975 research outputs found

    Data augmentation in Rician noise model and Bayesian Diffusion Tensor Imaging

    Full text link
    Mapping white matter tracts is an essential step towards understanding brain function. Diffusion Magnetic Resonance Imaging (dMRI) is the only noninvasive technique which can detect in vivo anisotropies in the 3-dimensional diffusion of water molecules, which correspond to nervous fibers in the living brain. In this process, spectral data from the displacement distribution of water molecules is collected by a magnetic resonance scanner. From the statistical point of view, inverting the Fourier transform from such sparse and noisy spectral measurements leads to a non-linear regression problem. Diffusion tensor imaging (DTI) is the simplest modeling approach postulating a Gaussian displacement distribution at each volume element (voxel). Typically the inference is based on a linearized log-normal regression model that can fit the spectral data at low frequencies. However such approximation fails to fit the high frequency measurements which contain information about the details of the displacement distribution but have a low signal to noise ratio. In this paper, we directly work with the Rice noise model and cover the full range of bb-values. Using data augmentation to represent the likelihood, we reduce the non-linear regression problem to the framework of generalized linear models. Then we construct a Bayesian hierarchical model in order to perform simultaneously estimation and regularization of the tensor field. Finally the Bayesian paradigm is implemented by using Markov chain Monte Carlo.Comment: 37 pages, 3 figure

    Generalized Wishart processes for interpolation over diffusion tensor fields

    Get PDF
    Diffusion Magnetic Resonance Imaging (dMRI) is a non-invasive tool for watching the microstructure of fibrous nerve and muscle tissue. From dMRI, it is possible to estimate 2-rank diffusion tensors imaging (DTI) fields, that are widely used in clinical applications: tissue segmentation, fiber tractography, brain atlas construction, brain conductivity models, among others. Due to hardware limitations of MRI scanners, DTI has the difficult compromise between spatial resolution and signal noise ratio (SNR) during acquisition. For this reason, the data are often acquired with very low resolution. To enhance DTI data resolution, interpolation provides an interesting software solution. The aim of this work is to develop a methodology for DTI interpolation that enhance the spatial resolution of DTI fields. We assume that a DTI field follows a recently introduced stochastic process known as a generalized Wishart process (GWP), which we use as a prior over the diffusion tensor field. For posterior inference, we use Markov Chain Monte Carlo methods. We perform experiments in toy and real data. Results of GWP outperform other methods in the literature, when compared in different validation protocols

    4th Order Symmetric Tensors and Positive ADC Modelling

    Get PDF
    International audienceHigh Order Cartesian Tensors (HOTs) were introduced in Generalized DTI (GDTI) to overcome the limitations of DTI. HOTs can model the apparent diffusion coefficient (ADC) with greater accuracy than DTI in regions with fiber heterogeneity. Although GDTI HOTs were designed to model positive diffusion, the straightforward least square (LS) estimation of HOTs doesn't guarantee positivity. In this chapter we address the problem of estimating 4th order tensors with positive diffusion profiles. Two known methods exist that broach this problem, namely a Riemannian approach based on the algebra of 4th order tensors, and a polynomial approach based on Hilbert's theorem on non-negative ternary quartics. In this chapter, we review the technicalities of these two approaches, compare them theoretically to show their pros and cons, and compare them against the Euclidean LS estimation on synthetic, phantom and real data to motivate the relevance of the positive diffusion profile constraint

    Higher-Order Tensors and Differential Topology in Diffusion MRI Modeling and Visualization

