons: (1) most potential U.S. institutional 

users are decision makers at the federal, state and local government levels that already have Esri 

institutional licenses and ArcGIS-Arc Hydro platforms and applications; (2) users' existing programs 

and datasets can be integrated into the full Esri suite; and (3) many hydrologic models (whether open 

source or proprietary) in current use or under development (e.g., WRF-Hydro, NHDPlus, RAPID, 

Tethys, USACE’s Hydrologic Engineering Center's River Analysis System, HAND, etc.) are all built 

on top o f Esri's ArcGIS architectural platform. The worldwide GIS market is highly fragmented (Roth,

2013) and consists o f a wide spectrum of open source, public and proprietary systems that often use 

incompatible, non-standardized platforms, data formats, etc. By contrast, ArcGIS, while owned by Esri, 

is the most common GIS mapping platform worldwide.

WaVE is being designed in collaboration with Esri engineers to seamlessly integrate a suite of 

mapping, design and analytical tools, as well as to make the WaVE framework sufficiently 

interoperable and extensible in order to integrate or couple with other open source, public, or
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proprietary models and data sources. As part o f the case study demonstrations, various other models or 

their resulting datasets were integrated and tested with the WaVE framework.

Additionally, the case studies also show that W aVE’s framework accommodates data from 

newly-developing research models that use hydrologic machine learning and satellite RS imagery.

These models interpolate or extrapolate estimated streamflow data in gaged and ungaged rivers, thereby 

providing valuable datasets o f streamflow estimates. This data can then be integrated into W aVE’s 

forecasting and prediction model and downscaled to the local level, expanding the possibility of 

developing new, accurate and predictive inundation maps. Although WaVE presently uses Microsoft's 

Azure cloud computing platform, it is also compatible with other cloud services (e.g., Amazon, Google, 

IBM, Oracle or open source), further illustrating W aVE’s flexibility and extensibility.

3.5.2 Limitations

While validating the overall WaVE framework and model, the case studies also highlighted 

WaVE's inherent dependence on adequate historical streamflow and inundation forecast datasets and 

sufficiently high spatial resolution DEM and hydraulic model results for downscaling visualized data at 

the local level.

Testing the WaVE model at different geospatial scales (e.g., regional or local) requires high 

spatial resolution and detail o f elevation and terrain, as well as adequate historical streamflow data. For 

some areas, there is neither sufficient data nor high enough resolution for adequate regional or local 

analysis and forecasts.

Inadequate streamflow and inundation data

Another significant limiting factor in the adoption and utility o f contemporary hydraulic models 

and flood inundation maps is the lack o f standardized and accurate streamflow and ancillary hydraulic 

data (Revilla-Romero et al., 2015).

Severe climatic conditions or geographic inaccessibility in some regions greatly limit the ability 

to place and maintain a sufficient number o f in situ streamgages for measuring and recording 

quantitative data o f river discharge. For example, many rivers in the arctic regions, like the Tanana 

River, lack evenly-spaced in situ streamgages to gather quantitative data o f river discharge along the 

full flow of the watershed, thereby restricting the ability to provide advance warning o f a flood event to 

the surrounding communities.
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In order to supply historical or real-time data estimates for gaged streams with non-transmitting 

gages or for ungaged streams, WaVE utilizes a new hydrologic streamflow estimation model to create 

proxy datasets by either interpolating missing data for interruptions in streamgage datasets, or to 

extrapolate forecasted estimates using machine learning and correlation indexing.

Another potential source o f gathering critical streamflow data for ungaged rivers is remote 

sensing. RS is being researched as an alternative for measuring streamflow and forecasting flood 

inundation, but currently river discharge cannot be directly measured from any known satellite or 

airborne sensor. Gleason (Gleason et al., 2014) created a systems model o f measuring streamflow, 

highlighted in the case studies, that estimated river discharge using sequenced remotely-sensed images 

o f the river's flow dynamics, physiographic characteristics, and computed geospatial and temporal 

measurement estimates. Gleason's analysis required no in situ measurements, but rather utilized 

hydraulic geometry that focused on river width, depth and other empirical parameters from remote 

sensed imagery to estimate measurements o f log-linear velocity and discharge. This research process, 

now referred to as the “at-many-stations hydraulic geometry” (AMHG) model, was evaluated for 

potential integration into WaVE as an analysis tool.

Challenge fo r  localized data downscaling

A second primary goal o f WaVE—effectively scaling flood inundation and streamflow 

mapping down to a local level, whereby a first responder can accurately determine the extent and depth 

o f inundation at any point along a stream— requires higher spatial resolution and detail of elevation, 

terrain, and streamflow data than what is currently available in most locations.

While insight at national and regional levels is useful for analyzing trends, it is often of 

relatively little use to local decision makers who need accurate real-time or nearly real-time information 

at the local scale to both anticipate and prepare for flood events, as well as tailor mitigation actions and 

responses.

The focus o f research and the availability and spatial scale o f data related to RS has shifted 

from global and national to regional and, increasingly, local. While moderate resolution imaging and 

passive microwave satellite observation datasets are valuable sources of land surface hydrological 

information, more frequent and quickly accessed and processed satellite images are needed to evaluate 

RS as a reliable and effective source o f data for analysis and mapping. Combining remotely sensed data 

with ground-based information provides a more comprehensive overview than just in situ streamgage 

data of the holistic watershed, including landscape topography, geology, watershed drainage, soil
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moisture, visual history o f changes in river water flow drainage, and variables due to weather and 

seasonal changes (Bjerklie et al., 2005). O f the two RS methods, satellite imagery from SAR platforms 

is seen as superior for showing and measuring repeatability o f land change awareness, whereas lidar 

technology toolsets are preferred for achieving local ground awareness (Smith et al., 2006).

Currently only a small percentage of the surface elevation o f the U.S. (lower 48 states) has been 

digitally mapped using lidar, and an even smaller percentage of the country (most o f that in Alaska) has 

been digitally mapped using IfSAR (U.S. Geological Survey, 2012). A small percentage o f the lidar- 

mapped surface is mapped at a high enough spatial resolution for effective down-scaling and 

localization. As higher resolution data becomes available, WaVE will be able to provide localized 

mapping with greater accuracy and granularity.

3.5.3 Further research and development

The research and testing o f WaVE has revealed that in order for this framework to deliver 

downscaled, localized, predictive, and high resolution inundation maps for emergency responders and 

flood managers, higher quality streamflow, elevation and remote sensed data are needed.

Additional studies are planned for testing the WaVE model at the local level as higher resolution digital 

elevation data becomes available. In order to accomplish this, the following research and development 

will be essential:

• The systematic gathering o f more complete elevation data and higher quality topographic data. 

This will require federal, state and local engagement. One example is the USGS 3DEP initiative 

currently being developed to systematically collect enhanced elevation data using lidar and 

IfSAR.

• Further testing and integration o f the hydrological machine learning model into WaVE, 

providing predictive datasets for streams that are ungaged or with gages that have stopped 

transmitting streamflow data.

• Expanding the testing o f AMHG as an integrated model for generating streamflow estimates for 

ungaged rivers. These estimates can then be processed by W aVE’s machine learning 

correlation indexing to generate water discharge datasets.

3.6 Conclusion

There is a growing consensus among the academic, policy and practitioner communities 

regarding the need for accurate, scalable, and highly granular geospatial and analytic data at the local
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level for flood event situation awareness and EMDSS. Furthermore, there is also a general agreement 

about the need for decision makers to be able to easily access that information in a timely fashion, 

quickly make sense of all the salient issues related to the flood event, and share that knowledge within a 

common operating picture with other decision makers in geographically distributed organizations and 

jurisdictions.

