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Abstract

Principled forecast evaluation and model diagnostics are vital in fitting proba-
bilistic models and forecasting outcomes of interest. A common principle is that
fitted or predicted distributions ought to be calibrated, ideally in the sense that
the outcome is indistinguishable from a random draw from the posited distri-
bution. In much of this thesis, I deal with questions centered on calibration
properties of various types of forecasts.
In the first part of this thesis, I propose a simple algorithm for exact multinomial
goodness-of-fit tests, which computes exact p-values based on various test statis-
tics, such as the log-likelihood ratio and Pearson’s chi-square. The algorithm is
accompanied by a thorough analysis illustrating improvement on extant methods.
However, the use of the algorithm is limited to multinomial distributions with a
small number of categories as the runtime grows exponentially in said number.
For real-valued outcomes, a general theory of calibration has been elusive, despite
a recent surge of interest in distributional regression and machine learning. In
the second part of this thesis, a framework rooted in probability theory is devel-
oped, which gives rise to hierarchies of calibration, and applies to both predictive
distributions and stand-alone point forecasts. A prediction is conditionally T-
calibrated if it can be taken at face value in terms of an identifiable functional T.
Based on this general notion of calibration, the thesis introduces population ver-
sions of T-reliability diagrams and revisits a score decomposition into measures
of miscalibration, discrimination, and uncertainty. In empirical settings, stable
and efficient estimators of T-reliability diagrams and score components arise via
nonparametric isotonic regression and the pool-adjacent-violators algorithm. For
in-sample model diagnostics, the thesis introduces a universal coefficient of deter-
mination that nests and reinterprets the classical R2 in least squares regression
and its natural analog R1 in quantile regression, yet applies to T-regression in
general.
In the face of uncertainty, the need for probabilistic assessments has long been
recognized in the literature on forecasting. In classification, however, compara-
tive evaluation of classifiers often focuses on predictions specifying a single class
through the use of simple accuracy measures, which disregard any probabilistic
uncertainty quantification. I propose probabilistic top lists as a novel type of
prediction in classification, which bridges the gap between single-class predic-
tions and predictive distributions. The probabilistic top list functional is elic-
itable through the use of strictly consistent evaluation metrics. The proposed
evaluation metrics are based on symmetric proper scoring rules and admit com-
parison of various types of predictions ranging from single-class point predictions
to fully specified predictive distributions. The Brier score yields a metric that is
particularly well suited for this kind of comparison.
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Zusammenfassung

Die fundierte Bewertung von Modellen und Vorhersagen ist entscheidender Be-
standteil der Anpassung probabilistischer Modelle und der Vorhersage ungewis-
ser Größen und Ereignisse. Sowohl aus Sicht der Modelldiagnose als auch bei der
Vorhersageauswertung sollten postulierte Verteilungen dem Kalibrationsprinzip
entsprechen, d. h. im besten Fall sollte sich die Beobachtung nicht von einer
zufälligen Ziehung aus der behaupteten Verteilung unterscheiden lassen Ein be-
trächtlicher Teil dieser Arbeit widmet sich Fragestellungen, welche sich mit der
Kalibration verschiedener Arten von Vorhersagen befassen.
Der erste Teil dieser Arbeit schlägt einen neuen Algorithmus zur exakten Be-
rechnung multinomialer Anpassungstests vor. Der Algorithmus berechnet exakte
p-Werte zu verschiedenen Teststatistiken wie dem Likelihood-Quotienten oder
Pearsons Chi-Quadrat-Statistik. Eine eingehende Untersuchung belegt eine ver-
besserte Laufzeit des Algorithmus im Vergleich zu bestehenden Methoden. Die
Anwendbarkeit des Algorithmus beschränkt sich jedoch auf Multinomialvertei-
lungen in wenigen Ausprägungen, da die Laufzeit exponentiell in deren Anzahl
wächst.
Trotz eines wachsenden Interesses an Verteilungsregression und maschinellem
Lernen in jüngster Zeit ist eine allgemeine Kalibrationstheorie für reellwertige
Größen schwer zu fassen. Im zweiten Teil dieser Arbeit wird ein wahrscheinlich-
keitstheoretisches Modell erarbeitet, in welchem hierarchische Zusammenhänge
zwischen diversen Kalibrationsbegriffen aufgedeckt werden. Das Modell berück-
sichtigt sowohl Vorhersagen in Form von Wahrscheinlichkeitsverteilungen als auch
einzelne Punktvorhersagen. Eine Vorhersage ist bedingt T-kalibriert, wenn sie
bezüglich eines identifizierbaren Funktionals T beim Wort genommen werden
kann. Basierend auf diesem allgemeinen Kalibrationsbegriff werden theoretische
T-Kalibrationskurven vorgestellt und die Zerlegung von Vorhersagebewertungen
in Maße für die Misskalibration und Trennschärfe einer Vorhersage sowie ein Maß
für die zugrundeliegende Unsicherheit aufgegriffen. Für die empirische Anwen-
dung ergeben sich mithilfe der nichtparametrischen isotonen Regression eindeu-
tige, effiziente Schätzer der T-Kalibrationskurven und Bewertungszerlegungen.
Zur Modelldiagnose bei allgemeinen T-Regressionen wird in dieser Arbeit ein
universelles Bestimmtheitsmaß eingeführt, welches sowohl das klassische R2 aus
der Kleinste-Quadrate-Schätzung als auch sein natürliches Äquivalent R1 aus der
Quantilsregression umfasst.
In der Literatur zum Thema Vorhersagen ist die Notwendigkeit der probabi-
listischen Quantifizierung unvermeidbarer Ungewissheiten längst bekannt. Zur
vergleichenden Bewertung statistischer Klassifikationsverfahren wird dahingegen
oft nur die Treffgenauigkeit einer vorhergesagten Klassenausprägung herange-
zogen, wodurch jegliche Quantifizierung bestehender Unsicherheiten unberück-
sichtigt bleibt. In dieser Arbeit werden probabilistische Toplisten als neuartiger
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Klassifikationstyp eingeführt. Diese lassen sich als Kompromiss zwischen Vor-
hersagen einer einzelnen Klassenausprägung und Vorhersagen ganzer Verteilun-
gen über alle Klassenausprägungen verstehen. Das zugehörige Funktional lässt
sich durch den Gebrauch von streng konsistenten Verlustfunktionen elizitieren.
Die zu diesem Zweck in dieser Arbeit eingeführten Verlustfunktionen basieren
auf symmetrischen korrekten Bewertungsregeln und ermöglichen es, verschiedene
Vorhersagetypen zu vergleichen. Die Vorhersagen können sich dabei von Vorher-
sagen einzelner Klassenausprägungen bis hin zu Vorhersagen ganzer Verteilungen
erstrecken. Die Brier-Bewertung führt zu einer Metrik, welche besonders geeignet
für derlei Vergleiche ist.
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1 Introduction
Typically, we think of forecasts as statements about future events or outcomes. In
the face of uncertainty, such statements should accurately reflect the level of con-
fidence placed in them. Reliable forecasts are vital in decision-making. Loosely
speaking, reliability or calibration refers to the agreement between forecasts and
realizations. Ideally, forecasts are probabilistic (Gneiting and Katzfuss, 2014),
that is, they take the form of predictive probability distributions that reflect the
outcome’s behavior conditional on a forecaster’s present knowledge. A proba-
bilistic forecast may be of value to multiple forecast users faced with all kinds
of decision problems. Nonetheless, point forecasts that predict a specific value
or outcome are frequently encountered in practice (Gneiting, 2011a). Meaning-
ful point forecasts are related to the conditional law of the variable of interest
through a statistical functional or as the Bayes act minimizing an expected loss.
Typically, point forecasts (and statistical functionals) relate to specific types of
decision problems. For example, quantiles naturally arise in the solution to the
classical newsvendor problem (Gneiting, 2011b).
In this thesis, I focus on forecast evaluation. A thorough review of forecasting
methods and applications is given by Petropoulos et al. (2022). Much of the
early literature on forecast evaluation has been driven by meteorological problems
(e.g., Brier, 1950; Murphy, 1977). Modern weather forecasts are the result of
a great collaborative effort and a pinnacle of human achievement (e.g., Bauer
et al., 2015; Benjamin et al., 2018). Weather forecasts are widely used (e.g.,
in aviation, agriculture, and, of course, to ensure public safety) and have great
social and economic impact. Much of the progress in weather prediction has been
driven by human understanding of the physical processes governing the weather
and advancements in computing capabilities, yet principled forecast verification
remains an important topic in the meteorological community and has certainly
contributed to forecast quality.
Forecast evaluation is not limited to forecasts of future events but also applies
to various kinds of predictions encountered, for example, in statistical classifi-
cation and supervised learning. In an uncertain world, even the present state
may not be without doubt. Nowcasts provide estimates of summary statis-
tics resulting from complex systems, for example, in disease monitoring (https:
//covid19nowcasthub.de) or when it comes to macroeconomic measures such
as gross domestic product (GDP; Giannone et al., 2008).
In modern times, decision-making is not exempt from automation. Yet, many
decisions entail severe consequences for individual people, and decisions based
on misguided forecasts may disproportionately affect minority groups. Popular
examples of such delicate endeavors include the prediction of recidivism in pre-
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trial defendants (Corbett-Davies et al., 2017) and automation of hiring decisions
(Raghavan et al., 2020). Such issues have fueled the debate on ethical automated
decision-making — often under terms such as algorithmic or machine (learning)
bias and fairness — in the academic community (Mitchell et al., 2021). While
careful and critical evaluation of forecasts is crucial in avoiding adverse decisions,
reliable prediction systems may benefit human decision-making (Kleinberg et al.,
2017).
Model diagnostics and forecast evaluation are closely related and often employ
similar means in different contexts. To start with, model fitting is related to
forecast evaluation as one often optimizes the parameters of a model in such a
way as to optimize a given loss function. I broadly speak of model diagnostics as
in-sample validation, where the same data is used for model fitting and verifica-
tion. In contrast, I refer to out-of-sample validation, where new data is used for
verification purposes, as forecast evaluation in a broad sense.
Subject to calibration, a sharper predictive distribution (i.e., a probabilistic fore-
cast with less uncertainty) typically leads to better decisions incurring smaller
losses (Gneiting et al., 2007). Among calibrated point forecasts, high variability
is preferable (Krüger and Ziegel, 2021). Scoring rules and scoring or loss functions
provide summary measures of overall forecast performance and are widely used
to evaluate and compare forecasts. Many scoring functions admit interpretation
as a loss in certain decision problems. Score decompositions offer further insights,
typically providing measures of (mis-)calibration and discriminative ability. Yet
empirical estimation (and interpretation) of these decompositions can be chal-
lenging. Reliability diagrams and related graphical tools complement in-depth
forecast assessment through insightful visualizations of calibration properties.
Chapter 2 collects key notation and terminology in a general framework used
throughout this thesis and introduces some fundamental tools used in forecast
evaluation. To make for an easy individual read, the main chapters in this thesis
are self-contained, (re-)introducing relevant notation and terminology through-
out.
Chapter 3 revisits a classical test from the statistical literature, the simple multi-
nomial test. The chapter starts with a brief review that focuses on various popular
test statistics used to conduct multinomial testing. As the main contribution of
this chapter, a simple algorithm to speed up the computation of exact multinomial
tests is proposed. The theoretical validation of the algorithm is complemented by
a detailed analysis in a simulation study illustrating the good performance of the
algorithm, while also highlighting differences between exact and asymptotic tests
based on three popular test statistics. Finally, an application linking multinomial
tests to the evaluation of ternary probability forecasts is outlined.
Chapter 4 investigates various notions of calibration for forecasts of real-valued
outcomes. As a result, hierarchies of calibration highlighting the intricate con-
nections between the various notions are presented. The chapter focuses on a
general notion of conditional T-calibration in terms of a statistical functional, T,
which applies to probabilistic forecasts as well as point forecasts. After a theo-
retical treatment in the prediction space setting of Gneiting and Ranjan (2013),
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the chapter turns to empirical forecast evaluation. A powerful generalization of
the CORP approach by Dimitriadis et al. (2021) to identifiable statistical func-
tionals is introduced, which results in empirical T-reliability diagrams and score
decompositions. Finally, a connection to model diagnostics is drawn through a
general coefficient of determination, which is closely linked to skill scores in fore-
cast evaluation. The chapter is complemented by a brief treatment of quantile
forecasts and a comprehensive appendix providing further insights.
Chapter 5 introduces probabilistic top list functionals, which specify a number
of most likely classes along with predicted individual class probabilities, to sta-
tistical classification. The top list functional bridges the gap between simply
predicting the mode, i.e., a single most likely class, and a full probability distri-
bution. Probabilistic top lists appear as a promising middle ground, especially in
settings where the confidence placed on a single predicted class is underwhelming,
while the outcome can be narrowed down to a few classes with high confidence. In
particular, prediction practice in multi-label classification, where the specification
of predictive distributions is hindered by a large number of classes, may benefit
from such a probabilistic approach. The chapter introduces padded symmetric
scores based on symmetric proper scoring functions as a consistent way of eval-
uating top list predictions. In particular, it is shown that the probabilistic top
list functional is elicitable. The proposed scores admit a balanced comparison of
various types of predictions while encouraging truthful probabilistic assessments.
The thesis concludes with Chapter 6, which collects and discusses key results and
avenues for future research.

1.1 Declaration: Previous and published work
Parts of this thesis are adapted from the following research articles with significant
contributions by myself (in order of first appearance):

Resin, J. (2022). A simple algorithm for exact multinomial tests.
Journal of Computational and Graphical Statistics. In press,
DOI:10.1080/10618600.2022.2102026.

Gneiting, T. and Resin, J. (2021). Regression diagnostics meets forecast evalu-
ation: Conditional calibration, reliability diagrams and coefficient of deter-
mination. Preprint, arXiv:2108.03210v3.

Gneiting, T., Wolffram, D., Resin, J., Kraus, K., Bracher, J., Dimitriadis, T.,
Hagenmeyer, V., Jordan, A. I., Lerch, S., Phipps, K., and Schienle, M.
(2023). Model diagnostics and forecast evaluation for quantiles. Annual
Review of Statistics and Its Application, 10. In press, DOI:10.1146/annurev-
statistics-032921-020240.

Parts of the abstract are adapted from the abstract of Gneiting and Resin (2021).
Chapter 3 is a modified version of Resin (2022). Chapter 4 is an extended version
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of Gneiting and Resin (2021). The chapter contains some additional content
from Gneiting et al. (2023). In particular, Section 4.4.3 reproduces Section 4.1 of
Gneiting et al. (2023), which is subject to copyright held by the Annual Reviews
(https://www.annualreviews.org).
As part of my thesis, I worked on the following R packages:

Resin, J. (2021a). CalSim: The calibration simplex. R package version 0.5.2 at
https://CRAN.R-project.org/package=CalSim.

Resin, J. (2020). ExactMultinom: Multinomial Goodness-of-Fit Tests. R package
version 0.1.2 at https://CRAN.R-project.org/package=ExactMultinom.

The ExactMultinom package implements ideas from Resin (2022), whereas the
CalSim package implements the calibration simplex, which was proposed by Wilks
(2013).
Replication material for Gneiting and Resin (2021) and Gneiting et al. (2023) is
available through the following resources:

Resin, J. (2021b). Replication code for Gneiting and Resin (2021). https:
//github.com/resinj/replication_GR21.

Wolffram, D., Resin, J., Kraus, K., and Jordan, A. I. (2022). Replication
package for “Model Diagnostics and Forecast Evaluation for Quantiles”.
DOI:10.5281/zenodo.6546490.
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2 Preliminaries on Forecast
Evaluation

This chapter introduces key notation and terminology adapted from the pertinent
literature on forecast evaluation and probabilistic forecasting. The touched-upon
concepts feature prominently throughout this thesis.
The theory on forecast evaluation is centered on the question of what constitutes
a good forecast. A forecast should provide an honest and insightful assessment
of an uncertain actuality while reflecting its own limitations. Such behavior is
encouraged by the use of suitable evaluation metrics, which quantify the value
of a given forecast and admit comparison of competing forecasts (Gneiting and
Katzfuss, 2014).
From a theoretical viewpoint, forecast evaluation is concerned with the joint dis-
tribution of the outcome Y of interest and a forecast F on a probability space
(Ω,A,P). This approach to forecast evaluation dates back to the seminal paper
by Murphy and Winkler (1987). The framework and adaptations thereof are often
referred to as prediction space (Gneiting and Ranjan, 2013), which is introduced
in detail in Chapter 4. The outcome or variable of interest is a random variable
Y : Ω→ Y , which takes values in some sample space Y . Throughout this thesis,
outcomes are assumed to be real-valued, i.e., Y ⊆ R, or categorical. Categor-
ical variables, as encountered in statistical classification, map to a finite set of
m categories or classes, which are frequently identified with the labels 1, . . . ,m,
i.e., Y = {1, . . . ,m}. A probabilistic forecast F : Ω→ F is a random probability
distribution from a set F of probability measures on the sample space Y , while a
point forecast is a random variable X : Ω → Y providing a single-valued predic-
tion from the sample space Y . In the case of a real-valued outcome, probability
distributions are typically identified with their cumulative distribution function
(CDF). In the categorical case, the set of all categorical distributions is usu-
ally considered, and distributions are identified with probability vectors, thereby
identifying the set F with the probability simplex

∆m−1 = {p = (p1, . . . , pm) ∈ [0, 1]m | p1 + · · ·+ pm = 1}.

Binary variables constitute an important special case of categorical variables. In
the case of a binary variable, probabilistic forecasts are completely specified by
the probability assigned to one of the classes, thereby identifying the set F with
the unit interval [0, 1].1

1In binary classification, the specified event probability typically refers to the class labeled 1,
while the other class is labeled 0.
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Ideally, a probabilistic forecast matches the conditional distribution of Y given
the information that is available at the time of forecasting. On the other hand,
point forecasts require guidance in the form of a statistical functional or a loss
function, which relates them to the (conditional) distribution of Y , as discussed
in Section 2.2.

2.1 Evaluation of Probabilistic Forecasts
On account of providing a distribution on possible outcomes, a probabilistic fore-
cast naturally quantifies the remaining uncertainty, thereby reflecting its limi-
tations. The theoretical framework lends itself naturally to the study of eligi-
ble properties of probabilistic forecasts in the population. In contrast, empirical
practice is complicated by the fact that the underlying distributions are unknown
and need to be inferred from a sample of forecasts and respective outcomes. This
discrepancy becomes apparent in the following section, which briefly introduces
calibration as a theoretical concept, before presenting some practical tools for
calibration checks.

2.1.1 Calibration
In general, calibration refers to the agreement between the forecast F and the
observed outcome Y . Ideally, a probabilistic forecast matches a conditional distri-
bution of Y , as formalized by the concept of auto-calibration (Tsyplakov, 2013).
The forecast F is (auto-)calibrated if the conditional distribution of Y given F
matches F , i.e.,

Y | F ∼ F.

Auto-calibration is a strong requirement that is difficult to verify in practice.
Therefore, extant practice typically relies on weaker notions of calibration such
as probabilistic calibration (Dawid, 1984; Diebold et al., 1998), which gives rise
to simple calibration checks. If distributions in F are assumed to be continuous,
the probability integral transform (PIT) is defined simply as ZF = F (Y ). Points
of discontinuity require special treatment (see Chapter 4). The PIT is uniformly
distributed if the forecast F is calibrated. In light of this necessary condition, the
forecast F is called probabilistically calibrated if the PIT is uniformly distributed,
i.e.,

ZF ∼ U([0, 1]).

However, probabilistic calibration is not sufficient for calibration (Gneiting and
Ranjan, 2013).

2.1.1.1 PIT histograms

PIT histograms (Diebold et al., 1998) are a popular tool to assess (probabilistic)
calibration. As the name suggests, PIT histograms approximate the empirical
distribution of the realized PIT values by means of a simple histogram. Figure
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Figure 2.1 PIT histograms based on samples of size 400 for the calibrated fore-
cast F1, the underdispersed forecast F1/2, the overdispersed forecast F3/2, and the
biased forecast Fbiased from Example 2.1.

2.1 shows some exemplary PIT histograms based on the forecasts in Example
2.1. A forecast is underdispersed if the variance of the PIT exceeds the variance
of a uniform random variable. It is overdispersed if the variance is too low.
Underdispersion often results in a characteristic ∪-shape in the PIT histogram,
whereas overdispersion often yields a ∩-shaped histogram. In Chapter 4, an
alternative PIT reliability diagram is discussed, which visualizes the empirical
distribution without approximation through arbitrary binning.

Example 2.1 (Gneiting and Ranjan (2013)). Let µ ∼ N (0, 1) be standard nor-
mal, and Y | µ ∼ N (µ, 1) be conditionally normal with mean µ and variance
1. The forecasts Fσ = N (µ, σ2) with σ > 0 is calibrated if σ = 1. It is un-
derdispersed if σ < 1 and overdispersed if σ > 1 (Gneiting and Ranjan, 2013).
The forecast Fbiased = N (µ + 1

2
, 1) is unconditionally biased. Figure 2.1 shows

simulated PIT histograms for the different types of forecasts in this example.

2.1.1.2 Traditional reliability diagrams

In binary classification, auto-calibration is the uncontested gold standard of cal-
ibration. Calibration of a binary probability forecast is frequently assessed in
reliability diagrams (e.g., Bröcker and Smith, 2007). The traditional reliability
diagram plots empirical event frequencies against average forecast probabilities
conditional on the forecast falling within given subintervals of the unit inter-
val, which are usually referred to as bins. Inset histograms are typically used
to indicate the number of forecasts per bin. Figure 2.2 shows some exemplary
reliability diagrams based on the forecasts in Example 2.2. The figure contains
consistency bars, as suggested by Bröcker and Smith (2007), which visualize the
spread of resampled event frequencies. Resamples are obtained from the forecast
distributions themselves, thereby demonstrating how much the empirical event
frequencies may deviate from calibrated probabilities by mere chance. Here, con-
sistency bars range from the 5th percentile to the 95th percentile of the resampled
event frequencies. A forecast is overconfident if the probability assigned to the
most likely class is systematically overstated, while it is underconfident if said
probability is systematically understated.
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Figure 2.2 Traditional reliability diagrams based on samples of size 1000 for the
calibrated forecast F1, the underconfident forecast F1/2, and the overconfident
forecast F2 from Example 2.2 with 90% consistency bars.
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Figure 2.3 CORP reliability diagrams based on the same samples as Figure 2.2
with 90% consistency bands and CORP score components of the Brier score (BS)
as described in Section 2.1.2.1.

Example 2.2. Let p ∼ U([0, 1]) be uniformly distributed on the unit interval,
and Y | p ∼ Bin(1, p) be a Bernoulli random variable with event probability p.
The probability forecast Fa = (1 + (1−p

p
)a)−1 with a > 0 is calibrated if a = 1. It

is underconfident if a < 1 and overconfident if a > 1. Figures 2.2 and 2.3 show
simulated reliability diagrams for the different types of forecasts in this example.

2.1.1.3 CORP reliability diagrams

Dimitriadis et al. (2021) argue that the traditional reliability diagrams are com-
promised by the fact that they depend on arbitrary binning choices, which may
distort the diagrams (as illustrated in Figure 2 of Dimitriadis et al. (2021)) and
propose the CORP reliability diagram as a stable alternative. The CORP reli-
ability diagram shows an isotonic regression fit, which estimates the calibration
curve p 7→ P(Y = 1 | F = p) mapping probability forecasts to conditional event
probabilities (CEP). Isotonic regression fits are computed using the pool-adjacent
violators (PAV) algorithm. The estimated calibration curves are

Consistent (if the calibration curve is monotonically increasing),
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Figure 2.4 Calibration simplexes based on 5000 samples for the calibrated fore-
cast Fcal, the underconfident forecast Funder, and the overconfident forecast Fover

from Example 2.3.

Optimal (in the sense that recalibrated values optimize the empirical score
under any proper scoring rule subject to monotonicity),

Reproducible, and
PAV based,

hence the acronym CORP. Inset histograms are used to show the empirical dis-
tribution of the forecasts. Figure 2.3 shows CORP reliability diagrams for the
forecasts from Example 2.2. Consistency bands are obtained from resampled
calibration curves. In large samples, asymptotic theory gives rise to confidence
bands. Dimitriadis et al. (2021) hint at a generalization to point forecasts of
statistical functionals, which is investigated in Chapter 4.

2.1.1.4 The calibration simplex

Wilks (2013) proposed a generalization of the reliability diagram to probabilistic
forecasts of a ternary outcome, i.e., in the case of m = 3 classes. In this case, the
probability simplex can be visualized in the plane. The simplex is subdivided into
hexagonal bins by a regular tessellation, i.e., using a grid made up of hexagons.
The resulting reliability diagram is called a calibration simplex. Figure 2.4 shows
calibration simplexes for the forecasts from Example 2.3. The solid circles rep-
resent the forecasts in each bin. The area of each circle is proportional to the
number of forecasts in its respective bin. If the average forecast probabilities in
a bin do not match the empirical frequencies precisely, the circle is shifted to-
wards underforecast outcomes. The magnitude of the shift, as alluded to by an
inset error scale referring to a single bin, is proportional to the difference between
predicted probabilities and observed frequencies.

Example 2.3 (Wilks (2013)). The construction in this example is similar to
Wilks (2013), with the difference that Wilks uses the parameter p̄ as forecast and
uses outcomes distributed according to the different forecast distributions. Let
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p = (p1, p2, p3) be a random vector, such that p2 = max{0, 1 − p1 − p3} and the
vector

(log( p1
1−p1

), log( p3
1−p3

)) ∼ N
(
(log(1

2
), log(1

2
)),
(

σ2 σ2ρ
σ2ρ σ2

))
is bivariate normal with variances σ2 = 1 and correlation coefficient ρ = −0.95.
Let Y | p ∼ p̄ follow a categorical distribution with parameter p̄ = p

p1+p2+p3
. The

forecast Fcal = p̄ is calibrated. Let

q = (max(0, 2p̄1 − 1
3
),max(0, 2p̄2 − 1

3
),max(0, 2p̄3 − 1

3
)).

The overconfident forecast Fover =
q

q1+q2+q3
inflates probabilities larger than 1

3
at

the expense of small probabilities, whereas the underconfident forecast Funder =
((p̄1 +

1
3
)/2, (p2 +

1
3
)/2, (p̄3 +

1
3
)/2) deflates large probabilities to the benefit of

small probabilities. Figure 2.4 shows simulated calibration simplexes for the three
forecasts in this example.

As with the binary reliability diagrams, it may be difficult to judge the gravity of
the shifts observed in the simplex. To this end, I propose the use of color-coded
multinomial p-values in Chapter 3. The calibration simplex is implemented in
the R package CalSim (Resin, 2021a).

2.1.2 Proper scoring rules
Perfect calibration may be difficult to achieve in practice, and a calibrated forecast
does not have to be especially insightful. Scoring rules provide summary measures
that quantify the value of a probabilistic prediction. This section provides a short
introduction to proper scoring rules by introducing a characterization result from
Gneiting and Raftery (2007).
A scoring rule S: F × Y → R is a function that assigns a score S(F, y) from the
extended real line R = R∩ {−∞,∞} to a predicted probability distribution F if
the outcome y is observed. A scoring rule S is regular if the set F is convex and
for all F, P ∈ F and Y ∼ P the expected score E[S(F, Y )] exists and is finite with
the sole exception of allowing an infinite expected score, i.e., E[S(F, Y )] = ∞, if
F 6= P . A scoring rule S is proper if the true distribution minimizes the expected
score, i.e,

E[S(P, Y )] ≤ E[S(F, Y )] for Y ∼ P and F, P ∈ F .

A proper scoring rule S is strictly proper if the expected score is minimized only
by the true distribution, i.e., E[S(P, Y )] = E[S(F, Y )] for Y ∼ P and F, P ∈ F
implies F = P .
Gneiting and Raftery (2007, Theorem 1) show that a regular scoring rule is
(strictly) proper if, and only if, it admits a representation in terms of a (strictly)
concave function and a supertangent of said function, as follows. Any regular
proper scoring rule can be written as

S(F, y) = G(F )−E[G∗(F, YF )]+G∗(F, y) for YF ∼ F and F ∈ F , y ∈ Y , (2.1)
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where G : F → R is a concave function and G∗ : F ×Y → R is a supertangent of
G, i.e., a function such that for all F, P ∈ F and Y ∼ P, YF ∼ F the expectation
E[G∗(P, Y )] exists and is finite, the expectation E[G∗(F, Y )] exists, and

G(P ) ≤ G(F ) + E[G∗(F, Y )−G∗(F, YF )]

holds. Vice versa, any regular scoring rule S of the form (2.1) is proper. A regular
scoring rule of the form (2.1) is strictly proper if, and only if, G is strictly concave.
The continuous ranked probability score (CRPS) given by

SCRPS(F, y) =

∫ ∞

−∞
(F (z)− 1{z ≥ y})2 dz

is a prominent example of a scoring rule for real-valued outcomes. The CRPS
is a proper scoring rule if F is the set of Borel probability measures on R. It is
strictly proper if the set F is restricted to the Borel probability measures with
finite first moment (Gneiting and Raftery, 2007).
Further examples are provided in Chapter 5, which reintroduces proper scoring
rules in the case of a categorical outcome. In the classification setting, the char-
acterization (2.1) gives rise to the Savage representation introduced in Chapter
5.

2.1.2.1 CORP score decompositions

In practice, a sample (F1, y1), . . . , (Fn, yn) of forecasts Fi and respective observa-
tions yi (i = 1, . . . , n) is used to compute the average empirical score

Ŝ =
1

n

n∑
i=1

S(Fi, yi)

via a proper scoring rule S, which can be used to compare competing forecasts.
In the case of a binary variable, the CORP approach by Dimitriadis et al. (2021)
described briefly in Section 2.1.1.3 yields a score decomposition into measures of
miscalibration (MCB), discrimination (DSC) and uncertainty (UNC). If F̂1, . . . , F̂n

denote the recalibrated forecast values obtained from the PAV algorithm, i.e., the
isotonic regression fits of the observations yi against the original forecasts Fi, the
empirical score

Ŝrc =
1

n

n∑
i=1

S(F̂i, yi)

of the recalibrated values F̂i is optimal among monotonically increasing fits. On
the other hand, the unconditional distribution of Y is typically regarded as a
reference forecast requiring hardly any skill as it can simply be estimated from
the observations, which yields the empirical unconditional event probability F̂0 =
1
n

∑n
i=1 yi. The given forecasts are seen as having no skill if the empirical score

Ŝref =
1

n

n∑
i=1

S(F̂0, yi)
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of the reference forecast outperforms the forecasts at hand, which yields a measure
of inherent uncertainty UNC = Ŝref . The score difference MCB = Ŝ − Ŝrc yields
a measure of miscalibration, which estimates how much the forecasts might be
improved through recalibration. The score difference DSC = Ŝref − Ŝrc indicates
how well the forecasts discriminate between the two outcomes 0 and 1, and hence
serves as a measure of discrimination. With these terms, the original mean score
can be written as

Ŝ = MCB− DSC+ UNC.

The CORP reliability diagrams in Figure 2.3 are complemented by empirical score
decompositions of the popular Brier score

SBrier(F, y) = (F − y)2,

which is a strictly proper scoring rule for probability forecasts of binary outcomes.
Chapter 4 discusses score decompositions of scoring functions in the case of point
forecasts linked to various statistical functionals.

2.2 Point Forecast Evaluation: Statistical
Functionals and Consistent Scoring Functions

This section provides a short introduction to point forecast evaluation using con-
sistent scoring functions based on Gneiting (2011a). For simplicity, the exposition
is restricted to real-valued point forecasts and outcomes.
For various reasons, single-valued point forecasts may be preferred over proba-
bilistic forecasts in practice. Point forecasts are linked to the distribution of Y
by means of a statistical functional or as the Bayes rule, i.e., the minimizer of an
expected loss, under a scoring or loss function. Naturally, a point forecast cannot
be expected to match the outcome precisely. Communicating the true nature
of a point forecast in terms of the targeted functional or loss function is key in
addressing its limitations. A statistical functional is a map T: F → 2R disclosing
a certain aspect of a probability distribution. The most prominent example is
the mean functional given by TE(F ) = {EY | Y ∼ F} for sets F of probability
measures F ∈ F with finite first moment. As the disclosed aspect may not be
uniquely determined, set-valued functionals are needed. For example, the median
or any other quantile of a discrete distribution may not be unique. In the case of
a categorical outcome, the mode functional is typically the functional of choice,
as discussed in Chapter 5.
The value of a point forecast is quantified by means of suitable scoring functions.
A scoring function S: R × R → R assigns a score S(x, y) to a point forecast x
based on an observation y. A scoring function S is consistent for a functional T
if the expected score under any distribution is minimized by values satisfying the
functional relationship, i.e.,

E[S(t, Y )] ≤ E[S(x, Y )] for Y ∼ F, t ∈ T (F ), F ∈ F , and x ∈ R.
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A consistent scoring function is strictly consistent if the expected score is min-
imized only by values satisfying the functional relationship, i.e., if E[S(t, Y )] =
E[S(x, Y )] for Y ∼ F, F ∈ F and t ∈ T(F ) implies x ∈ T(F ). A functional T is
elicitable if a strictly consistent scoring function S for T exists. For example, the
mean functional is elicited by the popular squared error scoring function

SSE(x, y) = (x− y)2

while the median is elicited by the absolute error scoring function

SAE(x, y) = |x− y|.

Point forecasts and related concepts feature prominently in this thesis with Chap-
ters 4 and 5 providing further insights into the cases of real-valued outcomes and
categorical variables, respectively.
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3 A Simple Algorithm for Exact
Multinomial Tests

This chapter is a slightly modified version of Resin (2022), where I propose a
new method for computing acceptance regions of exact multinomial tests. From
this method, an algorithm is derived, which finds exact p-values for tests of sim-
ple multinomial hypotheses. Using concepts from discrete convex analysis, the
method is proven to be exact for various popular test statistics, including Pear-
son’s chi-square and the log-likelihood ratio. The proposed algorithm improves
greatly on the naive approach using full enumeration of the sample space. How-
ever, its use is limited to multinomial distributions with a small number of cate-
gories as the runtime grows exponentially with the number of possible outcomes.
The method is applied in a simulation study. Applications of multinomial tests in
forecast evaluation are outlined in Sections 3.4.2 and 4.4.2. Additionally, proper-
ties of a test statistic using probability ordering, referred to as the “exact multi-
nomial test” by some authors, are investigated and discussed. The algorithm is
implemented in the accompanying R package ExactMultinom.

3.1 Introduction
Multinomial goodness-of-fit tests feature prominently in the statistical literature
and a wide range of applications. Tests relying on asymptotics have been available
for a long time and have been rigorously studied all through the 20th century. The
use of various test statistics has been investigated with Pearson’s chi-square and
the log-likelihood ratio statistic being vital examples. These statistics are mem-
bers of the general family of power divergence statistics (Cressie and Read, 1984).
With the widespread availability of computing power, Monte Carlo simulations
and exact methods have also gained popularity.
Tate and Hyer (1973) and Kotze and Gokhale (1980) used the “exact multinomial
test”, which orders samples by probability, to assess the accuracy of asymptotic
tests of a simple null hypothesis against an unspecified alternative. In the words
of Cressie and Read (1989), this approach “has provided much confusion and
contention in the literature”. In accordance with Gibbons and Pratt (1975) and
Radlow and Alf (1975), they conclude that the asymptotic fit of a test should be
assessed using the appropriate exact test based on the test statistic in question.
Nevertheless, the exact multinomial test is intuitively appealing, and, as Kotze
and Gokhale (1980) put it, “[i]n the absence of [...] a specific alternative, it is
reasonable to assume that outcomes with smaller probabilities under the null
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Figure 3.1 An acceptance region (black dots) at level α = 0.05 for the null π =
( 2
10
, 5
10
, 3
10
) and samples of size n = 50 with m = 3 categories. Only points within

the ball (big dots) around the expectation (hollow dot) have to be considered to
find this region.

hypothesis offer a stronger evidence for its rejection and should belong to the
critical region”. In Section 3.2, an asymptotic chi-square approximation to the
exact multinomial test is derived, and an exemplary comparison of popular test
statistics in terms of power is provided.
Regardless of the test statistic used, computing an exact p-value by fully enu-
merating the sample space is computationally challenging as the test statistic
and the probability mass function have to be evaluated at every possible sample
of which there are

(
n+m−1
m−1

)
= O(nm−1) for samples of size n with m categories.

