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ABSTRACT

Diffusion magnetic resonance imaging (dMRI) has become a popular technique to detect 

brain white m atter structure. However, imaging noise, imaging artifacts, and modeling 

techniques, etc., create many uncertainties, which may generate misleading information 

for further analysis or applications, such as surgical planning. Therefore, how to analyze, 

effectively visualize, and reduce these uncertainties become very important research ques­

tions. In this dissertation, we present both rank-k decomposition and direct decomposition 

approaches based on spherical deconvolution to decompose the fiber directions more ac­

curately for high angular resolution diffusion imaging (HARDI) data, which will reduce 

the uncertainties of the fiber directions. By applying volume rendering techniques to an 

ensemble of 3D orientation distribution function (ODF) glyphs, which we call SIP functions 

of diffusion shapes, one can elucidate the complex heteroscedastic structural variation in 

these local diffusion shapes. Furthermore, we quantify the extent of this variation by 

measuring the fraction of the volume of these shapes, which is consistent across all noise 

levels, the certain volume ratio. To better understand the uncertainties in white matter 

fiber tracks, we propose three metrics to quantify the differences between the results of 

diffusion tensor magnetic resonance imaging (DT-MRI) fiber tracking algorithms: the area 

between corresponding fibers of each bundle, the Earth Mover's Distance (EMD) between 

two fiber bundle volumes, and the current distance between two fiber bundle volumes. Based 

on these metrics, we discuss an interactive fiber track comparison visualization toolkit 

we have developed to visualize these uncertainties more efficiently. Physical phantoms, 

with high repeatability and reproducibility, are also designed with the hope of validating 

the dMRI techniques. In summary, this dissertation provides a better understanding 

about uncertainties in diffusion magnetic resonance imaging: where and how much are 

the uncertainties? How do we reduce these uncertainties? How can we possibly validate 

our algorithms?
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CHAPTER 1

INTRODUCTION  

1.1 Motivation
Diffusion magnetic resonance imaging (dMRI) is an important noninvasive technique 

for evaluating the three-dimensional white m atter structure within the brain. By obtaining 

diffusion-weighted magnetic resonance images from multiple locations, a diffusion tensor 

can be reconstructed which is believed to delineate the local diffusion properties of water 

molecules in tissue [13]. David Tuch developed the method, high angular resolution diffusion 

imaging (HARDI) [149], which removes Gaussian assumption of the diffusion probability 

needed in the diffusion tensor model and models the local diffusion with an orientation 

distribution function (ODF). By applying HARDI technique, the well-known limitations of 

diffusion tensor in the areas of complex fiber heterogeneity (fiber crossing, fiber branching, 

and fiber kissing, etc.) can be resolved. Different fiber directions extraction algorithms 

[26, 2, 135] can be applied to HARDI models to figure out more accurate fiber directions. 

Finally, fiber tractography algorithms [15, 158, 98, 116, 33, 56] will be employed to form 

the three-dimensional connections of the brain.

However, dMRI techniques are affected by many sources of uncertainty, such as imaging 

noise, imaging artifacts, model fitting accuracy, fiber direction extraction accuracy, fiber 

tracking accuracy, uncertainties in fiber orientation(s), diffusion model fitting, and fiber 

track(s), which may produce heavily biased results for any further analysis. Thus, questions 

of how to accurately analyze and effectively visualize these uncertainties are important 

research questions with direct clinical applications in neurological diagnosis and treatment.

In this dissertation, I present two high-order tensor decomposition algorithms, a frame­

work for three-dimensional uncertainty visualization and analysis of high-order tensors, a 

system for uncertainty quantification and visualization of neuro fiber tracks, and several 

possible designs of a MRI physical phantom.
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1.2 Thesis Statement
T hesis  goal 1 : Develop new methods to calculate dominant fiber direction(s) more 

accurately, which will reduce the uncertainties of the fiber direction(s) obtained from each 

voxel. Demonstrate the effectiveness of the new methods.