WaVE addresses this need with an integrated support system that provides enhanced 

geoanalytic visualization (common operating picture) and DS toolsets. To achieve this, WaVE 

aggregates relevant hydrologic and ancillary data, analyzes that data, and publishes the geoanalytic 

results using a commonly-shared, yet user-customizable, geovisualization framework and toolsets for 

flood event situational awareness and EMDSS.

Four case studies were conducted to test and validate the WaVE framework and toolsets under 

diverse conditions at national, regional and local levels. Results from these case studies highlight some 

o f WaVE's inherent strengths, limitations, and the need for further development. WaVE has the 

potential for being utilized on a wider basis as data becomes available and models are validated for 

converting satellite images and data records from RS technologies into accurate streamflow estimates 

and higher resolution digital elevation models.
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support systems; GFS: Global Forecast System; GIS: geographic information systems; HAND: Height 

Above Nearest Drainage; IfSAR: interferometric synthetic aperture radar; lidar: light detection and 

ranging; LS: laser scanning; MLS: mobile laser scanning; NCAR: U.S. National Center for 
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Chapter 4 Bridging Science-W ater Policy Action Boundaries: Information influences on U.S. 
congressional legislative staff decision m aking3 

4.1 Abstract

This paper provides a framework to evaluate how policy-makers interact with information, 

make decisions, and act upon policy-related information. To explore the influence o f information in 

bridging water policy knowledge boundaries and linking policy decision making and action, the authors 

conducted a grounded theory study o f key congressional legislative staff in the U.S. House and Senate 

involved in federal water policy development and oversight. Federal legislative water policies are 

largely shaped and developed by senior congressional legislative staff, whose policy priorities, 

decisions and actions are influenced by policy-related information. Three conceptual themes emerged 

from the study as common priorities for legislative staff: 1) developing trusted relationship-information 

networks; 2) prioritizing relevant stakeholder interests; and 3) maximizing efforts to achieve desired 

results. While the use o f policy information is largely determined by the staff's multiple principal-agent 

roles, competing interests and other constraints, results o f this study suggest that information quality 

criteria can be useful as heuristic tools for both intuitive judgments and reasoning o f legislative decision 

makers and for transferring knowledge across science-policy action boundaries.

4.2 Introduction

This paper explores the degree to which generally-assumed criteria influence policymakers' use 

o f information in decision making and legislative action. To accomplish this, the authors conducted a 

grounded theory research study o f key congressional legislative staff involved in federal water policy 

development and oversight in the U.S. House and Senate. This study provides an interpretative lens for 

exploring how policy-makers interact with, make decisions on, and act upon policy-related information.

Traditionally, policymakers have called upon science and other fields o f knowledge to produce 

and disseminate useful information for sound decision making. Such information, it is argued, would

3 Petty, T. R., J. B. Gongwer, and W.E. Schnabel (2017). Bridging Science-Water Policy Action Boundaries: 
Information influences on U.S. congressional legislative staff decision making. Manuscript formatted for 
submission to  the Journal of Environmental Science and Policy.
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improve the process by clarifying issues and choices and help decision-makers successfully make the 

rational judgments that lead to desired outcomes (McNie, 2007). However, if  decision makers do not 

perceive the information to be relevant or useful, then simply increasing the supply o f accurate 

scientific information does not help inform policy.

In response to the perception that research has limited influence on policy because it is neither 

relevant nor useful, considerable discussion has taken place over the last decade or so to identify how 

best to bridge the so-called divide between science and policy and make information more useful to 

decision makers. Discussed in a later section, results from a number o f studies have indicated that 

information (e.g., scientific information) must be perceived by decision makers as meeting minimal 

thresholds of specific quality criteria in order for the information to be considered or to influence policy 

decisions and actions (Cash et al., 2003).

Refocusing the issue from simply providing "more and better" science to exploring how 

decision makers perceive the relevance and usefulness o f scientific research has led to using this 

interpretive lens for revisiting issues o f research structuring, funding, and results framing. This focus on 

policy utility has spawned numerous studies, calls for action, research methods, and models for 

science-policy interaction and decision making. Many, if  not most, of these studies were written by or 

for scientists and specialists and were aimed at improving the shape o f research, packaging research 

results, and crafting more effective communication in order to achieve greater influence o f science on 

policy-making. However, despite the growing body of analytic literature and improvements, the 

perception persists that science continues to have relatively little impact on policy, regardless o f this 

new focus on receptivity (Meinke et al., 2006; Bauler, 2012; Lemos et al., 2012).

While a few studies have presented the issue from the perspective o f policymakers, there has 

been a relative absence o f research or writing on the complex dynamics o f how the policymakers 

themselves process information and make decisions.

4.2.1 Study context— water resources and the legislative process

The water management system in the United States is distributed among different entities and 

jurisdictions at the federal and state levels. Numerous federal government and independent 

commissions, from the Gallatin Report o f 1808 to the report o f the National Drought Policy 

Commission in 2000, have studied water policy and called for reform o f the costly and 

counterproductive fragmentation and conflict, overlap, duplication, and ultimately the lack o f overall 

accountability for land and water use impacts (Neuman, 2010; Christian-Smith et al., 2011).
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Today, at the federal level, water policy related to managing or regulating water resources is 

created through several mechanisms, most prominently federal agencies and Congress. In the Executive 

Branch, there are more than 25 federal bureaus and agencies with regulatory authority on water issues, 

additional boards and commissions with water-related programs and responsibilities, and over 200 

separate federal directives, regulations, and laws (Gerlak, 2006; Christian-Smith et al., 2011). Federal 

water policy, in part, consists of numerous legislative initiatives that deal with a large number o f often 

unrelated issues and funding programs. There are more than a dozen major pieces o f federal legislation 

related to water, and roughly 40 congressional House and Senate committees and subcommittees with 

various levels o f oversight and policy input on diverse and often overlapping water issues (Allin, 2008; 

Cody et al., 2012).

The legislative process grew significantly following the Legislative Reorganization Acts of 

1946 and 1970, and this growing role has been mirrored in the expanding number o f committees and 

committee staff members. Congress currently has twenty-one standing committees in the House and 

sixteen in the Senate, together with eight other special (or “select” or “joint”) types o f committees. 

While having leveled off in recent years, staff numbers remain comparatively high, and today exceed 

the 1935 staffing levels by more than 500% (Shobe, 2014).

4.2.2 Role of senior legislative staff

As the legislative process has grown in sophistication over the past several decades, specialized 

congressional staff—historically often overlooked in literature on policymaking in the legislative 

process—have played an increasingly dominant role in crafting policy, drafting legislative history and 

statutory text, and shaping the process and outcome of national legislation (Schultz Bressman and 

Gluck, 2014).

As o f September 2016 there were more than 15,000 staff in Congress. Legislative staff in both 

the House and Senate are generally defined by where they work and the functions they perform; these 

definitions roughly correspond with four main types or categories. In 2016 the breakdown of these four 

staff types were as follows: 1) 73% were legislative staff in the personal offices o f individual members 

in the House and Senate; 2) 16% were staff that work in bipartisan committees (staff members 

answering to their respective party leadership in their committees); 3) 3% were staff in leadership 

offices; and 4) 8% were staff working for congressional officers and officials, including approximately 

eighty nonpartisan professional staff (0.5%) that worked in the Offices o f Legislative Counsel (OLC) in 

the House and Senate (CRS Report No. R43946, 2016; CRS Report No. R43947, 2016).
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This paper focuses on a small subset o f senior legislative staff in personal offices and 

committees that work on developing legislation (excluding staff in the leadership offices and OLC 

staff), since most legislative initiatives and histories originate from personal offices and committees. 