An improvement on this method has been proposed by Bejerano et al. (2004)
for the family of power divergence statistics. Other approaches aimed at exact
Pearson’s chi-square and log-likelihood ratio tests exist (e.g., Baglivo et al., 1992;
Hirji, 1997; Rahmann, 2003; Keich and Nagarajan, 2006). In this chapter, a new
approach to exact multinomial tests is investigated.
The key observation underlying the proposed algorithm is that acceptance regions
at arbitrary levels contain relatively few points, which are located in a neighbor-
hood of the expected value under the null hypothesis as illustrated in Figure 3.1.
An acceptance region can be found by iteratively evaluating points within a ball
of increasing radius around the expected value (w.r.t. the Manhattan distance).
The algorithm uses this approach to compute an exact p-value from the probabil-
ity mass of the largest acceptance region that does not contain the observation.
If p-values below an arbitrary threshold are not computed exactly, the runtime of
the algorithm is guaranteed to be asymptotically faster than the approach using
full enumeration as the diameter of any acceptance region essentially grows at a
rate proportional to the square root of the sample size. The algorithm is detailed
and proven to work for various popular test statistics in Section 3.3.
Furthermore, the algorithm is illustrated to work well in applications detailed
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in Section 3.4. In particular, the algorithm’s runtime is compared to the full
enumeration method in a simulation study, and the resulting p-values are used to
assess the fit of asymptotic chi-square approximations and investigate differences
between several test statistics. As an application in forecast evaluation, the use of
multinomial tests for uncertainty quantification within the so-called calibration
simplex (Wilks, 2013) is outlined and justified.
The R programming language (R Core Team, 2022) has been used for all compu-
tations throughout this chapter. An implementation of the proposed method is
provided within the R package ExactMultinom (Resin, 2020).

3.2 A Brief Review on Testing a Simple
Multinomial Hypothesis

Consider a multinomial experiment X = (X1, . . . , Xm) summarizing n ∈ N i.i.d.
trials with m ∈ N possible outcomes. Let

∆m−1 := {p ∈ [0, 1]m | p1 + . . .+ pm = 1}

denote the unit (m− 1)-simplex or probability simplex and

Ωm,n = {x ∈ Nm
0 | x1 + . . .+ xm = n}

the sample space, which is a regular discrete (m − 1)-simplex. The distribution
of X is characterized by a parameter p = (p1, . . . , pm) ∈ ∆m−1 encoding the
occurrence probabilities of the outcomes on any trial, or X ∼Mm(n, p) for short.
The multinomial distributionMm(n, p) is fully described by the probability mass
function (pmf)

fn,p : Ωm,n → [0, 1], x 7→ n!
m∏
j=1

p
xj

j

xj!
.

Suppose that the true parameter p is unknown. Consider the simple null hy-
pothesis p = π for some π ∈ ∆m−1. The agreement of a realization x ∈ Ωm,n

of X with the null hypothesis is typically quantified by means of a test statistic
T : Ωm,n ×∆m−1 → R. Given such a test statistic T and presuming from now on
that w.l.o.g. high values of T (x, π) indicate ‘extreme’ observations under the null
distribution Pπ, the p-value of x is defined as the probability

pT (x, π) := Pπ(T (X, π) ≥ T (x, π)) (3.1)

of observing an observation that is at least as extreme under the null hypothesis.
The family of power divergence statistics introduced by Cressie and Read (1984)
offers a variety of test statistics for multinomial goodness-of-fit tests. It is defined
as

T λ(x, π) :=
2

λ(λ+ 1)

m∑
j=1

xj

((
xj

nπj

)λ

− 1

)
for λ ∈ R \ {−1, 0} (3.2)
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and as the pointwise limit in (3.2) for λ ∈ {−1, 0}. Notably, this family includes
Pearson’s chi-square statistic

T χ2

(x, π) :=
m∑
j=1

(xj − nπj)
2

nπj

=
m∑
j=1

x2
j

nπj

− n = T 1(x, π)

as well as the log-likelihood ratio (or G-test) statistic

TG(x, π) := 2 log
fn, x

n
(x)

fn,π(x)
= 2

m∑
j=1

xj log
xj

nπj

= T 0(x, π).

Under a null hypothesis with πi > 0 for all i = 1, . . . ,m, every power divergence
statistic is asymptotically chi-square distributed with m− 1 degrees of freedom.
A natural test statistic arises if an ‘extreme’ observation is simply understood to
mean an unlikely one, that is, if the pmf itself is used as a test statistic. In what
follows, a strictly decreasing transformation of the pmf is used instead, which
ensures that large values of the test statistic indicate extreme observations. Fur-
thermore, this strictly decreasing transformation is chosen such that the resulting
test statistic is asymptotically chi-square distributed. To this end, let Γ denote
the Gamma function and

f̄n,p : {x ∈ Rm
≥0 | x1 + . . .+ xm = n} → R, x 7→ Γ(n+ 1)

m∏
j=1

p
xj

j

Γ(xj + 1)

the continuous extension of the pmf fn,p to the convex hull of the discrete simplex
Ωm,n. The probability mass test statistic is defined as

T P(x, π) := −2 log fn,π(x)

f̄n,π(nπ)
.

Obviously, the choice of strictly decreasing transformation does not affect the
(exact) p-value given by (3.1) for T = T P. The following theorem gives rise
to an asymptotic approximation of p-values derived from the probability mass
test statistic, which has not been studied previously. In the simulation study
of Section 3.4.1, the fit of this approximation is assessed empirically using exact
p-values computed with the proposed method for samples of size n = 100 with
m = 5 categories.

Theorem 3.1. If X ∼Mm(n, π) follows a multinomial distribution with n ∈ N
and π ∈ ∆m−1 such that πj > 0 for j = 1, . . . ,m, then T P(X, π) converges in
distribution to a chi-square distribution χ2

m−1 with m − 1 degrees of freedom as
n→∞.

Proof. By Lemma 3.8 (in Appendix 3.A.1.1), the difference between the log-
likelihood ratio and the probability mass statistic is

T P(X, π)− TG(X, π) =
m∑
j=1

(
log

Xj

nπj

+O(1/Xj)−O(1/n)
)
.
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Figure 3.2 Acceptance regions (black) of probability mass (left), chi-square (cen-
ter), and log-likelihood ratio (right) statistics at level α = 0.05 for n = 50 and
π = ( 1

10
, 7
10
, 2
10
). The regions contain 108, 111, and 111 points, respectively (left

to right). The tests are of size 0.0495, 0.0492, and 0.0481, respectively.

Clearly, the bounded terms converge to zero in probability, and the log Xj

nπj
terms

converge to zero in probability by the continuous mapping theorem. Hence,
the probability mass statistic has the same asymptotic distribution as the log-
likelihood ratio statistic.

In what follows, the focus is on the chi-square, log-likelihood ratio, and probability
mass statistics.

3.2.1 Acceptance regions
As outlined in Section 3.1, acceptance regions are of major importance to the
idea pursued in this chapter. Given a test statistic T , the acceptance region at
level α > 0 is defined using p-values given by (3.1) as

AT
n,π(α) := {x ∈ Ωm,n | pT (x, π) > α}.

Equivalently,1 the acceptance region can be written as the sublevel set of T (·, π)
at the (1− α)-quantile t1−α = min{t ∈ R | Pπ(T (X, π) ≤ t) ≥ 1− α} of T (X, π)
under the null hypothesis X ∼Mm(n, π), i.e.,

AT
n,π(α) = {x ∈ Ωm,n | T (x, π) ≤ t1−α}. (3.3)

As illustrated in Figure 3.2, the probability mass test statistic typically yields
acceptance regions that contain relatively few points because the regions contain
the samples with the largest null probabilities. However, as samples with equal

1Since T (X,π) follows a discrete distribution, the quantile t1−α satisfies Pπ(T (X,π) < t1−α) <
1− α by construction as the minimum value for which the cumulative non-exceedance prob-
ability is at least 1− α. Hence, the defining inequalities are equivalent for x ∈ Ωm,n:

T (x, π) ≤ t1−α ⇔ Pπ(T (X,π) < T (x, π)) < 1− α

⇔ Pπ(T (X,π) ≥ T (x, π)) > α ⇔ pT (x, π) > α.
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null probabilities are either all included or all excluded, smaller acceptance regions
might be feasible at some levels α. If tests are randomized to ensure an equal level
and size of the test, this property can be refined to yield an optimality property
of the probability mass test’s critical function.
In Section 3.3, it is shown that acceptance regions of the chi-square, log-likelihood
ratio, and probability mass test statistic all grow at a rate O(nm−1

2 ) as their
diameter grows at a rate O(

√
n) if α > 0 is fixed, see Proposition 3.7.

3.2.2 Power and bias
The power function of a test T of the null hypothesis p = π at level α is

∆m−1 → [0, 1], p 7→ 1− Pp(T (X) ∈ AT
n,π(α)),

which is the probability of rejecting the null hypothesis at level α if the true
parameter is p. The size of a test is its power at p = π. A test T is said to be
unbiased (for the null p = π at level α) if its power is minimized at p = π.
In the case of the uniform null hypothesis π = ( 1

m
, . . . , 1

m
), Cohen and Sackrowitz

(1975, Theorem 2.1) proved that the power function increases away from p = π
for test statistics of the form

T (x) =
m∑
j=1

h(xj)

if h is a convex function. They concluded that tests based on the chi-square and
the log-likelihood ratio test statistic are unbiased for the uniform null hypothesis.
As a corollary to their theorem, it shall be noted that this result also applies to
the probability mass test statistic.

Corollary 3.2 (to Cohen and Sackrowitz, 1975, Theorem 2.1). The probability
mass test is unbiased for the uniform null hypothesis p = π = ( 1

m
, . . . , 1

m
).

Proof. Since the probability mass statistic can be written as

T P(x, π) = 2
m∑
j=1

log Γ(xj + 1)− xj log πj − log
Γ(nπj + 1)

π
nπj

j

,

convexity of the summands as a function of x is an immediate consequence of
the fact that the Gamma function is logarithmically convex on the positive real
numbers, which is part of a characterization given by the Bohr-Mollerup theorem
(Beals and Wong, 2010, Theorem 2.4.2).

Many authors (e.g., West and Kempthorne, 1972; Cressie and Read, 1984; Waki-
moto et al., 1987; Pérez and Pardo, 2003) have conducted small sample studies
to investigate the power of chi-square, log-likelihood ratio and other tests. When
conducting such studies, π, n, and α need to be chosen, all of which influence the
resulting power function. Furthermore, it is frequently infeasible to assess the
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Highest power Lowest Power

Chisq
LLR
Prob

Figure 3.3 Ternary plots indicating which randomized tests of size α = 0.05
yield the highest (left) and lowest (right) power for the uniform null hypotheses
π = (1

3
, 1
3
, 1
3
) (top) and π = ( 1

10
, 7
10
, 2
10
) (bottom) for n = 50 among chi-square

(Chisq), log-likelihood ratio (LLR), and probability mass (Prob) test. Overlap-
ping lines indicate nearly equal powers (difference < 10−5).

power function across all alternatives, and so alternatives of interest need to be
picked. Therefore, most of these studies focused on the case of the uniform null
hypothesis. In this case, the chi-square test has greater power for alternatives
that assign a large proportion of the probability mass to relatively few categories,
whereas the log-likelihood ratio test has greater power for alternatives that assign
considerable probability mass to many categories (see Koehler and Larntz, 1980).
In the ternary case, that is, if m = 3, comparisons on the full probability simplex
are visually accessible. Figure 3.3 illustrates which of the three test statistics
yields the highest and lowest power across the full ternary probability simplex.
As the actual test size, which is frequently smaller than the level α, depends on the
test statistic, the resulting power functions are difficult to compare directly. To
account for this behavior, tests are randomized to ensure that test sizes match the
specified level. For a test T and level α, let sn,π(T, α) = 1− Pπ(T (X) ∈ AT

n,π(α))
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Figure 3.4 Power functions of randomized chi-square (Chisq), log-likelihood ra-
tio (LLR), and probability mass (Prob) tests of size α = 0.05 along alternatives
given by p(pi, i), i = 1, 2, 3 with null hypothesis π = ( 1

10
, 7
10
, 2
10
) and sample size

n = 50.

denote the actual size of the test. The critical function

φ : Ωm,n → [0, 1], x 7→


0, if T (x, π) < t1−α,
α−sn,π(T,α)

Pπ(T (X)=t1−α)
, if T (x, π) = t1−α,

1, if T (x, π) > t1−α,

defines a randomized test2 for the null hypothesis p = π at level α, which rejects
the null hypothesis with probability φ(x) if x is observed. The power function of
a randomized test given by a critical function φ is

p 7→
∑

x∈Ωm,n

φ(x)Pp(X = x) = 1−
∑

x∈AT
n,π(α)

(1− φ(x))Pp(X = x).

The power function shows that the probability mass test minimizes the acceptance
region in the sense that it minimizes the sum∑

x∈Ωm,n

(1− φ(x))

across all randomized tests for the null hypothesis p = π at level α.
Figure 3.3 suggests that the probability mass test and the log-likelihood ratio test
for the uniform null hypothesis at level α = 0.05 are the same for n = 50. This
behavior is a coincidence, and for other choices of α (e.g., α = 0.13, for which
coincidentally the probability mass statistic yields the same acceptance region
as the chi-square statistic) the acceptance regions differ, and so do the power
functions.
Figure 3.4 quantitatively compares power along alternatives of the form

p(q, i) = (q̃π1, . . . , q̃πi−1, q, q̃πi+1, . . . , q̃πm) ∈ ∆m−1 with q̃ =
1− q

1− πi

2Randomized tests like this traditionally arise in the theory of uniformly most powerful tests,
see for example Lehmann and Romano (2005, Chapter 3).
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for i = 1, . . . ,m and q ∈ [0, 1], which yields parametrizations of the lines through
π and the corners of the probability simplex. Arguably, the log-likelihood ratio
test does not show any visible bias for n = 50, π = ( 1

10
, 7
10
, 2
10
), and α = 0.05,

whereas the chi-square test shows the largest bias. The power function of the
probability mass test lies in between the other power functions across most of
the probability simplex, and so the probability mass test might serve as a good
compromise in terms of power.

3.3 Exact p-Values via Acceptance Regions
Throughout this section, T is a test statistic, and m,n ∈ N and π ∈ ∆m−1 are
fixed. To ease notation, the subscripts in the pmf of the null distribution are
omitted, i.e., I write f = fn,π, and the test statistic T is considered as a function
on the sample space only, i.e., T (·) = T (·, π). Let

d : Rm × Rm → R≥0, (x, y) 7→
1

2
‖x− y‖1 =

1

2

∑
j

|xj − yj|

be a rescaled version of the Manhattan distance and

Br(y) = {x ∈ Ωm,n | d(x, y) ≤ r}

the discrete ball with radius r ∈ N and center y ∈ Ωm,n. Furthermore, let
ei = (δij)

m
j=1 denote the i-th vector of the standard basis of Rm, where δij is the

Kronecker delta.

3.3.1 Finding acceptance regions using discrete convex
analysis

As alluded to in Section 3.1, for many statistics an acceptance region A = AT
n,π(α)

for α ∈ (0, 1) can be found without enumerating the entire sample space Ωm,n by
considering only points in some ball around the expected value. The following
theorem, which is proven at the end of this subsection, formalizes this approach
for weakly quasi M-convex test statistics. A test statistic T is weakly quasi M-
convex (Murota, 2003, Section 6.14, Property (QMw)) if for all x, y ∈ Ωm,n with
x 6= y there exist indices i, j ∈ {1, . . . ,m} such that xi > yi, xj < yj and

T (x− ei + ej) ≤ T (x) or T (y + ei − ej) ≤ T (y).

Theorem 3.3. Let T be weakly quasi M-convex, and suppose y ∈ Ωm,n, r ∈ N
and α ∈ (0, 1) are such that

∑
x∈Br(y)

f(x) ≥ 1−α. Let t ∈ R be the smallest level
such that the sublevel set A = {x ∈ Br(y) | T (x) ≤ t} satisfies

∑
x∈A f(x) ≥ 1−α.

If A ⊆ Br−1(y), then A is the acceptance region AT
n,π(α).

Hence, an acceptance region can be found by iteratively enumerating a ball of
increasing radius with arbitrary center until a sublevel set with enough probability
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mass is found, and this sublevel set remains unchanged upon further increasing
the ball, as illustrated in Figure 3.1 of Section 3.1 for an acceptance region of the
probability mass statistic. The following proposition ensures that this approach
can be applied to the chi-square, log-likelihood ratio, and probability mass test
statistics.

Proposition 3.4.

(a) The probability mass test statistic T P is weakly quasi M-convex.

(b) The power divergence test statistic T λ is weakly quasi M-convex if λ ≥ 0.

Proof. Throughout the proof, let x, y ∈ Ωm,n be such that x 6= y, and define the
index sets

S+ := {i | xi > yi} and S− := {j | xj < yj}.

(a) Let T = T P and assume w.l.o.g. T (x) ≥ T (y). Then

T (y)− T (x) = −2 log f(y)

f(x)
= −2 log

∏
i∈S+

xi!

yi!
πyi−xi

i ·
∏
j∈S−

xj!

yj!
π
yj−xj

j


= −2 log

∏
i∈S+

xi−yi∏
k=1

yi + k

πi

·
∏
j∈S−

yj−xj∏
k=1

πj

xj + k

 ≤ 0.

Both double products contain an equal number of multiplicands (since∑
j xj =

∑
j yj = n) and are nonempty (since x 6= y). As the entire

product is at least 1, there exist indices i ∈ S+ and j ∈ S− and natural
numbers k+ ≤ xi − yi and k− ≤ yj − xj such that the second inequality
holds in

πj

xj + 1
≥ πj

xj + k− ≥
πi

yi + k+
≥ πi

xi

.

Therefore, the inequality

T (x− ei + ej) = T (x)− 2 log

(
xi

πi

· πj

xj + 1

)
≤ T (x)

holds.

(b) See Appendix 3.A.1.2.

The rest of this section is devoted to the proof of Theorem 3.3, which utilizes
the existence of certain sequences in the sublevel sets of weakly quasi M-convex
functions given by the first part of the following lemma.

Lemma 3.5. Let T be a weakly quasi M-convex function and L = {x ∈ Ωm,n |
T (x) ≤ t} be the sublevel set of T at t ∈ R.
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(a) If x, y ∈ L and d = d(x, y), then there exists a sequence x0, x1, . . . , xd ∈ L
with x0 = x, xd = y and d(xi, xi+1) = 1 for all i = 0, 1, . . . , d− 1.

(b) Suppose y ∈ Ωm,n and r ∈ N are such that A = {x ∈ Br(y) | T (x) ≤ t} is
not empty. If A ⊆ Br−1(y), then A = L is the sublevel set of T at t.

Proof. (a) Proof by induction on d: Let x, y ∈ L and d = d(x, y). If d = 0,
then x = x0 = y satisfies the condition. If d > 0, there exist i, j such that
xi > yi, xj < yj and xd−1 = y + ei − ej ∈ L (or xd−1 = x − ei + ej ∈ L, in
which case interchanging x and y and i and j yields the former formula for
xd−1) by weak quasi M-convexity of T . Then d(xd−1, y) = 1 and

d(x, xd−1) =
1

2

(∑
k 6=i,j

|xk − yk|+ |xi − (yi + 1)|︸ ︷︷ ︸
=|xi−yi|−1

+ |xj − (yj − 1)|︸ ︷︷ ︸
=|xj−yj |−1

)

=
1

2
(‖x− y‖1 − 2) = d− 1.

By induction hypothesis, there exists a sequence x0, x1, . . . , xd−1 ∈ L, such
that x = x0, x1, . . . , xd−1, xd = y ∈ L is the sought-after sequence.

(b) Assume there exists some b ∈ L\A and fix a ∈ A. By part (a), the sublevel
set L contains a sequence a = x0, x1, . . . , xd = b ∈ L with d = d(a, b)
and d(xi, xi+1) = 1 for i = 0, 1, . . . , d−1. By the reverse triangle inequality
|d(xi+1, y)−d(xi, y)| ≤ 1, and, since d(a, y) < r < d(b, y), there is an xj such
that d(xj, y) = r, which yields xj ∈ A, a contradiction (as A ⊆ Br−1(y)).
Therefore, L ⊆ A, and hence A = L.

It can be shown that the existence of sequences as in part (a) of the previous
lemma characterizes a weakly quasi M-convex set.3 For further details on weak
quasi M-convexity and discrete convex analysis in general, see Murota (2003).
Finally, the theorem is readily proven as follows.

3The sublevel sets of weakly quasi M-convex functions are weakly quasi M-convex sets (Murota
and Shioura, 2003, Theorem 3.10). A subset M ⊂ Ωm,n is weakly quasi M-convex (Murota
and Shioura, 2003, Property (Q-EXCw)) if for all x, y ∈ M with x 6= y there exist indices
i, j ∈ {1, . . . ,m} such that xi > yi, xj < yj and

x− ei + ej ∈M or y + ei − ej ∈M.

The proof of Lemma 3.5(a) is easily adapted to show that weakly quasi M-convex sets admit
sequences as in part (a) of the lemma. To show the reverse implication, i.e., a set M is
weakly quasi M-convex only if it admits sequences as in Lemma 3.5(a), let x, y ∈ M,x 6= y,
d = d(x, y), and x0, x1, . . . , xd ∈M be such a sequence. As d(x, x1) = 1, there exist i, j such
that x1 = x− ei + ej . Furthermore, the inequalities xi > yi and xj < yj hold since

d− 1 =

d−1∑
l=1

d(xl, xl+1) ≥ d(x1, y) =
1

2

( ∑
k 6=i,j

|xk − yk|+ |xi − 1− yi|+ |xj + 1− yj |

)

yields a contradiction otherwise.
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Algorithm 3.1. Compute exact p-value above some threshold.
Input: Observation x ∈ Ωm,n, hypothesis π ∈ ∆m−1, threshold

0 < θ � 1
Output: Exact p-value p ∈ [θ, 1] or 0 if the p-value is less than θ
compute y ∈ Ωm,n minimizing d(y,EπX)
if T (x) ≤ T (y) then set y = x
initialize r = 0, s = 0
repeat

for z ∈ Br(y) \Br−1(y) do
if T (z) < T (x) then set s = s+ f(z)

end
increment r = r + 1
set tmin = min{T (z) | d(y, z) = r}

until (T (x) ≤ tmin and T (y) < tmin) or s > 1− θ
if s ≤ 1− θ then return 1− s
else return 0

Proof of Theorem 3.3. Let t ∈ R be minimal such that A = {x ∈ Br(y) | T (x) ≤
t} has probability mass

∑
x∈A f(x) ≥ 1 − α and A ⊆ Br−1(y). Recall that the

acceptance region AT
n,π(α) is the sublevel set (3.3) at t1−α, and note that t1−α ≤ t

holds as Pπ(T (X) ≤ t) ≥
∑

x∈A f(x) ≥ 1−α. By Lemma 3.5(b), A is the sublevel
set at t, and hence A ⊇ AT

n,π(α). Since t is minimal, it follows that t = t1−α and
A = AT

n,π(α).

3.3.2 Computing a p-value
As described in the previous subsection, an acceptance region can be determined
by taking an arbitrary point and increasing the radius of a ball around this
center point until the acceptance region is found using the criterion provided by
Theorem 3.3. Obviously, the center of the ball should lie within the acceptance
region, ideally at its center, to minimize the necessary iterations and the number
of points for which to evaluate the pmf and the test statistic. The expected value
EπX = n · π of the multinomial distribution, which is the center of mass of all
probability weighted points in the discrete simplex, is close to the center of mass
of the acceptance region as the region contains most of the mass. Therefore, a
point close to the expected value is a suitable center for the ball.
The p-value of an observation x can be found by computing the total probability
of the largest acceptance region not containing the observation, as formalized by
Algorithm 3.1 and the following theorem.

Theorem 3.6. Let T be weakly quasi M-convex and r ∈ N. Suppose x, y ∈ Ωm,n

are such that T (y) < T (x). If A = {z ∈ Br(y) | T (z) < T (x)} satisfies A ⊆
Br−1(y), then pT (x, π) = 1−

∑
z∈A f(z).

Proof. By Lemma 3.5(b), the set A is the sublevel set at t = max{T (z) | z ∈
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Figure 3.5 Points (big dots) in Ω3,50 for which the probability mass and test
statistic are evaluated given the marked observations x = (4, 40, 6) (left) and
x = (10, 20, 20) (right) under the null hypothesis π = ( 1

10
, 7
10
, 2
10
) and T = T P.

The p-values are 0.3049 (left) and less than θ = 0.0001 (right). The black region
on the left is the largest acceptance region not containing the observation x.

Ωm,n, T (z) < T (x)}, and hence pT (x, π) = Pπ(T (X) ≥ T (x)) = 1 − Pπ(T (X) ≤
t) = 1−

∑
z∈A f(z).

The condition T (y) < T (x) in Theorem 3.6 ensures that the sublevel set A is not
empty, as otherwise the empty set may falsely be identified as the largest accep-
tance region not containing x. The case where no point y with T (x) > T (y) is
known requires special care. In this case, Algorithm 3.1 enumerates an acceptance
region containing the observation itself to avoid premature termination.
To avoid enumerating unreasonably large balls, Algorithm 3.1 only determines
exact p-values above a threshold θ and otherwise indicates that the p-value is
smaller than the threshold θ by returning a value of 0. Figure 3.5 shows the points
evaluated by Algorithm 3.1 for an observation with p-value greater, respectively,
smaller than some threshold θ.

3.3.3 Implementation
Enumeration of the full sample space can be implemented using a simple re-
cursion, as in the R packages EMT (Menzel, 2013) and XNomial (Engels, 2015).
Whereas EMT is written purely in R, the function xmulti of the XNomial package
uses an efficient C++ subroutine for the recursion. To enumerate the samples at
a given radius r in the repeat-loop of Algorithm 3.1, a similar, more complicated
recursive scheme is implemented in the R package ExactMultinom using a C++
subroutine to allow for fast recursions.
As an alternative, Bejerano et al. (2004) proposed a branch and bound approach to
compute exact multinomial p-values, as implemented by Bejerano (2006). How-
ever, the branch and bound approach does not consider the probability mass
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Figure 3.6 Mean runtime across 10 samples with p-values of about 0.001 under
null hypotheses π1 = (0.2, 0.2, 0.2, 0.2, 0.2) and π2 = (0.01, 0.19, 0.2, 0.3, 0.3), re-
spectively, using full enumeration, the branch and bound (B&B) approach and
Algorithm 3.1.

statistic, and its implementation is limited to the log-likelihood ratio test. In
contrast, the implementation of Algorithm 3.1 simultaneously computes p-values
for the chi-square, log-likelihood ratio, and probability mass test statistics, as
does xmulti. Further discussion of the branch and bound approach and other
methods is deferred to Appendix 3.A.2 as none of these methods have been tai-
lored to the probability mass test and other approaches do not produce “strictly
exact” p-values (Keich and Nagarajan, 2006).
The current implementation of Algorithm 3.1 accurately finds p-values of order
roughly as small as 10−10. Smaller p-values often lead to negative output because
of limited computational precision in the addition of many floating point numbers.
To ensure accurate results, I recommend choosing θ no less than 10−8 with the
current implementation.
During early runs of the simulation study described in Section 3.4, it was no-
ticed that the runtime of Algorithm 3.1 tends to increase drastically if the null
distribution contains a very small probability πi � n−1 for some i ≤ m. In this
case, the acceptance region is very flat, containing mostly points within a lower
dimensional face of the discrete simplex, as hits in category i are improbable
under the null. Hence, the asymptotic advantage of Algorithm 3.1 discussed in
the next subsection requires a large sample size n to take effect under sparse null
hypotheses. As a heuristic, which turned out to be an effective remedy, the imple-
mentation does not enumerate entire balls if n · πi <

1
2
but only considers points

z ∈ Ωm,n with small zi, by skipping all points z for which Pπ(Xi ≥ zi) < θ · 10−8.

3.3.4 Runtime complexity
The discrete simplex Ωm,n contains |Ωm,n| =

(
n+m−1
m−1

)
points, and so the full

enumeration takes O(nm−1) operations to compute a p-value. In comparison, the
acceptance regions at a fixed level α > 0 only contain O(nm−1

2 ) points, which
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continues to hold for the smallest ball around the acceptance region centered at
the expected value, as proven by Proposition 3.7 below. Therefore, Algorithm
3.1 only takes O(nm−1

2 ) operations to determine a p-value above the threshold θ.
Figure 3.6 shows runtime as a function of n form = 5. Whereas the runtime of the
full enumeration method depends only on the parameters m and n, the runtime
of the implementation of Algorithm 3.1 described in Section 3.3.3 depends on
both the parameter π and the observation x. As with the branch and bound
approach, the uniform null hypothesis results in a longer runtime than sparse
null hypotheses, but the difference is less pronounced. Furthermore, the runtime
of Algorithm 3.1 increases if the p-value of x is small, which is further investigated
in the simulation study of Section 3.4.1. As the runtime increases exponentially
with m, Algorithm 3.1 is only feasible if the number of categories m is small.

Proposition 3.7. Let T ∈ {T χ2
, TG, T P}, α ∈ (0, 1) and π ∈ ∆m−1. Then there

exists c = c(α, π) such that AT
n,π(α) ⊂ B√

nc(nπ) for sufficiently large n.

Proof. Consider the canonical extension T̄ of T to Ω̄m,n = {x ∈ Rm
≥0 | x1 + . . .+

xm = n} and let B̄n,r(y) = {x ∈ Ω̄m,n | d(x, y) ≤ r} denote a ball in Ω̄m,n

with boundary ∂B̄n,r(y) = {x ∈ Ω̄m,n | d(x, y) = r}. Let r0 = minj πj > 0
and n0 ∈ N. If n ≥ n0, then every x ∈ ∂B̄n,

√
nn0r0(nπ) can be written as

x = x(n, x0) := nπ +
√
nn0(x0 − π) for some x0 ∈ ∂B̄1,r0(π).

Let tn,1−α = min{t ∈ R | Pπ(Tn ≤ t) ≥ 1 − α} be the (1 − α)-quantile of
Tn = T (Xn), Xn ∼Mm(n, π) for n ∈ N. As Tn converges to χ2

m−1 in distribution,
the sequence (tn,1−α) of quantiles converges to the (1−α)-quantile χ2

m−1,1−α (Van
der Vaart, 1998, Lemma 21.2). Consequently, the maximum t = maxn tn,1−α

exists, and the set An = {x ∈ Ω̄m,n | T̄ (x) ≤ t} contains the acceptance region
AT

n,π(α) for every n.
As T̄ is convex (by Lemma 3.9 in Appendix 3.A.1.3) and thus has convex sub-
level sets, it suffices to show that n0 can be chosen such that min{T̄ (x) | x ∈
∂B̄n,

√
nn0r0(nπ)} converges to a value greater than t to ensure that AT

n,π(α) ⊂
An ⊂ B̄n,

√
n(

√
n0r0)(nπ) for sufficiently large n.

In the case of the chi-square statistic, T = T χ2 , observe that

T̄ (x(n, x0)) =
∑
j

(xj(n, x0)− nπj)
2

nπj

=
∑
j

n0(x0,j − πj)
2

πj

does not depend on n, and so the canonical extension T̄ of the chi-square statistic
at radius√nn0r0 is bounded from below by b(n0) = min{T̄ (x) | x ∈ ∂B̄n0,r0(n0π)}.
This bound becomes arbitrarily large as n0 is increased.
In case T = TG or T = T P, if n0 is fixed, T̄ (x(n, x0)) converges uniformly to
T̄ χ2

(x(n, x0)) for x0 ∈ ∂B̄1,r0(π) (by Lemma 3.10 in Appendix 3.A.1.3). Hence,
min{T̄ (x) | x ∈ ∂B̄n,

√
nn0r0(nπ)} converges to b(n0).
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3.4 Application
In this section, the new method is applied in a simulation study. On the one
hand, this study serves to show the improvements in runtime in comparison to
some other methods. On the other hand, this study sheds some light on the fit of
the asymptotic approximation to the probability mass test provided by Theorem
3.1 for a moderate sample size (n = 100). As a practical application in forecast
evaluation, the usage of exact multinomial tests to increase the information con-
veyed by the calibration simplex (Wilks, 2013), a graphical tool used to assess
ternary probability forecasts, is outlined.

3.4.1 Simulation study
For the simulation study, pairs (π(1), x(1)), . . . , (π(N), x(N)) of null hypothesis pa-
rameters and samples were generated as i.i.d. realizations of the random quantity
(P,X), where X | P ∼ Mm(n, P ) follows a multinomial distribution with ran-
dom parameter P ∼ U(∆m−1) drawn from a uniform distribution on the unit
simplex. For each pair, p-values were computed using various test statistics and
algorithms. Thereby, no specific null hypothesis had to be chosen and instead
a wide variety was considered. By drawing samples from the null hypotheses,
p-values follow a uniform distribution on [0, 1]. Various aspects of the tests and
algorithms in question can be examined using the resulting rich data set and
subsets thereof.
The following results were obtained using N = 106 such pairs with samples of size
n = 100 drawn from multinomial distributions with m = 5 categories. Exact p-
values were computed using the implementation of Algorithm 3.1 provided by the
accompanying R package. To illustrate the speedup achieved by the new method
in this study, the full enumeration method provided by the xmulti function of the
XNomial package (Engels, 2015) and the branch and bound approach (Bejerano
et al., 2004) were applied to the first 104 pairs. Essentially, the computational
cost of the full enumeration is constant, independent of the null hypothesis at
hand and the resulting p-value, whereas the cost of Algorithm 3.1 increases as
the p-value decreases and also varies with the null hypothesis similar to the cost
of the branch and bound approach.
The implementation of Algorithm 3.1 took an average of 0.59 ms to compute a
p-value, improving on the branch and bound approach (1.78 ms), even though the
latter only computes p-values for the log-likelihood ratio test, and full enumer-
ation (29.76 ms). Perhaps surprisingly, Monte Carlo estimation (using xmonte
from XNomial, which simulates 10000 samples by default) took almost twice as
long (53.49 ms) as the full enumeration. Figure 3.7 illustrates the connection be-
tween runtime and size of the resulting p-values for the new method. As there are
other factors influencing the runtime, and, since the implementation computes p-
values for multiple statistics simultaneously, samples were ordered by their mean
p-value p̄T = 1

3
(pT P + pTχ2 + pTG) and put in groups of 1000 samples with similar

mean p-value (in particular, the groups contain samples with p-values in between
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Figure 3.7 Runtime against mean p-value in groups of 1000 samples with similar
mean p-value. The black line shows the mean runtime per group, whereas the
gray lines show the 5th and 95th percentile. The dashed line shows the mean
runtime using full enumeration.

the empirical ( a
1000

)- and ( a+1
1000

)-quantile for a = 0, . . . , 999). The figure shows the
mean runtime in each group as well as the 5th and 95th percentile.
To illustrate the fit of the classical chi-square approximation, the probability of
a chi-square distribution with m − 1 degrees of freedom exceeding the values of
the test statistics for each pair were computed. Figure 3.8 shows relative errors
of the asymptotic approximations to the p-values for the three test statistics of
interest. Given a test statistic T and asymptotic approximation p̃T = p̃T (x, π)
to the exact p-value pT = pT (x, π), the relative error is the deviation from the
exact value in parts of said value, p̃T−pT

pT
. The asymptotic approximation to the

chi-square statistic is quite accurate in most cases but tends to underestimate
small p-values (< 0.1). The asymptotic approximation to the log-likelihood ratio
statistic tends to slightly underestimate p-values on average. While the exact
p-values are valid in that Pπ(pT (X, π) ≤ α) ≤ α for all α ∈ [0, 1], underesti-
mation may result in invalid p-values. Asymptotic approximations of Pearson’s
chi-square and the log-likelihood ratio have been studied well, and the classi-
cal chi-square approximations can be improved through moment corrections (see
Cressie and Read, 1989, and references therein). Furthermore, the errors typi-
cally increase if some category has a small expectation under the null hypothesis.
The approximation to the probability mass p-values provided by Theorem 3.1
produces somewhat larger errors, especially for large p-values, and it clearly over-
estimates the p-values. This overestimation is emphasized by the fact that within
the simulation data only a vanishingly small number of p-values was (slightly)
underestimated, all of which were larger than 0.9. Figure 3.9 illustrates how es-
timation errors influence the distribution of the resulting p-values. Whereas the
exact p-values appear to follow a uniform distribution, the asymptotic p-values
clearly deviate from uniformity. For the probability mass statistic, the asymptotic
test yields a conservative test, whereas the asymptotic log-likelihood ratio test
(and also the asymptotic chi-square test at small significance levels) is slightly
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Figure 3.8 Relative errors of asymptotic approximations to p-values for proba-
bility mass (Prob), chi-square (Chisq) and log-likelihood ratio (LLR) test statistic.
The plots were obtained using the same grouping scheme as in Figure 3.7.
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Figure 3.9 Histograms of asymptotic approximations to p-values for probability
mass (Prob), chi-square (Chisq) and log-likelihood ratio (LLR) test statistic in
black. The gray histograms show respective exact p-values. The rightmost bar
within the left histogram is not fully shown and extends further up to over 30000
counts.
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Figure 3.10 Relative differences between exact p-values of probability mass
(Prob), chi-square (Chisq) and log-likelihood ratio (LLR) test statistic against
the mean of compared p-values. The plots were obtained using the same group-
ing scheme as in Figure 3.7.