Explanation: The accuracy of existing algorithms to find the dominant fiber direc- 

tion(s) are limited by the orientation distribution function (ODF) reconstruction quality, 

its reconstruction order (i.e., the spherical harmonics truncation order), and decompositions 

methods. Different modalities and estimation techniques associated with HARDI have been 

proposed over the years. Issues like how to guarantee the estimated higher order tensor 

(HOT) or orientation distribution function (ODF) are symmetric positive definite, how to 

decompose the HO T/O DF in a more rigorous way rather than using ad hoc approaches, 

and how to reduce the number of diffusion weighted images needed for HARDI, need to be 

studied.

Validation: Completion of the proposed goal will result in 1) a written comparison of 

several existing methods in higher order tensor estimation and decomposition, dem onstrat­

ing the problems with these methods and how to improve them, and 2) a new algorithm 

that will estimate H OT/O D F more rigorously, with symmetric positive definite constraints, 

may reduce the number of diffusion weighted images needed but obtain similar or better 

levels of accuracy.

T hesis  goal 2: Develop new methods to visualize the uncertainties of the higher order 

tensor field.

Explanation: Uncertainty visualization is crucial for answering the location and the 

degree of uncertainty. Three-dimensional uncertainty visualization of the higher-order 

tensor field is a very challenging problem, due to the complexity of the HOT shapes. Existing 

approaches can only show variations on mean shapes, or only show mean shape plus and 

minus one standard deviation of the shape distribution. More details about the uncertainty 

are not visible.

Validation: Completion of the proposed goal will result in 1) a new uncertainty visual­

ization method to visualize the uncertainties of a collection of higher order tensors, and 2) 

a tool may be extended to any DTI or other HARDI models to study the uncertainties of 

the data, algorithm, etc.

T hesis  goal 3: Develop new methods to quantify the fiber track differences and to 

interactively visualize these differences.

Explanation: Existing methods of fiber similarity quantification are based on Euclidean 

distances between predefined correspondences. The predefined correspondences may not
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be easy to define, and miscorrespondences will completely disrupt the similarity measure. 

Also, existing methods cannot interactively visualize fiber track differences, which makes 

the study of brain fiber structure extremely difficult for non-DTI experts.

Validation: Completion of the proposed goals will result in 1) a new definition of fiber 

correspondence or a new robust measure to quantify the fiber similarity, and 2) a toolkit 

that can be easily used by any researcher to study the brain white m atter structure.

T hesis  goal 4: Fabricate a white m atter phantom that can be used to validate the 

fiber tracking algorithms. The phantoms should be easy to reproduce.

Explanation: So far, there does not exist a physical “gold standard” by which to 

compare algorithms. Phantom fabrication is one possible way to achieve this goal. Existing 

techniques use silk, hemp, linen, or rayon to generate a phantom, which is not easily 

reproducible.

Validation: Completion of the proposed goal will result in 1) a new physical phantom 

for validation of fiber tracking algorithms.

1.3 Thesis Organization
The dissertation is organized in the following way:

Chapter 2 introduces the basic principles of magnetic resonance imaging (MRI). It covers 

magnetization, RF excitations, relaxation, signal localization and signal detection. The 

derivation of Stejskal-Tanner equation is also presented.

Chapter 3 reviews the basics of diffusion magnetic resonance imaging (dMRI). It provides 

the background knowledge about diffusion tensor imaging (DTI), high angular resolution 

diffusion imaging (HARDI), and fiber tractography.

Chapter 4 discusses a novel framework tha t combines an ODF estimation method with a 

parameter extraction technique for estimation of fiber directions and fiber fractions. For the 

estimation method, we have used a specific form of spherical deconvolution [143] where the 

ODF is represented by a homogeneous polynomial induced by a high-order tensor. The ODF 

was constrained to be non-negative by adding a set of linear constraints to the objective 

function tha t represents the spherical deconvolution. Then, a Candecomp/Parafac (CP) 

decomposition is applied to the ODF and decomposes it into a sum of rank-1 tensors which 

represent single white m atter fibers. These rank-1 tensors provide information on the fiber 

orientations and the volume fractions.