Staff in the leadership offices are generally not involved in the drafting o f legislative histories or bills, 

and OLC specialists generally take concepts, broad outlines and or rough drafts provided by other 

sources (e.g., personal offices or committees) and serve as the primary drafters that shape the statutory 

texts o f legislation (Schultz Bressman and Gluck, 2014).

Due to a variety o f constraints, members o f Congress explicitly or implicitly delegate to their 

staffs varying degrees o f autonomy and responsibility to manage their congressional duties and 

represent their interests in both daily operations and in critical legislative functions. Elaborated further 

in the Findings and Discussion section, this relationship o f delegated authority has led to a number of 

studies that evaluate the roles and activities o f congressional staff through the lens o f agency theory and 

principal-agent models (Romzek, 2000). In these models, agents are individuals or groups who are 

authorized and delegated to act on behalf o f another party, the principal. While most staff perform 

multiple principal-agent roles in the course o f their duties, a relatively small number o f senior or 

specialist staff perform a variety o f complex, often overlapping, and sometimes conflicting roles in 

legislative development.

Several studies about the key influences on the congressional legislative drafting process 

confirmed the widely-held view that congressional members rarely draft legislation and or are involved 

in the actual crafting o f legislative texts (Nourse and Schacter, 2002; Gluck and Schultz Bressman, 

2014; Shobe, 2014). Instead, it is small groups o f congressional staff that influence and draft most or all 

o f the two primary products o f the legislative process—legislative history and the bills that become 

enacted statutory texts. Broad policy concepts may originate from members o f Congress, and legislators 

may initiate, sponsor and vote on the legislation, but modern statutes are largely the product of 

legislative staff—conceptualized by senior staff from personal offices or committees, researched by 

professional analysts, and drafted by nonpartisan professional legislative counsels (with initial drafts 

occasionally prepared by private third parties such as lobbyists), with monitoring and input from 

hundreds o f committee staff and non-government organizations.

For staff in personal offices and committees, task and job functions vary depending on where 

the staff members work. Only a small percentage of personal office staff are involved in legislative 

development, with fewer yet involved directly in the statutory drafting process (Gluck and Schultz 

Bressman, 2014). Many congressional members may have legislative staff who cover water resources
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policy-related issues, but for most o f these staffers these issues are normally only addressed when their 

member becomes involved in a related issue, floor debates, or votes. However, members who serve on 

committees related to water issues—particularly those with senior committee positions or those with 

strong personal or constituent interests—generally have senior legislative staff who have specialty 

knowledge o f relevant water issues and often have experience in drafting legislation, networking, 

negotiating, and effectively navigating the legislative development process (Romzek and Utter, 1997). 

In comparison to staff in personal offices, a larger percentage of committee staff are involved in the 

policy development process— focusing on analyzing policy proposals, drafting legislation and building 

coalitions in committee, and negotiating on behalf of their committees and chairs (Romzek and Utter, 

1996).

4.2.3 Information and decision making

National water policy priorities and decisions o f congressional staff are influenced by 

competing interests, ambiguous or multiple frames o f reference, and a variety o f policy information 

sources. This information can be presented to staff from outside organizations and individuals (e.g., 

lobbyists, nonpartisan policy research organizations, industry groups and other issue stakeholders), 

generated informally through work relationships and informal networks (friendships with other staffers, 

social and professional circles, etc.), enlisted upon requests from the staff or members to prepare and 

present data (e.g., Congressional Research Service), actively solicited (e.g., expert testimony during 

congressional hearings), or reside in content repositories (e.g., libraries, online data sources). Most of 

this information and knowledge is explicit, codified, and shared digitally or through impersonal 

networks and formats, but some knowledge, such as sharing o f practical how-to expertise, is tacit and 

more easily transferred interpersonally.

These information sources (whether institutions or other social entities) often have individually 

distinct practitioners, practices, values, and attributed characteristics o f human information interaction 

(knowledge generation, processing, decision making and implementation). Together the characteristics 

act as social boundaries that segment and delineate these entities. Differences in the characteristics can 

lead to difficulties when these entities attempt to transfer information across boundaries (Guston, 1999).

The content o f information transferred across boundaries, as well as the perceptions that senior 

legislative staff have regarding the sources of that information, not only influence staff priorities (in 

their principal-agent roles), but ultimately can also have a disproportionate impact on legislative voting 

behavior. Sabatier and Whiteman's 1985 review o f studies on legislative decision making found that the 

traditional two-stage model o f information flow is less applicable in sophisticated legislative
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environments like the U.S. Congress. In the two-stage model, information flows directly from internal 

and external legislative information sources to 'specialist legislators' (typically the chairmen and senior 

members o f the committees with jurisdiction over the legislation being considered). Sabatier and 

Whiteman's alternative three-stage model (an adaptation o f which is shown in Figure 4.1) illustrates 

how information flows first from the legislative environment to personal or committee staff, who then 

frame and transmit this information to specialist legislators, who in turn communicate this information 

to 'non-specialist' legislators.

Three-Stage Model of Policy Information Flow

Administrative 
Agencies & Interest 

Groups
Party Leadership

A d d i t io n a l*  v
Sources "
- CRS
- Libraries s
- Hearing testimony v
- Slate constituent experts
- Stale Governor's office

experts
- Federal agency staff
- Outside science experts
- Outside policy experts
- Nonpartisan policy analysis

groups
- Lobbying Groups x
-Other ,

Committee Staff Specialist
Legislators

OLC Staff and Senior 
Personal Staff of 

Specialist Legislators

Constituents and 
Private Individuals

.s . C *-.

^  P ol I cy I nformalio n ; m a] o r f I ow

 ► P ol I cy I nformalio n ; m i n or flow
 >■ Political information

Figure 4.1 Three-stage model o f  policy information flow.
Adapted from  Sabatier & Whiteman (1985), with addition o f  multiple congressional policy

information sources.

Voting choice studies frequently found that non-specialist legislators rely heavily on cues from 

specialist legislators whom they consider knowledgeable about issues being discussed. These specialist 

legislators, when working in their areas of expertise, rely heavily upon and have their decision making 

significantly influenced by their senior legislative staff, whose activities include "monitoring and 

evaluating information on policy developments, structuring legislative hearings, formulating policy 

alternatives, and negotiating compromises". For specialist legislators, staff are the most important 

source o f information (Sabatier and Whiteman, 1985).
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4.2.4 Fram ework (RCL) of information choice and utilization for legislative staff

In their exploration o f influences on policy decision making and action, a number of 

researchers have identified three information quality attributes generally considered necessary for 

bridging the information boundary and utilizing that information in policy decisions and action. These 

studies indicate that policy makers tend to act on policy-related information when it is perceived as 

relevant, credible, and legitimate (RCL) (Figure 4.2) with multiple audiences (Cash et al., 2002; Clark 

et al., 2016). RCL is used in this study as the framework for which to create a contextual understanding.

Figure 4.2 The RCL dynamic.
The interrelated dynamic between the information quality criteria o f  relevancy, 

credibility and legitimacy in linking policy decisions and action.

Relevance (often referred to as salience or saliency) is understood as the degree of relation to 

the matter under consideration, or the significance of the information for a decision maker's choices or 

the choices o f a given stakeholder (Heink et al., 2015).

Credibility o f knowledge, a quality often linked with or equated with the concept of 

believability (i.e., judgement o f logical or scientific soundness), is often the focus o f scientists and 

scholars. Information (theories, beliefs, statistical data, and facts) is perceived as credible if it meets 

standards and established criteria requirements o f scientific plausibility and technical merit. In addition, 

the source o f the information must be perceived or judged as believable or trustworthy. Even if 

information is relevant, it will tend to be ignored if  not considered credible (Cash et al., 2002).