Table 3.1 Exact p-values pT and asymptotic p-values p̃T of five randomly selected
pairs (x, π) with 0.01 < pTG(x, π) < 0.1.

π pT P p̃T P pTχ2 p̃Tχ2 pTG p̃TG

(0.116, 0.225, 0.259, 0.002, 0.398) 0.0068 0.0092 0.0190 0.0073 0.0126 0.0172
(0.038, 0.079, 0.224, 0.387, 0.272) 0.1150 0.1268 0.1437 0.1469 0.0361 0.0307
(0.595, 0.129, 0.093, 0.064, 0.118) 0.0447 0.0495 0.0477 0.0482 0.0719 0.0665
(0.497, 0.217, 0.223, 0.057, 0.007) 0.0761 0.0994 0.0803 0.0741 0.0461 0.0498
(0.243, 0.022, 0.237, 0.373, 0.125) 0.0474 0.0566 0.0508 0.0507 0.0628 0.0568

anti-conservative.
Figure 3.10 shows relative differences between exact p-values obtained with the
three test statistics. Given test statistics T and T ′, the relative difference between
p-values pT = pT (x, π) and pT ′ = pT (x, π) is pT−pT ′

pT
, where pT =

pT+pT ′
2

. It can
be seen that the choice of test statistic can make quite a difference. A closer
look at the simulation data revealed that these differences tend to be smaller if
expectations for all categories are large under the null. To provide some numerical
insights, Table 3.1 lists exact and asymptotic p-values.

3.4.2 The calibration simplex
Turning to an application in forecast verification, consider a random variable
Y and a probabilistic forecast F for Y . For an introduction to probabilistic
forecasting in general, see Gneiting and Katzfuss (2014). A probabilistic forecast
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Figure 3.11 Calibration simplex with color-coded p-values from the log-
likelihood ratio statistic evaluating a total of 21,240 club soccer predic-
tions by FiveThirtyEight (https://projects.fivethirtyeight.com/soccer-
predictions/) for matches from September 2016 until April 2019. Outcomes
are encoded as 1 = “home win”, 2 = “draw” and 3 = “away win”. Only groups
containing at least ten forecasts are shown. Blue indicates a p-value pTG > 0.1,
orange 0.1 > pTG ≥ 0.01, red pTG < 0.01 and black pTG = 0.

is said to be calibrated if the conditional distribution of the quantity of interest
given a forecast coincides with the forecast distribution, that is,

Y | F ∼ F (3.4)

holds almost surely. Suppose now that Y maps to one of three different outcomes
only. Then, a probabilistic forecast is fully described by the probabilities it assigns
to each outcome. In this case, the calibration simplex (Wilks, 2013) can be used to
graphically identify discrepancies between predicted probabilities and conditional
outcome frequencies. Given i.i.d. realizations (f1, y1), . . . , (fN , yN) consisting of
forecast probabilities (vectors within the unit 2-simplex) and observed outcomes
encoded 1, 2, and 3, forecast-outcome pairs with similar forecast probabilities are
grouped according to a tessellation of the probability simplex. Thereafter, cali-
bration is assessed by comparing average forecast and actual outcome frequencies
within each group.
Figure 3.11 shows a calibration simplex, a graphical tool used to conduct this
comparison visually. The groups are determined by overlaying the probability
simplex with a hexagonal grid. The circular dots correspond to nonempty groups
of forecasts given by a hexagon. The dots’ areas are proportional to the number
of forecasts per group. A dot is shifted away from the center of the respective
hexagon by a scaled version of the difference in average forecast probabilities and
outcome frequencies. This graphical display provides valuable insight into the
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forecast distribution and the conditional distribution of the quantity of interest.
However, it is not apparent how big the differences may be merely by chance.
If the forecast is calibrated, then, by (3.4), the outcome frequencies ȳ within a
group of size n with mean forecast f̄ follow a generalized multinomial distribution
(the multinomial analog of the Poisson binomial distribution), that is, a convo-
lution of multinomial distributionsM(1, fi) with parameters f1, . . . , fn ∈ ∆m−1.
If these parameters only deviate little from their mean f̄ = 1

n

∑
i fi, then, pre-

sumably, the generalized multinomial distribution should not deviate much from
a multinomial distribution with parameter f̄ . Under this presumption, multino-
mial tests can be applied to quantify the discrepancy within each group through a
p-value. As the number of outcomes m = 3 is small, exact p-values are efficiently
computed by Algorithm 3.1 even for large sample sizes n.
In Figure 3.11, p-values obtained from the log-likelihood ratio statistic are con-
veyed through a coloring scheme. Note that a p-value is exactly zero only if
an outcome is forecast to have zero probability and said outcome still realizes.4
Figure 3.11 was generated using the R package CalSim (Resin, 2021a).
The calibration simplex can be seen as a generalization of the popular reliability
diagram. In light of this analogy, the use of multinomial tests to assess the sta-
tistical significance of differences in predicted probabilities and observed outcome
frequencies serves the same purpose as consistency bars in reliability diagrams
introduced by Bröcker and Smith (2007). Consistency bars are constructed us-
ing Monte Carlo simulation. To justify the above presumption, the multinomial
p-values used to construct Figure 3.11 were compared to p-values computed from
10000 Monte Carlo samples obtained from the generalized multinomial distri-
butions. To this end, the standard deviation of the Monte Carlo p-values was
estimated using the estimated p-value in place of the true generalized multino-
mial p-value. Most of the multinomial p-values were quite close to the Monte
Carlo estimates with an absolute difference less than two standard deviations,
whereas two of them deviated on the order of 6 to 8 standard deviations from
the Monte Carlo estimates, which nonetheless resulted in a relatively small ab-
solute error. In particular, using the Monte Carlo estimated p-values did not
change Figure 3.11. As the computation of Monte Carlo estimates from the gen-
eralized multinomial distributions is computationally expensive, the multinomial
p-values serve as a fast and adequate alternative. Further improving uncertainty
quantification within the calibration simplex is a subject for future work.

3.5 Concluding Remarks
In this chapter, a new method for computing exact p-values was investigated.
It has been illustrated that the new method works well when the number m of
categories is small, which results in a concrete speedup in practical applications,

4The p-values of exactly zero observed in Figure 3.11 appear to be due to mislabeled data
as some matches that resulted in a penalty shoot-out are encoded as draws in the data by
FiveThirtyEight.
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as illustrated through a simulation study. As a further application not discussed
in this chapter, the new method appears to be well suited to determine level set
confidence regions discussed by Chafai and Concordet (2009) and Malloy et al.
(2021). When m is too large for exact methods to be feasible, other methods may
be used to approximate exact p-values as hinted at in Appendix 3.A.2. Such an
approach may be added to the ExactMultinom package in a future version.
Regarding the choice of test statistic, the “exact multinomial test” was treated as
a test statistic, and the asymptotic distribution of the resulting probability mass
statistic was derived. Like most prominent test statistics, the probability mass
statistic yields unbiased tests for the uniform null hypothesis. It was shown that
a randomized test based on the probability mass statistic can be characterized in
that it minimizes the respective (weighted) acceptance region.
Although asymptotic approximations work well in many use cases, there are cases,
where these approximations are not adequate, for example, when dealing with
small sample sizes or small expectations. On the other hand, there is nothing to
be said against the use of exact tests whenever feasible, and it is recommended
in the applied literature (McDonald, 2009, p. 83) for samples of moderate size up
to 1000. As the available implementations of exact multinomial tests in R use full
enumeration, the new implementation increases the scope of exact multinomial
tests for practitioners.
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3.A Appendix
3.A.1 Mathematical details
3.A.1.1 Difference Between Log-Likelihood Ratio and Probability Mass

Statistic

The following lemma completes the proof of Theorem 3.1.

Lemma 3.8. Let π ∈ ∆m−1 with πj > 0 for all j = 1, . . . ,m and x ∈ Ωm,n. Then

T P(x, π)− TG(x, π) =
m∑
j=1

(log(xj) + 2r(xj)− log(nπj)− 2r(nπj))

holds for a function r on the positive real numbers for which 0 < r(x) < 1
12x

for x > 0. In case xj = 0 for some j = 1, . . . ,m, the above equality holds if
log(0) + 2r(0) is understood to be 0.

Proof. The logarithm of the Gamma function can be written as

log Γ(x+ 1) = log xΓ(x) = x log(x)− x+
1

2
log(2π̃x) + r(x)

for a function r on the positive real numbers for which 0 < r(x) < 1
12x

holds for
all x > 0 (see Abramowitz and Stegun, 1972, 6.1.41 and 6.1.42; here π̃ denotes
Archimedes’ constant). This formula yields

log f̄n, y
n
(y) = log Γ(n+ 1) +

∑
j

(
yj log

yj
n
− log Γ(yj + 1)

)
= log Γ(n+ 1) +

∑
j

(
yj log

yj
n
− yj log(yj) + yj −

1

2
log(2π̃yj)− r(yj)

)
= log Γ(n+ 1) + n(1− log n)−

∑
j

(
1

2
log(2π̃yj) + r(yj)

)
for y ∈ Rm

>0 such that
∑

j yj = n, and hence

T P(x, π)− TG(x, π) = 2(log f̄n,π(nπ)− log fn, x
n
(x))

= 2
∑
j

(
1

2
log

xj

nπj

+ r(xj)− r(nπj)

)
.

3.A.1.2 Proof of Proposition 3.4(b)

Proof of Proposition 3.4(b). Throughout the proof, let x, y ∈ Ωm,n be such that
x 6= y, and define the index sets

S+ := {i | xi > yi} and S− := {j | xj < yj}.
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Let T = T λ and assume w.l.o.g. T (x) ≥ T (y). First, consider the case λ > 0.
Note that

T (x)− T (y) =
2

λ(λ+ 1)

∑
i∈S+

xλ+1
i − yλ+1

i

(nπi)λ
−
∑
j∈S−

yλ+1
j − xλ+1

j

(nπj)λ

 ≥ 0 (3.5)

and

T (x− ei∗ + ej∗) = T (x)− 2

λ(λ+ 1)

(
xλ+1
i∗ − (xi∗ − 1)λ+1

(nπi∗)λ

)
+

2

λ(λ+ 1)

(
(xj∗ + 1)λ+1 − xλ+1

j∗

(nπj∗)λ

) (3.6)

for i∗ ∈ S+, j∗ ∈ S−. If

i∗ = argmax
i∈S+

xλ+1
i − (xi − 1)λ+1

(nπi)λ
, j∗ = argmin

j∈S−

(xj + 1)λ+1 − xλ+1
j

(nπj)λ

and d = d(x, y), then

xλ+1
i∗ − (xi∗ − 1)λ+1

(nπi∗)λ
=

1

d

∑
i∈S+

xi−yi∑
k=1

xλ+1
i∗ − (xi∗ − 1)λ+1

(nπi∗)λ

≥ 1

d

∑
i∈S+

xi−yi∑
k=1

xλ+1
i − (xi − 1)λ+1

(nπi)λ

≥ 1

d

∑
i∈S+

xi−yi∑
k=1

(xi + 1− k)λ+1 − (xi − k)λ+1

(nπi)λ

=
1

d

∑
i∈S+

xλ+1
i − yλ+1

i

(nπi)λ

≥ 1

d

∑
j∈S−

yλ+1
j − xλ+1

j

(nπj)λ
(3.7)

=
1

d

∑
j∈S−

yj−xj∑
k=1

(xj + k)λ+1 − (xj − 1 + k)λ+1

(nπj)λ

≥ 1

d

∑
j∈S−

yj−xj∑
k=1

(xj + 1)λ+1 − xλ+1
j

(nπj)λ

≥ 1

d

∑
j∈S−

yj−xj∑
k=1

(xj∗ + 1)λ+1 − xλ+1
j∗

(nπj∗)λ

=
(xj∗ + 1)λ+1 − xλ+1

j∗

(nπj∗)λ
,
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where the third inequality is due to inequality (3.5). Hence, T (x) ≥ T (x−ei∗+ej∗)
by equation (3.6).
For λ = 0, simply taking the limit (as λ→ 0) in the above equations with

i∗ = argmax
i∈S+

2xi log

(
xi

nπi

)
− 2(xi − 1) log

(
xi − 1

nπi

)
,

j∗ = argmin
j∈S−

2(xj + 1) log

(
xj + 1

nπj

)
− 2xj log

(
xj

nπj

)
yields the desired inequality since

2xi∗ log

(
xi∗

nπi∗

)
− 2(xi∗ − 1) log

(
xi∗ − 1

nπi∗

)
= lim

λ→0

2

λ(λ+ 1)
xi∗

((
xi∗

nπi∗

)λ

− 1

)
− lim

λ→0

2

λ(λ+ 1)
(xi∗ − 1)

((
xi∗ − 1

nπi∗

)λ

− 1

)

= lim
λ→0

2

λ(λ+ 1)

(
xλ+1
i∗ − (xi∗ − 1)λ+1

(nπi∗)λ
− 1

)
≥ lim

λ→0

2

λ(λ+ 1)

(
(xj∗ + 1)λ+1 − xλ+1

j∗

(nπj∗)λ
− 1

)

= 2(xj∗ + 1) log

(
xj∗ + 1

nπj∗

)
− 2xj∗ log

(
xj∗

nπj∗

)
,

where the inequality is due to inequality (3.7).

3.A.1.3 Details for the Proof of Proposition 3.7

The following two lemmas provide further details not contained in the proof of
Proposition 3.7 itself.

Lemma 3.9. Using notation as in the proof of Proposition 3.7, x 7→ T̄ (x) is
convex.

Proof. The function x 7→ T̄ χ2
(x) =

∑
j

x2
j

nπj
− n is clearly convex as it is a sum

of convex functions. The function x 7→ T̄G(x) = 2
∑

j xj log(xj) − xj log(nπj)
is convex since it is easy to show that x 7→ x log(x) is convex (using either the
inequality of the arithmetic and geometric means or the second derivative). The
function x 7→ T̄ P(x) = 2(log(f̄n,π(nπ)) − log(Γ(n + 1)) +

∑
j log(Γ(xj + 1)) −∑

j xj log(pj)) is convex as the Gamma function is logarithmically convex by the
Bohr-Mollerup theorem (Beals and Wong, 2010, Theorem 2.4.2).

Lemma 3.10. Using notation as in the proof of Proposition 3.7, the function
∂B̄1,r0(π)→ R, x0 7→ T̄ (x(n, x0)) converges uniformly to T̄ χ2

(x(n, x0)) as n→∞
if T = TG or T = T P.
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Proof. Let x0 ∈ ∂B̄1,r0(π), and define c = c(x0) :=
√
n0(x0 − π). Hence |cj| ≤√

n0r0 <
√
n0 for all j = 1, . . . ,m.

In the case T = TG, the Taylor expansion log(1 + x) =
∑∞

k=1(−1)k+1 xk

k
yields

T̄ (x(n, x0)) = 2
m∑
j=1

x(n, x0)j log
x(n, x0)j

nπj

= 2
∑
j

(nπj +
√
ncj) log

nπj +
√
ncj

nπj

= 2
∑
j

(nπj +
√
ncj)

∞∑
k=1

(−1)k+1

k

(
cj√
nπj

)k

= 2
∑
j

(
√
ncj +

c2j
2πj

−
c3j

2
√
nπ2

j

+
nπj +

√
ncj√

n
3

∞∑
k=3

(−1)k+1ckj

k
√
n
k−3

πk
j

)
.

As
∑

j cj = 0 and 2
∑

j

c2j
2πj

= T χ2
(x(n, x0)), the inequalities

|T̄ χ2

(x(n, x0))− T̄ (x(n, x0))|

<
∑
j

(
|cj|3

2
√
nπ2

j

+
nπj +

√
n|cj|√

n
3

∞∑
k=3

|cj|k

k
√
n
k−3

πk
j

)

<
∑
j

( √
n0

3

2
√
nπ2

j

+
nπj +

√
n
√
n0

√
n
3

∞∑
k=3

√
n0

k

k
√
n
k−3

πk
j

)

<
1√
n

∑
j

(√
n0

3

2π2
j

+ (πj +
√
n0)C(n)

)
hold, where the series converges to some C(n) for sufficiently large n by the ratio
test and C(n) decreases as n increases. The inequalities yield an upper bound
that is independent of the choice of x0, thereby ensuring uniform convergence.
In the case T = T P, Lemma 3.8 yields the inequality

|T̄G(x(n, x0))− T̄ (x(n, x0))|

=

∣∣∣∣∣
m∑
j=1

(
log

x(n, x0)j
nπj

+ 2r(x(n, x0)j)− 2r(nπj)

)∣∣∣∣∣
=

∣∣∣∣∣∑
j

(
log

nπj +
√
ncj

nπj

+ 2r(nπj +
√
ncj)− 2r(nπj)

)∣∣∣∣∣
<
∑
j

(∣∣∣∣log(1− √n0r0√
nπj

)∣∣∣∣+ 2

12(nπj −
√
nn0r0)

)
,

which results in an upper bound that converges to zero independent of the choice
of x0. Hence

T̄ χ2 − T̄ = (T̄ χ2 − T̄G) + (T̄G − T̄ )
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Table 3.2 Runtime and p-values obtained by different methods for the five pairs
from Table 3.1 in Section 3.4.1. Results from the full enumeration implemented
by xmulti were included to show the agreement between the p-values produced
by the exact methods. Branch & Bound refers to the implementation by Bejerano
(2006) and Dynamic refers to the dynamic programming approach by Rahmann
(2003) as implemented by myself with lattice size q. Times are in milliseconds.

Algorithm 3.1 Branch & Bound xmulti
Dynamic

(q = 1000)
Dynamic

(q = 10000)
pTG time pTG time pTG time pTG time pTG time

0.0126 1.6 0.0126 2.7 0.0126 29.8 0.0141 22.2 0.0135 240.2
0.0361 3.5 0.0361 6.7 0.0361 29.1 0.0339 22.0 0.0359 237.2
0.0719 1.6 0.0719 5.8 0.0719 28.9 0.0675 21.2 0.0721 224.4
0.0461 0.9 0.0461 2.3 0.0461 29.3 0.0758 22.2 0.0460 241.4
0.0628 1.7 0.0628 5.0 0.0628 29.2 0.0967 21.8 0.0625 235.5

converges uniformly to zero as a function on ∂B̄1,r0(π) in the sense of the lemma.

3.A.2 Comparison with other methods
As mentioned in Sections 3.1 and 3.3.3, approaches for computing exact multi-
nomial p-values other than the full enumeration method exist. However, none of
these methods have considered the probability mass statistic but have focused
on the log-likelihood ratio statistic (Rahmann, 2003; Keich and Nagarajan, 2006)
and other statistics from the family of power divergence statistics (Baglivo et al.,
1992; Hirji, 1997; Bejerano et al., 2004). Adaptions of these methods to the
probability mass statistic are beyond the scope of the present work.
Except for the branch and bound approach by Bejerano et al. (2004), these meth-
ods are not “strictly exact” but compute the distribution of a discretized test
statistic under the null hypothesis (Keich and Nagarajan, 2006), thereby reduc-
ing the complexity of the resulting algorithms to polynomial time regardless of
the number of categories m. While this approach seems to result in good ap-
proximations of very small p-values, which are of interest in some bioinformatics
applications, the approximations are not exact and may differ quite strongly
from the exact p-values of moderate size depending on the granularity of the
discretization (see Table 3.2). This effect seems to be amplified by the fact that
test statistic values span quite a large range but most of the probability mass
is concentrated in a small part of this range. Of course, using finer discretiza-
tions improves these approximations, however, increasing the lattice size (i.e.,
the number of discretized values of the test statistic) increases the runtime (and
memory usage) in practice. An instructive mathematical formulation of the idea
as a dynamic programming problem is given by Rahmann (2003), which I im-
plemented to obtain the results in Table 3.2. This approach has a complexity of
O(mqn2), where the lattice size q ∈ N needs to grow linearly with n to preserve
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the accuracy of the approximation. The approach by Keich and Nagarajan (2006)
reduces the complexity to O(mqn log(n)) (for the log-likelihood ratio statistic)
by using a discrete Fourier transform to obtain the distribution of the discretized
test statistic. As these approaches allow to approximate exact p-values when m
is too large for exact algorithms to be feasible, such an approach may be added
to the ExactMultinom package in a future version.
The branch and bound approach proposed by Bejerano et al. (2004) and imple-
mented by Bejerano (2006) improves on the full enumeration method, while also
suffering from exponential runtime in m. The implementation by Bejerano (2006)
computes exact p-values for the log-likelihood ratio statistic and can be adapted
to any statistic in the family of power divergence statistics. It provides optional
speedups (one of which might be used to speed up the implementation of Algo-
rithm 3.1 as well), which however may result in precision loss and were therefore
not used for the computations in this study. Similar to the method proposed in
this chapter, the runtime of the branch and bound approach depends on the null
hypothesis parameter π and increases as the p-value decreases (Bejerano et al.,
2004, Figure 5). The implementation of Algorithm 3.1 discussed in Section 3.3.3
outperformed the implementation by Bejerano (2006) in the experiments of this
study (see Figure 3.6, Section 3.4.1 and Table 3.2), even though the former com-
putes p-values for multiple test statistics simultaneously. Figure 3.6 discussed in
Section 3.3.4 suggests that the branch and bound approach may have a complex-
ity of O(nm

2 ) (in agreement with Figure 4 in Bejerano et al. (2004)). Adapting the
branch and bound approach to the probability mass statistic is left as a subject
for future research.
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4 Conditional Calibration,
Reliability Diagrams, and
Coefficient of Determination

This chapter is an extended version of Gneiting and Resin (2021) including con-
tent from Gneiting et al. (2023) and the discussion of a calibration test typically
used to validate expert opinions.
Model diagnostics and forecast evaluation are two sides of the same coin. A com-
mon principle is that fitted or predicted distributions ought to be calibrated or
reliable, ideally in the sense of auto-calibration, where the outcome is a random
draw from the posited distribution. For binary responses, auto-calibration is the
universal concept of reliability. For real-valued outcomes, a general theory of
calibration has been elusive, despite a recent surge of interest in distributional
regression and machine learning. We develop a framework rooted in probability
theory, which gives rise to hierarchies of calibration, and applies to both predictive
distributions and stand-alone point forecasts. In a nutshell, a prediction — distri-
butional or single-valued — is conditionally T-calibrated if it can be taken at face
value in terms of the functional T. Whenever T is defined via an identification
function — as in the cases of threshold (non) exceedance probabilities, quantiles,
expectiles, and moments — auto-calibration implies T-calibration. We introduce
population versions of T-reliability diagrams and revisit a score decomposition
into measures of miscalibration (MCB), discrimination (DSC), and uncertainty
(UNC). In empirical settings, stable and efficient estimators of T-reliability dia-
grams and score components arise via nonparametric isotonic regression and the
pool-adjacent-violators algorithm. For in-sample model diagnostics, we propose
a universal coefficient of determination,

R∗ =
DSC−MCB

UNC
,

that nests and reinterprets the classical R2 in least squares (mean) regression and
its natural analog R1 in quantile regression, yet applies to T-regression in general,
with MCB ≥ 0, DSC ≥ 0, and R∗ ∈ [0, 1] under modest conditions.

4.1 Introduction
Predictive distributions ought to be calibrated or reliable (Dawid, 1984; Gnei-
ting and Katzfuss, 2014). More generally, statistical models ought to provide
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(a) Under Assumption 4.15:

AC ⇒ STC
⇓ ⇓

CC ⇔ QC ⇔ TC
⇓ ⇓
PC MC

(b) Under Assumption 4.6:

AC
⇐ ⇓ ⇒

CC ↪→ TC ←↩ QC
⇓ ↪→ ⇓ ←↩

PC MC

Figure 4.1 Preview of key findings in Section 4.2.3: Hierarchies of calibration
(a) for continuous, strictly increasing cumulative distribution functions (CDFs)
with common support and (b) under minimal conditions, with auto-calibration
(AC) being the strongest notion. Conditional exceedance probability calibration
(CC) is a conditional version of probabilistic calibration (PC), whereas threshold
calibration (TC) is a conditional version of marginal calibration (MC). Quantile
calibration (QC) differs from CC and TC in subtle ways. Strong threshold cali-
bration (STC) is a stronger notion of threshold calibration introduced by Sahoo
et al. (2021) for continuous CDFs. Hook arrows show conjectured implications.

plausible probabilistic explanations of observations, be it in-sample or out-of-
sample, ideally in the sense of auto-calibration, meaning that the outcomes are
indistinguishable from random draws from the posited distributions. For binary
outcomes, auto-calibration is the universal standard of reliability. In the general
case of linearly ordered, real-valued outcomes, weaker, typically unconditional
facets of calibration have been studied, with probabilistic calibration, which cor-
responds to the uniformity of the probability integral transform (PIT; Dawid,
1984; Diebold et al., 1998), being the most popular notion. Recently, conditional
notions have been proposed (Mason et al., 2007; Bentzien and Friederichs, 2014;
Strähl and Ziegel, 2017), and there has been a surge of attention to calibration
in the machine learning community, where the full conditional distribution of a
response, given a feature vector, is of increasing interest, as exemplified by the
work of Guo et al. (2017), Kuleshov et al. (2018), Song et al. (2019), Gupta et al.
(2020), Zhao et al. (2020), Sahoo et al. (2021) and Roelofs et al. (2022). While
in the literature on forecast evaluation predictive performance is judged out-of-
sample, calibration is relevant in regression diagnostics as well, where in-sample
goodness-of-fit is assessed via test statistics or criteria of R2-type. In many ways,
the complementary perspectives of model diagnostics and forecast evaluation are
two sides of the same coin.
In this chapter, we strive to develop a theory of calibration for real-valued out-
comes that complements the aforementioned strands of literature. Starting from
measure theoretic and probabilistic foundations, we develop practical tools for
visualizing, diagnosing and testing calibration, for both in-sample and out-of-
sample settings, and applying both to full distributions and functionals thereof.
Section 4.2 develops an overarching, rigorous theoretical framework in a gen-
eral population setting, where we establish hierarchical relations between notions
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of unconditional and conditional calibration, with Figure 4.1 summarizing key
results. We reduce a posited distribution to a typically single-valued statistical
functional, T, and define conditional calibration in terms of said functional. While
in general auto-calibration fails to imply calibration in terms of a functional, we
prove this implication for functionals defined via an identification function, such
as event probabilities, means, quantiles, and generalized quantiles. We plot re-
calibrated values of the functional against posited values to obtain T-reliability
diagrams and revisit extant score decompositions to define nonnegative measures
of miscalibration (MCB), discrimination (DSC) and uncertainty (UNC), for which
the mean score satisfies S̄ = MCB − DSC + UNC. These considerations con-
tinue to apply when T-regression is studied as an end in itself, such as in mean
(least squares) and quantile regression. In this setting, Theorem 4.26 establishes
a general link between unconditional calibration and canonical score optimiza-
tion, which nests classical results in least squares regression and the partitioning
inequalities of quantile regression (Koenker and Bassett, 1978, Theorem 3.4).
In Section 4.3, we turn to empirical settings and statistical inference. We adopt
and generalize the approach of Dimitriadis et al. (2021) that uses isotonic regres-
sion and the pool-adjacent-violators (PAV) algorithm (Ayer et al., 1955) to obtain
consistent, optimally binned, reproducible, and PAV based (CORP) estimates of
T-reliability diagrams and score components, along with uncertainty quantifica-
tion via resampling. As opposed to extant estimators, the CORP approach yields
non-decreasing reliability diagrams and guarantees the nonnegativity of the es-
timated MCB and DSC components. The regularizing constraint of isotonicity
avoids artifacts and overfitting. For in-sample model diagnostics, we introduce
a generalized coefficient of determination R∗ that links to skill scores, and nests
both the classical variance explained or R2 in least squares regression (Kvålseth,
1985), and its natural analogue R1 in quantile regression (Koenker and Machado,
1999). Subject to modest conditions R∗ ∈ [0, 1], with values of 0 and 1 indicating
uninformative and immaculate fits, respectively.
In forecast evaluation, reliability diagrams and score components serve to diag-
nose and quantify performance on test samples. The most prominent case arises
when T is the mean functional and performance is assessed by the mean squared
error (MSE). As a preview of the diagnostic tools developed in this chapter, we
assess point forecasts by Tredennick et al. (2021) of (log-transformed) butterfly
population size from a ridge regression and a null model. The CORP mean re-
liability diagrams and MSE decompositions in Figure 4.2 show that, while both
models are reliable, ridge regression enjoys considerably higher discrimination
ability.
Section 4.4 briefly discusses the important case of quantile forecasts. The simul-
taneous prediction of multiple quantiles poses an appealing alternative to fully
specified predictive distributions and single-valued point forecasts. Beyond relia-
bility diagrams and score decompositions, coverage plots visualize deviations from
unconditional quantile calibration, while p-values of simple multinomial tests may
serve as a summary measure of simultaneous unconditional quantile calibration.
The classical food expenditure data by Engel (1857) is used to contrast in-sample
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Figure 4.2 CORP mean reliability diagrams for point forecasts of (log-
transformed) butterfly population size from the null model (left) and ridge regres-
sion (right) of Tredennick et al. (2021), along with 90% consistency bands and
miscalibration (MCB), discrimination (DSC) and uncertainty (UNC) components
of the mean squared error (MSE).

and out-of-sample evaluation of fitted quantiles at multiple levels.
The chapter closes in Section 4.5, where we discuss our findings and provide a
roadmap for follow-up research. While Dimitriadis et al. (2021) introduced the
CORP approach in the nested case of probability forecasts for binary outcomes,
the setting of real-valued outcomes treated in this chapter is far more complex as
it necessitates the consideration of statistical functionals in general. Throughout,
we link the traditional case of regression diagnostics and (stand-alone) point fore-
cast evaluation, where functionals such as conditional means, moments, quantiles,
or expectiles are modeled and predicted, to model diagnostics and forecast eval-
uation in the fully distributional setting (Gneiting and Katzfuss, 2014; Hothorn
et al., 2014). The Appendix 4.A includes material of more specialized or predom-
inantly technical character.

4.2 Notions of Calibration, Reliability Diagrams,
and Score Decompositions

Generally, we use the symbol L to denote a generic conditional or unconditional
law or distribution, and we identify distributions with their cumulative distribu-
tion functions (CDFs). We write N (m, c2) to denote a normal distribution with
mean m and variance c2, and we let ϕ and Φ denote the density and the CDF,
respectively, of a standard normal variable.

4.2.1 Prediction spaces and prequential principle
We consider the joint law of a posited distribution and the respective outcome in
the technical setting of Gneiting and Ranjan (2013). Specifically, let (Ω,A,P) be
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a prediction space, i.e., a probability space where the elementary elements ω ∈ Ω
correspond to realizations of the random triple

(F, Y, U),

where Y is the real-valued outcome, F is a posited distribution for Y in the form
of a CDF, and U is uniformly distributed on the unit interval. Statements in-
volving conditional or unconditional distributions, expectations, or probabilities,
generally refer to the probability measure P, which specifies the joint distribution
of the forecast F and the outcome Y . The uniform random variable U allows for
randomization. Throughout, we assume that U is independent of the σ-algebra
generated by the random variable Y and the random function F in the technical
sense detailed prior to Definition 2.6 in Strähl and Ziegel (2017).
Let A0 ⊆ A denote the forecaster’s information basis, i.e., a sub-σ-algebra such
that F is measurable with respect to A0. Then F is ideal relative to A0 (Gneiting
and Ranjan, 2013) if

F (y) = P (Y ≤ y | A0) almost surely, for all y ∈ R.

If F is ideal relative to some sub σ-algebra A0, then it is auto-calibrated (Tsy-
plakov, 2013) in the sense that

F (y) = P (Y ≤ y | F ) almost surely, for all y ∈ R,

which is equivalent to being ideal relative to the information basis σ(F ) ⊆ A0. Ex-
tensions to prediction spaces with tuples (Y, F1, . . . , Fk, U) that allow for multiple
CDF-valued forecasts F1, . . . , Fk with associated information bases A1, . . . ,Ak ⊂
A are straightforward.

Example 4.1 (Gneiting and Ranjan (2013); Pohle (2020)). Conditionally on a
standard normal variate µ, let the outcome Y be normal with mean µ and variance
1. Then the perfect forecast F1 = N (µ, 1) is ideal relative to the information basis
A1 = σ(µ) generated by µ. The unconditional forecast F2 = N (0, 2) agrees with
the marginal distribution of the outcome Y and is ideal relative to the trivial
σ-algebra A2 = {∅,Ω}.

More elaborate notions of prediction spaces are feasible. In particular, one might
include a covariate or feature vector Z and consider random tuples of the form
(Z, F, Y, U). Indeed, the transdisciplinary scientific literature has considered reli-
ability relative to covariate information, under labels such as strong (Van Calster
et al., 2016) or individual (Chung et al., 2021; Zhao et al., 2020) calibration. We
refrain from doing so as our simple setting adheres to the prequential principle
posited by Dawid (1984), according to which predictive performance needs to
be evaluated on the basis of the tuple (F, Y ) only, without consideration of the
forecast-generating mechanism. The aforementioned extensions become critical
in studies of cross-calibration (Strähl and Ziegel, 2017), stratification (Ehm and
Ovcharov, 2017; Ferro et al., 2020; Allen, 2021), sensitivity (Fissler and Pesenti,
2022), and fairness (Pleiss et al., 2017; Mitchell et al., 2021).

47



4.2.2 Traditional notions of unconditional calibration
Let us recall the classical notions of calibration of predictive distributions for real-
valued outcomes. In order to do so, we define the probability integral transform
(PIT)

ZF = F (Y−) + U (F (Y )− F (Y−)) (4.1)

of the CDF-valued random quantity F , where F (y−) = limx↑y F (x) denotes the
left-hand limit of F at y ∈ R, and the random variable U is standard uniform and
independent of F and Y . The PIT of a continuous CDF F is simply ZF = F (Y ).
The predictive distribution F is probabilistically calibrated or PIT calibrated if
ZF is uniformly distributed on the unit interval. The use of the probabilistic
calibration criterion was suggested by Dawid (1984) and popularized by Diebold
et al. (1998), who proposed the use of PIT histograms as a diagnostic tool. Im-
portantly, in continuous settings probabilistic calibration implies that prediction
intervals bracketed by quantiles capture the outcomes at the respective nominal
level.
Furthermore, the predictive distribution F is marginally calibrated (Gneiting
et al., 2007) if

E[F (y)] = P (Y ≤ y) for all y ∈ R.

Thus, for a marginally calibrated predictive distribution, the frequency of (not)
exceeding a threshold value matches the posited unconditional probability.