Chapter 5 shows a technique to extract white m atter fiber orientations and weights 

directly from diffusion-weighted imaging (DWI) measurements. It is based on a spherical 

deconvolution technique and decomposition of a homogeneous polynomial into a sum of



4

powers of linear forms, known as a symmetric tensor decomposition. The fiber-ODF (fODF), 

described by a homogeneous polynomial, is approximated here as a discrete sum of even- 

order linear-forms representing single-fibers. This polynomial expansion is convolved to a 

single-fiber response function, and the result is optimized against the DWI measurements 

to assess the fiber parameters. This formulation leads to a nonlinear optimization problem 

that we solve here by means of the Levenberg-Marquart technique.

Chapter 6 presents a new and accurate technique for uncertainty analysis and uncer­

tainty visualization based on fiber orientation distribution function (ODF) glyphs, asso­

ciated with high angular resolution diffusion imaging (HARDI). Our visualization applies 

volume rendering techniques to an ensemble of 3D ODF glyphs which we call SIP functions 

of diffusion shapes, to capture their variability due to underlying uncertainty. This rendering 

elucidates the complex heteroscedastic structural variation in these shapes. Furthermore, 

we quantify the extent of this variation by measuring the fraction of the volume of these 

shapes, which is consistent across all noise levels, the certain volume ratio.

Chapter 7 proposes three metrics to quantify the differences between the results of 

diffusion tensor magnetic resonance imaging (DT-MRI) fiber tracking algorithms: the area 

between corresponding fibers of each bundle, the Earth Mover's Distance (EMD) between 

two fiber bundle volumes, and the current distance between two fiber bundle volumes. We 

also discussed an interactive fiber track comparison visualization toolkit we have developed 

based on the three proposed fiber difference metrics and have tested on six widely-used fiber 

tracking algorithms.

Chapter 8 reports the initial results of fabrication of a DT-MRI phantom created by 

stacking of multiple thin polydimethylsiloxane (PDMS) layers.

1.4 Contributions
The major contributions of this dissertation are:

• A novel framework that combines an ODF estimation method with a parameter extrac­

tion technique for estimation of fiber directions and fiber fractions (Chapter 4).

•  A new technique to extract white m atter fiber orientations and weights directly from 

diffusion-weighted imaging (DWI) measurements (Chapter 5).

•  A new and accurate technique for uncertainty analysis and three-dimensional uncertainty 

visualization based on fiber orientation distribution function (ODF) glyphs (Chapter 6).
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• Three metrics to quantify the differences between the results of fiber tractography, and 

an interactive fiber track comparison visualization toolkit have been developed based on 

the three proposed fiber difference metrics (Chapter 7).

•  A novel approach in HARDI fabrication of a DT-MRI phantom (Chapter 8).



CHAPTER 2

INTRODUCTION TO MAGNETIC 
RESONANCE IMAGING

Magnetic Resonance Imaging (MRI) is based on the nuclear magnetic resonance (NMR) 

phenomenon observed in bulk m atter independently by Felix Bloch and Edward Purcell in 

1946. Spacial information encoding principles, developed by Paul Lauterbur in 1972, make 

the image formation possible. Later, diffusion magnetic resonance imaging (dMRI) and 

functional magnetic resonance imaging (fMRI) were introduced in the 90s. Table 2.1 shows 

the major developments in the field of MRI/NMR.

Because of spacial information encoding, MRI can generate two-dimensional sectional 

images at any orientation, three-dimensional volumetric images, which represent the spatial 

distribution of some measured physical quantity. It operates in the radio-frequency(RF) 

range, as shown in Figure 2.1. Therefore, the imaging process does not involve the use of 

ionizing radiation and does not have the associated potential harmful effects.