    Get PDF
    Diffusion Weighted Magnetic Resonance Imaging (DW-MRI) is a noninvasive method for creating three-dimensional scans of the human brain. It originated mostly in the 1970s and started its use in clinical applications in the 1980s. Due to its low risk and relatively high image quality it proved to be an indispensable tool for studying medical conditions as well as for general scientific research. For example, it allows to map fiber bundles, the major neuronal pathways through the brain. But all evaluation of scanned data depends on mathematical signal models that describe the raw signal output and map it to biologically more meaningful values. And here we find the most potential for improvement. In this thesis we first present a new multi-tensor kurtosis signal model for DW-MRI. That means it can detect multiple overlapping fiber bundles and map them to a set of tensors. Compared to other already widely used multi-tensor models, we also add higher order kurtosis terms to each fiber. This gives a more detailed quantification of fibers. These additional values can also be estimated by the Diffusion Kurtosis Imaging (DKI) method, but we show that these values are drastically affected by fiber crossings in DKI, whereas our model handles them as intrinsic properties of fiber bundles. This reduces the effects of fiber crossings and allows a more direct examination of fibers. Next, we take a closer look at spherical deconvolution. It can be seen as a generalization of multi-fiber signal models to a continuous distribution of fiber directions. To this approach we introduce a novel mathematical constraint. We show, that state-of-the-art methods for estimating the fiber distribution become more robust and gain accuracy when enforcing our constraint. Additionally, in the context of our own deconvolution scheme, it is algebraically equivalent to enforcing that the signal can be decomposed into fibers. This means, tractography and other methods that depend on identifying a discrete set of fiber directions greatly benefit from our constraint. Our third major contribution to DW-MRI deals with macroscopic structures of fiber bundle geometry. In recent years the question emerged, whether or not, crossing bundles form two-dimensional surfaces inside the brain. Although not completely obvious, there is a mathematical obstacle coming from differential topology, that prevents general tangential planes spanned by fiber directions at each point to be connected into consistent surfaces. Research into how well this constraint is fulfilled in our brain is hindered by the high precision and complexity needed by previous evaluation methods. This is why we present a drastically simpler method that negates the need for precisely finding fiber directions and instead only depends on the simple diffusion tensor method (DTI). We then use our new method to explore and improve streamsurface visualization.<br /

    Doctor of Philosophy

    Get PDF
    dissertationDiffusion magnetic resonance imaging (dMRI) has become a popular technique to detect brain white matter structure. However, imaging noise, imaging artifacts, and modeling techniques, etc., create many uncertainties, which may generate misleading information for further analysis or applications, such as surgical planning. Therefore, how to analyze, effectively visualize, and reduce these uncertainties become very important research questions. In this dissertation, we present both rank-k decomposition and direct decomposition approaches based on spherical deconvolution to decompose the fiber directions more accurately for high angular resolution diffusion imaging (HARDI) data, which will reduce the uncertainties of the fiber directions. By applying volume rendering techniques to an ensemble of 3D orientation distribution function (ODF) glyphs, which we call SIP functions of diffusion shapes, one can elucidate the complex heteroscedastic structural variation in these local diffusion shapes. Furthermore, we quantify the extent of this variation by measuring the fraction of the volume of these shapes, which is consistent across all noise levels, the certain volume ratio. To better understand the uncertainties in white matter fiber tracks, we propose three metrics to quantify the differences between the results of diffusion tensor magnetic resonance imaging (DT-MRI) fiber tracking algorithms: the area between corresponding fibers of each bundle, the Earth Mover's Distance (EMD) between two fiber bundle volumes, and the current distance between two fiber bundle volumes. Based on these metrics, we discuss an interactive fiber track comparison visualization toolkit we have developed to visualize these uncertainties more efficiently. Physical phantoms, with high repeatability and reproducibility, are also designed with the hope of validating the dMRI techniques. In summary, this dissertation provides a better understanding about uncertainties in diffusion magnetic resonance imaging: where and how much are the uncertainties? How do we reduce these uncertainties? How can we possibly validate our algorithms

    Simultaneous Smoothing and Estimation of DTI via Robust Variational Non-local Means