Example 4.2. In the setting of Example 4.1, let η attain the values ±η0 with
equal probability, independently of µ and Y , where η0 > 0. Then the unfocused
forecast with CDF

F (y) =
1

2
(Φ(y − µ) + Φ(y − µ− η)) (4.2)

is probabilistically calibrated but fails to be marginally calibrated (Gneiting et al.,
2007). Similarly, let δ take the values ±δ0 with equal probability, independently
of µ and Y , where δ0 ∈ (0, 1). Then the lopsided forecast F with density

f(y) = (1− δ)ϕ(y − µ)1(y < µ) + (1 + δ)ϕ(y − µ)1(y > µ) (4.3)

is marginally calibrated but fails to be probabilistically calibrated. For details
see Appendix 4.A.1.2.

It is well known that an ideal forecast is both probabilistically calibrated and
marginally calibrated (Gneiting and Ranjan, 2013, Theorem 2.8; Song et al.,
2019, Theorem 1). Reformulated in terms of auto-calibration the following holds.

Theorem 4.3. Auto-calibration implies marginal and probabilistic calibration.

Auto-calibration thus is a stronger requirement than either marginal or prob-
abilistic calibration, and the latter are logically independent. However, in the
special case of a binary outcome, probabilistic calibration and auto-calibration
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are equivalent (Gneiting and Ranjan, 2013, Theorem 2.11), and auto-calibration
serves as a universal notion of calibration. In the case of three or more dis-
tinct outcomes, Gneiting and Ranjan (2013) conjectured that auto-calibration is
stronger than simultaneous marginal and probabilistic calibration. We resolve
and prove their conjecture within the following example.

Example 4.4. We begin by considering continuous CDFs and then discuss a
discrete example with three distinct outcomes only.

(a) Suppose that µ is normal with mean 0 and variance c2. Conditionally
on µ, let the piecewise uniform predictive distribution F be a mixture
of uniform measures on [µ, µ + 1], [µ + 1, µ + 2], and [µ + 2, µ + 3] with
weights p1, p2 and p3, respectively, and let the outcome Y be drawn from a
mixture with weights q1, q2 and q3 on these intervals. Finally, let the tuple
(p1, p2, p3; q1, q2, q3) attain each of the values(

1
2
, 1
4
, 1
4
; 5
10
, 1
10
, 4
10

)
,
(
1
4
, 1
2
, 1
4
; 1
10
, 8
10
, 1
10

)
, and

(
1
4
, 1
4
, 1
2
; 4
10
, 1
10
, 5
10

)
,

with P-probability 1
3
. Evidently, F fails to be auto-calibrated. However, F

is marginally calibrated as, conditionally on µ, it assigns the same mass 1
3

to each of the intervals, in agreement with the conditional distribution of
Y . As for the PIT ZF , conditionally on µ its CDF is piecewise linear on the
partition induced by 0, 1

4
, 1

2
, 3

4
, and 1. Thus, in order to establish proba-

bilistic calibration it suffices to verify that P(ZF ≤ x) = x for x ∈ {1
4
, 1
2
, 3
4
},

as confirmed by elementary calculations. Integration over µ completes the
argument.

(b) For a full resolution of the aforementioned conjecture by Gneiting and
Ranjan (2013), we fix µ = 0 and replace the intervals by fixed numbers
y1 < y2 < y3. Thus, F assigns mass pj to yj, whereas the event Y = yj
realizes with probability qj for j = 1, 2, and 3. The forecast remains prob-
abilistically and marginally calibrated, and fails to be auto-calibrated.

4.2.3 Conditional calibration
While checks for probabilistic calibration have become a cornerstone of predic-
tive distribution evaluation (Dawid, 1984; Diebold et al., 1998; Gneiting et al.,
2007), both marginal and probabilistic calibration concern unconditional facets of
predictive performance, which is increasingly being considered insufficient (e.g.,
Levi et al., 2022). Stronger conditional notions of calibration, which condition
on facets of the predictive distribution, have emerged in various strands of the
scientific literature. For example, Mason et al. (2007) used conditional (non)
exceedance probabilities (CEP) to assess the calibration of ensemble weather
forecasts. These were used by Held et al. (2010) and Strähl and Ziegel (2017) to
derive calibration tests, which operate under the hypothesis that the forecast F
is CEP calibrated in the sense that

P
(
ZF ≤ α | q−α (F )

)
= α almost surely, for all α ∈ (0, 1), (4.4)
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where q−α (F ) = inf{x ∈ R : F (x) ≥ α} denotes the (lower) α-quantile of F . Sim-
ilarly, Henzi et al. (2021) introduced the notion of a threshold calibrated forecast
F , which stipulates that

P (Y ≤ t | F (t)) = F (t) almost surely, for all t ∈ R. (4.5)

Essentially, CEP calibration is a conditional version of probabilistic calibration,
and threshold calibration is conditional marginal calibration.

Theorem 4.5. CEP calibration implies probabilistic calibration, and threshold
calibration implies marginal calibration.

Proof. Immediate by taking unconditional expectations, as noted by Henzi et al.
(2021).

Variants of these concepts can be found scattered in the literature. Notably,
Sahoo et al. (2021) introduce a notion of calibration for continuous predictive
distributions, which requires that

P(ZF ≤ α | F (t)) = α almost surely, for all α ∈ (0, 1), t ∈ R. (4.6)

As in Figure 4.1, we refer to this property as strong threshold calibration. The
notion is weaker than auto-calibration, but it implies both CEP calibration and
threshold calibration, subject to conditions that we discuss below.
We proceed to the general notion of conditional T-calibration in terms of a statis-
tical functional T as introduced by Arnold (2020) and Ferro et al. (2020). Other
authors (Pohle, 2020; Krüger and Ziegel, 2021) refer to this notion or special
cases thereof as auto-calibration with respect to T. A statistical functional on
some class F of probability measures is a measurable function T: F → T into
a (typically, finite-dimensional) space T with Borel-σ-algebra B(T ). Technically,
we work in the prediction space setting under a natural measurability condition
that is not restrictive (Fissler and Holzmann, 2022).

Assumption 4.6. The class F and the functional T are such that F ∈ F , the
mapping T(F ) : (Ω,A)→ (T ,B(T )) is measurable, and L (Y | T(F )) ∈ F almost
surely.

Definition 4.7. Under Assumption 4.6, the predictive distribution F is condi-
tionally T-calibrated, or simply T-calibrated, if

T (L(Y | T(F ))) = T(F ) almost surely.

Essentially, under a T-calibrated predictive distribution F , we can take T(F ) at
face value. Perhaps surprisingly, an auto-calibrated forecast is not necessarily T-
calibrated, as noted by Arnold (2020, Section 3.2). For a simple counterexample,
consider the perfect forecast from Example 4.1, which fails to be T-calibrated
when T is the variance, the standard deviation, the interquartile range, or a
related measure of dispersion.
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We proceed to show that this startling issue does not occur with identifiable func-
tionals, i.e., functionals induced by an identification function (see Theorem 4.11).
Similar to the classical procedure in M -estimation (Huber, 1964), an identifica-
tion function weighs negative values in the case of underprediction against posi-
tive values in the case of overprediction, and the corresponding functional maps
to the possibly set-valued argument at which an associated expectation changes
sign. Following Jordan et al. (2022), a measurable function V : R×R→ R is an
identification function if V (·, y) is increasing and left-continuous for all y ∈ R.
We operate under Assumption 4.6 with the implicit understanding that V (x, ·) is
quasi-integrable with respect to all F ∈ F for all x ∈ R. Then, for any probability
measure F in the class F , the functional T(F ) induced by V is defined as

T(F ) = [T−(F ),T+(F )] ⊆ [−∞,+∞] = R,

where the lower and upper bounds are given by the random variables

T−(F ) = sup

{
x :

∫
V (x, y) dF (y) < 0

}
(4.7)

and

T+(F ) = inf

{
x :

∫
V (x, y) dF (y) > 0

}
. (4.8)

An identifiable functional T is of singleton type if T(F ) is a singleton for ev-
ery F ∈ F . Otherwise, T is of interval type. Table 4.1 lists key examples,
such as threshold-defined event probabilities, quantiles, expectiles, and moments.
The definition of the Huber functional involves the clipping function κa,b(t) =
max(min(t, b),−a) with parameters a, b > 0 (Taggart, 2022). In the limiting
cases as a = b→ 0 and a = b→∞, the Huber functional recovers the α-quantile
(qα) and the α-expectile (eα), respectively.
For identifiable functionals, we can define an unconditional notion of T-calibra-
tion as well. Note that in contrast to traditional settings, where F is fixed, we
work in the prediction space setting, where F is a random CDF. In principle,
the subsequent Definitions 4.9 and 4.24 depend on the choice of the identification
function. However, as we demonstrate in Appendix 4.A.1.4, the following condi-
tion ensures that the identification function is unique, up to a positive constant,
so that ambiguities are avoided.

Assumption 4.8. The identification function V induces the functional T on a
convex class F0 ⊇ F of probability measures, which contains the Dirac measures
δy for all y ∈ R. The identification function V is

(i) of prediction error form, i.e., there exists an increasing, left-continuous
function v : R → R such that V (x, y) = v(x − y) with v(−r) < 0 and
v(r) > 0 for some r > 0, or

(ii) of the form V (x, y) = x− T(δy) for a functional T of singleton type.
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Table 4.1 Key examples of identifiable functionals with associated parameters,
identification function, and generic type. For a similar listing see Table 1 in
Jordan et al. (2022).

Functional Parameters Identification function Type
Threshold (non)
exceedance t ∈ R V (x, y) = x− 1{y ≤ t} singleton

Mean V (x, y) = x− y singleton
Median V (x, y) = 1{y < x} − 1

2 interval

Moment of order n (mn) n = 1, 2, . . . V (x, y) = x− yn singleton
α-Expectile (eα) α ∈ (0, 1) V (x, y) = |1{y < x} − α| (x− y) singleton
α-Quantile (qα) α ∈ (0, 1) V (x, y) = 1{y < x} − α interval

Huber α ∈ (0, 1),
a, b > 0

V (x, y) = |1{y < x} − α|κa,b(x− y) interval

The examples in Table 4.1 all satisfy Assumption 4.8.

Definition 4.9. Suppose that the functional T is generated by an identification
function V , and let Assumptions 4.6 and 4.8 hold. Then the predictive distribu-
tion F is unconditionally T-calibrated if

E[V (T+(F )− ε, Y )] ≤ 0 and E[V (T−(F ) + ε, Y )] ≥ 0 for all ε > 0. (4.9)

For the interval-valued α-quantile functional, qα(F ) = [q−α (F ), q+α (F )], condition
(4.9) reduces to the traditional unconditional coverage condition

P
(
Y ≤ q−α (F )

)
≥ α and P

(
Y ≥ q+α (F )

)
≥ 1− α, (4.10)

with the latter being equivalent to P(Y < q+α (F )) ≤ α. Probabilistic calibration
implies unconditional α-quantile calibration at every level α ∈ (0, 1), as hinted at
by Kuleshov et al. (2018, Section 3.1).1 Under technical assumptions, condition
(4.9) simplifies to

E[V (T(F ), Y )] = 0, (4.11)
with the classical unbiasedness condition E[m1(F )] = E[Y ] arising in the case of
the mean or expectation functional.

Example 4.10. Let T be the mean functional or a quantile. Then the unfo-
cused forecast from Example 4.2 is unconditionally T-calibrated but fails to be
conditionally T-calibrated. For details see Figure 4.4 and Appendix 4.A.1.1.

1To verify this implication, it suffices to note that if F is probabilistically calibrated, then

α = P(ZF ≤ α) ≤ P(F (Y−) ≤ α) = P(Y ≤ q−α (F )),

1− α = P(ZF > α) ≤ P(F (Y ) > α) = P(Y ≥ q+α (F )).

As Example 4.14(b) demonstrates, the reverse implication does not hold in general. However,
Assumption 4.15 ensures the equivalence of probabilistic calibration and unconditional α-
quantile calibration at every level α ∈ (0, 1).
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Importantly, for any identifiable functional auto-calibration implies both uncondi-
tional and conditional T-calibration, as we demonstrate now. Note that Assump-
tion 4.6 is a minimal condition as it is required to define conditional T-calibration
in the first place.

Theorem 4.11. Suppose that the functional T is generated by an identification
function and Assumption 4.6 holds. Then auto-calibration implies conditional
T-calibration, and, subject to Assumption 4.8, conditional T-calibration implies
unconditional T-calibration.

Proof. The statements in this proof are understood to hold almost surely. By
Theorem 4.34 and Proposition 4.35 of Breiman (1992) in concert with auto-
calibration, F is a regular conditional distribution of Y given F , and we conclude
that

E [V (x, Y ) | F ] =

∫
V (x, y) dF (y).

Furthermore, a regular conditional distribution FT = L(Y | T(F )) of Y given
T(F ) exists, and the tower property of conditional expectation implies that∫

V (x, y) dFT(y) = E [V (x, Y ) |T(F )] = E [E [V (x, Y ) |F ] |T(F )]

= E
[∫

V (x, y) dF (y)

∣∣∣∣T(F )

]
.

Let T(F ) = [T−(F ),T+(F )] and T(FT) = [T−(FT),T
+(FT)], where the bound-

aries are random variables. The proof of the first part is complete if we can show
that T−(FT) = T−(F ) and T+(FT) = T+(F ).
Let ε > 0. By the definition of T+(F ), we know that

∫
V (T+(F ), y) dF (y) ≤ 0

and
∫
V (T+(F ) + ε, y) dF (y) > 0. Using nested conditional expectations as

above, the same inequalities hold almost surely when integrating with respect
to FT. Hence, by the definition of T+(FT), we obtain T+(F ) ≤ T+(FT) <
T+(F )+ε. An analogous argument shows that T−(F )−ε ≤ T−(FT) ≤ T−(F )+ε,
which completes the proof of the first part and shows that F is conditionally T-
calibrated.
Finally, if F is conditionally T-calibrated, unconditional T-calibration follows by
taking nested expectations in the terms in the defining inequalities.

An analogous result is easily derived for CEP calibration.

Theorem 4.12. Under Assumption 4.6 for quantiles, auto-calibration implies
CEP calibration.

Proof. It holds that

P(ZF ≤ α | q−α (F )) = E
[
1{ZF ≤ α} | q−α (F )

]
= E

[
E [1{ZF ≤ α} | F ] | q−α (F )

]
almost surely for α ∈ (0, 1). As F is a version of L(Y | F ), the nested expectation
equals α almost surely by Proposition 2.1 of Rüschendorf (2009), which implies
CEP calibration.
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When evaluating full predictive distributions, it is natural to consider families of
functionals as in the subsequent definition, where part (a) is compatible with the
extant notion in (4.5).

Definition 4.13. A predictive distribution F is

(a) threshold calibrated if it is conditionally F (t)-calibrated for all t ∈ R;

(b) quantile calibrated if it is conditionally qα-calibrated for all α ∈ (0, 1);

(c) expectile calibrated if it is conditionally eα-calibrated for all α ∈ (0, 1);

(d) moment calibrated if it is conditionally n-th moment calibrated for all inte-
gers n = 1, 2, . . .

While CEP, quantile, and threshold calibration are closely related notions, they
generally are not equivalent. For illustration, we consider predictive CDFs in the
spirit of Example 4.4.

Example 4.14.

(a) Let µ ∼ N (0, c2). Conditionally on µ, let F be a mixture of uniform
distributions on the intervals [µ, µ + 1], [µ + 1, µ + 2], [µ + 2, µ + 3], and
[µ + 3, µ + 4] with weights p1, p2, p3, and p4, respectively, and let Y be
from a mixture with weights q1, q2, q3, and q4. Furthermore, let the tuple
(p1, p2, p3, p4; q1, q2, q3, q4) attain each of the values(

1
2
, 0, 1

2
, 0; 3

4
, 0, 1

4
, 0
)
,
(
1
2
, 0, 0, 1

2
; 1
4
, 0, 0, 3

4

)
,(

0, 1
2
, 1
2
, 0; 0, 1

4
, 3
4
, 0
)
,
(
0, 1

2
, 0, 1

2
; 0, 3

4
, 0, 1

4

)
with equal probability. Then the continuous forecast F is threshold cali-
brated and CEP calibrated but fails to be quantile calibrated.

(b) Let the tuple (p1, p2, p3; q1, q2, q3) attain each of the values(
1
2
, 1
4
, 1
4
; 5
10
, 4
10
, 1
10

)
,
(
1
4
, 1
2
, 1
4
; 1
10
, 5
10
, 4
10

)
, and

(
1
4
, 1
4
, 1
2
; 4
10
, 1
10
, 5
10

)
with equal probability. Let F assign mass pj to numbers yj for j = 1, 2, 3,
where y1 < y2 < y3, and let the event Y = yj realize with probability
qj. The resulting discrete forecast is quantile and threshold calibrated.
However, it fails to be CEP calibrated or even PIT calibrated.

Under the following conditions CEP, quantile, and threshold calibration coincide.

Assumption 4.15. In addition to Assumption 4.6 for quantiles and threshold
(non) exceedances at all levels and thresholds, respectively, let the following hold.

(i) The CDFs in the class F are continuous and strictly increasing on a common
support interval.
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(ii) There exists a countable set G ⊆ F such that P(F ∈ G) = 1.
Theorem 4.16.

(a) Under Assumption 4.15(i) CEP and quantile calibration are equivalent and
imply probabilistic calibration.

(b) Under Assumptions 4.15(i)–(ii) CEP, quantile and threshold calibration are
equivalent and imply both probabilistic and marginal calibration.

Proof. By Assumption 4.15(i) the CDFs F ∈ F are invertible on the common
support with the quantile function α 7→ q−α (F ) as inverse. Hence, for every
α ∈ (0, 1) the functional qα is of singleton-type and qα(F ) = {q−α (F )}. In this
light, the almost-sure identity

P(ZF ≤ α | q−α (F )) = P(Y ≤ q−α (F ) | qα(F ))

implies part (a). To prove part (b), let G be as in Assumption 4.15(ii) and assume
without loss of generality that P(F = G) > 0 for all G ∈ G. If α ∈ (0, 1) and
t ∈ R are such that P(F (t) = α) > 0, then

P(Y ≤ t | F (t) = α) = P(Y ≤ q−α (F ) | q−α (F ) = t),

where Assumption 4.15(ii) ensures that the events conditioned on have positive
probability. Hence, quantile and threshold calibration are equivalent. The re-
maining implications are immediate from Theorem 4.5.

We conjecture that the statement of part (b) holds under Assumption 4.15(i)
alone but are unaware of a measure theoretic argument that serves to generalize
the discrete reasoning in our proof. As indicated in panel (b) of Figure 4.1, we
also conjecture that CEP or quantile calibration imply threshold calibration in
general, though we have not been able to prove this implication, nor can we
show that CEP or quantile calibration imply marginal calibration in general.
Strong threshold calibration as defined in (4.6) implies both CEP and threshold
calibration under Assumption 4.15, by arguments similar to those in the above
proof. The following result thus demonstrates that the hierarchies in panel (a)
and, with the aforementioned exceptions, in panel (b) of Figure 4.1 are complete,
with the caveat that hierarchies may collapse if the class F is sufficiently small,
as exemplified by Theorem 2.11 of Gneiting and Ranjan (2013).
Proposition 4.17. Under Assumption 4.15(i)–(ii) the following hold:

(a) Strong threshold calibration does not imply auto-calibration.

(b) Joint CEP, quantile, and threshold calibration does not imply strong thresh-
old calibration.

(c) Joint probabilistic and marginal calibration does not imply threshold cali-
bration.

(d) Probabilistic calibration does not imply marginal calibration.

(e) Marginal calibration does not imply probabilistic calibration.
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Figure 4.3 The equiprobable predictive distribution F picks the piecewise linear,
partially (namely, for y ≤ 2) identical CDFs F1 and F2 with equal probability. It
is jointly CEP, quantile, and threshold calibrated but fails to be auto-calibrated.

Table 4.2 Properties of the forecasts in our examples. We note whether they are
auto-calibrated (AC), CEP calibrated (CC), quantile calibrated (QC), threshold
calibrated (TC), probabilistically calibrated (PC), or marginally calibrated (MC),
and whether the involved distributions are continuous and strictly increasing on a
common support (CSI) as in Assumption 4.15(i). Except for the auto-calibrated
cases, the forecasts fail to be moment calibrated.

Source Forecast Type CSI AC CC QC TC PC MC
Example 4.1 Perfect X X X X X X X
Example 4.1 Unconditional X X X X X X X
Figure 4.3 Equiprobable X X X X X X
Example 4.4 Piecewise uniform as c→ 0 X X
Example 4.2 Unfocused X X
Example 4.2 Lopsided X X

Example 4.14 Continuous X X X X
Example 4.14 Discrete X X X

Proof. We establish the claims in a series of (counter) examples, starting with
part (b), where we present an example based on two equiprobable, partially
overlapping CDFs in Figure 4.3. A similar example based on four equiprobable,
partially overlapping CDFs in Appendix 4.A.1.5 yields part (a). As for part (c),
we return to the piecewise uniform forecast in Example 4.4, where for simplicity
we fix µ = 0. This forecast is probabilistically and marginally calibrated, but it
fails to be threshold calibrated because

P
(
Y ≤ 3

2
| F (3

2
) = 5

8

)
= 5

10
+ 1

2
· 1
10

= 11
20
6= 5

8
.

As for parts (d) and (e), we refer to the unfocused and lopsided forecasts from
Example 4.2.

Clearly, further hierarchical relations are immediate. For example, given that
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probabilistic calibration does not imply marginal calibration, it does not imply
threshold calibration nor auto-calibration. We leave further discussion to future
work but note that moment calibration does not imply probabilistic nor marginal
calibration, as follows easily from classical results on the moment problem (e.g.,
Stoyanov, 2000). For an overview of calibration properties in our examples, see
Table 4.2.

4.2.4 Reliability diagrams
As we proceed to define reliability diagrams, it is useful to restrict attention to
single-valued functionals. To this end, if an identifiable functional T is of interval
type, we instead consider its single-valued lower or upper bound, T−(F ) or T+(F ),
which we call the lower and upper version of T, or simply the lower and upper
functional, without explicit reference to the original functional T. The following
result demonstrates that T-calibration implies calibration of the upper and lower
functional.

Proposition 4.18. Suppose that the functional T is generated by an identifica-
tion function V , and let Assumption 4.6 hold. Then conditional T-calibration
implies conditional T−- and T+-calibration, and, subject to Assumption 4.8, un-
conditional T-calibration implies unconditional T−- and T+-calibration.

Proof. Suppose that T∗ is the lower or upper version of a functional T generated
by the identification function V . As σ(T∗(F )) ⊆ σ(T(F )), we find that

E [V (x, Y ) | T∗(F )] = E [E [V (x, Y ) | T(F )] | T∗(F )]

is almost surely ≤ 0 if x < T∗(F ), and almost surely ≥ 0 if x > T∗(F ). Hence,
T∗(F ) ∈ T(L(Y | T∗(F ))). If T∗ is the lower functional, the former inequality
is strict and hence T−(F ) = minT(L(Y | T−(F ))), whereas if T∗ is the upper
functional, the latter is strict and hence T+(F ) = maxT(L(Y | T+(F ))).
Unconditional T∗-calibration is an immediate consequence of unconditional T-
calibration.

In this light, we restrict attention to single-valued functionals that are lower or
upper versions of identifiable functionals, or identifiable functionals of singleton
type. Any such functional can be associated with a random variable X = T(F ),
and we call any random variable Xrc, for which

Xrc = T(L (Y | X)) (4.12)

almost surely, a recalibrated version of X. Clearly, we can also define Xrc for a
stand-alone point forecast X, based on conceptualized distributions, by resorting
to the joint distribution of the random tuple (X,Y ), provided the right-hand
side of (4.12) is well defined and finite almost surely. The point forecast X
is conditionally T-calibrated, or simply T-calibrated, if X = Xrc almost surely.
Subject to Assumption 4.8, X is unconditionally T-calibrated if

E[V (X − ε, Y )] ≤ 0 and E[V (X + ε, Y )] ≥ 0 for all ε > 0. (4.13)
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For recent discussions of the particular cases of the mean or expectation and
quantile functionals see, e.g., Nolde and Ziegel (2017, Sections 2.1–2.2). Patton
(2020, Proposition 2), Krüger and Ziegel (2021, Definition 3.1) and Satopää (2021,
Section 2).
To compare the posited functional X with its recalibrated version Xrc, we intro-
duce the T-reliability diagram.

Assumption 4.19. The functional T is a lower or upper version of an identifiable
functional, or an identifiable functional of singleton type. The point forecast X
is a random variable, and the recalibrated forecast Xrc = T(L(Y | X)) is well
defined and finite almost surely.

Definition 4.20. Under Assumption 4.19, the T-reliability diagram is the graph
of a mapping x 7→ T (L(Y | X = x)) on the support of X.

While technically the T-reliability diagram depends on the choice of a regular
conditional distribution for the outcome Y , this issue is not a matter of practi-
cal relevance. Evidently, for a T-calibrated forecast the T-reliability diagram is
concentrated on the diagonal. Conversely, deviations from the diagonal indicate
violations of T-calibration and can be interpreted diagnostically, as illustrated in
Figure 4.4 for threshold, quantile, and moment calibration. For a similar display
in the specific case of mean calibration see Figure 1 of Pohle (2020).
In the setting of fully specified predictive distributions, the distinction between
unconditional and conditional T-calibration is natural. Perhaps surprisingly, the
distinction vanishes in the setting of stand-alone point forecasts if the associated
identification function is of prediction error form and the forecast and the residual
are independent.

Theorem 4.21. Let Assumption 4.19 hold, and suppose that the underlying
identification function V satisfies Assumption 4.8. Suppose furthermore that the
point forecast X and the generalized residual T(δY )−X are independent. Then
X is conditionally T-calibrated if, and only if, it is unconditionally T-calibrated.

Proof. Given any constant c ∈ R it holds that

E[V (X + c, Y ) | X] = E[v(T(δY )−X − c) | X] = E[v(T(δY )−X − c)].

In view of (4.12) and (4.13), conditional and unconditional T-calibration are
equivalent.

For quantiles, expectiles, and Huber functionals, the identification function V
is of prediction error form and the generalized residual reduces to the standard
residual, X−Y . In particular, this observation applies in the case of least squares
regression, where T is the mean functional, and the forecast and the residual
have typically been assumed to be independent in the literature. We discuss the
statistical implications of Theorem 4.21 in Appendix 4.A.2.
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Figure 4.4 Threshold (top), quantile (middle), and moment (bottom) reliability
diagrams for point forecasts induced by (left) the unfocused forecast with η0 = 1.5
and (middle) the lopsided forecast with δ0 = 0.7 from Example 4.2, and (right)
the piecewise uniform forecast with c = 0.5 from Example 4.4. Each display
plots recalibrated against original values. Deviations from the diagonal indicate
violations of T-calibration. For details see Appendix 4.A.1.

4.2.5 Score decompositions
We now revisit a score decomposition into measures of miscalibration (MCB),
discrimination (DSC), and uncertainty (UNC) based on consistent scoring func-
tions. Specifically, suppose that S is a consistent loss or scoring function for the
functional T on the class F in the sense that

EF [S(t, Y )] ≤ EF [S(x, Y )]

for all F ∈ F , all t ∈ T(F ) = [T−(F ),T+(F )] and all x ∈ R (Savage, 1971;
Gneiting, 2011a). If the inequality is strict unless x ∈ T(F ), then S is strictly
consistent. Consistent scoring functions serve as all-purpose performance mea-
sures that elicit fair and honest assessments and reward the utilization of broad
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information bases (Holzmann and Eulert, 2014). If the functional T is of inter-
val type, a consistent scoring function S is consistent for both T− and T+, but
strict consistency is lost when T is replaced by its lower or upper version and S is
strictly consistent for T. For prominent examples of consistent scoring functions,
see Table 4.3.
A functional is elicitable if it admits a strictly consistent scoring function (Gnei-
ting, 2011a). Under general conditions, elicitability is equivalent to identifiability
(Steinwart et al., 2014, Theorem 5). The respective functionals allow for both
principled relative forecast evaluation through the use of consistent scoring func-
tions, and principled absolute forecast evaluation via T-reliability diagrams and
score decompositions, as discussed in what follows.
Let L(Y ) denote the unconditional distribution of the outcome and suppose that
x0 = T(L(Y )) is well defined. As before, we operate under Assumption 4.19 and
work with X = T(F ), its recalibrated version Xrc, and the reference forecast x0.
Again, the simplified notation accommodates stand-alone point forecasts, and it
suffices to consider the joint distribution of the tuple (X,Y ). Following the lead
of Dawid (1986) in the case of binary outcomes, and Ehm and Ovcharov (2017)
and Pohle (2020) in the setting of point forecasts for real-valued outcomes, we
consider the expected scores

S̄ = E[S(X,Y )], S̄rc = E[S(Xrc, Y )], and S̄mg = E[S(x0, Y )] (4.14)

for the forecast at hand, its recalibrated version, and the marginal reference
forecast x0, respectively.

Definition 4.22. Let Assumption 4.19 hold, and let x0 = T(L(Y )) and the
expectations S̄, S̄rc, and S̄mg in (4.14) be well defined and finite. Then we refer
to

MCBS = S̄− S̄rc, DSCS = S̄mg − S̄rc, and UNCS = S̄mg,

as miscalibration, discrimination, and uncertainty, respectively.

The following result decomposes the expected score S̄ for the forecast at hand into
miscalibration (MCBS), discrimination (DSCS), and uncertainty (UNCS) compo-
nents.

Theorem 4.23 (Dawid (1986), Pohle (2020)). In the setting of Definition 4.22,
suppose that the scoring function S is consistent for the functional T. Then it
holds that

S̄ = MCBS − DSCS + UNCS, (4.15)

where MCBS ≥ 0 with equality if X is conditionally T-calibrated, and DSCS ≥ 0
with equality if Xrc = x0 almost surely. If S is strictly consistent then MCBS = 0
only if X is conditionally T-calibrated, and DSCS = 0 only if Xrc = x0 almost
surely.

A remaining question is what consistent scoring function S ought to be used in
practice. To address this issue, we resort to mixture or Choquet representations
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Table 4.3 Canonical loss functions in the sense of Definition 4.24.

Functional Parameter Canonical Loss

Moment of order n n = 1, 2, . . . S(x, y) = (x− yn)
2

α-Expectile α ∈ (0, 1) S(x, y) = 2 |1{x ≥ y} − α| (x− y)
2

α-Quantile α ∈ (0, 1) S(x, y) = 2 (1{x ≥ y} − α) (x− y)

of consistent loss functions, as introduced by Ehm et al. (2016) for quantiles
and expectiles and developed in full generality by Dawid (2016), Ziegel (2016)
and Jordan et al. (2022). Specifically, we rely on an obvious generalization of
Proposition 2.6 of Jordan et al. (2022), as noted at the start of their Section 2.
Let T be identifiable with identification function V satisfying Assumption 4.8,
and let η ∈ R. Then the elementary loss function Sη, given by

Sη(x, y) = (1{η ≤ x} − 1{η ≤ y})V (η, y), (4.16)

is consistent for T. As an immediate consequence, any well-defined function of
the form

S(x, y) =

∫
R
Sη(x, y) dH(η), (4.17)

where H is a locally finite measure on R, is consistent for T. If T is a quantile,
an expectile, an event probability or a moment, then the construction includes
all consistent scoring functions, subject to standard conditions, and agrees with
suitably adapted classes of generalized piecewise linear (GPL) and Bregman func-
tions, respectively (Gneiting, 2011a; Ehm et al., 2016).
We now formalize what Ehm and Ovcharov (2017, p. 477) call the “most promi-
nent” choice, namely, scoring functions for which the mixing measure H in the
representation (4.17) is uniform.

Definition 4.24. Suppose that the functional T is generated by an identification
function V satisfying Assumption 4.8, with elementary loss functions Sη as defined
in (4.16). Then a loss function S is canonical for T if it is nonnegative and admits
a representation of the form

S(x, y) = a

∫
R
Sη(x, y) dλ(η) + b(y), (4.18)

where λ is the Lebesgue measure, a > 0 is a constant, and b is a measurable
function.

Clearly, any canonical loss function is a consistent scoring function for T. Fur-
thermore, if the identification function is of the prediction error form, then any
canonical loss function has score differentials that are invariant under translation
in the sense that S(x1 + c, y + c) − S(x2 + c, y + c) = S(x1, y) − S(x2, y). Con-
versely, we note from Section 5.1 of Savage (1971) that for the mean functional
the canonical loss functions are the only consistent scoring functions of this type.
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Table 4.4 Components of the decomposition (4.15) for the mean squared error
(MSE) under mean-forecasts induced by the predictive distributions in Examples
4.1 and 4.2. Uncertainty (UNC) equals 2 irrespective of the forecast at hand. The
term I(η0) is in integral form and can be evaluated numerically. For details see
Appendix 4.A.1.

Predictive
Distribution Mean-Forecast MSE MCB DSC

Perfect µ 1 0 1
Unconditional 0 2 0 0
Unfocused µ+ 1

2η 1 + 1
4η

2
0 ( 14 − I(η0))η

2
0 1− I(η0)η

2
0
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√
2√
π
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π δ
2
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√
8
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π δ
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Figure 4.5 Components of the decomposition (4.15) for the mean squared error
(MSE) under mean-forecasts induced by the unfocused and lopsided predictive
distributions from Example 4.2 and Table 4.4, as functions of η0 ≥ 0 and δ0 ∈
(0, 1), respectively.

Typically, one chooses the constant a > 0 and the measurable function b(y) in
(4.18) such that the canonical loss admits a concise closed form, as exemplified
in Table 4.3. Since any selection incurs the same point forecast ranking, we refer
to the choice in Table 4.3 as the canonical loss function. The most prominent
example arises when T is the mean functional, where the ubiquitous quadratic or
squared error scoring function,

S(x, y) = (x− y)2, (4.19)

is canonical. In this case, the UNC component equals the unconditional variance of
Y as x0 is simply the marginal mean µY of Y , and the MCB and DSC components
of the general score decomposition (4.15) are

MCB = E (X −Xrc)
2 and DSC = E (Xrc − µY )

2 ,

respectively. Note that here and in the following, we drop the subscript S when-
ever we use a canonical loss. Table 4.4 and Figure 4.5 provide explicit examples.
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In the nested case of a binary outcome Y , where X and Xrc specify event prob-
abilities, the quadratic loss function reduces to the Brier score (Gneiting and
Raftery, 2007), and we refer to Dimitriadis et al. (2021) and references therein
for details on score decompositions. In the case of threshold calibration, the point
forecast x = F (t) is induced by a predictive distribution, and the Brier score can
be written as

S(x, y) = (F (t)− 1{y ≤ t})2 . (4.20)

For both real-valued and binary outcomes, it is often preferable to use the square
root of the miscalibration component (MCB1/2) as a measure of calibration error
that can be interpreted on natural scales (e.g., Roelofs et al., 2022).
A canonical loss function for the Huber functional (Table 4.1) is given by

S(x, y) = 2 |1{x ≥ y} − α|


2a|x− y| − a2, x− y < −a,
(x− y)2, −a ≤ x− y ≤ b,

2b|x− y| − b2, x− y > b;

cf. Taggart (2022, Definition 4.2). In the limiting case as a = b→∞, we recover
the canonical loss functions for the α-expectile, which include the quadratic loss
in (4.19). Similarly, if we rescale suitably and take the limit as a = b → 0, we
recover the asymmetric piecewise linear or pinball loss, as listed in Table 4.3,
which lies at the heart of quantile regression.
We move on to a remarkable property of canonical loss functions. In a nutshell,
the point forecast X is unconditionally T-calibrated if, and only if, the expected
canonical loss deteriorates under translation. This property, which nests classical
results in regression theory, as we demonstrate at the end of Section 4.3.3, does
not hold under consistent scoring functions in general.2

Assumption 4.25. The point forecast X, the functional T and the identification
function V satisfy Assumptions 4.8 and 4.19, and S is a canonical loss for T.
Furthermore, E[S(X + η, Y )] and E[V (X + η, Y )] are well defined and locally
bounded as functions of η ∈ R.