T ab le 2.1: Milestones of MRI

Time Event
1946 MR phenomenon-Bloch and Purcell
1952 Nobel Prize-Bloch and Purcell
1973 Backprojection MRI-Lauterbur
1975 Fourier Imaging
1977 Echo-planar imaging (EPI)-Mansfield
1980 FT MRI demonstrated-Edelstein
1986 Gradient Echo Imaging
1986 NMR Microscope
1987 MR Angiography-Dumoulin
1991 Nobel Prize-Ernst.
1992 Functional MRI
1994 Diffusion Tensor Imaging-Basser
1994 Hyperpolarized 129 X e  Imaging
2003 Nobel Prize-Lauterbur and Mansfield
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F ig u re  2.1: Electromagnetic spectrum. Image adapted from http://kingfish.coastal.edu

http://kingfish.coastal.edu
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The most important aspect of MRI is tha t the images are extremely rich in information 

content. The image voxel values are dependent on several intrinsic parameters, including 

the nuclear spin density p, the spin-lattice relaxation time Ti, the spin-spin relaxation time 

T2, molecular motions ( i.e., diffusion or perfusion), susceptibility effects, and chemical shift 

effects. Moreover, the imaging effects of these parameters can be suppressed or enhanced in 

a specific experiment by another set of operator-selectable parameters, such as repetition 

time (Tr), echo time (Te ), and flip angle (a). Therefore, an MRI image obtained from the 

same subject can look drastically different with different data acquisition protocols. In this 

chapter, we will explain how MRI works.

2.1 MRI Scanner Hardware
As shown in Figure 2.2, a typical MRI scanner system contains three main hardware 

components: a main magnet, a magnetic field gradient system, and an RF system. Gen­

erally, the main magnet is a superconducting magnet, which will generate a strong static 

magnetic field, i.e., the B 0 field. For clinical applications, the common strength of the 

B 0 magnetic field is 1.5T, 3T , or 4T . High fields have better signal-to-noise ratio and 

spectral resolution, but may cause RF penetration problems and more imaging artifacts. 

Gradient coils are responsible for generating time-varying magnetic fields for signal spatial 

localization, which is the key component of MRI. The RF system consists of a transm itter 

coil that is capable of generating a rotating magnetic field, i.e., the B i field, for excitation 

of a spin system, and a receiver coil that converts a processing magnetization into electrical 

signal. Sometimes, a single coil can be used as both a transm itter and receiver coils, thus 

the name transceiver coil. The bottom image of Figure 2.2 shows a detailed structure of 

the X, Y, Z gradient coil and transceiver.

2.2 Magnetization
It is the procession of the proton that generates the MRI/NMR signal. We will explain 

how in this chapter. One thing that needs to be clear is that, for protons, precession is 

the change in the orientation of the spinning axis of the proton, not proton intrinsic spin 

itself. The intrinsic proton spin can be thought of as leading to a circulating electric current, 

hence, an associated magnetic moment. The relationship between the magnetic moment 

and the spin angular momentum vector is:

(2 .1 )
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F ig u re  2.2: A typical clinical MRI scanner, and Gradient 
coils and Transceiver. Images adapted from
http://w w w .m agnet.fsu.edu/education/tutorials/m agnetacadem y/m ri/.

http://www.magnet.fsu.edu/education/tutorials/magnetacademy/mri/
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The constant, 7 , is called the gyromagnetic ratio and depends on the particle or nucleus. Ta­

ble 2.2 shows the natural abundance, spin number, gyromagnetic ratio, and the abundance 

in the body of all of the nuclei that can generate MRI signal. Particularly, the gyromagnetic 

ratio for water is

Y =  2.675 x 108r a d / s /T  (2.2)

or, 'gam m a-bar' as,

*T =  —  = 42 .58MHz/T  (2.3)
2n

where T is the Tesla unit of the magnetic field and is equal to 10000 Gauss (G). The 

frequency at which the nucleus precesses about the static magnetic field B0 is known as the 

Larmor frequency, u L

=  YBo (2.4)

To describe the collective behavior of a spin system, a macroscopic magnetization vector 

M  is introduced, which is the sum of all the microscopic magnetic moments per unit volume.

M  = (2.5)

The transverse components of magnetization M is perpendicular to static magnetic field B0 

and precesses at the Larmor frequency. This produces an oscillating magnetic field tha t can 

be detected with an R F  receiver coil. At equilibrium, nuclei precess with random phases, 

which cause the transverse components of magnetic moments to cancel out. On the other 

hand, a small net magnetization along the longitudinal direction does exist. However, since 

it is parallel with the longitudinal direction of the receiver coil, no induced signal will be 

generated.