Legitimacy is an ascribed value o f information regarding the degree to which the information is 

produced in an unbiased system that is politically and procedurally fair and is fairly representative of 

the views, values, and concerns o f involved stakeholders, including (and perhaps most importantly) 

those o f the decision makers. If  the information is deemed relevant and credible, but is not perceived as
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having been produced or used in a legitimate way, it has a low probability o f being used (Cash et al., 

2002). This quality criteria is considered to be essential for information to transfer across science-policy 

boundaries and be used as “actionable knowledge” that influences policy decision making and action 

(Meinke et al., 2006).

There are both tensions and complementarities between these three attributes. Efforts to 

enhance one or more of these attributes may also increase another attribute, or may create a tension and 

lead to a lessened perception o f another attribute. The most successful efforts involve effective 

balancing and trade-offs where all three attributes exceed their individual thresholds of acceptability.

The remainder of this paper consists of: 1) Methods: research design (theoretical approach and 

participants), study process, and study limitations; 2) Findings and Discussion; 3) Conclusion; 4) Cited 

Literature; and 5) Appendices.

4.3 M ethods

4.3.1 Research design

This mixed methods study used at its core a "qualitative" grounded theory (GT) methodology 

(Corbin and Strauss, 2008), with an embedded "quantitative" component for comparison and contextual 

analysis.

Grounded theory approach

GT was used to: 1) identify participants' main concerns (and behavior in addressing those 

concerns) related to the use and influence o f information in developing legislative water policy; and 2) 

determine the degree to which specific criteria (RCL) influence the linkage between their decision 

making and implementation. GT is a qualitative approach that develops theories grounded in the data 

through systematic processes that follow logic and constant comparisons during analysis (Charmaz,

2014).

Contrasted with positivist research, which can start with a theory to examine data, GT generally 

uses an inductive approach to construct a theory based on analysis of the evidence o f raw data and 

observations. In this study, the participants were asked to answer both structured and open-ended 

unstructured questions that were formulated based on numerous notes and memos o f interactions with 

congressional legislative staff over a number o f years (Glaser, 2001).
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GT helps define related concepts through a multi-stage qualitative process (Figure 4.3) that 

identifies important ideas and key word relationships (Glaser et al., 1968), together forming an 

integrated framework (Table 4.1) for explaining human outcomes (Creswell, 2013, Charmaz, 2014). 

While the staged process is roughly sequential, in practice the researcher is continually forming and 

refining ideas by comparing and analyzing new data, impressions and conceptual insights together with 

existing coded keywords, expressions and concepts from memos, notes, questionnaires and interviews.

Stage 3

Selective
coding Analysis
(Ttiames)

Figure 4.3 Three dynamic stages and fundamental components o f  GT coding.

Table 4.1 Integrated grounded theory framework.

STAGES COMPONENTS DESCRIPTION

Stage 1:
Data gathering

Raw data:

1) Notes & Memos
2) Survey
3) Interview

Collection of the raw data used for analysis. The structured data from the 
questionnaire are entered into spreadsheet tables, and the unstructured data 
are collected and formatted for coding in the next stage.

Stage 2: 
Coding data

Analysis using the 
words, phrases and 

concepts

The structured table data are aggregated and analyzed, and the collected 
unstructured data are coded for analysis.

Open coding Collected raw data are segmented into conceptual keywords or short 
meaningful expressions and sequences of words (Strauss & Corbin, 1990; 
Corbin & Strauss, 2008).

Axial coding

(Identifying
Categories)

Keywords and expressions from the open coding process are analyzed and 
grouped into categories related to the phenomenon under study and associated 
"conditions, context, actions/interactions strategies and consequences" 
(Strauss & Corbin, 1990).

Selective coding

(Identifying Themes)

Category data and development concepts from the axial coding stage are 
analyzed in an inductive process of comparing word sets to reduce individual 
bias, develop word uniformity, and identify core conceptual patterns and 
themes (Glaser et al, 1968).

Stage 3: 
Analysis & 
interpretation

Interpretation & 
testing

Utilizing the identified core themes, a theory is generated about how an aspect 
of the social world “works”. This theory or explanation emerges from and is 
connected to the reality that is being explained.

Participants

Considered as policy experts in their fields, congressional water policy legislative staff augment 

their understanding and knowledge o f water policy legislation and inform their policy decision making
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by drawing on legal assessments, legislative historical context, diverse stakeholders, and policy 

analysis. As described earlier, while many congressional staff in the House and Senate cover water 

legislation related issues for their respective members, only a very small number o f senior legislative 

staff are actually involved in drafting and developing water legislation.

In order to gain insight into the role and influence o f scientific knowledge and other 

information and sources on congressional policy decision making and implementation, sixteen senior 

personal office and committee legislative staff from both political parties in the Senate and House were 

selected as members o f a study group based on their own experiences and their respective congressional 

members' senior roles in legislative water resource policy. The participants came from diverse 

backgrounds in engineering, law, environment, history, and political science, and had largely focused 

on water policy in their congressional positions.

At the time of this study, the first and second authors were both congressional staff in the U.S. 

Senate with legislative policy and federal agency backgrounds. The first author—a senior legislative 

specialist with more than a decade o f congressional and federal agency water policy and executive 

management experience—identified and recruited congressional staff colleagues and conducted the 

individual interviews. The second author—a specialist in innovation and organizational performance— 

structured the political and decision-making analysis. Both authors' backgrounds contributed to a 

contextual participant understanding and interpretative perspective in this GT-based research.

4.3.2 Study stages

Stage 1: Data collection—Preliminary observations, survey questionnaire and interview

The first stage o f the GT process was to gather "raw" data to analyze. These data took the form 

of notes and memos, responses to a questionnaire, and personal interviews. An important raw data 

source for GT, and the initial data collected, were the notes and memos from meetings with many o f the 

key staff over the years.

Each participant was then asked to complete an online survey questionnaire (Appendix A). The 

questionnaire was prepared and distributed, along with written guidelines, to the survey group. The 

group members were instructed to answer the questions from the perspective o f their positions as 

legislative aides representing their congressional members and respective constituencies. Their answers 

were confidential and non-attributable; each respondent was only identified as a senior legislative 

staffer.
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The survey questionnaire included both open-ended, fill-in-the-blank format questions and 

structured questions consisting o f selection lists, multiple choice, priority weighting, and Likert Scale 

rating (1=Low; 5=High). The survey was divided into three parts: legislative priorities; actionable 

knowledge criteria; and legislative action. Participants were asked to identify their: 1) top three 

priorities in the policy issue areas of federal water resources, flood, and drought; and 2) three highest 

and three lowest federal water resource mission agency priorities. In order to establish a baseline and to 

weight their other answers, survey participants were asked to determine the degree to which they 

perceived the information quality factors of relevance, credibility, and legitimacy to be important in the 

linking o f policy-related information and legislative decision making and action. They were then asked 

to identify their top three information sources and rate each o f eleven primary information sources 

according to how relevant, credible, and legitimate they viewed those sources to be in influencing their 

policy decision making and implementation. In this manner the framework o f RCL was imposed into 

the data collection.

Personal interviews were then individually conducted on-site in Washington, DC, giving each 

participant the opportunity to provide any necessary clarification on their answers to the questionnaire 

and elaborate on their ideas, thoughts, and insights. Before the interview commenced, an introduction to 

the study was given and consent for the interview confirmed. The basic interview protocol involved 

first sharing the anonymous aggregated responses from the questionnaire that all participants 

completed, and then asking each participant a set o f common general questions based upon the 

questionnaire results. These interview questions were open-ended, addressing the participant’s policy 

decision-making and legislative water policy experiences and his or her member’s water resource 

decision-making process. The process o f utilizing survey questionnaires and interviews was based on 

grounded theory research principles. During the interviews, participants were encouraged to speak 

naturally and unprompted about their water policy work, decision-making process and priorities and 

share perspectives and insights into their policy decision-making experiences.