Theorem 4.26. Under Assumption 4.25, the point forecast X is unconditionally
T-calibrated if, and only if,

E [S(X + c, Y )] ≥ E [S(X,Y )] for all c ∈ R.

2In particular, the statement in Theorem 4.26 does not hold for arbitrary consistent scoring
functions. For a counterexample, consider the empirical distribution of (x1, y1), . . . , (x10, y10),
where xi = i and yi = xi +

10
9 for i = 1, . . . , 9, and x10 = y10 = −10. The respective mean-

forecast X fails to be unconditionally mean calibrated, whereas the shifted version X + 1 is
unconditionally mean calibrated. Nonetheless, the expected elementary score (4.16) for the
mean functional (i.e., V (x, y) = x − y) with index η = − 19

2 increases when X gets replaced
with X + 1.
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Proof. If X is unconditionally T-calibrated and c > 0, then

E [S(X + c, Y )]− E [S(X,Y )]

= E
[∫

(1{η ≤ X + c} − 1{η ≤ X})V (η, Y ) dη

]
(4.21)

= E
[∫

(0,c]

V (X + η, Y ) dη

]
=

∫
(0,c]

E [V (X + η, Y )] dη

is nonnegative by the second part of the unconditional T-calibration criterion
(4.13). Conversely, if the score difference in (4.21) is nonnegative for all c > 0,
then so is

E[V (X + c, Y )] =
1

c

∫
(0,c]

E[V (X + c, Y )] dη ≥ 1

c

∫
(0,c]

E[V (X + η, Y )] dη.

Hence, the second part of (4.13) is satisfied.
An analogous argument shows that the score difference (4.21) is nonnegative for
all c < 0 if, and only if, the first inequality in (4.13) is satisfied.

As a consequence, under a canonical loss function theMCB component in the score
decomposition (4.15) of Theorem 4.23 decomposes into nonnegative unconditional
and conditional components MCBu and MCBc, respectively, subject to the mild
condition that unconditional recalibration via translation is feasible.

Theorem 4.27. Let Assumption 4.25 hold, and suppose there is a constant c
such that X + c is unconditionally T-calibrated. Let Xurc = X + c and S̄urc =
E[S(Xurc, Y )], and define

MCBu = S̄− S̄urc and MCBc = S̄urc − S̄rc.

Then
MCB = MCBu +MCBc,

where MCBu ≥ 0 with equality if X is unconditionally T-calibrated, and MCBc ≥
0 with equality if Xrc = Xurc almost surely. If S is strictly consistent, then
MCBu = 0 only if X is unconditionally T-calibrated, and MCBc = 0 only if
Xrc = Xurc almost surely.

Proof. Immediate from Theorems 4.23 and 4.26, and the fact that conditional
recalibration of X and X + c yields the same Xrc.

In settings that are equivariant under translation, such as for expectiles, quantiles,
and Huber functionals when both X and Y are supported on the real line, X can
always be unconditionally recalibrated by adding a constant. Under any canonical
loss function S, the basic decomposition (4.15) then extends to

S̄ = MCBu +MCBc − DSC+ UNC. (4.22)
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For instance, when S(x, y) = (x−y)2 is the canonical loss for the mean functional,
MCBu = c2 is the squared unconditional bias. The forecasts in Figure 4.5 and
Table 4.4 are free of unconditional bias, so MCBu = 0 and MCBc = MCB.
In all cases studied thus far, canonical loss functions are strictly consistent (Ehm
et al., 2016), and so MCBu = 0 if, and only if, the forecast is unconditionally T-
calibrated, and MCBc = 0 if, and only if, Xurc = Xrc almost surely. While in other
settings, such as when the outcomes are bounded, unconditional recalibration by
translation might be counterintuitive (in principle) or impossible (in practice),
the statement of Theorem 4.27 continues to hold, and the above results can be
refined to admit more general forms of unconditional recalibration. We leave
these and other ramifications to future work.

4.3 Empirical Reliability Diagrams and Score
Decompositions: The CORP Approach

We turn to empirical settings, where calibration checks, scores, and score de-
compositions address critical practical problems in both model diagnostics and
forecast evaluation. The most direct usage is in the evaluation of out-of-sample
predictive performance, where forecasts may either take the form of fully specified
predictive distributions, or be single-valued point forecasts that arise, implicitly
or explicitly, as functionals of predictive distributions. Similarly, in model diag-
nostics, where in-sample goodness-of-fit is of interest, the model might supply
fully specified, parametric or non-parametric conditional distributions, or single-
valued regression output that is interpreted as a functional of an underlying,
implicit or explicit, probability distribution. Prominent examples for the latter
setting include ordinary least squares regression, where the mean or expectation
functional is sought, and quantile regression.
In the case of fully specified predictive distributions, we work with tuples of the
form

(F1, y1), . . . , (Fn, yn), (4.23)

where Fi is a posited conditional CDF for the real-valued observation yi for i =
1, . . . , n, which we interpret as a sample from an underlying population P in the
prediction space setting of Section 4.2. In the case of stand-alone point forecasts
or regression output, we assume throughout that the functional T is of the type
stated in Assumption 4.19 and work with tuples of the form

(x1, y1), . . . , (xn, yn), (4.24)

where xi = T(Fi) ∈ R derives explicitly or implicitly from a predictive distribu-
tion Fi for i = 1, . . . , n.
In the remainder of the section, we introduce empirical versions of T-reliability
diagrams (Definition 4.20) and score components (Definition 4.22) for samples of
the form (4.23) or (4.24), which allow for both diagnostic checks and inference
about an underlying population P. While practitioners may think of our empirical
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Algorithm 4.1. General T-PAV algorithm based on data of the form
(4.24)

Input: (x1, y1), . . . , (xn, yn) ∈ R2 where x1 ≤ · · · ≤ xn

Output: T-calibrated values x̂1, . . . , x̂n

partition into groups G1:1, . . . , Gn:n and let x̂i = T(δi) for i = 1, . . . , n
while there are groups Gk:i and G(i+1):l such that x̂1 ≤ · · · ≤ x̂i and
x̂i > x̂i+1 do

merge Gk:i and G(i+1):l into Gk:l and let x̂i = T(δk:l) for i = k, . . . , l
end

versions exclusively from diagnostic perspectives, we emphasize that they can be
interpreted as estimators of the population quantities and be analyzed as such.
A key feature of our approach is the use of nonparametric isotonic regression via
the pool-adjacent-violators algorithm, as proposed by Dimitriadis et al. (2021) in
the particular case of binary outcomes. The generalization that we discuss here
is hinted at in the discussion section of their paper.

4.3.1 The T-pool-adjacent-violators (T-PAV) algorithm
Our key tool and workhorse is a very general version of the classical pool-adjacent-
violators (PAV) algorithm for nonparametric isotonic regression (Ayer et al., 1955;
Van Eeden, 1958). Historically, work on the PAV algorithm has focused on the
mean functional, as reviewed by Barlow et al. (1972), Robertson and Wright
(1980), and de Leeuw et al. (2009), among others. In contrast, Jordan et al.
(2022) study the PAV algorithm in very general terms that accommodate our
setting.
We rely on their work and describe the T-pool-adjacent-violators algorithm based
on tuples (x1, y1), . . . , (xn, yn) of the form (4.24), where without loss of generality
we may assume that x1 ≤ · · · ≤ xn. Furthermore, we let δi denote the point
measure in the outcome yi. More generally, for 1 ≤ k ≤ l ≤ n we let

δk:l =
1

l − k + 1

l∑
i=k

δi

be the associated empirical measure. Algorithm 4.1 describes the generation of an
increasing sequence x̂1 ≤ · · · ≤ x̂n of recalibrated values, which by construction
are conditionally T-calibrated with respect to the empirical measure associated
with (x̂1, y1), . . . , (x̂n, yn). The algorithm rests on partitions of the index set
{1, . . . , n} into groups Gk:l = {k, . . . , l} of consecutive integers. The following
result summarizes the remarkable properties of the T-PAV algorithm, as proved
in Section 3.2 of Jordan et al. (2022).
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Theorem 4.28 (Jordan et al. (2022)). Suppose that the functional T is as stated
in Assumption 4.19. Then Algorithm 4.1 generates a sequence x̂1, . . . , x̂n such
that the empirical measure associated with (x̂1, y1), . . . , (x̂n, yn) is conditionally
T-calibrated. This sequence is optimal with respect to any scoring function S of
the form (4.17), in that

1

n

n∑
i=1

S(x̂i, yi) ≤
1

n

n∑
i=1

S(ti, yi) (4.25)

for any non-decreasing sequence t1 ≤ · · · ≤ tn.

We note that for a functional of interval type, the minimum on the left-hand side
of (4.25) is the same under the lower and upper version, respectively. For cus-
tomary functionals, such as threshold (non) exceedance probabilities, quantiles,
expectiles, and moments, the optimality is universal, as functions of the form
(4.17) exhaust the class of the T-consistent scoring functions subject to mild con-
ditions (Ehm et al., 2016). While the PAV algorithm has been used extensively
for the recalibration of probabilistic classifiers (e.g., Flach, 2012), we are unaware
of any extant work that uses Algorithm 4.1 for forecast recalibration, forecast
evaluation, or model diagnostics in non-binary settings.

4.3.2 Empirical T-reliability diagrams
Recently, Dimitriadis et al. (2021) introduced the CORP approach for the esti-
mation of reliability diagrams and score decompositions in the case of probability
forecasts for binary outcomes. In a nutshell, the acronym CORP refers to an es-
timator that is Consistent under the assumption of isotonicity for the population
recalibration function and Optimal in both finite sample and asymptotic settings,
while facilitating Reproducibility, and being based on the PAV algorithm. Here,
we extend the CORP approach and employ nonparametric isotonic T-regression
via the T-PAV algorithm under Assumption 4.19, where T is the lower or upper
version of an identifiable functional, or an identifiable singleton functional.
We begin by defining the empirical T-reliability diagram, which is a sample ver-
sion of the population diagram in Definition 4.20.

Definition 4.29. Let the functional T be as stated in Assumption 4.19, and
suppose that x̂1, . . . , x̂n originate from tuples (x1, y1), . . . , (xn, yn) with x1 ≤ · · · ≤
xn via Algorithm 4.1. Then the CORP empirical T-reliability diagram is the graph
of the piecewise linear function that connects the points (x1, x̂1), . . . , (xn, x̂n) in
the Euclidean plane.

A few scattered references in the literature on forecast evaluation have proposed
displays of recalibrated against original values for functionals other than binary
event probabilities: Figures 3 and 7 of Bentzien and Friederichs (2014) and Figure
8 of Pohle (2020) consider quantiles, and Figures 2–5 of Satopää and Ungar
(2015) concern the mean functional. However, none of these papers employ the
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PAV algorithm, and the resulting diagrams are subject to issues of stability and
efficiency, as illustrated by Dimitriadis et al. (2021) in the case of binary outcomes.
For the CORP empirical T-reliability diagram to be consistent in the sense of large
sample convergence to the population version of Definition 4.20, the assumption
of isotonicity of the population recalibration function needs to be invoked. As
argued by Roelofs et al. (2022) and Dimitriadis et al. (2021), such an assumption
is natural, and practitioners tend to dismiss nonisotonic recalibration functions
as artifacts. Evidently, these arguments transfer to arbitrary functionals, and
any violations of the isotonicity assumption entail horizontal segments in CORP
reliability diagrams, thereby indicating a lack of reliability. Large sample theory
for CORP estimates of the recalibration function and the T-reliability diagram
depends on the functional T, the type — discrete or continuous — of the marginal
distribution of the point forecast X, and smoothness conditions. Mösching and
Dümbgen (2020) establish rates of uniform convergence in the cases of thresh-
old (non) exceedance and quantile functionals that complement classical theory
(Barlow et al., 1972; Casady and Cryer, 1976; Wright, 1984; Robertson et al.,
1988; El Barmi and Mukerjee, 2005; Guntuboyina and Sen, 2018).
In the case of binary outcomes, Bröcker and Smith (2007, p. 651) argue that re-
liability diagrams ought to be supplemented by consistency bars for “immediate
visual evaluation as to just how likely the observed relative frequencies are under
the assumption that the predicted probabilities are reliable.” Dimitriadis et al.
(2021) develop asymptotic and Monte Carlo based methods for the generation
of consistency bands to accompany a CORP reliability diagram for dichotomous
outcomes, and provide code in the form of the reliabilitydiag package (Dim-
itriadis and Jordan, 2021) for R (R Core Team, 2022). The consistency bands
quantify and visualize the variability of the empirical reliability diagram under
the respective null hypothesis, i.e., they show the pointwise range of the CORP T-
reliability diagram that we expect to see under a calibrated forecast. Algorithms
4.2 and 4.3 in Appendix 4.A.2 generalize this approach to produce consistency
bands from data of the form (4.23) under the assumption of auto-calibration.
In the specific case of threshold calibration, where the induced outcome is di-
chotomous, the assumptions of auto-calibration (in the binary setting) and T-
calibration (for the non-exceedance functional) coincide (Gneiting and Ranjan,
2013, Theorem 2.11), and we use the aforementioned algorithms to generate con-
sistency bands (Figure 4.6, top row). Generally, auto-calibration is a strictly
stronger assumption than T-calibration, with ensuing issues, which we discuss in
Appendix 4.A.2.1. Furthermore, to generate consistency bands from data of the
form (4.24), we cannot operate under the assumption of auto-calibration.
As a crude yet viable alternative, we propose in Appendix 4.A.2.2 a Monte Carlo
technique for the generation of consistency bands that is based on resampling
residuals. As in traditional regression diagnostics, the approach depends on the
assumption of independence between point forecasts and residuals. Figure 4.6
shows examples of T-reliability diagrams with associated residual-based 90% con-
sistency bands for the perfect, unfocused, and lopsided forecasts from Section 4.2
for the mean functional (middle row) and the lower quantile functional at level
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Figure 4.6 CORP empirical threshold (top, t = 1), mean (middle) and quantile
(bottom, α = 0.10) reliability diagrams for the perfect (left), unfocused (middle),
and lopsided (right) forecast from Examples 4.1 and 4.2 with 90% consistency
bands and CORP score components under the associated canonical loss function
based on samples of size 400.

0.10 (bottom row). For further discussion see Appendix 4.A.2.2. In the case of
the mean functional, we add the scatter diagram for the original data of the form
(4.24), whereas in the other two cases, inset histograms visualize the marginal
distribution of the point forecast.
We encourage follow-up work on both Monte Carlo and asymptotic methods for
the generation of consistency and confidence bands that are tailored to specific
functionals of interest, similar to the analysis by Dimitriadis et al. (2021) in the
basic case of probability forecasts for binary outcomes.
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4.3.3 Empirical score decompositions
In this section, we consider data (x1, y1), . . . , (xn, yn) of the form (4.24), where
implicitly or explicitly xi = T(Fi) for a single-valued functional T. Let x̂1, . . . , x̂n

denote the respective T-PAV recalibrated values, and let x̂0 = T(F̂0), where F̂0

is the empirical CDF of the outcomes y1, . . . , yn. Let

Ŝ =
1

n

n∑
i=1

S(xi, yi), Ŝrc =
1

n

n∑
i=1

S(x̂i, yi), and Ŝmg =
1

n

n∑
i=1

S(x̂0, yi) (4.26)

denote the mean score of the point forecast at hand, the recalibrated point fore-
cast, and the functional T applied to the unconditional, marginal distribution of
the outcome, respectively. If all quantities in (4.26) are finite, we refer to

M̂CBS = Ŝ− Ŝrc, D̂SCS = Ŝmg − Ŝrc, and ÛNCS = Ŝmg (4.27)

as the miscalibration, discrimination and uncertainty components of the mean
score Ŝ. Our next result generalizes Theorem 1 of Dimitriadis et al. (2021) and
decomposes the mean score Ŝ into a signed sum of nonnegative, readily inter-
pretable components.

Theorem 4.30. Suppose that the functional T satisfies the conditions in As-
sumption 4.19. Let the scoring function S be of the form (4.17), suppose that
x̂1, . . . x̂n originate from tuples (x1, y1), . . . , (xn, yn) via Algorithm 4.1, and let all
terms in (4.26) be finite. Then

Ŝ = M̂CBS − D̂SCS + ÛNCS, (4.28)

where M̂CBS ≥ 0 with equality if x̂i = xi for i = 1, . . . , n, and D̂SCS ≥ 0 with
equality if x̂i = x̂0 for i = 1, . . . , n.
If S is strictly consistent, then M̂CBS = 0 only if x̂i = xi for i = 1, . . . , n and
D̂SCS = 0 only if x̂i = x̂0 for i = 1, . . . , n.

Proof. Immediate from Theorem 4.28.

Thus, CORP estimates of score components enjoy the same properties as the
respective population quantities (Theorem 4.23, eq. (4.15)). This agreement is
not to be taken for granted, as the nonnegativity of the estimated components
cannot be guaranteed if approaches other than the T-PAV algorithm are used for
recalibration (Dimitriadis et al., 2021, Supplementary Section S5).
Recently, the estimation of calibration error has seen a surge of interest in machine
learning (Guo et al., 2017; Kuleshov et al., 2018; Kumar et al., 2019; Nixon
et al., 2019; Roelofs et al., 2022). Under the natural assumption of isotonicity
of the population recalibration function, M̂CBS is a consistent estimate of the
population quantity MCBS, with canonical loss functions being natural choices
for S. As noted, it is often preferable to use the square root of the miscalibration
component under squared error as a measure of calibration error that can be
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interpreted on natural scales. Asymptotic distributions for our estimators depend
on the functional T, the scoring function S, and regularity conditions. Large
sample theory can leverage extant theory for nonparametric isotonic regression,
as hinted at in the previous section, though score components might show distinct
asymptotic behavior. Further development is beyond the scope of the present
work and strongly encouraged.
In the remainder of the section, we assume that S is a canonical score and drop
the subscript in the score components. If there is a constant ĉ ∈ R such that the
empirical measure in (x1 + ĉ, y1), . . . , (xn + ĉ, yn) is unconditionally T-calibrated,
let

Ŝurc =
1

n

n∑
i=1

S(xi + ĉ, yi). (4.29)

We then refer to

M̂CBu = Ŝ− Ŝurc and M̂CBc = Ŝurc − Ŝrc

as the CORP unconditional and conditional miscalibration components of the
mean canonical score, respectively. Under mild conditions, these estimates are
nonnegative and share properties of the respective population quantities in The-
orem 4.27.

Theorem 4.31. Let the conditions of Theorem 4.30 hold, and let S be a canonical
loss function for T. Suppose there is a constant ĉ ∈ R such that the empirical
measure in (x1+ĉ, y1), . . . , (xn+ĉ, yn) is unconditionally T-calibrated, and suppose
that all terms in (4.29) are finite. Then

M̂CB = M̂CBu + M̂CBc,

where M̂CBu ≥ 0 and M̂CBc ≥ 0.

Proof. Immediate from Theorems 4.26 and 4.28, and the trivial fact that the
addition of a constant is a special case of an isotonic mapping.

In the middle row of Figure 4.6, the extended CORP decomposition,

Ŝ = M̂CBu + M̂CBc − D̂SC+ ÛNC, (4.30)

which estimates the population decomposition (4.22), is applied to the mean
squared error (MSE). Likewise, the extended CORP decomposition of the canon-
ical score for quantiles, i.e., the piecewise linear quantile score (QS) from Table
4.3, is shown in the bottom row. The top row concerns threshold calibration,
and we report the standard CORP decomposition (4.28) of the Brier score (BS)
from (4.20). While the assumptions of Theorem 4.30 are satisfied in this setting,
the addition of the constant ĉ may yield forecast values outside the unit interval,
whence we refrain from considering the refined decomposition in (4.30).
In this context, the distinction between out-of-sample forecast evaluation and
in-sample model diagnostics is critical. When evaluating out-of-sample forecasts,
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both unconditional and conditional miscalibration are relevant. In contrast, in-
sample model fits frequently enforce unconditional calibration. For example, if
we fit a regression model with intercept by minimizing the canonical loss for a
functional T, Theorem 4.26 applied to the associated empirical measure guaran-
tees in-sample unconditional T-calibration. As special cases, this line of reasoning
yields classical results in ordinary least squares regression, and the partitioning
inequalities of quantile regression in Theorem 3.4 of Koenker and Bassett (1978).

4.3.4 Skill scores and a universal coefficient of determination
Let us revisit the mean scores in (4.26) under the natural assumption that the
terms in Ŝ and Ŝmg are finite and that Ŝmg is strictly positive. In out-of-sample
forecast evaluation, the quantity

Ŝskill = 1− Ŝ

Ŝmg

=
Ŝmg − Ŝ

Ŝmg

=
D̂SCS − M̂CBS

ÛNCS

(4.31)

is known as skill score (Murphy and Epstein, 1989; Murphy, 1996; Gneiting and
Raftery, 2007; Jolliffe and Stephenson, 2012) and may attain both positive and
negative values. In particular, when S(x, y) = (x − y)2 is the canonical loss
function for the mean functional, Ŝskill coincides with the popular Nash-Sutcliffe
model efficiency coefficient (NSE; Nash and Sutcliffe, 1970; Moriasi et al., 2007).
A positive skill score indicates predictive performance better than the simplistic
unconditional reference forecast, whereas a negative skill score suggests that we
are better off using the simple reference forecast. Of course, it is possible, and fre-
quently advisable, to base skill scores on reference standards that are more sophis-
ticated than an unconditional, constant point forecast (Hyndman and Koehler,
2006).
In contrast, if the goal is in-sample model diagnostics, the quantity in (4.31)
typically is nonnegative. As we demonstrate now, it constitutes a powerful gen-
eralization of the coefficient of determination, R2, or variance explained in least
squares regression, and its close cousin, the R1-measure in quantile regression
(Koenker and Machado, 1999). Specifically, we propose the use of

R∗ =
D̂SCS − M̂CBS

ÛNCS

, (4.32)

as a universal coefficient of determination. In practice, one takes S to be a
canonical loss for the functional T at hand, and we drop the subscripts in this case.
The classical R2 measure arises when S(x, y) = (x− y)2 is the canonical squared
error loss function for the mean functional, and the R1 measure of Koenker and
Machado (1999) emerges when S(x, y) = 2 (1{x ≥ y} − α) (x− y) is the canonical
piecewise linear loss under the α-quantile functional. Of course, in the case α = 1

2

of the median, the piecewise linear loss reduces to the absolute error.
In Figure 4.7, we present a numerical example on the toy data from Figure 1
in Kvålseth (1985). The straight lines show the linear (ordinary least squares)
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Figure 4.7 Linear mean and linear median regression lines for toy example from
Kvålseth (1985, Figure 1), along with nonparametric isotonic mean and median
regression fits. The isotonic median regression fit is not unique and framed by
the respective lower and upper functional.

mean and linear (Laplace) median regression fits, which Kvålseth (1985) sought to
compare. The piecewise linear broken curves illustrate the nonparametric isotonic
regression fits, as realized by the T-PAV algorithm, where T is the mean and the
lower and the upper median, respectively. As the linear regression fits induce
the same ranking of the point forecasts, they yield the same PAV-recalibrated
values that enter the terms in the score decomposition (4.27), and thus they have
identical discrimination components in (4.28), which equal 10.593 under squared
error and 2.333 under absolute error, regardless of which isotonic median is used.
The uncertainty components, which equal 12.000 under squared error, and 2.889
under absolute error, are identical as well, since they depend on the observations
only. Thus, the differences in R2 respectively R1 in Figure 4.7 stem from distinct
miscalibration components. Of course, linear mean regression is preferred under
squared error, and linear median regression is preferred under absolute error.
Various authors have discussed desiderata for a generally applicable definition of
a coefficient of determination (Kvålseth, 1985; Nakagawa and Schielzeth, 2013)
for the assessment of in-sample fit. In particular, such a coefficient ought to be
dimensionless and take values in the unit interval, with a value of 1 indicating
a perfect fit, and a value of 0 representing a complete lack of fit. The universal
coefficient of determination R∗ enjoys these properties under modest conditions.

Assumption 4.32. Suppose that the functional T is as stated in Assumption
4.19 with associated identification function V . Let the scoring function S be
of the form (4.17), and suppose that x̂1, . . . x̂n in (4.26) originate from tuples
(x1, y1), . . . , (xn, yn) via Algorithm 4.1. Furthermore, let the following hold.

(i) The terms contributing to Ŝ and Ŝmg in (4.26) are finite, and Ŝmg > 0.

(ii) The values x1, . . . , xn have been fitted to y1, . . . , yn by in-sample empirical
loss minimization with respect to S, with any constant fit x1 = · · · = xn

being admissible.
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For example, suppose that T is the mean functional and S is the canonical squared
error scoring function. Then condition (i) is satisfied with the exception of the
trivial case where y1 = · · · = yn, and condition (ii) is satisfied under linear (or-
dinary least squares) mean regression with intercept. Similarly, if T is a quantile
and S is the canonical piecewise linear loss function, then (i) is satisfied except
when y1 = · · · = yn, and (ii) is satisfied under linear quantile regression with
intercept. In this light, the following theorem covers the classical settings for the
R2 and R1 measures.

Theorem 4.33. Under Assumption 4.32 it holds that

R∗ ∈ [0, 1]

with R∗ = 0 if xi = x̂0 for i = 1, . . . , n, and R∗ = 1 if xi = T(δi) for i = 1, . . . , n.

Proof. The claim follows from Theorem 4.28, the trivial fact that a constant fit is
a special case of an isotonic mapping, and the assumed form (4.17) of the scoring
function.

We emphasize that Assumption 4.32 and Theorem 4.33 are concerned with, and
tailored to, in-sample model diagnostics. At the expense of technicalities, the
regularity conditions can be relaxed, but the details are tedious and we leave
them to subsequent work. The condition that any constant fit x1 = · · · = xn be
admissible is critical and cannot be relaxed.

4.3.5 Empirical examples
We now illustrate the use of reliability diagrams, score decompositions, skill
scores, and the coefficient of determination R∗ for the purposes of forecast eval-
uation and model diagnostics.
In the basic setting of tuples (x1, y1), . . . , (xn, yn) of the form (4.24), the point
forecast xi represents the functional T of a posited distribution for yi. The most
prominent case of the mean functional and canonical squared error loss (4.19)
is illustrated in Figure 4.2, where point forecasts by Tredennick et al. (2021)
of (log-transformed) butterfly population size are assessed. The CORP mean
reliability diagram along with 90% consistency bands under the hypothesis of
mean calibration complements the scatter plot provided by Tredennick et al.
(2021, Figure 6). With a mean squared error (MSE) of 0.224, ridge regression
performs much better than the null model with an MSE of 0.262. The CORP
score decomposition shown in Figure 4.2 refines and supports the analysis.
We move on to discuss the more complex setting of tuples (F1, y1), . . . , (Fn, yn)
of the form (4.24), where Fi is a posited distribution for yi (i = 1, . . . , n). As
discussed in Section 4.2 and visualized in Figure 4.1, the traditional unconditional
notions of calibration, namely, probabilistic and marginal calibration, constitute
weak forms of reliability. For this very reason, we recommend that checks for
probabilistic and marginal calibration are given priority in this setting, much in
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Figure 4.8 Calibration diagnostics for Bank of England forecasts of CPI infla-
tion at a prediction horizon of one quarter: (a) PIT reliability diagram, along with
the empirical autocorrelation functions of (b) original and (c) squared, centered
PIT values, (d) marginal, (e) threshold, and (f) 75%-quantile reliability diagram.
If applicable, we show 90% consistency bands and CORP score components un-
der the associated canonical loss function, namely, the Brier score (BS) and the
piecewise linear quantile score (QS), respectively.

line with current practice. Typically, probabilistic calibration is checked by plot-
ting histograms of empirical probability integral transform (PIT) values (Diebold
et al., 1998; Gneiting et al., 2007), though this practice is hindered by the need
for binning. In Appendix 4.A.2.3, we discuss the PIT reliability diagram, a rarely
used alternative that avoids binning and retains the spirit of our CORP approach
by plotting the CDF of the empirical PIT values. Similarly, as we also discuss in
Appendix 4.A.2.3, the marginal reliability diagram can be used to assess marginal
calibration in the spirit of the CORP approach. If the analysis indicates gross
violations of probabilistic or marginal calibration, we note from Section 4.2 and
Figure 4.1 that key notions of conditional calibration must be violated as well.
Otherwise, we might proceed to check stronger conditional notions of calibration,
such as threshold, mean, and quantile calibration.
To illustrate this process, we consider quarterly Bank of England forecasts of
consumer price index (CPI) inflation rates, as issued since 2004. The forecast
distributions, for which we give details and refer to extant analyses in Appendix
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Figure 4.9 Score decomposition (4.28) respectively (4.30) and skill score (4.31)
for probability forecasts of not exceeding the 2% inflation target (left) and 75%-
quantile forecasts (right) induced by Bank of England fan charts for CPI inflation,
under the associated canonical scoring function.

4.A.3.2, are two-piece normal distributions that are communicated to the public
via fan charts. The forecasts are at prediction horizons up to six quarters ahead
in the time series setting, where k step ahead forecasts that are ideal with respect
to the canonical filtration show PIT values that are independent at lags ≥ k + 1
in addition to being uniformly distributed (Diebold et al., 1998). However, as
discussed in Appendix 4.A.3.1, independent, uniformly distributed PIT values do
not imply auto-calibration, except in a special case. Thus, calibration diagnostics
beyond checks of the uniformity and independence of the PIT are warranted.
In Figure 4.8, we consider forecasts one quarter ahead and show PIT and marginal
reliability diagrams, along with empirical autocorrelation functions (ACFs) for
the first two moments of the PIT. In part, the PIT reliability diagram and the
ACFs lie outside the respective 90% consistency bands. For a closer look, we also
plot the threshold reliability diagram at the policy target of 2% and the lower α-
quantile reliability diagram for α = 0.75. The deviations from reliability remain
minor, in stark contrast to calibration diagnostics at prediction horizons k ≥ 4,
for which we refer to Appendix 4.A.3.2.
Figure 4.9 shows the standard CORP decomposition (4.28) of the Brier score (BS)
for the induced probability forecasts at the 2% target and the extended CORP
decomposition (4.30) of the piecewise linear quantile score for α-quantile forecasts
at level α = 0.75 and lead times up to six quarters ahead. In the latter case, the
difference between MCB and MCBu equals the MCBc component. Generally, the
miscalibration components increase while the discrimination components decrease
with the lead time. Related results for the quantile functional can be found in
Pohle (2020, Table 5, Figures 7 and 8), where there is a notable increase in the
discrimination (resolution) component at the largest two lead times, which is
caused by counterintuitive decays in the recalibration functions. In contrast, the
regularizing constraint of isotonicity prevents overfitting in the CORP approach.
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The coefficient of determination or skill score R∗ decays with the prediction hori-
zon and becomes negative at lead times k ≥ 4. This observation suggests that
forecasts remain informative at lead times up to at most three quarters ahead,
in line with the substantive findings in Pohle (2020) and other extant work, as
hinted at in Appendix 4.A.3.2.

4.4 Model Diagnostics and Forecast Evaluation for
Quantiles

In Gneiting et al. (2023), we discuss the ubiquitous special case of quantile fore-
casts. In this section, I provide a brief overview focusing on peculiarities particular
to quantile forecasts along with a simple data example (from Gneiting et al., 2023,
Section 4.1), which illustrates in-sample and out-of-sample evaluation when fitting
multiple quantiles. Additionally, I discuss a test for simultaneous unconditional
quantile calibration used in a study by Colonna et al. (2022) and other studies
focusing on the validation of expert opinions. The test is simply a multinomial
test and thus the discussion nicely complements Chapter 3.

4.4.1 Evaluation of quantile forecasts and models
In Gneiting et al. (2023), we adapt the theory presented so far in this chapter
(i.e., the theory from Gneiting and Resin, 2021) to the particular case of quantiles.
Quantiles are important functionals frequently addressed in statistical modeling
(see Gneiting et al., 2023, and references therein). As probability distributions
are characterized by their quantile function, a finite number of posited quantiles
at suitable quantile levels may convey sufficient information about the conditional
distribution of the observation. Thus, it is common practice to fit or predict the
(conditional) quantiles of a real-valued outcome of interest at multiple levels.
Quantiles are an important family of identifiable functionals, to which the CORP
approach applies. Beyond CORP reliability diagrams and score decompositions,
unconditional quantile calibration may be assessed using coverage plots. In the
case of a stand-alone quantile prediction X at level α ∈ (0, 1), the general un-
conditional T-calibration condition (4.13) reduces to a classical non-exceedance
criterion,

P (Y ≤ X) ≥ α and P (Y ≥ X) ≤ 1− α,

that takes discreteness into account (Gneiting et al., 2023, Eq. 1.) similar to
the traditional unconditional coverage condition (4.10) for probabilistic forecasts.
In practice, this non-exceedance criterion can be validated by considering the
empirical coverage of the predictions. For data of the form (4.24), lower and
upper coverage are given by

c−α =
1

n

∑
i

1{yi < xi} and c+α =
1

n

∑
i

1{yi ≤ xi},
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respectively. Given a forecast specifying multiple quantiles, lower and upper
coverage are plotted against the respective quantile levels in a coverage plot.
Subject to unconditional quantile calibration, lower and upper coverage typically
nest the quantile level α. Hence, lower coverage frequently lies below the diagonal
in a coverage plot, whereas upper coverage tends to lie above it. When these
tendencies are not observed empirically, consistency intervals illustrate whether
the observed fluctuations might be a sign of unconditional miscalibration. In a
nutshell, a consistency interval shows the critical values of two one-sided binomial
tests with Bonferroni correction as briefly alluded to in Appendix 4.A.2.4 and
described in detail in Gneiting et al. (2023). The hypothesis of unconditional
quantile calibration at a fixed level is to be scrutinized if either lower coverage
exceeds the upper critical value or upper coverage falls below the lower critical
value, as observed in the coverage plot for the isotonic out-of-sample fit to Engel’s
food expenditure data at the lowest and highest quantile levels in Figure 4.11 of
Section 4.4.3.
While graphical displays such as coverage plots and reliability diagrams are impor-
tant diagnostic tools, comparative forecast evaluation calls for the use of consis-
tent scoring functions. Virtually all consistent scoring functions for the α-quantile
(α ∈ (0, 1)) are of the generalized piecewise linear (GPL) form, i.e., a consistent
scoring function can be written as

S(x, y) = (1{y ≤ x} − α)(g(x)− g(y)),

where g is a nondecreasing function (Gneiting, 2011a). The scoring function
S is strictly consistent if the function g is strictly increasing. The asymmetric
piecewise linear or pinball loss

S(x, y) = (1{y ≤ x} − α)(x− y) (4.33)

arises when g is the identity function.3 The elementary losses (4.16) can be used
to visualize forecast dominance in Murphy diagrams (Ehm et al., 2016). Note
that Ehm et al. (2016) and Gneiting et al. (2023) use elementary loss functions
that differ from the ones presented in (4.16). The Murphy diagram compares
the Murphy curve of multiple forecasts, i.e., it shows the mean elementary loss
of each forecast at each index η. If a forecast’s Murphy curve lies entirely below
the Murphy curve of a competing forecast, said forecast dominates the competing
forecast as it attains a better mean score under virtually all consistent scoring
functions. Therefore, a dominant forecast should be preferred by any rational
forecast user.

4.4.2 Simultaneous unconditional quantile calibration
“Cooke’s classical model” has been used by several authors to assess quantile
forecasts typically framed as expert opinions (see Colonna et al., 2022, and refer-
ences therein). In a nutshell, Cooke’s approach uses a p-value to quantify to which

3The scoring function (4.33) is a version of the canonical quantile loss function without the
unimportant additional factor 2, cf. Table 4.3.