T ab le 2.2: List of nuclei found in the human body with natural abundance
Nucleus Symbol Natural

Abundance
(%)

Spin (Ti) Gyromagnet.i 
ratio *f- 
(MHz/T)

? Abundance 
in body (%)

Hydrogen lH 99.985 1/2 42.58 63
Hydrogen 2H 0.015 1 6.54 63
Phosphorus 31 p 100 1/2 17.25 0.24
Sodium 23 N  a, 100 3/2 11.27 0.041
Nitrogen U N 99.63 1 3.08 1.5
Carbon 13C 1.11 1/2 10.71 9.4
Fluorine 19 p 100 1/2 40.08 0
Oxygen 17o 0.037 5/2 -5.77 26
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However, when an external magnetic field, i.e., B0 field, is applied, the nuclei spins 

will be aligned with the B0 field. Spins in different orientation have different energy of 

interaction with the external magnetic field. According to quantum theory,

E  — —n ■ Bo — —̂ z  Bo — —7hmi  Bo 

where h is called the Plank constant, and m j =  ± i .  For pointing-up spin (mj =  5),

For pointing-down spin (m j =  —i) ,

E-\ = --'yhBo

E i = ^ hB°

(2.6)

(2.7)

(2 .8)

which means spin-up state is the lower energy state, and spin down is the higher energy 

state. The energy difference between two spin states is,

A E  — E j — E | — y hB0 — 7W0 (2.9)

This is the so called Zeeman splitting phenomenon, as illustrated in Figure 2.3. The spin 

population difference in the two energy states obeys the Boltzmann distribution,

N t , A E .
n [  = expW (2.10)

where N  is the number of pointing-up spins, Nj is the number of pointing-down spins, 

Ts is the absolute temperature of the spin system, and K  is the Boltzmann constant. In 

practice,

A E  <  KTs (2.11)

F ig u re  2.3: Zeeman splitting for a spin-^ system
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By first-order approximation,

(2.12)

Equation 2.12 shows that there is an excess of a very small fraction of spins in the

lower energy state. This uneven spin distribution between the two spin states occurs 

because a lower energy state level is preferred. It is exactly this small spin population 

distribution difference tha t generates the observable macroscopic magnetization. After the 

RF excitations, this oscillating macroscopic magnetization can generate measurable MR 

signal.

RF pulse is a synonym of the B 1 field, which is short-lived and oscillates in the radio­

frequency range in the transverse plane. It is generally turned on for a few microseconds 

or milliseconds, and the magnitude (~  50mT) is small compared with the static magnetic 

field Bq. A typical B i takes the following form:

where B f(t) is the pulse envelope function, u rf  is the excitation carrier frequency, and <p 

is the initial phase angle. It is linear polarized and can be decomposed into two circularly 

polarized fields rotating in opposite directions,

where the first term rotates clockwise and the second term rotates counterclockwise. Since 

the counterclockwise term rotates in the opposite direction of the precessing spins, it exerts 

negligible effects on a spin system if u rf  is near the Larmor frequency. Therefore, only 

the first term is effective and causes the resonance on the precessing spins. From quantum 

mechanics, the electromagnetic radiation of frequency Urf  carry energy:

If Erf  is equal to the energy difference between the adjacent spin states, a coherent transition 

of spins from one energy state to another will be induced. That is,

2.3 RF Excitations

B i(t) =  2B e(t) cos(wrf t +  (p)i (2.13)

B 1 (t) =  B e(t) cos(wrf t  +  <£)i — sin(wrf t  +  <p)j 

+  B e(t) cos(wrf t  +  <̂ )i +  sin(wrf t  +  ^>)j
(2.14)

E rf — hwrf (2.15)

hwrf — A E  — j h B 0 (2.16)

or

Urf — Wq (2.17)
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this is the resonance condition. By applying a transverse oscillating magnetic field at 

exactly this resonance frequency, the nuclear magnetization can be tipped away from the 

longitudinal axis, which generates components in the transverse plane. The detectable MR 

signal can be produced.