The interviews were scheduled over an approximate two-month timeframe, each interview 

averaging between 30-45 minutes in duration. Roughly half o f the interviewed participants consented to 

being audio recorded, while the remainder preferred to not be recorded for reasons o f confidentiality 

and anonymity. Notes, transcriptions, questionnaire responses, and audio recordings were all 

consolidated as the “raw data” for processing using the GT qualitative coding analysis. This study was 

reviewed and deemed to be exempt from human subjects research through an institutional review board 

(IRB) process, receiving a study waiver IRB - ID#982099-2 from The University of Alaska Fairbanks, 

Office of Research Integrity.
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Stages 2 & 3: Data coding and analysis

After the interviews were completed, the responses were collected, and the results were 

aggregated and coded from both the questionnaire and the interview process. Structured questionnaire 

results were aggregated in analytical matrices to generate decision-making characteristics, following a 

methodology described by Charmaz (2014). Unstructured data were coded through the following three- 

step process: open, axial, and selective. The procedural framework o f the initial coding process and 

comparison o f keywords from the three coding processes were used to create the uniform themes o f the 

study.

Open coding— In the first step, the raw data from the previous notes, memos, survey 

questionnaire and interviews were analyzed (based on the frequency o f occurrences) to identify 

preliminary keywords and expressions to support the axial and selective coding processes following 

methods described by Saldana (2013). The structured questionnaire data were collected and used in an 

analysis matrix to generate decision-making characteristics. Qualitative data analysis software 

ATLAS.ti was used to code the responses and analyze the codes. The raw data for coding consisted of 

approximately 3,000 coded keywords and phrases that then served as the data processed in the next step 

o f categorization.

Axial coding—During the second step, the defined keywords and expressions were aggregated, 

analyzed and grouped into categories related to the study questions and associated "conditions, context, 

actions/interactions strategies and consequences" (Strauss and Corbin, 1990). In order to categorize the 

raw data, the words and phrases were counted, and associations and relationships were identified and 

grouped into categories o f similar meanings. For example, keywords, such as “flood, flooding, rising 

water, inundation, over the bank” and “relationships, networks, constituents, stakeholders, 

shareholders”, were grouped into categories of similar meanings.

Selective coding—The third step o f the analysis process assimilated and built on results from 

steps one and two by determining connections between the keywords and phrases from the open coding 

process, and using the categorization matrix from the axial coding process to identify or describe 

overall themes. These themes reflected the views, attributed importance, concepts and interests 

communicated by the participants.

Stage 3 o f the process consisted o f analyzing the core themes from the selective coding process 

and generating a theory that explained legislative staff participants' behavior and concerns related to 

water policy and the decision-making process. This "general, abstract theory o f process, action, or
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interaction [was] grounded in the views of participants in a study”, and used an inductive process 

rendering generalizations from specific observations (Creswell, 2014).

4.3.3 Limitations

With the study group limited to sixteen participants, the authors do not claim that the results 

represent overall congressional legislative water policy priorities or views, or even those o f all senior 

legislative staff working on water policy issues in the U.S. House and Senate during this time period. 

However, at the time of this research, these sixteen were considered by the authors to be among the 

senior staff that were instrumental in the development o f federal legislative water policy, and their 

perspectives provided the insights sought by the study.

As no qualitative research method is completely free from preconceptions and bias in data 

gathering, interpretation and analysis, there is an inherent individual and contextual subjectivity and 

bias that the authors brought to the study based on their own experiences in research and policy and 

professional relationships with the participants. However, this is consistent with the focus of GT—the 

development and use of an interpretative lens by researchers for thinking about and conceptualizing 

grounded data, the process resulting in statements about how people think, behave, and resolve their 

concerns. With this as the objective, proponents argue that GT should be judged by the relevance, fit, 

workability and flexibility o f its methodology and results (Glaser et al., 1968; Glaser, 1978).

4.4 Results and discussion

The analytical process employed both inductive and deductive approaches. Based on their 

experience with legislative policy, staff decision making, and knowledge o f the study participants, the 

authors identified patterns o f information processing within an information quality criteria framework 

(RCL) describing the transfer o f information across science-policy boundaries and the linking o f policy 

decision making to action. In the survey questionnaire, participants were queried as to their assessment 

o f the perceived influence o f these criteria on their decision making and policy action, and their 

responses were analyzed deductively. The interviews, however, utilized an unstructured and open- 

ended format whereby general questions were posed, and participants were encouraged to talk freely 

about common issue areas and the role o f information in legislative policy decision making and 

behavior.

GT method coding processes were used to analyze raw data, from which both conceptual 

categories and core themes emerged. From the raw data, approximately 3000 words were collected and
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consolidated, producing approximately 936 key coded word concepts or phrases selected from open 

coding integration. Using axial coding methods, 53 categories were constructed using 278 descriptive 

keyword concepts or expressions. Described below, selective coding was applied to these axial coded 

categories, from which three themes emerged.

Both the structured results from the survey and the coded results from the unstructured data 

were analyzed using an inductive approach. The information quality criteria framework o f RCL served 

as a useful interpretative lens—and was explored as a potential heuristic tool—in identifying potential 

relational correlations in the patterns, categories and themes that emerged from the participant data.

4.4.1 Themes

Three interrelated conceptual themes (Figure 4.4) emerged, based on percentage o f total coded 

participant keywords and expressions, which reflected interests and priorities o f the legislative staff 

participants: 1) Developing a trusted relationship-information network (DN)—49.6%; 2) Prioritizing 

relevant stakeholder interests (PI)— 33.8%; and 3) Maximizing efforts to achieve desired results 

(ME)— 16.6%.

Develop
Networks

Prioritize
Interests

Maximize
Efforts

Figure 4.4 Conceptual themes developed from  the “selective coding” process
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Table 4.2 Illustrated examples from GT coding process.

Open Coding
(Raw Data)

^  Axial Coding ^
(Categories)

Selective Coding
(Themes)

"Finding the right people" 
"Stakeholders"
"Relevant groups"
"Partner relationships"
"Knowing who to trust" 
“Constituent relations”
“Working groups”
"Developing solutions with people"

•  Stakeholder buy-in
•  Knowledge relationships
•  Trusting sources
•  Data awareness networks
•  Looking at partnerships
•  Working with others for solutions
•  Improve understanding associations
•  Develop participant engagement

Develop 
Relationship- 
information 

Networks (DN)

49.6% of total 
keywords / 
expressions

"Create policy mandates"
"Select practical outcomes" 
"Highlight key effects of policies" 
"Select cost vs. results of polices" 
"Record areas of gaps/holes" 
"Place in order"
“Pros and Cons”

•  Order of affordability & costs
•  Imperative criteria of solutions
•  Maximize political expectations
•  Organize assumptions
•  Rank consequences
•  Balance needs vs. wants
•  Capitalize on policy benefits

Prioritize Interests 
(PI)

33.8% of total keywords 
/ expressions

"Meet w/ state personnel" 
"Governor’s top action items"
"local agency responsibilities" 
"Residential impact of policy" 
"Capability effort and conclusions " 
"Make most of policy"

•  Apply support outcomes results
•  Utilize local development
•  Progress in information results
•  Advancement in knowledge outcome
•  Trusting results and effects
•  Improve outcome understanding

Maximize Efforts 
(ME)

16.6% of total 
keywords / expressions

Table 4.2 depicts results from the phased coding process and highlights the three conceptual 

themes that emerged from the raw data research analysis. The first column provides several sample raw 

data keywords and expressions collected during the gathering phase. The middle column lists the 

categories that were derived from axial coding o f the concepts and ideas from the open coding step. 