78



degree the hypothesis of a forecast (or “expert judgment”) being calibrated (or
“statistically accurate”) is supported by the observations (Colonna et al., 2022,
Supplementary Information). The p-value is computed from a log-likelihood ra-
tio test as follows. A quantile forecast X = (Xαj

) at k ∈ N levels α1 < α2 <
· · · < αk naturally divides the real line into k+1 inter-quantile intervals I1(X) =
(−∞, X1], I2(X) = (X1, X2], . . . , Ik(X) = (Xk−1, Xk], Ik+1(X) = (Xk,∞). The
test evaluates whether the observed frequencies (#{yi ∈ Ij(xi)})kj=1 of observa-
tions falling within each of the respective inter-quantile intervals agree with the
hypothesized multinomial probabilities π = (α1, α2 − α1, . . . , αk − αk−1, 1− αk),
i.e., the null hypothesis Q(Y ∈ Ij(X)) = πj for j = 1, . . . , k. To this end,
Cooke’s approach uses the log-likelihood ratio statistic and derives the p-value
from the test statistic’s asymptotic chi-square distribution (Colonna et al., 2022,
Supplementary Information).
Notably, Cooke’s approach employs a simple multinomial test and other multi-
nomial tests (e.g., tests based on the chi-square or probability mass statistic,
see Section 3.2) may be used instead of the asymptotic log-likelihood ratio test.
When the number k of quantile levels is small, exact tests may be feasible using
the algorithm proposed in Chapter 3, as illustrated in the data example of Sec-
tion 4.4.3. Especially when the number of observations n is low, exact tests may
provide more accurate p-values than their asymptotic approximate counterparts.
The above null hypothesis is equivalent to simultaneous unconditional α-quantile
calibration at all levels α = α1, . . . , αk if the underlying (conditional) distributions
are continuous and hence the probability of the observation matching a predicted
quantile, P(Xαj

= Y ), is zero for all quantile levels αj. However, the test does
not account for discreteness, and the null hypothesis may fail to coincide with
the hypothesis of unconditional quantile calibration if lower and upper coverage
cannot be expected to match. In such cases, p-values tend to be very small even
for unconditionally calibrated quantile forecasts and hence uninformative or even
misleading, as is the case for the in-sample isotonic quantile regression fits in the
following data example.
Preliminary results presented in the next section suggest that the test can be
adapted to the discrete case by assigning observations matching a predicted quan-
tile dynamically to either adjacent interval in a way that maximizes the p-value.
One might call such an assignment a ’most favorable configuration’. Such a con-
figuration balances discrepancies between lower and upper coverage. Since upper
and lower coverage nest the quantile level in expectation under unconditional cal-
ibration, this adaptation results in a plausible configuration that is not rejected
by the multinomial test with high probability. The most favorable configuration
might yield a conservative test for the hypothesis of simultaneous unconditional
quantile calibration at all quantile levels as p-values might be somewhat inflated,
although this effect does not seem to be an issue with the out-of-sample isotonic
quantile regression fits in the following data example. A thorough examination
of the proposed remedy is beyond the scope of the present discussion, yet I see
the investigation of this adaptation as an interesting avenue for future research.
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Figure 4.10 Linear, log-linear, and isotonic quantile regression fits for Engel
(1857) food expenditure data against household income.

4.4.3 Engel’s food expenditure data: In-sample regression
diagnostics versus out-of-sample forecast evaluation

This section is adapted from the Annual Review of Statistics and Its Application,
Volume 10; copyright 2023 Annual Reviews, https://www.annualreviews.org.
We consider quantile regression fits for the classical food expenditure data from
Engel (1857) for 19th century European working-class households, as also dis-
cussed by Koenker (2005, pp. 78, 297–307). Engel’s conclusion that the share of
income that is used for food expenditure decreases with income is known as En-
gel’s law and stands in today’s work on poverty and especially poverty reduction
as one of the most enduring relationships in economics (Blundell et al., 2007).
Modeling conditional quantiles for a range of levels (α = 0.1, 0.25, 0.5, 0.75, 0.9),
instead of the conditional mean, allows a comprehensive assessment of Engel’s
law. We compare standard (linear) quantile regression, linear quantile regres-
sion on log-transformed values (Koenker, 2005, p. 78) and nonparametric iso-
tonic quantile regression (Wright, 1984) both in-sample and out-of-sample, using
leave-one-out cross-validation, based on Engel’s data of size n = 235.
We first fit a standard quantile regression model of food expenditure on income.
The parametric form imposes a linear relationship, which in view of Engel’s law
is too restrictive. Following Koenker (2005, p. 78), we also use a linear model
of the log-transformed quantities, where slope values smaller than one support
Engel’s law, for log(y) = β1 + β2 log(x) is equivalent to y = exp(β1)x

β2 so that
β2 < 1 implies a concave relationship. Indeed, we find estimated slope coefficients
between 0.80 and 0.92. Finally, we use isotonic quantile regression as a fully
flexible nonparametric method. Evidently, the isotonicity assumption is satisfied.
Figure 4.10 shows the in-sample model fit for the three methods and five quantile
levels. The log-linear model fits show a slightly concave shape, as can be expected
by Engel’s law, which is confirmed by the nonparametric isotonic estimates.
In Figure 4.11, Figure 4.12 and Table 4.5, we contrast in-sample model diag-
nostics and out-of-sample (leave-one-out cross-validation) forecast evaluation for
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Figure 4.11 In-sample (top row) and out-of-sample (bottom row) coverage plots,
depicting the intervals [c−α , c

+
α ] along with 90% consistency bands, for quantile

regression fits to Engel (1857) food expenditure data.
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Figure 4.12 In-sample (top row) and out-of-sample (bottom row) α-quantile
reliability diagrams (α = 0.1), along with 90% consistency bands, for quantile
regression fits to Engel (1857) data.
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Table 4.5 In-sample and out-of-sample CORP components of the mean pinball
loss Ŝ for α-quantile regression fits to Engel (1857) food expenditure data.

Level Components In-sample Out-of-sample
(UNC) Linear Log-linear Isotonic Linear Log-linear Isotonic

Ŝ 16.5 15.1 12.0 17.5 15.2 18.3
α = 0.1 MCBu 0.0 0.0 0.0 0.0 0.0 0.4
(32.6) MCBc 4.5 3.1 0.0 5.5 3.2 4.7

DSC 20.6 20.6 20.6 20.6 20.6 19.4

Ŝ 30.1 29.2 23.0 30.6 29.8 30.8
α = 0.25 MCBu 0.0 0.0 0.0 0.0 0.0 0.1

(67.6) MCBc 7.1 6.2 0.0 7.3 6.6 4.4
DSC 44.6 44.6 44.6 44.3 44.4 41.3

Ŝ 37.4 36.6 28.5 38.0 37.3 37.8
α = 0.5 MCBu 0.0 0.0 0.0 0.0 0.0 0.0
(98.5) MCBc 8.9 8.1 0.0 8.9 8.1 5.5

DSC 70.0 70.0 70.0 69.4 69.3 66.2

Ŝ 27.9 27.6 21.0 28.6 28.4 30.0
α = 0.75 MCBu 0.0 0.0 0.0 0.0 0.0 0.0

(91.6) MCBc 6.9 6.6 0.0 6.9 6.6 5.2
DSC 70.6 70.6 70.6 69.9 69.8 66.8

Ŝ 14.4 14.4 10.2 15.0 14.9 17.8
α = 0.9 MCBu 0.0 0.0 0.0 0.0 0.0 0.6
(61.3) MCBc 4.2 4.2 0.0 4.4 4.3 5.4

DSC 51.1 51.1 51.1 50.7 50.7 49.5

the three methods.4 Perfect in-sample coverage is guaranteed by the partitioning
inequalities of quantile regression. Similarly, isotonic regression fits show per-
fect in-sample unconditional and conditional calibration by construction, with
reliability diagrams that are constrained to the diagonal. While the linear and
log-linear models retain good coverage out-of-sample, unconditional and condi-
tional calibration deteriorate notably for the isotonic model.
Table 4.5 shows the mean pinball loss computed from (4.33) along with the CORP
decomposition. In-sample, all three methods show perfect unconditional calibra-
tion with a vanishing MCBu component, and they also share the DSC component,
for they are isotonic transformations of each other. The MCBc component van-
ishes for the isotonic model and is slightly better for the log-linear than for the
linear model. The nonparametric isotonic regression technique is prone to overfit-
ting in small samples, which results in the best scores in-sample but worse scores
out-of-sample when compared to the parametric linear and log-linear models. In-
terestingly, isotonic regression also has the worst out-of-sample DSC components.
Both in-sample and out-of-sample, the log-linear model has slightly better scores

4To generate consistency bands in the reliability diagrams, we resample residuals of log-
transformed values, which seems natural here and in other applications with strictly positive
data, where variability increases as observed values increase.
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Table 4.6 Exact p-values obtained from the unconditional calibration test (based
on the log-likelihood ratio statistic) detailed in Section 4.4.2 using both Cooke’s
classical approach and the proposed adaption for in-sample and out-of-sample
α-quantile regression fits to Engel (1857) food expenditure data.

In-sample Out-of-sample
Approach Linear Log-linear Isotonic Linear Log-linear Isotonic

Classical 0.9988 0.9997 0.0004 1.0000 1.0000 0.0006
Proposed 1.0000 1.0000 1.0000 1.0000 1.0000 0.0015

than the linear model, providing additional support for Engel’s law.
Table 4.6 contrasts Cooke’s classical approach detailed in Section 4.4.2 with the
proposed adaption using a most favorable configuration. As hinted at in the
preceding section, Cooke’s approach does not cope well with posited quantiles
matching the respective observations. This issue is strikingly apparent with the
in-sample isotonic regression fits, which are perfectly calibrated despite the mi-
nuscule p-value assigned by the unconditional calibration test. If the p-value of
a favorable configuration is considered, the issue disappears, while the p-value of
the miscalibrated out-of-sample fits remains small. Notably, the out-of-sample
linear and log-linear fits show nearly perfect coverage, as evidenced by p-values
of almost 1. This unexpected behavior appears to be due to the leave-one-out
cross-validation scheme and the linear nature of the respective models as obser-
vations that lie above the in-sample fit end up lying above the out-of-sample fit,
while observations below the in-sample fit end up below the out-of-sample fit.

4.5 Discussion
We have developed a comprehensive theoretical and methodological framework
for the analysis of calibration and reliability, serving the purposes of both (out-of-
sample) forecast evaluation and (in-sample) model diagnostics. A common prin-
ciple is that fitted or predicted distributions ought to be calibrated or reliable,
ideally in the sense of auto-calibration, which stipulates that the outcomes are
random draws from the posited distributions. For general real-valued outcomes,
we have seen that auto-calibration is stronger than both classical unconditional
and recently proposed conditional notions of calibration. We have developed hi-
erarchies of calibration in the spirit of Van Calster et al. (2016), as highlighted
in Figure 4.1, and proposed a generic notion of conditional calibration in terms
of statistical functionals. Specifically, a posited distribution is conditionally T-
calibrated if the induced point forecast for the functional T can be taken at face
value. This concept continues to apply when stand-alone point forecasts or regres-
sion output in terms of the functional T are to be evaluated and can be assessed
via T-reliability diagrams and associated score decompositions. Importantly, our
tools apply regardless of how forecasts are generated, be it through the use of
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traditional statistical regression models, modern machine learning techniques, or
even subjective human judgment.
We have adopted and generalized the nonparametric approach of Dimitriadis et al.
(2021), who obtained consistent, optimally binned, reproducible, and PAV based
(CORP) estimators of T-reliability diagrams and score components in the case
of probability forecasts for binary outcomes. While our tools apply in the much
broader setting of identifiable functionals and real-valued outcomes, the argu-
ments put forth by Dimitriadis et al. (2021) continue to apply, in that CORP es-
timators are bound to, simultaneously, improve statistical efficiency, reproducibil-
ity (Stodden et al., 2016), and stability (Yu and Kumbier, 2020). In a nutshell,
the CORP approach is flexible, due to its use of nonparametric regression for
recalibration, and yet it avoids overfitting, owing to the regularizing constraint
of isotonicity. Notably, the CORP score decomposition yields a new, universal
coefficient of determination, R∗, that nests and generalizes the classical R2 in
ordinary least squares (mean) regression, and its cousin R1 in quantile regression.
In independent work, Allen (2021) also observes the link between skill scores,
score decompositions, and the coefficient of determination. We have illustrated
the CORP approach on Bank of England forecasts of inflation, along with a brief
ecological example. Furthermore, a brief review of the particular case of forecasts
in the form of (one or multiple) quantiles, accompanied by a case study, was
provided. Code in R (R Core Team, 2022) for reproducing our results is available
(Resin, 2021b; Wolffram et al., 2022).
Follow-up work on the CORP approach for specific functionals T is essential,
including but not limited to the ubiquitous cases of quantiles and the mean func-
tional, where the newly developed tools can supplement classical approaches to
regression diagnostics, as hinted at in the ecological example. In particular, we
have applied a crude, all-purpose, residual-based permutation approach to gen-
erate consistency bands for T-reliability diagrams under the hypothesis of T-
calibration. Clearly, this approach can be refined, and we anticipate vigorous
work on consistency and confidence bands, based on either resampling or large
sample theory, akin to the developments in Dimitriadis et al. (2021) for proba-
bility forecasts of binary outcomes. Similarly, CORP estimates of miscalibration
components under canonical loss functions are natural candidates for the quan-
tification of calibration error in empirical work. Reliability and discrimination
ability are complementary attributes of point forecasts and regression output,
and discrimination can be assessed quantitatively via the respective score com-
ponent. When many forecasts are to be compared with each other, scatter plots
of CORP miscalibration (MCB) and discrimination (DSC) components admit suc-
cinct visual displays of predictive performance. In this type of display, forecasts
with the same score or, equivalently, identical coefficient of determination, R∗,
gather on lines with unit slope, and multiple facets of forecast quality can be as-
sessed simultaneously, for a general alternative to the widely used Taylor (2001)
diagram.
Formal tests of hypotheses of calibration are critical in both specific applications,
such as banking regulation (e.g., Nolde and Ziegel, 2017), and in generic tasks,
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such as the assessment of goodness-of-fit in regression (Dimitriadis et al., 2021,
Section S2). In Appendix 4.A.2.4, we comment on this problem from the perspec-
tive of the theoretical and methodological advances presented here. While specific
developments need to be deferred to future work, it is our belief that the progress
in our understanding of notions and hierarchies of calibration, paired with the
CORP approach to estimating reliability diagrams and score components, can
spur a wealth of new and fruitful developments in these directions.

85



4.A Appendix
4.A.1 Supporting calculations for Section 4.2
Here, we provide supporting computations and discussion for Examples 4.2 and
4.4, Definitions 4.9 and 4.24, Figures 4.4 and 4.5, and Table 4.4, along with
a discussion of the relation between probabilistic calibration and unconditional
quantile calibration, and a counterexample hinted at in the main text. For sub-
sequent use, the first three (non-centered) moments of the normal distribution
N (µ, σ2) are µ, µ2 + σ2, and µ3 + 3µσ2. As in the main text, we let ϕ and Φ
denote the density and the cumulative distribution function (CDF), respectively,
of a standard normal variable.

4.A.1.1 Unfocused forecast

For fixed a, b ∈ R, the function

y 7→ Φa(y − b) =
1

2
(Φ(y − b) + Φ(y − a− b))

is a CDF. The random CDF (4.2) for the unfocused forecast in Example 4.2
can be written as F (y) = Φη(y − µ), where η and µ are independent random
variables and η = ±η0 for some constant η0 > 0. Then the conditional CDF for
the outcome Y given the posited (non) exceedance probability F (t) at any fixed
threshold t ∈ R or, equivalently, given the quantile forecast F−1(α) at any fixed
level α ∈ (0, 1) is

P(Y ≤ y | F (t) = α) = P(Y ≤ y | F−1(α) = t) = P(Y ≤ y | µ = t− Φ−1
η (α))

=
1∑

s=±1 ϕ(t− Φ−1
sη0

(α))

∑
s=±1

ϕ(t− Φ−1
sη0

(α)) Φ(y − (t− Φ−1
sη0

(α))).

As F is symmetric, conditioning on the mean is the same as conditioning on the
median. The second moment is m2(F ) = 1 + µ2 + µη + 1

2
η2 ≥ 1 + 1

4
η2, so that

P(Y ≤ y | m2(F ) = m) = P

(
Y ≤ y | µ = −1

2
η ±

√
m− 1− 1

4
η2

)
is a mixture of normal distributions. Similarly, the third moment is m3(F ) =
µ3 + 3

2
ηµ2 + 3

(
1
2
η2 + 1

)
µ + 1

2
η (η2 + 3) = f(µ; η), so that P(Y ≤ y | m3(F ) =

m) = P(Y ≤ y | f(µ; η) = m) also is a mixture of normal distributions. To
compute the roots of the mapping x 7→ f(x; η), we fix η at ±η0 and use a numeric
solver (polyroot in R).
As regards the score decomposition (4.15) with S(x, y) = (x− y)2 for the implied
mean-forecast, m1(F ) = µ + 1

2
η, the expected score of the recalibrated mean-

forecast is

S̄rc = E

[∑
s=±1 ϕ

(
m1(F ) + s

2
η0
) (

m1(F ) + s
2
η0
)∑

s=±1 ϕ
(
m1(F ) + s

2
η0
) − Y

]2
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= E

[∑
s=±1 ϕ

(
µ+ 1

2
η + s

2
η0
) (

1
2
η + s

2
η0
)∑

s=±1 ϕ
(
µ+ 1

2
η + s

2
η0
) − (Y − µ)

]2

= η20 E
[

ϕ(µ+ η)

ϕ(µ) + ϕ(µ+ η)

]2
+ E[Y − µ]2 = η20 E

[
Ψ2

η0
(µ)
]
+ 1,

where we define Ψa(x) = ϕ(x + a)/(ϕ(x) + ϕ(x + a)) for a ∈ R and note that
E[Ψ2

η(µ) | η] = E[Ψ2
η0
(µ)]. The associated integral

I(η0) = E
[
Ψ2

η0
(µ)
]
=

∫ ∞

−∞

(
ϕ(x+ η0)

ϕ(x) + ϕ(x+ η0)

)2

ϕ(x) dx

needs to be evaluated numerically.

4.A.1.2 Lopsided forecast

We proceed in analogy to the development for the unfocused forecast. For fixed
a ∈ [0, 1] and b ∈ R, the function

y 7→ Φa(y − b) = (1− a)Φ(y − b)1{y ≤ b}+ ((1 + a)Φ(y − b)− a)1{y > b}

is a CDF. The CDF for the lopsided forecast with random density (4.3) from
Example 4.2 can be written as F (y) = Φδ(y−µ), where δ and µ are independent
random variables and δ = ±δ0 for some δ0 ∈ (0, 1). As E[Φδ(y − µ) | µ] = Φ(y −
µ), the lopsided forecast is marginally calibrated. It fails to be probabilistically
calibrated since ZF = Φδ(Y − µ) has CDF

P(ZF ≤ u) =
1

2

∑
s=±1

(
u

1− sδ0
1

{
u

1− sδ0
≤ 1

2

}
+

u+ sδ0
1 + sδ0

1

{
u

1− sδ0
>

1

2

})
for u ∈ (0, 1) by the law of total probability.
The conditional CDF for the outcome Y given the posited (non) exceedance
probability F (t) at any fixed threshold t ∈ R or, equivalently, given the quantile
forecast F−1(α) at any fixed level α ∈ (0, 1) is

P(Y ≤ y | F (t) = α) = P(Y ≤ y | F−1(α) = t) = P(Y ≤ y | µ = t− Φ−1
δ (α))

=
1∑

s=±1 ϕ(t− Φ−1
sδ0

(α))

∑
s=±1

ϕ(t− Φ−1
sδ0

(α)) Φ(y − (t− Φ−1
sδ0

(α))),

where Φ−1
a (α) = Φ−1(α/(1−a)) if α ≤ 1

2
(1−a) and Φ−1

a (α) = Φ−1((a+α)/(a+1))
otherwise.
As F is a mixture of truncated normal distributions, its moments are mixtures of
the component moments, for which we refer to Orjebin (2014). The first moment
is m1(F ) = µ+ 2δϕ(0), so that

P(Y ≤ y | m1(F ) = m) = P(Y ≤ y | µ = m− 2δϕ(0))

=
1∑

s=±1 ϕ(m− 2sδ0ϕ(0))

∑
s=±1

ϕ(m− 2sδ0ϕ(0)) Φ(y − (m− 2sδ0ϕ(0)))
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is a mixture of normal distributions. Similarly, the second and third moments are
m2(F ) = µ2+1+4δϕ(0)µ ≥ 1−4δ2ϕ(0)2 andm3(F ) = µ3+3µ+2δϕ(0)(3µ2+2) =
f(µ; δ), respectively, so that

P(Y ≤ y | m2(F ) = m) = P(Y ≤ y | µ = −2δϕ(0)±
√
4δ2ϕ(0)2 − 1 +m),

P(Y ≤ y | m3(F ) = m) = P(Y ≤ y | f(µ; δ) = m)

also admit expressions as mixtures of normal distributions. Again, we use a
numeric solver to find the roots of x 7→ f(x;±δ0).
As the implied mean-forecast, m1(F ) = µ + 2δϕ(0), agrees with the implied
mean-forecast of the unfocused forecast with η = (8/π)1/2δ, the terms in the
score decomposition (4.15) with S(x, y) = (x − y)2 derive from the respective
terms in the score decomposition for the unfocused forecast, as illustrated in
Figure 4.5.

4.A.1.3 Piecewise uniform forecast

Given any fixed index i ∈ {1, 2, 3}, let the tuple (p(i)1 , p
(i)
2 , p

(i)
3 ; q

(i)
1 , q

(i)
2 , q

(i)
3 ) attain

the value (1
2
, 1
4
, 1
4
; 5
10
, 1
10
, 4
10
) if i = 1, the value (1

4
, 1
2
, 1
4
; 1
10
, 8
10
, 1
10
) if i = 2, and the

value (1
4
, 1
4
, 1
2
; 4
10
, 1
10
, 5
10
) if i = 3. Furthermore, let Pi be the CDF of a mixture

of uniform measures on [0, 1], [1, 2], and [2, 3] with weights p
(i)
1 , p

(i)
2 , and p

(i)
3 , re-

spectively. Similarly, let Qi be the CDF of the respective mixture with weights
q
(i)
1 , q

(i)
2 , and q

(i)
3 , respectively.

The random CDF for the piecewise uniform forecast in Example 4.4 can then be
written as F (x) = Pι(x−µ), where the random variables ι and µ are independent,
and the integer-valued variable ι is such that

(p1, p2, p3; q1, q2, q3) =
(
p
(ι)
1 , p

(ι)
2 , p

(ι)
3 ; q

(ι)
1 , q

(ι)
2 , q

(ι)
3

)
.

The conditional CDF for the outcome Y given the posited (non) exceedance
probability F (t) at any fixed threshold t ∈ R or, equivalently, given the quantile
forecast F−1(α) at any fixed level α ∈ (0, 1) then is

P(Y ≤ y | F (t) = α) = P(Y ≤ y | F−1(α) = t) = P(Y ≤ y | µ = t− P−1
ι (α))

=
1∑

i=1,2,3 ϕ
(

t−P−1
i (α)

c

) ∑
i=1,2,3

ϕ

(
t− P−1

i (α)

c

)
Qi(y − (t− P−1

i (α))),

where c is the standard deviation of µ, as defined in Example 4.4. The first
moment of F is m1(F ) = µ+ 1 + 1

4
ι, so that

P(Y ≤ y | m1(F ) = m) = P(Y ≤ y | µ = m− 1− 1
4
ι)

=
1∑

i=1,2,3 ϕ
(

m−1− 1
4
i

c

) ∑
i=1,2,3

ϕ

(
m− 1− 1

4
i

c

)
Qi(y − (m− 1− 1

4
i))
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is a mixture of shifted versions of Q1, Q2, and Q3. The associated first moment
is the respective mixture of m+ 3

20
, m, and m− 3

20
.

Given any integer k ≥ 0, let βk =
∑

j=1,2,3

(
jk+1 − (j − 1)k+1

)
p
(ι)
j . The second

moment of F is m2(F ) = µ2 + β1µ+ 1
3
β2, whence

P(Y ≤ y | m2(F ) = m) = P

(
Y ≤ y | µ = −1

2
β1 ±

√
1

4
β2
1 −

1

3
β2 +m

)
also admits an expression in terms of mixtures of shifted versions of Q1, Q2, and
Q3. Finally, the third moment of F is m3(F ) = µ3+ 3

2
β1µ

2+β2µ+
1
4
β3 = f(µ; ι),

so that the conditional distribution P(Y ≤ y | m3(F ) = m) = P(Y ≤ y | f(µ; ι) =
m) and the associated third moment can be computed analogously.

4.A.1.4 Identification functions, unconditional calibration, and canonical
loss

In this section, we demonstrate that Definitions 4.9 and 4.24 are unambiguous
and do not depend on the choice of the identification function, which is essentially
unique. To this end, we first contrast the notions of identification functions in
Fissler and Ziegel (2016) and Jordan et al. (2022). Fissler and Ziegel (2016) call
V : R × R → R a (strict F -)identification function if V (x, ·) is integrable with
respect to all F ∈ F for all x ∈ R. Jordan et al. (2022) additionally require V
to be increasing and left-continuous in its first argument. Furthermore, there is
a subtle difference in the way that the functional is induced. While Fissler and
Ziegel (2016) define the induced functional as the set

T0(F ) =

{
x ∈ R :

∫
V (x, y) dF (y) = 0

}
,

Jordan et al. (2022) define it to be the closed interval T (F ) = [T−(F ), T+(F )],
where T−(F ) and T+(F ) are defined in (4.7) and (4.8), respectively. The approach
by Jordan et al. (2022) allows for quantiles to be treated in full generality and
ensures that the interval T(F ) coincides with the closure of T0(F ) if the latter is
nonempty.
In the setting of Fissler and Ziegel (2016), if V is an identification function, then
so is (x, y) 7→ h(x)V (x, y) whenever h(x) 6= 0 for all x ∈ R. If the class F is
sufficiently rich, then any two locally bounded identification functions V and Ṽ
that induce a functional T0 of singleton type relate to each other in the stated
form almost everywhere on the interior of T0(F)× R (Dimitriadis et al., 2022b,
Theorem 4), which implies that increasing identification functions of prediction
error form are unique up to a positive constant. The following proposition pro-
vides an elementary proof under slightly different conditions that are tailored
to our setting. Notably, identification functions of prediction error form induce
functionals that are equivariant under translation by Proposition 4.7 of Fissler
and Ziegel (2019), a result which can easily be transferred to the setting of Jordan
et al. (2022).
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Proposition 4.34. Let F be a convex class of probability measures such that
δy ∈ F for all y ∈ R. If the functional T is induced on F by an identification
function V (x, y) = v(x − y) of prediction error form, where v is increasing and
left-continuous with v(−r) < 0 and v(r) > 0 for some r > 0, then any other
identification function of the stated form that induces T on F is a positive multiple
of V .

Proof. Let V : (x, y) 7→ v(x− y) and Ṽ : (x, y) 7→ ṽ(x− y) induce the functionals
T and T̃, respectively. We proceed to show that T = T̃ implies ṽ = h0 · v for
some constant h0 > 0.
To this end, suppose that T = T̃, and let

r− = sup{r : ṽ(r) < 0} = T̃−(δ0) = T −(δ0) = sup{r : v(r) < 0} > −∞,

r+ = inf{r : ṽ(r) > 0} = T̃+(δ0) = T +(δ0) = inf{r : v(r) > 0} <∞.

By left-continuity and monotonicity of v and ṽ, it follows that v(r) = ṽ(r) = 0
for r ∈ (r−, r+], v(r) < 0 and ṽ(r) < 0 for r < r−, and v(r) > 0 and ṽ(r) > 0 for
r > r+.
Let h(r) = ṽ(r)/v(r) > 0 for r ∈ R \ [r−, r+]. If r < r− ≤ r+ < s, then
ṽ(r) = h(r)v(r) < 0 and ṽ(s) = h(s)v(s) > 0. Assume h(r) < h(s), and let
p ∈ (0, 1) be such that(

1− h(s)v(s)

h(r)v(r)

)−1

< p <

(
1− v(s)

v(r)

)−1

.

Then (1− p)h(r)v(r) + ph(s)v(s) > 0 > (1− p)v(r) + pv(s) and T̃+(pδ−s + (1−
p)δ−r) < 0 ≤ T −(pδ−s + (1 − p)δ−r), a contradiction. An analogous argument
applies if we assume that h(r) > h(s), and we conclude that h(r) = h(s).
If r, s < r−, then h(r) = h(s) = h(t) for any t > r+ by the above line of reasoning.
An analogous argument yields h(r) = h(s) for r, s > r+. Therefore, the function
h is constant and v(r) = h0 · ṽ(r) for a constant h0 > 0 and all r ∈ R \ {r−}.
Finally, we obtain v(r−) = limr↑r− v(r) = limr↑r− h0 · ṽ(r) = h0 · ṽ(r−) by left-
continuity.

Hence, if we assume an identification function of type (i) in Assumption 4.8,
Definitions 4.9 and 4.24 do not depend on the choice of the identification function,
as it is unique up to a positive constant. Trivially, the same holds true for type (ii).
To complete the argument that the definitions are unambiguous, the following
technical argument is needed.

Remark 4.35. If a functional T of singleton type is identified by both an iden-
tification function V (x, y) = v(x − y) of type (i) and an identification function
Ṽ (x, y) = x − T(δy) of type (ii), then Ṽ is also of type (i). To confirm this
claim, let z denote the unique value at which the sign of v changes, and note that
z = T(δy) − y for all y since V induces the functional T for each Dirac measure
δy. Hence, T(δy) = y + z and Ṽ (x, y) = x− y − z is of type (i).
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We close this section with comments on the role of the class F . As expressed
by Assumption 4.8, we prefer to work with identification functions that elicit
the target functional T on a large, convex class F of probability measures, to
avoid unnecessary constraints on forecast(er)s. Furthermore, when evaluating
stand-alone point forecasts, the underlying predictive distributions typically are
implicit, and assumptions other than the existence of the functional at hand are
unwarranted and contradict the prequential principle. Evidently, if the class F
is sufficiently restricted, additional identification functions arise. For example,
the piecewise constant identification function associated with the median can be
used to identify the mean within any class of symmetric distributions.

4.A.1.5 Strong threshold calibration does not imply auto-calibration

As pointed out by Sahoo et al. (2021, p. 5), strong threshold calibration does not
imply auto-calibration. Here, we provide a simple example illustrating this fact
as Sahoo et al. (2021) do not present such. The example is similar in spirit to the
continuous forecast of Example 4.14(a) (as c → 0) but with strictly increasing
distribution functions satisfying Assumption 4.15.

Example 4.36. Let F be a mixture of uniform distributions on the intervals
[0, 1], [1, 2], [2, 3], and [3, 4] with weights p1, p2, p3, and p4, respectively, and let
Y be from a mixture with weights q1, q2, q3, and q4. Furthermore, let the tuple
(p1, p2, p3, p4; q1, q2, q3, q4) attain each of the values(
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with equal probability. The equal average of the distribution of the PIT condi-
tional on either forecast from the top row, and either forecast from the bottom
row, is uniform. As any nontrivial conditioning in terms of a threshold yields a
combination of two forecast cases, one from the top row and one from the bottom
row, the forecast F is strongly threshold calibrated.

4.A.1.6 Remarks on Figure 4.4

The root transforms in the moment reliability diagrams in the bottom row of
Figure 4.4 bring the first, second, and third moment to the same scale. The
peculiar dent in the reliability curve for the (third root of the) third moment of
the piecewise uniform forecast results from the transform, which magnifies small
deviations between x = m3(F ) and xrc when x is close to zero. For comparison,
Figure 4.13 shows moment reliability diagrams for all three forecasts without
applying the root transform.

4.A.2 Consistency resamples and calibration tests
Monte Carlo based consistency bands for T-reliability diagrams can be generated
from resamples, at any desired nominal level. The consistency bands then show
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Figure 4.13 Same as the lower row of Figure 4.4 but with displays on origi-
nal (rather than root-transformed) scales: Moment reliability diagrams for point
forecasts induced by (left) the unfocused forecast with η0 = 1.5 and (middle)
the lopsided forecast with δ0 = 0.7 from Example 4.2, and (right) the piecewise
uniform forecast with c = 0.5 from Example 4.4.

the pointwise range of the resampled calibration curves. For now, let us assume
that we have data (x1, y1), . . . , (xn, yn) of the form (4.24) along with m resamples
at hand, and defer the critical question of how to generate the resamples.

Algorithm 4.2. Consistency bands for T-reliability curves based on
resamples

Input: resamples (x1, ỹ
(j)
1 ), . . . , (xn, ỹ

(j)
n ) for j = 1, . . . ,m

Output: α× 100% consistency band
for j ∈ {1, . . . ,m} do

apply Algorithm 4.1 to obtain x̂
(j)
1 , . . . , x̂

(j)
n from

(x1, ỹ
(j)
1 ), . . . , (xn, ỹ

(j)
n )

end
for i ∈ {1, . . . , n} do

let li and ui be the empirical quantiles of x̂(1)
i , . . . , x̂

(m)
i at level α

2
and

1− α
2

end
interpolate the point sets (x1, l1), . . . , (xn, ln) and (x1, u1), . . . , (xn, un)
linearly, to obtain the lower and upper bound of the consistency band,
respectively

Complementary to consistency bands, tests for the assumed type of calibration,
as quantified by the functional T and a generic miscalibration measure MCB,
can be performed as usual. Specifically, we compute MCBj for each resample
j = 1, . . . ,m, and, if r of the resampled measures MCB1, . . . ,MCBm are less
than or equal to the miscalibration measure computed from the original data, we
declare a Monte Carlo p-value of 1− r

m+1
.
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4.A.2.1 Consistency resamples under the hypothesis of auto-calibration

When working with original data of the form (4.23), we can generate resamples
under the hypothesis of auto-calibration in the obvious way, as follows.

Algorithm 4.3. Consistency resamples under the hypothesis of auto-
calibration

Input: (F1, y1), . . . , (Fn, yn)

Output: resamples (x1, ỹ
(j)
1 ), . . . , (xn, ỹ

(j)
n ) for j = 1, . . . ,m

for i ∈ {1, . . . , n} do
let xi = T(Fi)

end
for j ∈ {1, . . . ,m} do

for i = 1, . . . , n do
sample ỹ

(j)
i from Fi

end
end

As noted, in the case of threshold calibration, the induced outcome is binary,
whence the assumptions of auto-calibration and T-calibration coincide. For other
types of functionals, auto-calibration is a strictly stronger assumption than T-
calibration, and it is important to note that the resulting inferential procedures
may be confounded by forecast attributes other than T-calibration. For illustra-
tion, let us return to the setting of Example 4.1 and suppose that, conditionally
on a standard normal variate µ, the outcome Y is normal with mean µ and vari-
ance 1. Given any fixed σ > 0, the forecast Fσ = N (µ, σ2) is auto-calibrated
if, and only if, σ = 1. However, if T is the mean or median functional, then Fσ

is T-calibrated under any σ > 0. Clearly, if we use Algorithm 4.3 to generate
resamples, then the consistency bands generated by Algorithm 4.2 might be mis-
leading with regard to the assessment of T-calibration. For example, if σ < 1
the confidence bands tend to be narrow and might erroneously suggest a lack of
T-calibration, despite the forecast being T-calibrated.

4.A.2.2 Consistency resamples under the hypothesis of T-calibration

The issues just described call for an alternative to Algorithm 4.3. Residual-
based approaches can be used to generate resamples under the weaker hypothesis
of T-calibration. In developing such a method, we restrict the discussion to
single-valued functionals T under which yi = T(δi), which covers all cases of key
interest, such as the mean functional, lower or upper quantiles, and expectiles.
As is standard in regression diagnostics, residual-based approaches operate on
the basis of tuples (x1, y1), . . . , (xn, yn) of the form (4.24) under the assumptions
of independence between the point forecast, xi, and the residual, yi − xi, and
exchangeability of the residuals. For a discussion in the context of backtests in
banking regulation, see Example 3 of Nolde and Ziegel (2017).
Interestingly, Theorem 4.21 demonstrates that under these assumptions a forecast
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is conditionally T-calibrated if, and only if, it is unconditionally T-calibrated.
Thus, we draw resamples in a two-stage procedure. First, we find the constant c
from Theorem 4.27 such that the empirical distribution of (x1 + c, y1), . . . , (xn +
c, yn) or, equivalently, (x1, y1−c), . . . , (xn, yn−c), is unconditionally T-calibrated,
and then we resample from the respective residuals, as follows.