2.4 Relaxation
The MRI signal decays the subject to T 1 and T2 relaxation decay mechanism. T 1 

relaxation is also called longitudinal relaxation time, which represents the spin-environment 

interaction. T2 relaxation is called transverse relaxation time, which represents the spin-spin 

interaction. Both Ti and T2 are physical properties related with the tissue type, and T2 

is generally shorter than T1. Table 2.3 shows the approximate T1 and T2 for human soft 

tissues under 1.5 Tesla.

2 .4 .1  T 1 R e la x a t io n

T1 is a measure of the time required for a substance in an applied magnetic field to 

remain longitudinally magnetized following an RF pulse. It is the time constant to release 

the energy absorbed due to the RF pulse into the environment. The process can be described 

by the following equation,
dMz —(Mz — M 0) f ^
~ d f  — n —  (2-18)

with the solution

M z (t) =  M z (0) e x p (- t/T i)  +  Mo (1 -  e x p ( - t /T i)) (2.19)

The process involves an exchange of energy between the spin system and the surrounding 

thermal reservoir, also known as the ’lattice’, with which it is in equilibrium. The equilib-

T ab le 2.3: T1 and T2 relaxation time of different tissues
Tissue Type Approximate Ti(ms) Approximate T2(ms)
Adipose tissues
Whole blood (deoxygenated)
Whole blood (oxygenated)
Cerebrospinal fluid
Gray m atter of cerebrum
W hite m atter of cerebrum
Liver
Kidneys
Muscles

240 -  250
1350
1350
4200 -  4500
920
780
490
650
860 -  900

60 80 
50 
200
2100 -  2300 
100 
90 
40
60 -  75 
50
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rium is characterized by a state of polarization with magnetization M0 directed along the 

longitudinal magnetic field B0.

2 .4 .2  T2 R e la x a t io n

The T2 relaxation can be described as,

dMx,y _  —M X'V 
dt ~  T2 1 ' j

with solution

Mx,y (t) =  Mx,y (0)e x p ( - t /T 2) (2.21)

This is the regime of the Bloembergen, Purcell, and Pound (BPP) theory [25], and the 

detailed explanation will be given in Section 2.4.4. It works very well for spins residing in 

liquid state molecules.

One intuitive but incorrect idea is that: The longitudinal component and transverse 

component of magnetization M0 are orthogonal. If one returns to its maximum, the other 

one should return to 0 position. Therefore, both Ti and T2 should be the same. In fact, 

transverse relaxation T2 is the process whereby nuclear spins come to thermal equilibrium 

among themselves. While indirect energy exchange via the lattice may play a role, additional 

direct processes were also involved. This led to T2 <  T1.

2 .4 .3  B lo c h  E q u a t io n

By equating the torque to the rate of change of angular momentum, we obtain

^  =  7M  x B (2.22)

Combining Equation 2.22, 2.18, and 2.20 in the rotating frame yields Bloch equations.

dMx M x
=  7 My (B0 -  u / 7 ) -  —

d^ !l = l M zB x -  - -  u h )  -  ^  (2.23)

dMz , , u (Mz — M0)
I T  = ---------%—

These are the most fundamental equations to explain many phenomena important in MRI.
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2 .4 .4  Q u a n tu m  D e s c r ip t io n  o f  R e la x a t io n

For two closely spaced Dipoles with moments f  and f 2, the total energy is

E  =  fi. • A*2 _  Sjfii • r)(n2 • r)
r 3 rp5 ^

where

|!i — Yi hli  (2.25)

f 2 — Y2 foh (2.26)

The Hamiltonian of this system can be rewritten as

H  =  ^ | ^ ( A  +  B +  C +  B  +  S  +  F) (2.27)

where

A — Iiz I 2z (1 — 3 cos2 0)

B — —1/4(7++ 7-  +  7- 7+)(1 — 3 cos2 0)

C  — —3/2(7+ 72z +  71z7+) sin 0 cos 0e~%̂
(2.28)