Lastly, the third column lists themes that emerged from the categories during the selective coding stage, 

along with percentage o f raw data falling into the respective themes.

Developing Relationship-Information Networks (DN)

While all three conceptual themes were shared by many of the participants, the most commonly 

shared theme that emerged from participant interviews was the critical importance o f developing and 

cultivating the personal relationship-information networks essential for staff success. Study results 

confirmed the findings of Romzek and Utter (1997) that information is the primary currency of 

congressional staff interactions, and that the primary way that staff gather information and develop 

coalitions and influence is through networks. Staff often receive or solicit information from their work 

relationships and informal networks (professional friendships with other staffers, second-tier 

professional circles, and relationships built on long-term community networks, etc.). Establishing
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knowledge networks with a wide range o f congressional and outside sources to obtain relevant policy- 

related information, together with developing and maintaining a reputation as a credible and trustworthy 

source, is essential for any staff that wants to be successful in his or her job within the legislative 

process.

Depending on the degree o f trustworthiness o f these networks, information received from and 

shared with network contacts is often as influential, or more so, than information from most other 

sources. These networks are important not only as direct resources for information, but also indirectly 

for such purposes as political alliances, collaboration, negotiating partnerships, social and political 

cohesion, and for advancing personal career interests. These networks are also useful for achieving 

stakeholder buy-in for policy positions, communicating knowledge, assessing credibility and trust, and 

developing good working relationships.

Relational-information networks are very diverse, reflecting the personalities and interests of 

staff members, and can range from highly formal and structured professional relationships to casual or 

informal trust relationships within personal or social networks. For staff, individual relationships in 

networks or institutions are generally more important than the actual organization or network to which 

those individuals belong. At the same time, the attributed value and influence of those organizations 

with staff members often reflect their personal experiences with specific individuals in those 

organizations.

Networks are also critical as sources and social interfaces of knowledge. Staff rely heavily upon 

trusted relationship-information networks for both developing and enhancing their own frames of 

reference and decisions, and for reducing the equivocality they experience in the face of competing 

frames o f references from multiple credible information sources.

Prioritizing Stakeholder Interests (PI)

The second general conceptual theme that emerged was the goal o f effectively prioritizing 

stakeholder interests and aligning efforts and resources to achieve these priorities. This theme emerged 

from such recurring concepts (axial coded as "categories") as calculating cost-benefits (both financial, 

political, social, etc.) of competing interests, determining critical paths to success or failure, weighing 

political expectations against degrees o f fulfillment and their consequences, balancing needs versus 

wants, capitalizing on policy benefits, etc.

The various roles that legislative staff play influence their perception, balancing, and 

prioritization o f stakeholder interests, as well as the development o f their information networks.
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Observations and feedback from information networks, in turn, help shape the staff's perception and 

prioritization o f these interests and the actions those interests influence.

Coding analysis o f legislative notes, memos, survey answers and interview transcripts indicate 

that the top five overall water policy priorities of the sixteen participants were: 1) water infrastructure; 

2) water policy regulatory reform; 3) water quality; 4) drought; and 5) flooding. Priorities were also 

listed within the areas of water resources, drought, and flood. As an example, within the area o f flood 

issues, participants listed: 1) flood insurance; 2) floodplain mapping; and 3) flood control 

(infrastructure) as their top three policy issue priorities. Issue priorities are usually reflections of the 

legislative staff’s cognitive ranking o f stakeholder interests in their multiple principal-agent roles.

Staff see themselves as balancing multiple principal-agent roles in which they are either the 

agent (i.e., to their member or other stakeholders) or the principal (i.e., to science researchers or other 

information providers). Applying the principal-agent model lens to congressional staff requires 

consideration of multiple principals and agents and recognition o f the risk that staff, as expert agents 

with their own policy agendas and personal interests, may have interests and agendas that overlap or 

conflict with those they represent (Romzek, 2000). Staff decisions and behavior are influenced and 

constrained by relationships o f accountability with multiple stakeholders, not only with their respective 

members o f Congress (the primary stakeholder and accountability relationship), but indirectly with any 

group that potentially affects the primary stakeholder, as well as with their own personal agenda and 

career interests. Problems can arise from either an unevenness or asymmetry o f information—when the 

agent has more information than the principal— and if and when the agent has different or competing 

interests.

Maximizing Efforts-Results (ME)

The third conceptual theme that emerged was the commonly shared goal of maximizing 

personal efforts to achieve desired results. This theme emerged from such recurring concepts as the 

desire to not waste time, but to efficiently develop stakeholder buy-in, apply support, advance 

programs, utilize knowledge more effectively, knowing what sources to trust, etc.

Due to multiple competing priorities and many demands on their time, staff often feel that their 

ability to achieve their objectives and goals is significantly constrained. Many of the projects and tasks 

they are involved in have many players and levels o f complexity and vested interests, often resulting in 

failure to achieve the desired results. For example, staff expressed frustration at having made many 

attempts over the years to craft and pass various pieces o f water resources legislation, only to
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successively watch those efforts come to naught as the bills were killed by elements and events outside 

their control.

4.4.2 Situating the GT results within the RCL framework

In each o f the three discussed theme areas, staff intuitively selected and utilized heuristics in 

determining whether information was relevant to their various principal-agent roles (e.g., matching 

perceived policy information needs), whether the relevant information was credible enough to be a 

factor in decision making, and whether relevant and credible information met minimal thresholds of 

legitimacy in order to influence policy action. Participants confirmed that information quality criteria 

were important in influencing to what degree they utilized that information in decision making, even 

though few, if  any, o f the participants indicated that they were consciously or metacognitively aware of 

their information relationship roles or the processes they employed in making decisions or taking 

action. A common participant response was “I've never actually thought about how I make decisions 

using any type o f methodology or what type o f structural concept influences them; I just do it.” The 

arrows in the Figure 5 illustrate the interrelationship of the three themes.

Figure 4.5 RCL dynamic and theme areas.
Dynamic interaction between information heuristic influences (RCL) linking decision 

making and action in the three conceptual theme areas.

Throughout the various stages o f the process, senior staffers are constantly evaluating new and 

often conflicting pieces o f information. The information that they act upon and communicate with their 

members, or the stakeholder interests the members represent, is largely determined by the staff's 

assessment o f the relevance, credibility and legitimacy o f that information. Likert scale results from
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questionnaire ratings showed that the study participants judged all three quality criteria to be important 

in determining the degree o f influence on their decision making and policy action, with credibility 

scoring the highest (4.6/5), followed by relevance as a close second (4.3/5) and then legitimacy (3.9/5).

Presented with a list o f eleven sources o f policy-related information, survey participants were 

then asked to evaluate each information source, using a Likert scale o f 0-5 (0=Not Applicable/Don't 

know; 1=Very Low; 2=Low; 3=Average; 4=High; 5=Very High), according to how relevant, credible 

(scientific plausibility and technical adequacy), and legitimate (unbiased and procedurally fair) the 

participants perceived the sources to be (on average) in forming or changing their water resource policy 

decisions and taking legislative action on those decisions. The results (Table 4.3) indicate that overall 

the surveyed staff rated the top three most influential information sources as “committee staff contacts” 

(avg 4.2/5), “State constituent experts” (4.0/5), and “State governor's office experts” (3.9/5). The three 

lowest rated sources (based on accumulated averages) were “Think-tanks/nonpartisan policy research 

groups” (3.2/5), “Lobbying groups” (2.9/5), and “Personal office staff in other congressional offices” 

(2.6/5).

Table 4.3 Rating o f  information sources according to influence o f  quality criteria.

Information Source Information 
Quality Criteria

Individual 
Criteria Avg 

(1-5)

Individual
Criteria
Ranking

Cum.
Criteria

Avg.