Algorithm 4.4. Consistency resamples under the joint hypothesis of
T-calibration and independence between point forecasts and residuals

Input: (x1, y1), . . . , (xn, yn)

Output: resamples (x1, ỹ
(j)
1 ), . . . , (xn, ỹ

(j)
n ) for j = 1, . . . ,m

for i = 1, . . . , n do
let ri = yi − xi

end
find c such that (x1 + c, y1), . . . , (xn + c, yn) is unconditionally
T-calibrated

for j ∈ {1, . . . ,m} do
sample r̃1, . . . , r̃n from {r1, . . . , rn} with replacement
for i = 1, . . . , n do

let ỹi = xi + r̃i − c
end

end

As noted in the main text, the consistency bands for the threshold reliability dia-
grams in Figures 4.6 and 4.8 have been generated by Algorithms 4.2 and 4.4. This
approach is similar to the Monte Carlo technique proposed by Dimitriadis et al.
(2021) that applies in the case of (induced) binary outcomes (only). However,
unlike Dimitriadis et al. (2021), we do not resample the forecasts themselves.
To generate consistency bands for the mean and quantile reliability diagrams in
these figures, we apply Algorithm 4.2 to m = 1000 resamples generated by Algo-
rithm 4.4. Evidently, this procedure is crude and relies on classical assumptions.
Nonetheless, we believe that in many practical settings, where visual tools for
diagnostic checks of calibration are sought, the consistency bands thus generated
provide useful guidance.
Further methodological development on consistency and confidence bands needs
to be tailored to the specific functional T of interest, and follow-up work on Monte
Carlo techniques and large sample theory is strongly encouraged. Extant asymp-
totic theory for nonparametric isotonic regression, as implemented by Algorithm
4.1, is available for quantiles and the mean or expectation functional, as devel-
oped and reviewed by Barlow et al. (1972), Casady and Cryer (1976), Wright
(1984), Robertson et al. (1988), El Barmi and Mukerjee (2005), and Mösching
and Dümbgen (2020), and can be leveraged, though with hurdles, as rates of
convergence depend on distributional assumptions and limit distributions involve
nuisance parameters that need to be estimated, whereas the use of bootstrap
methods might be impacted by the issues described by Sen et al. (2010).
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4.A.2.3 Reliability diagrams and consistency bands for probabilistic and
marginal calibration

For the classical notions of unconditional calibration in Section 4.2.2, the CORP
approach does not apply directly, but its spirit can be retained and adapted.
As for probabilistic calibration, the prevalent practice is to plot histograms of
empirical probability integral transform (PIT) values, as proposed by Diebold
et al. (1998), Gneiting et al. (2007), and Czado et al. (2009), though this prac-
tice is hindered by the necessity for binning, as analyzed by Heinrich (2021) in
the nearly equivalent setting of rank histograms. The population version of our
suggested alternative is the PIT reliability diagram, which is simply the graph
of the CDF of the PIT ZF in (4.1). The PIT reliability diagram coincides with
the diagonal in the unit square if, and only if, F is probabilistically calibrated.
For tuples of the form (4.23) the empirical PIT reliability diagram shows the
empirical CDF of the (potentially randomized) PIT values. This approach does
not require binning and can be interpreted in much the same way as a PIT dia-
gram: An inverse S-shape corresponds to a U-shape in histograms and indicates
underdispersion of the forecast, as typically encountered in practice. Evidently,
this idea is not new and extant implementations can be found in work by Pinson
and Hagedorn (2012) and Henzi et al. (2021).
As regards marginal calibration, we define the population version of the marginal
reliability diagram as the point set

{(E[F (y)],P(Y ≤ y)) ∈ [0, 1]2 : y ∈ R}.

The marginal reliability diagram is concentrated on the diagonal in the unit
square if, and only if, F is marginally calibrated. For tuples of the form (4.23)
the empirical marginal reliability diagram is a plot of the empirical non-exceedance
probability (NEP) F̂0(y) =

1
n

∑n
i=1 1{y ≥ yi} against the average forecast NEP

F̄ (y) = 1
n

∑n
i=1 Fi(y) at the unique values y of the outcomes y1, . . . , yn, and

interpolated linearly in between. Of course, this idea is not new either and the
resulting diagram can be interpreted as a P-P plot.
For marginal calibration diagrams, we obtain consistency bands under the as-
sumption of marginal calibration by drawing resamples y

(j)
1 , . . . , y

(j)
n from F̄ =

1
n

∑n
i=1 Fi, computing the respective marginal reliability curve, and repeating

over Monte Carlo replicates j = 1, . . . ,m. Then we find consistency bands in the
spirit of Algorithm 4.2. For PIT reliability diagrams, a trivial technique applies
as we may obtain consistency bands under the assumption of probabilistic cali-
bration by (re)sampling n independent standard uniform variates, computing the
respective empirical CDF, and repeating over Monte Carlo replicates. Evidently,
there are alternatives based on empirical process theory (Shorack and Wellner,
2009).
Figure 4.14 illustrates PIT and marginal reliability diagrams on our customary
examples, along with 90% consistency bands based on m = 1000 Monte Carlo
replicates.

95



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

z

fra
ct

io
n

of
PI

T
≤

z

Perfect

P
IT

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

z

fra
ct

io
n

of
PI

T
≤

z

Unfocused

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

z

fra
ct

io
n

of
PI

T
≤

z

Lopsided

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

average forecast NEP

sa
m

pl
e

N
EP

M
ar

gi
na

l

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

average forecast NEP

sa
m

pl
e

N
EP

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

average forecast NEP

sa
m

pl
e

N
EP

Figure 4.14 PIT (top) and marginal (bottom) reliability diagrams for the per-
fect (left), unfocused (middle), and lopsided (right) forecast from Examples 4.1
and 4.2, along with 90% consistency bands based on samples of size 400.

4.A.2.4 Testing hypotheses of calibration

While the explicit development of calibration tests exceeds the scope of this chap-
ter, we believe that the results and discussion in Section 4.2 convey an important
general message: It is critical that the assessed notion of calibration be carefully
and explicitly specified. Throughout, we consider tests under the assumption of
independent, identically distributed data from a population. For extensions to
dependent samples, we refer to Strähl and Ziegel (2017), who generalized the
prediction space concept to allow for serial dependence, and point at methods
introduced by, e.g., Corradi and Swanson (2007), Knüppel (2015), and Bröcker
and Ben Bouallègue (2020).
The most basic case is that of tuples (x1, y1), . . . , (xn, yn) of the form (4.24),
where implicitly or explicitly xi = T(Fi) for a single-valued functional T. We
first discuss tests of unconditional calibration. If the simplified condition (4.11)
is sufficient, a two-sided t-test based on v̂ = 1

n

∑n
i=1 V (xi, yi) can be used to test

for unconditional calibration. In the general case, two one-sided t-tests can be
used along with a Bonferroni correction. In the special case of quantiles, there
is no need to resort to the approximate t-tests, and exact binomial tests can be
used instead. Essentially, this special case is the setting of backtests for value-at-
risk reports in banking regulation, for which we refer to Nolde and Ziegel (2017,
Sections 2.1–2.2).
As noted earlier in the section, resamples generated under the hypothesis of con-
ditional T-calibration can readily be used to perform Monte Carlo tests for the re-
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spective hypothesis, based on CORP score components that are computed on the
surrogate data. Alternatively, one might leverage extant large sample theory for
nonparametric isotonic regression (Barlow et al., 1972; Casady and Cryer, 1976;
Wright, 1984; Robertson et al., 1988; El Barmi and Mukerjee, 2005; Mösching
and Dümbgen, 2020). Independently of the use of resampling or asymptotic
theory, CORP based tests avoid the issues and instabilities incurred by binning
(Dimitriadis et al., 2021, Section S2) and may simultaneously improve efficiency
and stability. In passing, we hint at relations to the null hypothesis of Mincer-
Zarnowitz regression (Krüger and Ziegel, 2021) and tests of predictive content
(Galbraith, 2003; Breitung and Knüppel, 2021).
We move on to the case of fully specified distributions, where we work with tuples
(F1, y1), . . . , (Fn, yn) of the form (4.23), where Fi is a posited conditional CDF
for yi (i = 1, . . . , n). Tests for probabilistic calibration then amount to tests
for the uniformity of the (potentially, randomized) PIT values. Wallis (2003)
and Wilks (2019, p. 769) suggest chi-square tests for this purpose, which depend
on binning, and thus are subject to the aforementioned instabilities. To avoid
binning, we recommend the use of test statistics that operate on the empirical
CDF of the PIT values, such as the classical Kolmogorov-Smirnov (KS) statistic,
as suggested and used to test for PIT calibration by Noceti et al. (2003) and
Knüppel (2015), or, more generally, tests based on distance measures between
the empirical CDF of the PIT values, and the CDF of the standard uniform
distribution that arises under the hypothesis of probabilistic calibration. Recently
proposed alternatives arise via e-values (Henzi and Ziegel, 2022). Similarly, tests
for marginal calibration can be based on resamples and distance measures between
F̄ and F̂0, or leverage asymptotic theory.
In the distributional setting, arbitrarily many types of reliability can be tested for,
and all of the aforementioned tests for unconditional or conditional T-calibration
apply. Multiple testing needs to be accounted for properly, and the development
of simultaneous tests for various types of calibration would be useful. In this con-
text, let us recall from Theorem 4.16 that, subject to technical conditions, CEP,
threshold, and quantile calibration are equivalent and tests for CEP calibration
(Held et al., 2010; Strähl and Ziegel, 2017), quantile and threshold calibration
assess identical hypotheses.

4.A.3 Time series settings and the Bank of England example
In typical time series settings, as exemplified by our analysis of Bank of England
forecasts in Section 4.3, the assumption of independent replicates of forecasts
and observations is too restrictive. While the diagnostic methods proposed in
this chapter continue to apply, statistical inference requires care, as discussed by
Corradi and Swanson (2007) and Knüppel (2015), among other authors. Here,
we elucidate the role of uniform and independent probability integral transform
(PIT) values for calibration in time series settings, and give further details and
results for the Bank of England example.
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4.A.3.1 The role of uniform and independent PITs

In a landmark paper, Diebold et al. (1998, p. 867) showed that a sequence of
continuous predictive distributions Ft for a sequence Yt of observations at time
t = 0, 1, . . . results in a sequence of independent, uniformly distributed PITs
if Ft is ideal relative to the σ-algebra generated by past observations, At =
σ(Y0, Y1, . . . , Yt−1). This property does not depend on the continuity of Ft and
continues to hold under general predictive CDFs and the randomized definition
(4.1) of the PIT (Rüschendorf and de Valk, 1993, Theorem 3).
In the case of continuous predictive distributions, Tsyplakov (2011, Section 2)
noted without proof that if the forecasts Ft are based only on past observations,
i.e., if Ft is At-measurable, then the converse holds, namely, uniform and indepen-
dent PITs arise only if Ft is ideal relative to At. The following result formalizes
Tsyplakov’s claim and proves it in the general setting, without any assumption
of continuity.

Theorem 4.37. Let (Yt)t=0,1,... be a sequence of random variables, and let At =
σ(Y0, . . . , Yt−1) for t = 0, 1, . . . Furthermore, let (Ft)t=0,1,... be a sequence of CDFs,
such that Ft is At-measurable for t = 0, 1, . . . , and let (Ut)t=0,1,... be a sequence of
independent, uniformly distributed random variables, independent of the sequence
(Yt). Then the sequence of randomized PITs, (Zt) = (Ft(Yt−) + Ut(Ft(Yt) −
Ft(Yt−))) is an independent sequence of uniform random variables on the unit
interval if, and only if, Ft is ideal relative to At, i.e., Ft = L(Yt | At) almost
surely for t = 0, 1, . . .

The proof utilizes the following simple lemma.

Lemma 4.38. Let X,Y, Z be random variables. If X = Z almost surely, then
E[Y | X] = E[Y | Z] almost surely.

Proof. Problem 14 of Breiman (1992, Chapter 4), which is proved by Schmidt
(2011, Satz 18.2.10), states that for random variables X1 and X2 such that
σ(Y,X1) is independent of σ(X2), E[Y | X1, X2] = E[Y | X1] almost surely.
The statement of the lemma follows as E[Y | X] = E[Y | X,X − Z] = E[Y |
Z,X − Z] = E[Y | Z] almost surely.

Proof of Theorem 4.37. Since Ft is measurable with respect to At, there exists a
measurable function ft : Rt → F such that Ft = ft(Y0, . . . , Yt−1) for each t by the
Doob–Dynkin Lemma (Schmidt, 2011, Satz 7.1.16).5 We define

Gt := ft(G
−1
0 (Z0), . . . , G

−1
t−1(Zt−1))

5Note that f0 is constant, and ft is not a random quantity but a fixed function that encodes
how the predictive distributions are generated from past observations. The σ-algebra on F ,
which is implicitly used throughout, is given by

AF = σ({{F ∈ F : F (x) ∈ B} : x ∈ Q, B ∈ B(R)}),

where B(R) denotes the Borel σ-algebra on R. For each x ∈ Q there exists a measurable
function fx,t such that Ft(x) = fx,t(Y0, . . . , Yt−1) by the Doob-Dynkin Lemma, and ft is
essentially the countable (and hence measurable) collection (fx,t)x∈Q.
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recursively for all t, and show the “only if” assertion by induction.
To this end, let t ≥ 0 and assume the induction hypothesis that Fi is ideal relative
to Ai for i = 0, . . . , t− 1. By Rüschendorf and de Valk (1993, Theorem 3(a)) and
the construction of Gt, the induction hypothesis implies

(Y0, . . . , Yt−1) = (F−1
0 (Z0), . . . , F

−1
t−1(Zt−1)) = (G−1

0 (Z0), . . . , G
−1
t−1(Zt−1))

almost surely, where the last vector is σ(Z0, . . . , Zt−1)-measurable. By Lemma
4.38, it follows that

L(Zt | At) = L(Zt | σ(G−1
0 (Z0), . . . , G

−1
t−1(Zt−1))) = U([0, 1])

almost surely, where the second equality stems from the fact that Zt is inde-
pendent of σ(G−1

0 (Z0), . . . , G
−1
t−1(Zt−1)) ⊂ σ(Z0, . . . , Zt−1). This independence

implies that Ft is ideal relative to At because

Ft(y) = P(Zt < Ft(y) | At) ≤ P(Yt ≤ y | At) ≤ P(Zt ≤ Ft(y) | At) = Ft(y)

almost surely, and hence Ft(y) = P(Yt ≤ y | At) almost surely for all y ∈ Q,
thereby completing both the induction step and the claim for the base case t =
0.

Evidently, the assumption that no information other than the history of the time
series itself has been utilized to construct the forecasts is very limiting. In this
light, it is not surprising that, while the “if” part of Theorem 4.37 is robust,
the “only if” claim fails if Ft is allowed to use information beyond the canonical
filtration, even if that information is uninformative. A simple counterexample
is given by the unfocused forecast from Example 4.2, which is probabilistically
calibrated but fails to be auto-calibrated. Its PIT nevertheless is uniform and
independent even for autoregressive variants (Tsyplakov, 2011, Section 6).

4.A.3.2 Details and further results for the Bank of England example

Bank of England forecasts of inflation rates are available within the data accom-
panying the quarterly Monetary Policy Report (formerly Inflation Report), which
is available online at https://www.bankofengland.co.uk/sitemap/monetary-
policy-report. The forecasts are visualized and communicated in the form
of fan charts that span prediction intervals at increasing forecast horizons, and
derive from two-piece normal forecast distributions. A detailed account of the
parametrizations for the two-piece normal distribution used by the Bank of Eng-
land can be found in Julio (2006), and we have implemented the formulas in this
reference. Historical quarterly CPI inflation rates are published by the UK Office
for National Statistics (ONS) and available online at https://www.ons.gov.uk/
economy/inflationandpriceindices/timeseries/d7g7.
We consider forecasts of consumer price index (CPI) inflation based on market
expectations for future interest rates at prediction horizons of zero to six quarters
ahead, valid for the third quarter of 2005 up to the first quarter of 2020, for a total

99

https://www.bankofengland.co.uk/sitemap/monetary-policy-report
https://www.bankofengland.co.uk/sitemap/monetary-policy-report
https://www.ons.gov.uk/economy/inflationandpriceindices/timeseries/d7g7
https://www.ons.gov.uk/economy/inflationandpriceindices/timeseries/d7g7


of n = 59 quarters. These and earlier Bank of England forecasts of inflation rates
have been checked for reliability by Wallis (2003), who considered probabilistic
calibration, by Clements (2004) in terms of probabilistic, mean, and threshold
calibration, by Galbraith and Van Norden (2012), who considered probabilistic
and mean calibration, by Strähl and Ziegel (2017) with focus on conditional
exceedance probability (CEP) calibration, and by Pohle (2020), who considered
quantile calibration. The 2% inflation target is discussed on the Bank of England
website at https://www.bankofengland.co.uk/monetary-policy/inflation.
Figures 4.15–4.20 show calibration diagnostics for inflation forecasts at prediction
horizons of k ∈ {0, 2, 3, 4, 5, 6} quarters ahead, in the same format as Figure 4.8
in the main text, which concerns forecasts at a lead time of one quarter.
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Figure 4.15 Same as Figure 4.8 but at a prediction horizon of zero quarters.
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Figure 4.16 Same as Figure 4.15 but at a prediction horizon of two quarters.
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Figure 4.17 Same as Figure 4.15 but at a prediction horizon of three quarters.
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Figure 4.18 Same as Figure 4.15 but at a prediction horizon of four quarters.
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Figure 4.19 Same as Figure 4.15 but at a prediction horizon of five quarters.
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Figure 4.20 Same as Figure 4.15 but at a prediction horizon of six quarters.
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5 Elicitability of Probabilistic Top
List Functionals

In this chapter, I propose a family of consistent scoring functions for evaluating
probabilistic top-k list predictions, that is, probabilistic forecasts specifying the
k most likely outcomes along with their predictive probabilities in classification
settings. The proposed scoring functions are based on symmetric proper scoring
rules, and the scores are computed by assigning a simple proxy probability to the
remaining classes. I show that this construction results in consistent top-k list
scoring functions for fixed k, which can be used to compare top list predictions
of varying length in a balanced manner. If the underlying scoring rule is strictly
proper, the scoring function is strictly consistent for the top-k list functional.

5.1 Introduction
In the face of uncertainty, predictions ought to quantify their level of confidence
(Gneiting and Katzfuss, 2014). This idea has been recognized for decades in
the literature on weather forecasting (Brier, 1950; Murphy, 1977) and probabilis-
tic forecasting (Dawid, 1984; Gneiting and Raftery, 2007). Ideally, a prediction
specifies a probability distribution over potential outcomes. Such predictions are
evaluated and compared by means of proper scoring rules, which quantify their
value in a way that rewards truthful prediction (Gneiting and Raftery, 2007). In
statistical classification and machine learning, the need for reliable uncertainty
quantification has not gone unnoticed, as exemplified by the growing interest in
the calibration of probabilistic classifiers (Guo et al., 2017; Vaicenavicius et al.,
2019). However, classifier evaluation often focuses on the most likely class (i.e.,
the mode of the predictive distribution) through the use of classification accuracy
and related metrics derived from the confusion matrix (Tharwat, 2020; Hui and
Belkin, 2021).
In this chapter, I propose probabilistic top lists as a way of producing proba-
bilistic classifications in settings where specifying entire predictive distributions
may be undesirable, impractical, or even impossible. While multi-label classifica-
tion serves as a key example of such a setting, the theory presented here applies
to classification in general. I envision the probabilistic top list approach to be
particularly useful in settings eluding traditional probabilistic forecasting, where
the specification of probability distributions on the full set of classes is hindered
by a large number of classes and missing (total) order. Consistent evaluation is
achieved through the use of proper scoring rules.
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Whereas in traditional classification an instance is associated with a single class
(e.g., cat or dog), multi-label classification problems (reviewed by Tsoumakas and
Katakis, 2007; Zhang and Zhou, 2014; Tarekegn et al., 2021) admit multiple la-
bels for an instance (e.g., cat or dog or cat and dog).1 Applications of multi-label
classification include text categorization (Zhang and Zhou, 2006), image recog-
nition (Chen et al., 2019), and functional genomics (Barutcuoglu et al., 2006;
Zhang and Zhou, 2006). Multi-label classification methods often output confi-
dence scores for each label independently, and the final label set prediction is
determined by a simple cut-off (Zhang and Zhou, 2014). As this approach does
not account for label correlations, computing label set probabilities in a postpro-
cessing step can improve predictions and probability estimates (Li et al., 2020)
over simply multiplying probabilities to obtain label set probabilities. Probabilis-
tic top lists offer a flexible approach to multi-label classification, which embraces
the value of probabilistic information. In fact, the BR-rerank method introduced
by Li et al. (2020) produces top list predictions. Yet, comparative performance
evaluation focuses on (set) accuracy and the improper instance F1 score. This
discrepancy has been a key motivation for this research.
In probabilistic forecasting, a scoring rule assigns a numerical score to a predic-
tive distribution based on the true outcome (Gneiting and Raftery, 2007). It is
proper if the expected score is optimized by the true distribution of the outcome
of interest. Popular examples in classification are the Brier (or quadratic) score
and the logarithmic (or cross-entropy) loss (Gneiting and Raftery, 2007; Hui and
Belkin, 2021). When one is not interested in full predictive distributions, simple
point predictions are frequently preferred. A meaningful point prediction admits
interpretation in terms of a statistical functional (Gneiting, 2011a). Point pre-
dictions are evaluated by means of consistent scoring or loss functions. Similar
to proper scoring rules, a scoring function is consistent for a functional if the
expected score is optimized by the true functional value of the underlying dis-
tribution. For example, accuracy (or zero-one loss) is consistent for the mode in
classification (Gneiting, 2017).
Probabilistic top lists bridge the gap between mode forecasts and full predictive
distributions in classification. In this chapter, I define a probabilistic top-k list
as a collection of k classes deemed most likely together with confidence scores
quantifying the predictive probability associated with each of the k classes. The
key question tackled in this chapter is how to evaluate such top list predictions
consistently. To this end, I propose what I call padded symmetric scores, which
are based on proper symmetric scoring rules. I show that the proposed padded
symmetric scores are consistent for the probabilistic top-k list functional. The
padded symmetric score of a probabilistic top list prediction is obtained from a
symmetric proper scoring rule by padding the top list to obtain a full distribution.
The padded distribution divides the probability mass not accounted for by the
top list’s confidence scores equally among the classes that are not included in the

1Multi-label classification is a special case of classification if classes are (re-)defined as subsets
of labels.
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list. Padded symmetric scores exhibit an interesting property, which allows for
fair comparison of top lists of different length. Notably, the expected score of
a correctly specified top list only depends on the top list itself and is invariant
to other aspects of the true distribution. Comparability of top lists of differing
length is ensured as the expected score does not deteriorate upon increasing the
length of the predicted top list. Nonetheless, if the scoring function is based on
the Brier score, there is little incentive to provide unreasonably large top lists.
The remaining chapter proceeds as follows. Section 5.2 recalls the traditional
multi-class classification problem with a focus on probabilistic classification and
suitable evaluation metrics. A quick introduction to the multi-label classifica-
tion problem is also provided. Section 5.3 introduces probabilistic top lists, and
related notation and terminology used throughout the chapter. Section 5.4 in-
troduces some preliminary results on symmetric proper scoring rules and some
results relating to the theory of majorization. These results are used in Section
5.5 to show that the padded symmetric scores yield consistent scoring functions
for the top list functionals. Section 5.6 discusses the comparison of various types
of predictions using the padded Brier and logarithmic scores. A theoretical argu-
ment as well as numerical examples illustrate that the padded Brier score is well
suited for this task. Section 5.7 concludes the chapter.

5.2 Statistical Classification
The top list functionals and the proposed scoring functions are motivated by
multi-label classification, but they apply to other classification problems as well.
Here, I give a short formal introduction to the general classification problem and
related evaluation metrics from the perspective of probabilistic forecasting.

5.2.1 Traditional multi-class classification
Recall from Chapter 2 that in the classical (multi-class) classification problem,
one tries to predict the distinct class Y of an instance characterized by a vector
of features X. Formally, the outcome Y is a random variable on a probability
space (Ω,A,P) taking values in the set of classes Y of cardinality m ∈ N, and the
feature vector X is a random vector taking values in some feature space X ⊆ Rd.
Ideally, one learns the entire conditional distribution p(X) = L(Y | X) of Y given
X through a probabilistic classifier c : X → P(Y) mapping the features of a given
instance to a probability distribution from the set of probability distributions
P(Y) on Y . The set P(Y) of probability distributions is typically identified with
the probability simplex

∆m−1 = {p ∈ [0, 1]m | p1 + · · ·+ pm = 1}

by (arbitrarily) labeling the classes as 1, . . . ,m, and probability distributions
are represented by vectors p ∈ ∆m−1, where the i-th entry pi is the probability
assigned to class i for i = 1, . . . ,m. To ease notation in what follows, vectors in
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∆m−1 are indexed directly by the classes in Y without explicit mention of any
(re-)labeling.
Proper scoring rules quantify the value of a probabilistic classification and facil-
itate the comparison of multiple probabilistic classifiers (Gneiting and Raftery,
2007). A scoring rule is a mapping S: P(Y)× Y → R, which assigns a, possibly
infinite, score S(p, y) from the extended real numbers R = R∪{±∞} to a predic-
tive distribution p if the true class is y. Typically, scores are negatively oriented
in that lower scores are preferred. A scoring rule S is called proper if the true
distribution p of Y minimizes the expected score,

E[S(p, Y )] ≤ E[S(q, Y )] for Y ∼ p and p, q ∈ P(Y). (5.1)

It is strictly proper if the inequality (5.1) is strict unless p = q. Prominent
examples are the logarithmic score

Slog(p, y) = − log py (5.2)

and the Brier score

SB(p, y) = (1− py)
2 +

∑
z 6=y

p2z = 1− 2py +
∑
z∈Y

p2z. (5.3)

Frequently, current practice does not focus on learning the full conditional distri-
bution but, rather, on simply predicting the most likely class, i.e., the mode of
the conditional distribution p(X). This practice is formalized by a hard classifier
c : X → Y aspiring to satisfy the functional relationship c(X) ∈ Mode(p(X)),
where the mode functional is given by

Mode(p) = argmax
y∈Y

py = {z ∈ Y | pz = max
y∈Y

py} (5.4)

for p ∈ ∆m−1. Other functionals may be learned as well. When it comes to point
forecasts of real-valued outcomes, popular choices are the mean or a quantile, see
Chapter 4. Formally, a statistical functional T: P(Y) → 2T reduces probability
measures to certain facets in some space T . Note that the functional T maps
a distribution to a subset in the power set 2T of T owing to the fact that the
functional value may not be uniquely determined. For example, the mode (5.4)
of a distribution is not unique if multiple classes are assigned the maximum prob-
ability. The probabilistic top lists introduced in Section 5.3 are a nonstandard
example of a statistical functional, which lies at the heart of this chapter.
Analogously to the evaluation of probabilistic classifiers through the use of proper
scoring rules, predictions aimed at a statistical functional are evaluated by means
of consistent scoring functions. Given a functional T, a scoring function is a
mapping S: T × Y → R, which assigns a score S(t, y) to a predicted facet t if
the true class is y. A scoring function S is consistent for the functional T if
the expected score is minimized by any prediction that is related to the true
distribution of Y by the functional, i.e.,

E[S(t, Y )] ≤ E[S(s, Y )] for Y ∼ p, t ∈ T(p), p ∈ P(Y), and s ∈ T . (5.5)
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It is strictly consistent for T if the inequality (5.5) is strict unless s ∈ T(p).
A functional T is called elicitable if a strictly consistent scoring function for T
exists. For example, the mode (5.4) is elicited by the zero-one scoring function
or misclassification loss (Gneiting, 2017)

S(x, y) = 1{x 6= y},

which is simply a negatively oriented version of the ubiquitous classification accu-
racy measure. As discussed by Gneiting (2017) and references therein, decisions
based on the mode are suboptimal if the losses invoked by different misclassifica-
tions are not uniform, which is frequently the case.
(Strictly) Proper scoring rules arise as a special case of (strictly) consistent scor-
ing functions if T is the identity on P(Y). Furthermore, any consistent scoring
function yields a proper scoring rule if predictive distributions are reduced by
means of the respective functional first (Gneiting, 2011a, Theorem 3). On the
other hand, a point prediction x ∈ Y can be assessed by means of a scoring
rule as the classes can be embedded in the probability simplex by identifying a
class y ∈ Y with the point mass δy ∈ P(Y) in y. For example, applying the
Brier score to a class prediction in this way yields twice the misclassification loss,
SB(x, y) = SB(δx, y) = 2 · 1{x 6= y}.
Naturally, the true conditional distributions are unknown in practice, and ex-
pected scores are estimated by the mean score attained across all instances avail-
able for evaluation purposes.

5.2.2 Multi-label classification
In multi-label classification problems, an instance may be assigned multiple (class)
labels. Here, I frame this problem as a special case of multi-class classification
instead of an entirely different problem.
Let L be the set of labels and Y ⊆ 2L be the set of label sets, i.e., classes
are subsets of labels. In this setting, it may be difficult to specify a sensible
predictive distribution on Y , even for moderately sized sets of labels L, since
the number of classes may grow exponentially with the number of labels. Extant
comparative evaluation practices in multi-label classification focus mainly on hard
classifiers ignoring the need for uncertainty quantification through probabilistic
assessments (e.g., Tsoumakas and Katakis, 2007; Zhang and Zhou, 2014; Li et al.,
2020; Tarekegn et al., 2021) with the exception of Read et al. (2011), who also
consider a sum of binary logarithmic losses to evaluate the confidence scores
associated with individual labels.
Classification accuracy is typically referred to as (sub-)set accuracy in multi-label
classification. Other popular evaluation metrics typically quantify the overlap be-
tween the predicted label set and the true label set. For example, the comparative
evaluation by Li et al. (2020) reports instance F1 scores in addition to set accu-
racy, where instance F1 of a single instance is defined as

SF1(x, y) =
2
∑

`∈L 1{` ∈ x}1{` ∈ y}∑
`∈L 1{` ∈ x}+

∑
`∈L 1{` ∈ y}

.
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(and the overall score is simply the average across all instances as usual). Note
that this metric is positively oriented, i.e., higher instance F1 scores are preferred.
Caution is advised as the instance F1 score is not consistent for the mode, as
illustrated by the following example. Hence, evaluating the same predictions
using set accuracy and instance F1 seems to be a questionable practice.

Example 5.1. Let the label set L = {1, 2, 3, 4, 5} consist of five labels and the
set of classes Y = 2L be the power set of the label set L. Consider the distribution
p ∈ P(Y) that assigns all probability mass to four label sets as follows:

p({1, 2}) = 0.28, p({1, 3}) = 0.24, p({1, 4}) = 0.24, p({1, 5}) = 0.24.

Then the expected instance F1 score of the most likely label set {1, 2},

E[SF1({1, 2}, Y )] = 0.64,

given Y ∼ p is surpassed by predicting only the single label {1},

E[SF1({1}, Y )] = 2
3
.

5.3 Probabilistic Top Lists
In what follows, I develop a theory informing principled evaluation of top list
predictions based on proper scoring rules. To this end, a concise mathematical
definition of probabilistic top lists is fundamental.
Let k ∈ {0, . . . ,m} be fixed. A (probabilistic) top-k list is a collection t = (Ŷ , t̂ )

of a set Ŷ ⊂ Y of k = #Ŷ classes together with a vector t̂ = ( t̂y)y∈Ŷ ∈ [0, 1]k

of confidence scores (or predicted probabilities) indexed by the set Ŷ whose sum
does not exceed one, i.e.,

∑
y∈Ŷ t̂y ≤ 1, and equals one if k = m. Let Tk denote

the set of probabilistic top-k lists. On the one hand, the above definition includes
the empty top-0 list t∅ = (∅, ()) for technical reasons. At the other extreme,
top-m lists specify entire probability distributions on Y , i.e., Tm ≡ P(Y). The
proxy probability

π(t) :=
1−

∑
y∈Ŷ t̂y

m− k

associated with a top-k list t = (Ŷ , t̂ ) ∈ Tk of size k < m is the probability mass
not accounted for by the top list t divided by the number of classes not listed.
For a top-m list t ∈ Tm, the proxy probability π(t) ≡ 0 is defined to be zero. The
padded probability distribution t̃ = ( t̃y)y∈Y ∈ ∆m−1 associated with a probabilistic
top-k list t = (Ŷ , t̂ ) ∈ Tk assigns the proxy probability π(t) to all classes not in
Ŷ , i.e.,

t̃y =

{
t̂y, if y ∈ Ŷ ,

π(t), if y /∈ Ŷ
(5.6)

for y ∈ Y .
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A top-k list t = (Ŷ , t̂ ) is calibrated relative to a distribution p = (py)y∈Y ∈ ∆m−1

if the confidence score t̂y of class y matches the true class probability py for all
y ∈ Ŷ . A top-k list t = (Ŷ , t̂ ) is true relative to a distribution p ∈ P(Y) if it
is calibrated relative to p and Ŷ consists of k most likely classes. There may be
multiple true top-k lists for a given k ∈ N if the class probabilities are not pairwise
distinct (i.e., if some classes have the same probability). References to the true
distribution of the outcome Y are usually omitted in what follows. For example,
a calibrated top list is understood to be calibrated relative to the distribution of
Y . The (probabilistic) top-k list functional Tk : P(Y)→ Tk maps any probability
distribution p ∈ P(Y) to the set

Tk(p) =

{
(Ŷ , (py)y∈Ŷ ) ∈ Tk

∣∣∣∣∣ Ŷ ∈ argmax
S⊂Y:|S|=k

∑
y∈S

py

}

of top-k lists that are true relative to p. The top-m list functional Tm identifies
P(Y) with Tm. A top-k list t ∈ Tk is valid if it is true relative to some proba-
bility distribution, i.e., there exists a distribution p ∈ P(Y) such that t ∈ Tk(p).
Equivalently, a top-k list t = (Ŷ , t̂ ) is valid if the associated proxy probability
does not exceed the least confidence score, i.e., miny∈Ŷ t̂y ≥ π(t). Let T̃k ⊂ Tk
denote the set of valid top-k lists. The following is a simple example illustrating
the previous definitions.

Example 5.2. Let k = 2, m = 4, Y = {1, 2, 3, 4}, and Y ∼ p = (0.5, 0.2, 0.2, 0.1),
i.e., P(Y = y) = py. There are two true top-2 lists, namely, T2(p) =
{({1, 2}, (0.5, 0.2)), ({1, 3}, (0.5, 0.2))}. The list s = ({1, 4}, (0.5, 0.1)) is cali-
brated (relative to p) but fails to be valid because it cannot be true relative to a
probability distribution on Y . On the other hand, the list r = ({1, 4}, (0.5, 0.2))
is valid as it is true relative to q = (0.5, 0.2, 0.1, 0.2) but fails to be calibrated.

An invalid top-k list t = (Ŷ , t̂ ) contains a largest valid sublist t′ = (Ŷ ′, ( t̂y)y∈Ŷ ′).
The largest valid sublist is uniquely determined by recursively removing the class
z ∈ argminy∈Ŷ t̂y with the lowest confidence score from the invalid list until a
valid list remains. Removing a class x ∈ Ŷ with π(t) > t̂x cannot result in a valid
top list t′ = (Ŷ \ {x}, ( t̂y)y∈Ŷ \{x}) as long as there is another class z such that
t̂x ≥ t̂z because π(t) > π(t′) > t̂x ≥ t̂z. Similarly, removing a class x ∈ Ŷ with
π(t) ≤ t̂x cannot prevent the removal of a class z if π(t) > t̂z, because it does not
decrease the proxy probability, π(t′) ≥ p(t). Hence, no sublist containing a class
with minimal confidence score in the original list is valid, and removal results in
a superlist of the largest valid sublist.
In what follows, I show how to construct consistent scoring functions for the top-k
list functional using proper scoring rules. Recall from Section 5.2.1 that a scoring
function S: Tk×Y → R is consistent for the top list functional Tk if the expected
score under any probability distribution p ∈ P(Y) is minimized by any true top-k
list t ∈ Tk(p), i.e.,

E[S(t, Y )] ≤ E[S(s, Y )]
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holds for Y ∼ p and any s ∈ Tk. It is strictly consistent if the expected score is
minimized only by the true top-k lists t ∈ Tk(p), i.e., the inequality is strict for
s /∈ Tk(p). The functional Tk is elicitable if a strictly consistent scoring function
for Tk exists. In what follows, such a scoring function is constructed, giving rise
to the following theorem.