D  — —3 /2 (7 -I2z +  71z7 -) sin 0 cos 0e%̂

E  — —3/47+ 7+ sin2 0e~2i(p 

F  — —3/47-  7-  sin2 0e2î

For a spin-^ system, states are given by four levels, | +  5 , + 5  >, | +  ̂ > —5 >> I — +  5 >> 

and | - 5 , - 5  >• Term A is proportional to i i z/ 2z, so it connects to the same state. Term B 

contains both a raising and lowering operator, so it simultaneously flips both spins, raising 

one spin state and lowering the other. Therefore, it only connects the zero energy state to 

the other degenerate zero energy state. In other words, both term A and term B connect 

states of the same energy, which may be the same state or states that are degenerate in 

energy. This allows for interactions between dipoles tha t do not emit energy, which account 

for the T2 relaxation time decay (spin-spin).

Term C and Term D both include a single raising or lowering operator, and Term E and 

Term F both have two raising or lowering operators. Therefore, C, D, E, and F connects 

with different energy states, which allow energy absorptions. These four terms are the cause 

of T1 relaxation time decay (spin-lattice).

2.5 Signal Localization
So far, the MRI signal can be generated through magnetization, RF excitations, and 

relaxations from a subject. However, this signal does not contain any spacial information.
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The techniques introduced in this section can solve the dilemma, which is another key 

component of MRI, called spacial encoding. It includes slice selection, frequency encoding, 

and phase encoding.

2 .5 .1  S lice  S e le c tio n

Slice selection is realized by a combination of gradient fields and a spatially selective 

R F pulse. Generally the thin slice is parallel with the transverse plane and the normal 

direction of the thin slice is the longitudinal direction. The slice select gradient is applied 

in the longitudinal direction, also called the z direction. Then the magnetic field is linearly 

changing along the z direction, so the Larmor frequency at different locations along the 

z axis is different. This one to one correspondence of a given distance along the gradient 

direction to a particular Larmor frequency leads to the possibility of tuning the R F pulse 

frequency to excite a slice at a desired spatial location.

The slice select gradient causes the frequency of precession to be a linear function of 

position along the slice select axis, such as the z axis. The frequency at position z is

f ( z )  = fo + ^ Gzz (2.29)

where f 0 =  y /2 n B 0 is the Larmor precession frequency at z =  0. The linear relation 

between f  (z) and z is illustrated in Figure 2.4.

The goal is to excite uniformly a slice such that all spins in the slice have identical phase 

and flip angle after slice selection. To excite an infinitesimal slice through z0, the RF pulse 

must be tuned to the frequency given by Equation 2.29. Since the frequency spread of a 

realistic RF pulse is bounded, a region of finite thickness along the z direction within the 

object would have its spins tipped, while spins outside this region would ideally remain with 

Bo.

If we excite a slice of finite thickness extending from z0 — A /2 to z0 +  A /2, the RF pulse 

should have a frequency profile, in the rotating frame, which is unity over the range A f  of 

frequencies from [(y/2n)Gzz0 — (y/2n)G zAz/2] to [(y/2n)Gzz0 +  (y/2n)G zAz/2] and zero 

outside, as shown in Figure 2.5. The bandwidth B W rf  of the RF pulse, i.e., the width A f 

of its region-of-support in the frequency domain, is given by

BW rf =  A f

=  [(Y/2n)Gz z0 +  (Y/2n)Gz Az/2] — [(y/2^)Gz z0 — (y/2n)Gz Az/2] (2.30) 

=  (y/2n) Gz Az
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F ig u re  2.4: The linear relation between the precession frequency f  (z) and position z in the 
laboratory frame along the slice select axis when gradient Gz is applied. Images adapted 
from [66].

F ig u re  2.5: Excited magnetization (normalized) boxcar frequency profile in the Larmor 
rotating frame. Its temporal profile is that of an ideal (infinitely long) sinc pulse. Images 
adapted from [66].
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The slice thickness is a function of the bandwidth B W rf  of the rf pulse and the applied 

gradient:

Az =  T H
B W rf  (2-31)

(7 /2tt)G.