Information
Quality

Ranking

Relevance 4.69 1

Committee staff contacts Credibility 4.06 2 4.17 #1

Legitimacy 3.75 2

Relevance 4.50 4

State constituent experts Credibility 3.88 2 4.00 #2

Legitimacy 3.63 3

Relevance 4.38 3

State Governor's office experts Credibility 3.81 5 3.88 #3

Legitimacy 3.44 4

Legitimacy 4.06 1
CRS and LOC briefing 
summaries/overviews Credibility 3.94 3 3.85 #4

Relevance 3.56 8

Credibility 4.25 1
Outside source water policy scientist
experts Relevance 3.50 9 3.73 #5

Legitimacy 3.44 5
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Table 4.3 continued

Credibility 3.75 6
Outside source water policy legal 
experts Relevance 3.69 5 3.56 #6

Legitimacy 3.25 6

Relevance 3.69 7

Federal Executive branch staff Credibility 3.25 8 3.31 #7

Legitimacy 3.00 7

Relevance 3.94 4

Hearing testimony Credibility 3.19 9 3.25 #8

Legitimacy 2.63 9

Credibility 3.31 7
Think-tank briefings, seminars, and 
workshops Relevance 3.25 11 3.15 #9

Legitimacy 2.88 8

Relevance 3.69 6

Lobbying Groups Credibility 2.69 10 2.94 #10

Legitimacy 2.44 10

Relevance 3.31 10

Personal office staff contacts Credibility 2.31 11 2.56 #11

Legitimacy 2.06 11

The results from these individual ratings were compared to the results (Table 4.4) of 

participants' listing o f the top three sources o f information (selected from the list o f eleven) they 

considered most important and utilized most often in making and acting upon their legislative policy 

decisions. The three sources that had the highest aggregate scores in terms o f RCL ratings (Table 4.3) 

were also the three sources rated as the most important and utilized (Table 4.4). One o f the three 

sources that had the lowest aggregate scores in terms o f RCL ratings ("Think-tank briefings, seminars, 

and workshops") (Table 4.3) was also ranked last in the top-three ranking o f the eleven sources in terms 

o f being considered important and useful (Table 4.4).
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Table 4.4 Information sources ranked by importance and utilization.
Ranking o f  “top 3 ” sources considered most important and utilized fo r  decision making and policy action.

Information Source # Selected 
as Top 3 Rank

Committee staff 9 1
State Governor's office experts 8 2
State constituent experts 6 3
Personal office staff 5 4
CRS and LOC 5 4
Federal Executive branch staff 4 5
Outside source water policy scientist experts 4 5
Lobbying groups 3 6
Outside source water policy legal experts 2 7
Hearing testimony 1 8
Think-tank briefings, seminars, and workshops 1 8
Other (please specify) 0 -

4.5 Conclusion

This paper seeks to provide insight into the policy priorities o f senior legislative staff and their 

respective congressional members in the U.S. House and Senate, as well as provide an interpretative 

lens for understanding the content sources, framing and actualization o f specific knowledge used both 

in policy formation and action. The paper discusses the results o f a grounded theory research study of 

senior legislative staff in the area o f federal water policy and examines what factors influence the 

linkages between policy-related information, decision making and legislative action.

Various authors in science-policy literature have argued that science-related information must 

meet minimum thresholds o f the three quality criteria o f RCL (as perceived and attributed by the 

information recipients) in order for that information to transfer across the science-policy boundary and 

influence policy decision making and behavior. This study used RCL as a framework to discover: 1) to 

what degree actual decision makers felt these criteria were important in bridging information 

boundaries to influence policy; and 2) whether or not and/or to what degree these criteria (whether or 

not the policymakers defined the RCL concepts with those labels) or similar concepts were used by 

policymakers as intuitive or rational heuristics in judging whether information influenced their 

decisions.
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The information quality criteria framework o f RCL can be useful as decision-making tools of 

legislative policymakers and for transferring knowledge across science-policy action boundaries, but a 

full understanding o f the dynamics o f information-processing must take into account the multiple 

principal-agent roles that staff play. The common priorities for legislative staff of 1) developing trusted 

relationship-information networks; 2) prioritizing relevant stakeholder interests; and 3) maximizing 

efforts to achieve desired results can be understood within the RCL framework as a way to bridge the 

gap between water science and water policy.
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Chapter 5 Conclusion

5.1 Overview

In the introduction to this dissertation, I discuss the common perceptions that 1) local-to- 

national decision makers do not have as accurate, reliable and actionable data and knowledge as they 

need to make the best informed flood-related decisions, and 2) because o f science-policy disconnects, 

critical flood and scientific analyses and insights are failing to influence regional and national 

policymakers in water resource and flood-related decisions that have significant local impact. In 

response to these real and perceived information gaps and science-policy disconnects, I designed this 

dissertation to answer the question, “Can flood data be accurately generated and transformed into 

actionable knowledge for local flood event decision makers, and also be effectively communicated to 

influence policy?”

5.2 Research summary 

5.2.1 Research approach summary

To address this question, I utilized an interdisciplinary three-phase mixed-methods research 

approach and developed a methodological framework and interpretative lens for each of the three 

interrelated themes o f flood hazard interaction: 1) Data generation—using machine learning to estimate 

streamflow data for flood forecasting (result elements: quantitative data; prediction); 2) Knowledge 

development and sharing—creating a geospatial decision support system for flood events (result 

elements: quantitative and qualitative data; visualization framework; integrated multiple data sources); 

and 3) Knowledge actualization—using Grounded Theory and heuristic toolsets to identify how policy 

makers translate scientific knowledge into policy action (result elements: quantitative and qualitative 

data; informed decision making). Chapters 2 (SHEM), 3 (WaVE), and 4 (Water Policy) o f this 

dissertation describe the research addressing the distinctions o f each o f these flood hazard themes that 

focus on developing practical data and methodologies useful to scientists, local flood event decision 

makers, and policymakers (Figure 5.1).
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Figure 5.1 A u thor’s research schematic fo r  the interdisciplinary, mixed methods approach

5.2.2. Research outcome summary

Streamflow data from USGS streamgages are critical for flood forecasting, assessing imminent 

risk, and planning and implementing flood mitigation activities. In answer to the question o f whether 

there is a way to accurately forecast near real-time flood data, even when streamgages are missing or 

not transmitting, Chapter 2 described the design, testing and results o f SHEM, a new methodology that 

incorporates machine learning and big-data testing to accomplish this goal. The research sought to 

explain whether a predictive estimate can accurately replicate actual streamflow during a streamgage 

failure scenario, and do so in a sufficiently timely manner to be useful to decision makers and first 

responders. The SHEM model was specifically designed to construct accurate and timely proxy 

streamflow data estimates that can be substituted for missing data when streamgages stop transmitting 

accurate data. SHEM tested and validated the reliability o f the predicted value estimates through 

rigorous integrated testing methodologies. The accuracy and reliability o f the case study results 

indicated high correlation and predictive factors. The results of the analysis affirm the scientific
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integrity o f the SHEM methodology. When these statistical processes and equations were applied to 

streamflow hydrology datasets, they effectively produced a result that can be used by first responders 

and decision makers responding to flooding events. The SHEM construct affirmatively supports the 

authors’ question of whether a predictive estimate can accurately replicate actual streamflow during a 

streamgage failure scenario, and in a timely manner so as to be useful to decision makers and first 

responders. In addition, technological advancements are producing multiple new sources of 

hydrological data from in-situ and remote sensing platforms with flood hazard applications. Building on 

previous research, this paper reveals that the in-situ and remote sensing data available from these new 

sources can be used complementarily to provide answers to critical water resource management and 

flood inundation questions.