Theorem 5.3 (Elicitability of the top list functional). The top-k list functional
Tk is elicitable.

Proof. The theorem is an immediate consequence of either Theorem 5.12 or 5.14.

As the image of Tk is T̃k by definition, invalid top-k lists may be ruled out a
priori, and the domain of S may be restricted to T̃k ×Y in the above definitions.
On the other hand, the use of a consistent scoring function on the larger domain
Tk × Y merely encourages valid predictions, but it does not prohibit invalid pre-
dictions. Any scoring function that is consistent for valid top list predictions can
be extended by assigning an infinite score to any invalid top list regardless of the
observation. In a sense, this approach reconciles both points of view as an invalid
prediction could not outperform any arbitrary valid prediction, thereby disquali-
fying it in comparison. In what follows, I focus on the construction of consistent
scoring functions for valid top lists at first and propose a way of extending such
scoring functions to invalid top lists that is less daunting than simply assigning
an infinite score.

5.4 Mathematical Preliminaries
This section introduces some preliminary results, which are used heavily in the
following section.

5.4.1 Symmetric scoring rules
The proposed scoring functions are based on symmetric proper scoring rules.
Recall from Chapter 2 that (subject to mild regularity conditions) any proper
scoring rule S: P(Y)→ R admits a Savage representation,

S(p, y) = G(p)− 〈G′(p), p〉+G′
y(p), (5.7)

in terms of a concave function G : ∆m−1 → R and a supergradient G′ : ∆m−1 →
Rm of G, i.e., a function satisfying the supergradient inequality

G(q) ≤ G(p) + 〈G′(p), q − p〉 (5.8)

for all p, q ∈ ∆m−1. The function G is strictly concave if S is strictly proper. It
is called the entropy (function) of S, which is simply the expected score G(p) =
E[S(p, Y )] under the posited distribution, Y ∼ p. The supergradient inequality
(5.8) is strict if G is strictly concave and p 6= q (Jungnickel, 2015, Satz 5.1.12).
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Let Sym(Y) denote the symmetric group on Y , i.e., the set of all permutations of
Y . A scoring rule is called symmetric if scores are invariant under permutation
of classes, i.e.,

S((py), y) = S((pτ−1(y)), τ(y))

holds for any permutation τ ∈ Sym(Y) and all y ∈ Y , p ∈ P(Y). Clearly, the
entropy function G of a symmetric scoring rule is also symmetric, i.e., invariant
to permutation in the sense that G(p) = G((pτ(y))) holds for any permutation
τ ∈ Sym(Y) and any distribution p ∈ P(Y). Vice versa, any symmetric entropy
function admits a symmetric proper scoring rule.

Proposition 5.4. Let G : P(Y)→ P(Y) be a concave symmetric function. Then
there exists a supergradient G′ : P(Y)→ Rm such that the Savage representation
(5.7) yields a symmetric scoring rule.

Proof. Let Ḡ′ be a supergradient of G. Using the shorthand vτ = (vτ−1(y))y∈Y for
vectors v = (vy)y∈Y ∈ Rm indexed by Y and permutations τ ∈ Sym(Y), define G′

by
G′(p) =

1

| Sym(Y)|
∑

τ∈Sym(Y)

Ḡ′
τ−1(pτ )

for p ∈ P(Y). By symmetry of G and the supergradient inequality,

G(q) = G(qτ ) ≤ G(pτ ) + 〈Ḡ′(pτ ), qτ − pτ 〉 = G(p) + 〈Ḡ′
τ−1(pτ ), q − p〉

holds for all p, q ∈ P(Y) and τ ∈ Sym(Y). Summation over all τ ∈ Sym(Y) and
division by the cardinality of the symmetric group Sym(Y) yields

G(q) ≤ 1

| Sym(Y)|
∑

τ∈Sym(Y)

(G(p) + 〈Ḡ′
τ−1(pτ ), q − p〉) = G(p) + 〈G′(p), q − p〉

for any p, q ∈ P(Y). Therefore, G′ is a supergradient, and the Savage represen-
tation (5.7) yields a symmetric scoring rule since

G′(p) =
1

| Sym(Y)|
∑

τ∈Sym(Y)

Ḡ′
τ−1(pτ ) =

1

| Sym(Y)|
∑

τ∈Sym(Y)

Ḡ′
(τ◦ρ)−1(pτ◦ρ)

=
1

| Sym(Y)|
∑

τ∈Sym(Y)

Ḡ′
ρ−1◦τ−1(pτ◦ρ) =

1

| Sym(Y)|
∑

τ∈Sym(Y)

(Ḡ′
τ−1(pτ◦ρ))ρ−1

=

 1

| Sym(Y)|
∑

τ∈Sym(Y)

Ḡ′
τ−1((pρ)τ )


ρ−1

= G′
ρ−1(pρ)

and
〈G′(p), p〉 = 〈G′

ρ−1(pρ), p〉 = 〈G′(pρ), pρ〉

holds for any permutation ρ ∈ Sym(Y) and all p ∈ P(Y).
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On the other hand, not all proper scoring rules with symmetric entropy function
are symmetric. The following result provides a necessary condition satisfied by
supergradients of symmetric proper scoring rules.

Lemma 5.5. Let S be a symmetric proper scoring rule. If p ∈ ∆m−1 satisfies
px = pz for x, z ∈ Y, then the supergradient G′(p) = (G′

y(p))y∈Y at p in the Savage
representation (5.7) satisfies G′

x(p) = G′
z(p).

Proof. Let τ = (x z) be the permutation swapping x and z while keeping all
other classes fixed. Using notation as in the proof of Proposition 5.4, the equal-
ity S(p, x) = S(pτ , τ(x)) holds by symmetry of S. Since p = pτ , the Savage
representation (5.7) yields G′

x(p) = G′
τ(x)(p) = G′

z(p).

The Brier score (5.3) and the logarithmic score (5.2) are both symmetric scoring
rules. The entropy function of the Brier score is given by

G(p) = 1−
∑
y∈Y

p2y, (5.9)

whereas the entropy of the logarithmic score is given by

G(p) = −
∑
y∈Y

py log(py)

(see Gneiting and Raftery, 2007).

5.4.2 Majorization and Schur-concavity
In this section, I adopt some definitions and results on majorization and Schur-
concavity from Marshall et al. (2011). The theory of majorization is essentially
a theory of inequalities, which covers many classical results and a plethora of
mathematical applications not only in stochastics.
For a vector v ∈ Rm, the vector v[ ] := (v[i])

m
i=1, where

v[1] ≥ · · · ≥ v[m]

denote the components of v in decreasing order, is called the decreasing rear-
rangement of v. A vector w ∈ Rm is a permutation of v ∈ Rm (i.e., w is obtained
by permuting the entries of v) precisely if v[ ] = w[ ]. For vectors v, w ∈ Rm with
equal sum of components,

∑
i vi =

∑
i wi, the vector v is said to majorize w, or

v � w for short, if the inequality
k∑

i=1

v[i] ≥
k∑

i=1

w[i]

holds for all k = 1, . . . ,m− 1.
Let D ⊆ Rm. A function f : D → R is Schur-concave on D if v � w implies
f(v) ≤ f(w) for all v, w ∈ D. A Schur-concave function f is strictly Schur-
concave if f(v) < f(w) holds whenever v � w and v[ ] 6= w[ ]. In particular, any
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symmetric concave function is Schur-concave and strictly Schur-concave if it is
strictly concave (Marshall et al., 2011, Chapter 3, Proposition C.2 and C.2.c).
Hence, the following lemma holds.

Lemma 5.6. The entropy function of any symmetric proper scoring rule is Schur-
concave. It is strictly Schur-concave if the scoring rule is strictly proper.

A set D ⊂ Rm is called symmetric if v ∈ D implies w ∈ D for all vectors
w ∈ Rm such that v[ ] = w[ ]. By the Schur-Ostrowski criterion (Marshall et al.,
2011, Chapter 3, Theorem A.4 and A.4.a) a continuously differentiable function
f : D → R on a symmetric convex set D with non-empty interior is Schur-concave
if, and only if, f is symmetric and the partial derivatives f(i)(v) = ∂

∂vi
f(v) increase

as the components vi of v decrease, i.e., f(i)(v) ≤ f(j)(v) if (and only if) vi ≥ vj.
Unfortunately, supergradients of concave functions do not share this property.
The following is a slightly weaker condition, which applies to supergradients of
symmetric concave functions.

Lemma 5.7 (Schur-Ostrowski condition for concave functions). Let f : D → R
be a symmetric concave function on a symmetric convex set D, v ∈ D and
f ′(v) = (f ′

1(v), . . . , f
′
m(v)) be a supergradient of f at v, i.e., a vector satisfying

the supergradient inequality

f(w) ≤ f(v) + 〈f ′(v), w − v〉 (5.10)

for all w ∈ D. Then vi > vj implies f ′
i(v) ≤ f ′

j(v).

Proof. For i = 1, . . . ,m, let ei = (1{i = j})mj=1 denote the i-th vector of the
standard basis of Rm. Let v ∈ D be such that vi > vj for some indices i, j and
let 0 < ε ≤ vi − vj. Define w = v − εei + εej. Then v � w (by Marshall et al.,
2011, Chapter 2, Theorem B.6) because w is obtained from v through a so-called
‘T -transformation’ (see Marshall et al., 2011, p. 32), i.e., wi = λvi+(1−λ)vj and
wj = λvj + (1 − λ)vi with λ =

vi−vj−ε

vi−vj
. Therefore, Schur-concavity of f implies

f(v) ≤ f(w), and the supergradient inequality (5.10) yields

ε(f ′
j(v)− f ′

i(v)) = 〈f ′(v), w − v〉 ≥ f(w)− f(v) ≥ 0.

Hence, the inequality f ′
j(v) ≥ f ′

i(v) holds.

With this result, there is no need to restrict attention to differentiable entropy
functions when applying the Schur-Ostrowski condition in what follows. Further-
more, true top-k lists can be characterized using majorization.

Lemma 5.8. Let Y ∼ p be distributed according to p ∈ P(Y). The padded
distribution t̃ associated with a true top-k list t ∈ Tk(p) majorizes the padded
distribution s̃ associated with any calibrated top-k list s ∈ Tk.

Proof. The sum of confidence scores
∑k

i=1 t̃[i] =
∑k

i=1 p[i] ≥
∑k

i=1 s̃[i] of a true
top-k list is maximal among calibrated top-k lists by definition. Hence, the
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confidence score t̂[i] = t̃[i] of the true top-k list t = (Ŷ , t̂ ) matches the i-th largest
class probability p[i] for i = 1, . . . , k. Therefore, the partial sums

∑`
i=1 t̃[i] =∑`

i=1 p[i] ≥
∑`

i=1 s̃[i] across the largest confidence scores are also maximal for
` = 1, . . . , k − 1. Furthermore, the proxy probability π(t) =

1−
∑k

i=1 t̃[i]
m−k

associated
with a true top-k list is minimal among calibrated top-k lists. Hence, the partial
sums ∑̀

i=1

t̃[i] = 1− (m− `)π(t) ≥ 1− (m− `)π(s) =
∑̀
i=1

s̃[i]

are maximal for ` > k .

5.5 Consistent Top List Scores
Having reviewed the necessary preliminaries, this section shows that the proposed
padded symmetric scores constitute a family of consistent scoring functions for
the probabilistic top list functionals. The padded symmetric scores are defined for
valid top lists and can be extended to invalid top lists by scoring the largest valid
sublist, which yields a consistent scoring function. Strict consistency is preserved
by adding an additional penalty term to the score of an invalid prediction.

5.5.1 Padded symmetric scores
From now on, let S: P(Y)→ R be a proper symmetric scoring rule with entropy
function G. The scoring rule S is extended to valid top-k lists for k = 0, 1, . . . ,m−
1 by setting

S(t, y) := S( t̃, y)

for y ∈ Y , t ∈ T̃k, where t̃ ∈ ∆m−1 is the padded distribution (5.6) associated with
the top-k list t. I call the resulting score S:

⋃m
k=0 T̃k×Y → R a padded symmetric

score. For example, the logarithmic score (5.2) yields the padded logarithmic score

Slog((Ŷ , t̂ ), y) =

{
− log( t̂y), if y ∈ Ŷ ,

log(m− k)− log(1−
∑

z∈Ŷ t̂z), otherwise,
(5.11)

whereas the Brier score (5.3) yields the padded Brier score

SB((Ŷ , t̂ ), y) = 1+
∑
z∈Ŷ

t̂2z +
(1−

∑
z∈Ŷ t̂z)

2

m− k
− 2 ·

{
t̂y, if y ∈ Ŷ ,
1−

∑
z∈Ŷ

t̂z

m−k
, otherwise.

(5.12)

The following example shows that padded symmetric scores should not be applied
to invalid top lists without further considerations.

Example 5.9. If a padded symmetric score based on a strictly proper scoring
rule is used to evaluate the invalid top-2 list s in Example 5.2, it attains a lower
expected score than a true top list t ∈ T2(p) because s̃ = p, whereas t̃ 6= p.
Hence, the score would fail to be consistent.
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The following lemma shows that the expected score of a calibrated top list is fully
determined by the top list itself and does not depend on (further aspects of) the
underlying distribution.

Lemma 5.10. Let S be a padded symmetric score. If p ∈ P(Y) is the true
distribution of Y ∼ p and t is a calibrated valid top list, then the expected score
of the top list t matches the entropy of the padded distribution t̃,

E[S(t, Y )] = G( t̃ ).

Proof. Let t = (Ŷ , t̂ ) ∈ T̃k(p). Assume w.l.o.g. k < m (the claim is trivial if
k = m), and let z ∈ Y \ Ŷ . By Lemma 5.5 the supergradient at t̃ satisfies
G′

y( t̃ ) = G′
z( t̃ ) for all y /∈ Ŷ . Hence, the Savage representation (5.7) of the

underlying scoring rule yields

E[S(t, Y )] = G( t̃ )− 〈G′( t̃ ), t̃ 〉+
∑
y∈Y

pyG
′
y( t̃ )

= G( t̃ )−
∑
y∈Ŷ

(py − t̂y)G
′
y( t̃y)−

∑
y/∈Ŷ

py − (m− k)π(t)

G′
z( t̃ )

= G( t̃ )

because t is calibrated.

Padded symmetric scores exhibit an interesting property that admits fair compar-
ison of top list predictions of varying length. A top list score S:

⋃m
k=0 T̃k×Y → R

exhibits the comparability property if the expected score does not deteriorate upon
extending a true top list, i.e., for k = 0, 1, . . . ,m−1 and any distribution p ∈ P(Y)
of Y ∼ p,

E[S(tk+1, Y )] ≤ E[S(tk, Y )] (5.13)

holds for tk ∈ Tk(p) and tk+1 ∈ Tk+1(p). The following theorem shows that
padded symmetric scores in fact exhibit the comparability property. I use the
comparability property to show consistency of the individual padded symmetric
top-k list scores S |T̃k×Y and to extend these scores to invalid top lists. Section
5.6 provides further discussion and some numerical insights.

Theorem 5.11. Padded symmetric scores exhibit the comparability property.

Proof. Let S be a padded symmetric score and G be the concave entropy function
of the underlying proper scoring rule. Let Y ∼ p be distributed according to some
distribution p ∈ P(Y), and let tk = (Ŷk, (py)y∈Ŷk

) be a calibrated valid top-k list
for some k = 0, 1, . . . ,m− 1, which is extended by a calibrated valid top-(k + 1)

list tk+1 = (Ŷk+1, (py)y∈Ŷk+1
) in the sense that Ŷk+1 = Ŷk ∪ {z} for some z ∈ Y . It

is easy to verify that t̃k+1 � t̃k since pz ≥ π(tk) ≥ π(tk+1). Hence, the inequality
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G( t̃k+1) ≤ G( t̃k) holds by Schur-concavity of G (Lemma 5.6), which yields the
desired inequality of expected scores by Lemma 5.10.
Clearly, there exists a true top-(k + 1) list tk+1 ∈ Tk+1(p) extending a true top-k
list tk ∈ Tk(p) in the above sense. By a symmetry argument, all true top lists of a
given length have the same expected score, and hence S exhibits the comparability
property.

Note that the proof of Theorem 5.11 shows that (5.13) holds for any calibrated
valid extension tk+1 of a calibrated valid top list tk and not only for true top lists.
I proceed to show that padded symmetric scores restricted to valid top-k lists are
consistent for the top-k list functional.

Theorem 5.12. Let k ∈ {0, 1, . . . ,m} be fixed and S:
⋃m

`=0 T̃` × Y → R be a
padded symmetric score. Then the restriction S |T̃k×Y of the score S to the set
of valid top-k lists T̃k is consistent for the top-k list functional Tk. It is strictly
consistent if the underlying scoring rule S |P(Y)×Y is strictly proper.

Proof. Let p = (py)y∈Y ∈ P(Y) be the true probability distribution of Y ∼ p.
Clearly, all true top-k lists in Tk(p) attain the same expected score by symmetry
of the underlying scoring rule. Let t = (Ŷ , (py)y∈Ŷ ) ∈ Tk(p) be a true top-k list
and s = (Ẑ, ( ŝy)y∈Ẑ) ∈ T̃k be an arbitrary valid top-k list. To show consistency
of S |T̃k×Y , it suffices to show that the valid top-k list s does not attain a lower
(i.e., better) expected score than the true top-k list t. Strict consistency follows
if the expected score of any s /∈ Tk(p) is higher than that of the true top-k list t.
First, consider s /∈ Tk(p) to be a calibrated top-k list, i.e., ŝy = py for all y ∈ Ẑ.
Since t̃ majorizes s̃ by Lemma 5.8, the inequality

E[S(t, Y )] = G( t̃ ) ≤ G( s̃ ) = E[S(s, Y )]

holds by Schur-concavity of the entropy function G (Lemma 5.6) and Lemma
5.10. If the underlying scoring rule is strictly proper, the entropy function is
strictly (Schur-)concave, and hence the inequality is strict.
Now, consider s to be an uncalibrated top-k list, and let r = (Ẑ, (py)y∈Ẑ) be the
respective calibrated top-k list on the same classes. The calibrated top-k list r
may not be valid and cannot be scored if it is invalid. However, its largest valid
sublist r′ = (Ẑ ′, (py)y∈Ẑ′) with Ẑ ′ ⊆ Ẑ can be scored. Let z ∈ Y \ Ẑ. The
difference in expected scores

E[S(s, Y )]− E[S(r′, Y )]

= G( s̃ )−G( r̃′)− 〈G′( s̃ ), s̃ 〉+ 〈G′( r̃′), r̃′〉+
∑
y∈Y

py(G
′
y( s̃ )−G′

y( r̃
′))

(by the Savage representation (5.7))

≥ 〈G′( r̃′)−G′( s̃ ), r̃′〉+
∑
y∈Y

py(G
′
y( s̃ )−G′

y( r̃
′))

(by the supergradient inequality (5.8))
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=
∑

y∈Ẑ\Ẑ′

(py − π(r′))(G′
y( s̃ )−G′

z( r̃
′)) +

∑
y∈Y\Ẑ

(py − π(r′))(G′
z( s̃ )−G′

z( r̃
′))

(by Lemma 5.5)

=
∑

y∈Ẑ\Ẑ′

(py − π(r′))(G′
y( s̃ )−G′

z( s̃ ))

(as
∑

y∈Y\Ẑ(py − π(r′)) = −
∑

y∈Ẑ\Ẑ′(py − π(r′)))

is nonnegative by the fact that (py−π(r′)) ≤ 0 for y ∈ Ẑ\Ẑ ′ (since r′ is the largest
valid sublist) and Lemma 5.7 (and Lemma 5.5 if ŝy = π(s) for some y ∈ Ẑ \ Ẑ ′).
Let k′ = |Ẑ ′|. Then, r′ scores no better than a true top-k′ list tk′ ∈ Tk′(p), which
in turn scores no better than t by the comparability property. Therefore,

E[S(s, Y )] ≥ E[S(r′, Y )] ≥ E[S(tk′ , Y )] ≥ E[S(t, Y )]

holds. If the underlying scoring function is strictly proper, the difference in ex-
pected scores E[S(s, Y )]−E[S(r′, Y )] above is strictly positive by strictness of the
supergradient inequality (Jungnickel, 2015, Satz 5.1.12), and hence E[S(t, Y )] <
E[S(s, Y )] holds in this case, which concludes the proof.

5.5.2 Penalized extensions of padded symmetric scores
The comparability property can be used to extend a padded symmetric score S
to invalid top lists in a consistent manner. To this end, recall that t′ denotes
the largest valid sublist of a top list t = (Ŷ , t̂ ) ∈ Tk. Assigning the score of
the largest valid sublist to an invalid top-k list yields a consistent score by the
comparability property. Strict consistency of the padded symmetric score S is
preserved by adding a positive penalty term cinvalid > 0 to the score of the largest
valid sublist in the case of an invalid top list prediction. I call the resulting score
extension S:

⋃m
k=0 Tk × Y → R, which assigns the score

S(t, y) = S(t′, y) + cinvalid (5.14)

to an invalid top list t ∈ Tk \ T̃k for k = 1, 2, . . . ,m − 1, a penalized extension
of a padded symmetric score. The following example illustrates that the positive
penalty is necessary to obtain a strictly consistent scoring function.

Example 5.13. Consider a setting similar to that of Example 5.2, where Y ∼
p = (0.4, 0.2, 0.2, 0.2). The padded distribution associated with the largest valid
sublist t′ = ({1}, (0.4)) of the invalid list t = ({1, 2}, (0.4, 0.1)) matches the true
distribution, t̃′ = p, and hence the expected score of t in (5.14) is minimal if
cinvalid = 0.

The following theorem summarizes the properties of the proposed score extension.

Theorem 5.14. Let k ∈ {0, 1, . . . ,m} be fixed and S:
⋃m

`=0 T` × Y → R be a
penalized extension (5.14) of a padded symmetric score with penalty term cinvalid ≥
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0. Then the restriction S |Tk×Y of the score S to the set of top-k lists Tk is consistent
for the top-k list functional Tk. It is strictly consistent if the underlying scoring
rule S |P(Y)×Y is strictly proper and the penalty term cinvalid is nonzero.

Proof. In light of Theorem 5.12, it remains to show that an invalid top-k list
attains a worse expected score than a true top-k list t ∈ Tk(p) under the true
distribution p ∈ P(Y) of Y ∼ p. To this end, let s ∈ Tk be invalid. By construc-
tion of the penalized extension, the top list s is assigned the score of its largest
valid sublist s′ plus the additional penalty cinvalid. By consistency of the padded
symmetric score and the comparability property, the expected score of s′ cannot
fall short of the expected score of t. Hence, S |Tk×Y is consistent for the top-k
list functional. If a positive penalty cinvalid > 0 is added, the score extension is
strictly consistent given a strictly consistent padded symmetric score.

5.6 Comparability
The comparability property (5.13) ensures that additional information provided
by an extended true top list does not adversely influence the expected score.
The information gain is quantified by a reduction in entropy, which depends on
the underlying scoring rule. Ideally, a top list score encourages the prediction of
classes that account for a substantial portion of probability mass, while offering
little incentive to provide unreasonably large top lists. In what follows, I argue
that the padded Brier score satisfies this requirement.
Let S be a padded symmetric score with entropy function G (of the underlying
proper scoring rule). Furthermore, let 1 ≤ k < m and t = (Ŷ , ( t̂y)y∈Ŷ ) be a
top-k list that accounts for most of the probability mass. In particular, assume
that the unaccounted probability α = α(t) = 1 −

∑
y∈Ŷ t̂y is less than the least

confidence score but nonzero, i.e.,

0 < α < min
y∈Ŷ

t̂y. (5.15)

Let Q = Q(t) = {p ∈ P(Y) | t ∈ Tk(p)} be the set of all probability measures
relative to which t is a true top-k list. Let p ∈ Q assign the remaining probability
mass α to a single class. Then p majorizes any q ∈ Q, and the distribution p
attains the lowest entropy, i.e., G(p) = minq∈QG(q), by Schur-concavity of the
entropy function (Lemma 5.6). As the expected score of the top list t is invariant
under distributions in Q by Lemma 5.10, the relative difference in expected scores
between the true top list t and the true distribution q ∈ Q is bounded by the
relative difference in expected scores between t and p,

G( t̃ )−G(q)

G(q)
≤ G( t̃ )−G(p)

G(p)
.

The upper bound can be simplified by bounding the entropy of p from below as
G(p) ≥ G((1− α, α, 0, . . . , 0)) by Schur-concavity of G.
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Table 5.1 Expected padded Brier scores and expected padded logarithmic scores
of various types of true predictions and multiple distributions discussed in Ex-
ample 5.15. Relative score differences (in percent) with respect to the optimal
scores are in brackets.

E[S(·, Y )]
p S Mode(p) T1(p) T2(p) p

p(h) SB 0.02 (1.01%) 0.0199 (0.38%) 0.0198 (0%) 0.0198
p(m) SB 1 (70.59%) 0.6875 (17.28%) 0.5552 (0.04%) 0.5550
p(l) SB 1.5 (88.87%) 0.7969 (0.34%) 0.7955 (0.16%) 0.7942

p(h) Slog ∞ 0.0699 (24.75%) 0.0560 (0%) 0.0560
p(m) Slog ∞ 1.3863 (32.49%) 0.9425 (0.56%) 0.9373
p(l) Slog ∞ 1.6021 (0.45%) 1.5984 (0.23%) 1.5948

If S = SB is the padded Brier score (5.12) with entropy (5.9), the lower bound
reduces to G(p) ≥ G((1 − α, α, 0, . . . , 0)) = 2(α − α2) > α since α < 0.5 by as-
sumption (5.15) and hence 2α2 < α. Therefore, the relative difference in expected
scores has a simple upper bound,

G( t̃ )−G(p)

G(p)
≤ α2 − απ(t)

2(α− α2)
<

α2

α
= α.

For the padded logarithmic score, no such bound exists, and the deviation of the
expected top list score from the optimal score can be severe, as illustrated in
the following numerical example. The example sheds some light on the behavior
of the (expected) padded symmetric scores and demonstrates that top lists of
length k > 1 may provide valuable additional information over a simple mode
prediction.

Example 5.15. Suppose there are m = 5 classes labeled 1, 2, . . . , 5 and the true
(conditional) distribution p = L(Y | X = x) of Y (given a feature vector x ∈ X )
is known. Table 5.1 features expected padded Brier and logarithmic scores of
various types of truthful predictions under several distributions, as well as relative
differences with respect to the optimal score. The considered distributions

p(h) = (0.99, 0.01, 0, 0, 0), p(m) = (0.5, 0.44, 0.03, 0.02, 0.01),

p(l) = (0.25, 0.22, 0.2, 0.18, 0.15).
(5.16)

exhibit varying degrees of predictability. Distribution p(h) exhibits high pre-
dictability in the sense that a single class can be predicted with high confidence.
Distribution p(m) exhibits moderate predictability in that it is possible to narrow
predictions down to a small subset of classes with high confidence, but getting the
class exactly right is a matter of luck. Distribution p(l) exhibits low predictabil-
ity in the sense that all classes may well realize. Predictions are of increasing
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information content. The first prediction is the true mode, i.e., a hard classi-
fier without uncertainty quantification that predicts class 1 under all considered
distributions. The hard mode is interpreted as assigning all probability mass to
the predicted class. Scores are obtained by embedding the predicted class in the
probability simplex or, equivalent, by scoring the top-1 list ({1}, 1). The second
prediction is the true top-1 list ({1}, p1), i.e., the mode with uncertainty quantifi-
cation. The third prediction is the true top-2 list ({1, 2}, (p1, p2)), and the final
prediction is the true distribution p itself.
By consistency of the padded symmetric scores, the true top-1 lists score better in
expectation than the mode predictions, and, by the comparability property, the
true top-2 lists score better than the top-1 lists, while the true distributions attain
the optimal scores. The mode predictions perform significantly worse than the
probabilistic predictions, which highlights the importance of truthful uncertainty
quantification. Note that the log score assigns an infinite score in cases where the
true outcome is predicted as having zero probability, hence the mode prediction
is assigned an infinite score with positive probability.
The expected padded Brier score of the probabilistic top-1 list under the highly
predictable distribution p(h) is not far from optimal, whereas the respective log-
arithmic score is inflated by the discrepancies between the padded and true dis-
tributions, even though the top list accounts for most of the probability mass
(α = 0.01). Deviations from the optimal scores are more pronounced under the
logarithmic score in all considered cases.
Under the distribution exhibiting moderate predictability, the top-2 list predic-
tion is much more informative than the top-1 list prediction, which results in a
significantly improved score that is not far from optimal. Under the distribution
exhibiting low predictability, all probabilistic predictions perform well as there is
little information to be gained.

Estimation of small probabilities is frequently hindered by finite sample size. The
specification of top list predictions in conjunction with the padded Brier score
circumvents this issue as the Brier score is driven by absolute differences in prob-
abilities, whereas the logarithmic score emphasizes relative differences in proba-
bilities. In other words, the padded distribution is deemed a good approximation
of the true distribution if the true top list accounts for most of the probability
mass by the Brier score.
In light of these considerations, I conclude that the padded Brier score is suitable
for the comparison of top list predictions of varying length.

5.7 Concluding Remarks
In this chapter, I argued for the use of evaluation metrics rewarding truthful
probabilistic assessments in classification. To this end, I introduced the proba-
bilistic top list functionals, which offer a flexible probabilistic framework in the
general classification problem. Padded symmetric scores yield consistent scoring
functions, which admit comparison of various types of predictions. The padded
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Brier score appears particularly suitable as top lists accounting for most of the
probability mass obtain an expected padded Brier score that is close to optimal.
The entropy of a distribution is a measure of uncertainty or information con-
tent. Majorization provides a relation characterizing common decreases in en-
tropy shared by all symmetric proper scoring rules. In particular, for two dis-
tributions p ∈ P(Y) and q ∈ P(Y), the entropy of the distribution p does not
exceed the entropy of q, i.e., G(p) ≤ G(q), if p majorizes q. The inequality is
strict if the scoring rule is strictly proper and q is not a permutation of p.
Typically, classes cannot simply be averaged, and combining multiple class pre-
dictions may be difficult as majority voting may result in a tie, while learning
individual voting weights or a meta-learner requires training data (see Kotsiantis
et al., 2006, Section 8.3 for a review of classifier combination techniques). Prob-
abilistic top lists facilitate the combination of multiple predictions as confidence
scores can simply be averaged, which may be an easy way to improve the predic-
tion.
The prediction of probabilistic top lists appears particularly useful in problems,
where classification accuracy is not particularly high, as is frequently the case
in multi-label classification. I suspect that shifting focus towards probabilistic
predictions may well increase prediction quality and usefulness in various decision
problems, where misclassification losses are not uniform. Applying the proposed
scores in a study with real predictions (e.g., the study conducted by Li et al.
(2020)) is left as a topic for future work.
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6 Conclusion
While the research presented in this thesis was initially motivated by topics in
forecast evaluation, this initial focus led to research on another topic in com-
putational statistics, namely, the development of an improved algorithm for the
computation of exact multinomial tests presented in Chapter 3. Besides the ex-
position and analysis of the algorithm, the chapter was aimed at providing a
succinct overview on the topic of simple multinomial tests, which also resulted
in an asymptotic chi-square approximation to the exact multinomial test based
on what I called the probability mass statistic. The idea of ordering the sample
space by the sample null probabilities is appealing. In the case of a uniform multi-
nomial null hypothesis, this ordering yields an unbiased test, and in the case of
a general multinomial null hypothesis, the test power appears to be comparable
to the power of other popular multinomial tests.
Uncertainty quantification in the calibration simplex via multinomial p-values
improves the visual representation of probabilistic forecasts for ternary outcomes.
As the null distributions in each bin are merely approximated by multinomial
distributions, resampling-based methods might be preferable. However, in my
experience, the multinomial p-values provided good estimates, while offering a
computationally fast approach. To provide some further examples, Figure 6.1
shows the exemplary calibration simplexes from Chapter 2 with added color-coded
multinomial p-values. Of course, the p-values are not intended to be interpreted
as strict statistical tests but, rather, as a measure of uncertainty relating the
observed discrepancies between predicted probabilities and observed frequencies
to the distribution of the empirical frequencies subject to calibration. A few small
p-values are to be expected, yet if miscalibration results in certain trends observed
across multiple bins, the p-values help to highlight the affected areas.
The hierarchies presented in Chapter 4 help to further differentiate between var-
ious notions of calibration for probabilistic forecasts in the case of real-valued
outcomes and confirm a conjecture by Gneiting and Ranjan (2013) that has in
part motivated this research. In the case of continuous, strictly increasing dis-
tributions the hierarchy shows that multiple notions of conditional calibration
encountered in the literature coincide, which is not the case in general. Under
minimal assumptions, there are some open questions as to the connection between
the conditional notions of calibration. In particular, we conjectured that either
CEP or quantile calibration implies threshold calibration, yet a proof has been
elusive. I am confident that these implications can be confirmed in future work.
The chapter continues by studying a general notion of conditional T-calibration.
T-Reliability diagrams and score decompositions are treated both from a theo-
retical point of view and as a practical tool for forecast verification. In empirical
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Figure 6.1 Calibration simplexes as in Figure 2.4 with color-coded p-values as
introduced in Section 3.4.2.

settings, the use of empirical T-reliability diagrams that generalize the binary
CORP reliability diagrams (Dimitriadis et al., 2021) to identifiable functionals
was investigated. In contrast to the binary case, uncertainty quantification in
general T-reliability diagrams is difficult to achieve without restrictive assump-
tions, and the consistency bands featured throughout Chapter 4 should be taken
with a pinch of salt as the assumption of independent residuals may not hold
true in practice. The approach outlined in Appendix 4.A.2 nonetheless provides
a simple form of uncertainty quantification for general functionals T. Improve-
ments, presumably, need to be tailored to specific functionals. In this regard,
the recently proposed confidence bands for isotonic quantile curves by Dümbgen
and Lüthi (2022) appear as a promising alternative to our consistency bands for
quantile reliability diagrams, which should be explored in future work. The con-
fidence bands for isotonic quantile curves are similar in spirit to confidence bands
proposed by Dimitriadis et al. (2022a) for use in the binary CORP reliability di-
agram. Whereas consistency bands visualize typical deviations of the reliability
curve from the diagonal subject to calibration, confidence bands quantify the es-
timator’s variability and surround the estimated reliability curve. The confidence
bands by Dimitriadis et al. (2022a) and Dümbgen and Lüthi (2022) are appealing
as they ensure that the true reliability curve is entirely enclosed by the band with
high confidence. Such ‘simultaneous’ confidence bands give rise to goodness-of-fit
tests as the hypothesis of perfect calibration can be rejected if the band does not
contain the diagonal in its entirety.
As an alternative to traditional statistical tests and p-values, interest in so-called
e-values has surged in the statistical community (e.g., Ramdas et al., 2022). Re-
cently, calibration tests based on e-values have been proposed for probability
forecasts of binary events (Henzi and Ziegel, 2022; Dimitriadis et al., 2022c) and
to assess probabilistic calibration of probabilistic forecasts (Arnold et al., 2021).
Investigating the use of e-values in the context of multinomial tests (Lindon and
Malek, 2020) and multi-class classifier calibration appears as a promising avenue
for future research.
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As an improvement on current evaluation practices, I propose the use of padded
symmetric scores in Chapter 5, which conform to well-founded principles from the
theory on forecast evaluation. The padded symmetric scores elicit probabilistic
top lists giving rise to an overarching framework including various types of prob-
abilistic predictions. I contend that the proposed probabilistic framework may
help to improve current practices in multi-class classification and related forecast-
ing problems. While the proposed approach has undergone in-depth theoretical
treatment in this thesis, studies involving real data are a necessary next step to
further substantiate its practical relevance.
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