    Get PDF
    International audienceRegularized diffusion tensor estimation is an essential step in DTI analysis. There are many methods proposed in literature for this task but most of them are neither statistically robust nor feature preserving denoising techniques that can simultaneously estimate symmetric positive definite (SPD) diffusion tensors from diffusion MRI. One of the most popular techniques in recent times for feature preserving scalar- valued image denoising is the non-local means filtering method that has recently been generalized to the case of diffusion MRI denoising. However, these techniques denoise the multi-gradient volumes first and then estimate the tensors rather than achieving it simultaneously in a unified approach. Moreover, some of them do not guarantee the positive definiteness of the estimated diffusion tensors. In this work, we propose a novel and robust variational framework for the simultaneous smoothing and estimation of diffusion tensors from diffusion MRI. Our variational principle makes use of a recently introduced total Kullback-Leibler (tKL) divergence, which is a statistically robust similarity measure between diffusion tensors, weighted by a non-local factor adapted from the traditional non-local means filters. For the data fidelity, we use the nonlinear least-squares term derived from the Stejskal-Tanner model. We present experimental results depicting the positive performance of our method in comparison to competing methods on synthetic and real data examples

    Anisotropic Diffusion Partial Differential Equations in Multi-Channel Image Processing : Framework and Applications

    Get PDF
    We review recent methods based on diffusion PDE's (Partial Differential Equations) for the purpose of multi-channel image regularization. Such methods have the ability to smooth multi-channel images anisotropically and can preserve then image contours while removing noise or other undesired local artifacts. We point out the pros and cons of the existing equations, providing at each time a local geometric interpretation of the corresponding processes. We focus then on an alternate and generic tensor-driven formulation, able to regularize images while specifically taking the curvatures of local image structures into account. This particular diffusion PDE variant is actually well suited for the preservation of thin structures and gives regularization results where important image features can be particularly well preserved compared to its competitors. A direct link between this curvature-preserving equation and a continuous formulation of the Line Integral Convolution technique (Cabral and Leedom, 1993) is demonstrated. It allows the design of a very fast and stable numerical scheme which implements the multi-valued regularization method by successive integrations of the pixel values along curved integral lines. Besides, the proposed implementation, based on a fourth-order Runge Kutta numerical integration, can be applied with a subpixel accuracy and preserves then thin image structures much better than classical finite-differences discretizations, usually chosen to implement PDE-based diffusions. We finally illustrate the efficiency of this diffusion PDE's for multi-channel image regularization - in terms of speed and visual quality - with various applications and results on color images, including image denoising, inpainting and edge-preserving interpolation

    Evaluation of the differences of myocardial fibers between acute and chronic myocardial infarction: Application of diffusion tensor magnetic resonance imaging in a rhesus monkey model

    Get PDF
    Objective: To understand microstructural changes after myocardial infarction (MI), we evaluated myocardial fibers of rhesus monkeys during acute or chronic MI, and identified the differences of myocardial fibers between acute and chronic MI. Materials and Methods: Six fixed hearts of rhesus monkeys with left anterior descending coronary artery ligation for 1 hour or 84 days were scanned by diffusion tensor magnetic resonance imaging (MRI) to measure apparent diffusion coefficient (ADC), fractional anisotropy (FA) and helix angle (HA). Results: Comparing with acute MI monkeys (FA: 0.59 +/- 0.02; ADC: 5.0 +/- 0.6 x 10(-4) mm(2)/s; HA: 94.5 +/- 4.4 degrees), chronic MI monkeys showed remarkably decreased FA value (0.26 +/- 0.03), increased ADC value (7.8 +/- 0.8 x 10(-4)mm(2)/s), decreased HA transmural range (49.5 +/- 4.6 degrees) and serious defects on endocardium in infarcted regions. The HA in infarcted regions shifted to more components of negative left-handed helix in chronic MI monkeys (-38.3 +/- 5.0 degrees-11.2 +/- 4.3 degrees) than in acute MI monkeys (-41.4 +/- 5.1 degrees-53.1 +/- 3.7 degrees), but the HA in remote regions shifted to more components of positive right-handed helix in chronic MI monkeys (-43.8 +/- 2.7 degrees-66.5 +/- 4.9 degrees) than in acute MI monkeys (-59.5 +/- 3.4 degrees-64.9 +/- 4.3 degrees). Conclusion: Diffusion tensor MRI method helps to quantify differences of mechanical microstructure and water diffusion of myocardial fibers between acute and chronic MI monkey&apos;s models.National Natural Science Foundation of China [81130027, 81301196]SCI(E)[email protected]
    • …
    corecore