There is a growing consensus among the academic, policy and flood forecast practitioner 

communities regarding the need for decision support toolsets that integrate accurate, scalable and highly 

granular flood event data. Answering the question o f whether forecasted data and relevant ancillary data 

can be communicated as visualized geoanalytic knowledge that is easily understood by local decision 

makers and useful in supporting flood event related decisions, Chapter 3 introduced WaVE— a new 

geospatial visualization framework and decision support toolset designed for first responders, water 

resource managers, scientists and other decision makers. Four case studies tested and validated the 

WaVE framework under diverse conditions at national, regional and local levels. Results from these 

case studies highlighted WaVE's inherent strengths, limitations, and need for further development. 

Results indicated that WaVE has the potential for being utilized on a wider basis as data become 

available and models are validated from forecasted machine learning and remote sense technologies 

into accurate streamflow flood estimates.

Chapter 4 of this dissertation addressed and answered the question o f what factors impact the 

transfer o f flood and other scientific knowledge to policy-makers with the result of influencing policy 

decisions. The interpretative lens o f the grounded theory research study provides an understanding of 

the water policy priorities o f the participants, and the content sources, framing and actualization of 

specific knowledge used in policy formation and action. The study examined the factors that influence 

the linkages between policy-related information, decision making and knowledgeable action. Science- 

policy literature have argued that science-related information must meet minimum thresholds of three 

quality criteria (relevance, credibility, and legitimacy)—as perceived and attributed by the information 

recipients—in order for that information to transfer across the science-policy boundary and influence 

policy decision making and behavior. This study explored the use o f these criteria as an interpretative 

framework for understanding how knowledge transfers across science-policy action boundaries, and
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concluded that a full understanding o f the dynamics o f information-processing must take into account 

the multiple principal-agent roles that decision makers play. From the grounded theory analysis o f the 

interview and survey data gathered from study participants, three common themes o f interests and 

priorities emerged within this heuristic interpretative framework: 1) developing trusted relationship- 

information networks; 2) prioritizing relevant stakeholder interests; and 3) maximizing efforts to 

achieve desired results.

5.3 Research outcome discussion

Results o f this research indicate that, if  certain criteria are met, it is possible to generate 

effective data to forecast and visualize situational awareness during a flood event using machine 

learning, remote sensing, and geospatial analytical tools. The practical result is that local emergency 

responders, event decision makers and policy makers are supplied with the useful actionable knowledge 

they need to make timely and informed decisions.

Building on previous research reflected in the literature review, this research advances new 

ideas that contribute to the growing body o f knowledge o f flood hazards. Despite the complexity of 

forecasting local flood hazard events and building an effective decision support system, this research of 

flood forecast modeling demonstrated viable forecasting results. The level o f accuracy in prediction, 

however, is directly related to availability o f historical and real time local data.

This dissertation explored the information influences linking decision making and policy 

outcomes given the continued disconnect between policy-related scientific information and the 

utilization o f that information by policymakers, and the difficulty in transferring policy information 

across knowledge boundaries identified through a literature review. Most of the existing literature is 

written by or for scientists, without considering the communication factors that influence policy 

makers. Using an interpretive process, this research formulated a communication bridge that provides 

insight into the process used by policy makers in responding to and utilizing scientific information in 

the crafting o f public policy. Not only will this more accurate understanding result in better public 

policy, but it is critical to gain support for future research in flood hazard basic and applied hydrograph 

science.

5.4 Limitations

As with most research, approaches and methodologies utilized in developing this dissertation 

are not without limitations.
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The overall objective o f this dissertation was to answer the question o f whether local flood 

event data could be accurately and reliably generated, transformed into useful actionable knowledge to 

help local flood event decision makers, and then effectively communicated to influence policy. This 

question was addressed in three separate parts that centered on developing new concepts, models and 

analytical frameworks—hydrology estimations for riverine analysis, forecasting flood integration 

resources, and engaging water policy with science research. Multiple choices of approaches and 

methodologies exist for each area, but given time and resource constraints, the author selected ones 

deemed most appropriate for the individual parts and consistent with the dissertation objectives.

Each o f the three research sections addressed inherent limitations in approaches, methodologies 

and analyses in their respective chapters. For chapters 2 and 3, the exploratory design o f this 

dissertation demonstrated limitations resulting from a lack o f regional and local data information. 

Testing the SHEM and WaVE models on a greater number o f diverse watersheds and or more data-rich 

watersheds could have potentially provided a greater amount o f conclusive data outcomes related to the 

studies' objectives. The research framework, scope and testing were constrained by available resources, 

costs, and time.

Given the uniqueness o f any given flood hazard situation, the research in chapters 2 and 3 faced 

the challenge of extrapolating analytical generalizations based on a few case studies, even if  the tests 

were controlled and results replicable. Individual watershed basins respond to a flood event differently, 

and any analysis should take into consideration ancillary data and local context. The greater the amount 

o f local data one has for testing, the greater the confidence one can have in generalizing the results.

Additionally, the qualitative research method utilized in chapters 3 and 4 includes the limitation 

o f individual and contextual subjectivity and bias that the author brought to the study. However, this 

bias, inherent in qualitative research, is consistent with the development and use o f exploring, thinking 

about and conceptualizing data, the process resulting in identifying themes about how people think, 

behave, and resolve their concerns.

Aside from individual study limitations discussed in chapters 2, 3 and 4, there is also an 

inherent limitation with the overall three-part approach, considering the basic question that the 

dissertation set out to answer—i.e., is there a methodological process for reliably generating and using 

critical and accurate data in local flood event decision support and informing policy decisions and 

actions? While the three studies indicated promising results (given specific conditions), it is difficult to 

demonstrate and test that specific local flood event data could directly inform policy using this 

combined approach.
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On the surface, a more straightforward way o f approaching this would be to identify existing 

generated local flood event data, provide an example o f that data being integrated into actionable 

knowledge within a decision support system used by local decision makers, and then identify an 

example o f how that same data/knowledge was integrated into information used by policy makers in 

their policy decisions and actions. However, examples o f such information that can be tracked directly 

from generation to local situational awareness to policy are not only difficult to find, but the complexity 

o f such examples limits their effectiveness in addressing the underlying essence o f the question on 

which this dissertation focused. This is the more challenging task that this dissertation attempted to 

tackle.

5.5 Future research

The main conclusion of this research points to the need for further development o f flood 

situational awareness, information and tools in order to support local communities during flood 

scenarios to save lives and property. This will involve effective communication between the science 

community and policy makers at the local, regional and national levels.

Scientific research efforts listed below identify ways to continue developing improved 

knowledge generation, knowledge sharing, and knowledge actualization for flood hazard preparation, 

better prediction, and effective communication:

•  Flood prediction methodologies and geospatial tools that complement real observation 

providing better data at the local level.

•  Further addressing the need for both spatial and temporal downscaling.

•  More research in machine learning to increase accuracy, timeliness, and usability o f flood 

forecasting toolsets.

•  Further development o f quantified and qualified research that can create relevance, credibility, 

and legitimacy for both science and policy groups.

Building resilience for communities in floodplain areas through better flood hazard plans that 

identify uncertainty throughout watersheds (upstream, midstream, and downstream), thereby reducing 

the social and financial impact o f floods on lives, communities, and infrastructure.

In conclusion, further research is required to make full use o f this interdisciplinary science- 

policy flood hazards dissertation. The challenge o f precise weather forecasting will always be a 

limitation for the accuracy o f flood predictions for vulnerable communities across the United States and 

the world. This research effort demonstrates how better flood prediction, better usable flood
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information tools at the local level and better public policy from effective science/policy 

communication can all contribute to the possibilities of saving lives and property through enhancing our 

techniques, communication and policies.
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