In order to get a uniform flip angle across the slice, the analytic form of the RF excitation 

profile, as a function of frequency, must be proportional to a boxcar function, r e c t ( f / A f ) 

of bandwidth A f . This means tha t the temporal envelope of the RF pulse B 1 (t), which is 

the inverse Fourier transform of the boxcar frequency profile, is a sinc function.

B 1 (t) rc s inc (nA f t )  (2.32)

However, the RF pulses are at the very least finite in their time duration, which the sinc 

RF needs to be truncated

Bi(t)  = Bi'ideal(t) ■ r e c t ( - )  (2.33)
Trf

Truncation leads to a frequency response, which is the convolution of the ideal response 

with a sinc function

B i  ( f ) — B 1,ideal ( f ) * (Trf Sinc(nfTrf)) (2.34)

When the duration of the RF pulse increases, the function Trf sinc(nfTrf ) approaches a S- 

function. But the truncation artifacts, i.e., Gibbs ringing, will occur near sharp boundaries.

In practice, an additional apodizing function is used to bring B 1 ideal (t) smoothly to 

zero and reduce truncation effects. Therefore, the more general expression for the time 

dependence of the field is

Bi(t)  = Bi'ideal{t) ■ a(t) ■ r e c t ( - )  (2.35)
Tr f

where a(t) is an apodizing function and the frequency response of the pulse becomes

B i ( f )  = Bi'ideai(f) * A ( f ) * r e c t ( - )  (2.36)
Tr f

Figure 2.6 shows an example of the effects of truncation and apodization on an ideal field 

profile as a function of time and frequency. In Figure 2.6a, a truncated sinc function is 

shown, and the associated flip angle profile is show in Figure 2.6b. Figure 2.6c shows the 

same sinc function after apodization with a Hanning filter, while Figure 2.6d demonstrates 

the smoothing effect tha t apodization introduces.
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F ig u re  2.6: The effects of truncation and apodization on an ideal field profile as a function 
of time and frequency. Images adapted from [66].
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2 .5 .2  F re q u e n c y  E n c o d in g

Frequency encoding allows the oscillation frequency of an activated magnetic resonance 

signal linearly dependent on its spatial origin along the readout direction, generally, the x 

direction. If the external static magnetic field is homogeneous, the Larmor frequency at 

position x is

w(x) =  w0 +  Gx x (2.37)

W ithout considering the transverse relaxation effect, the signal generated in an infinitesimal 

interval dx at point x takes the form,

dS(x, t) «  p(x)dxe-iY(Bo+G*x)t (2.38)

where the coefficient of the equality is determined by the flip angle, static magnetic field 

(B0), etc. If we ignore this coefficient, this equation can be rewritten as,

dS (x, t) =  p(x)dxe-iY(Bo+G*x)t (2.39)

Now, because the oscillation frequency term is

w(x) =  y (B0 +  Gx x)t (2.40)

which is a linear function of spatial location x, the signal is encoded with the position 

information along the readout direction. The signal received from the entire subject due to 

frequency encoding is

S (t) =  /  dS (x,t)
J subject> subject

p(x)e-iY(Bo +G*x)tdx (2.41)

e—i^otp(x)e—iYGx xtdx
_J — <X>

After the demodulation, we have

p(x)e—iYGxxtdx (2.42)

The effect of frequency encoding of local MR signal can be illustrated in Figure 2.7.

2 .5 .3  P h a s e  E n c o d in g

Phase encoding uses a pulsed gradient to move the magnetization to a particular location 

in k-space. We will explain it through an one-dimensional example. After a RF pulse, the
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F ig u re  2.7: Localized signals from a hypothetical one-dimensional object in the presence 
of a frequency encoding gradient. Images adapted from [101]
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gradient Gx is turned on for a short interval Tpe, and then turned off. The local signal due 

to this gradient takes the form,

Figure 2.8, the signals from different x positions accumulate different phase angles after a 

time interval Tpe. If we use Tpe as a preparatory period, the signal collected aferward will 

carry an initial phase angle

Now tha t 0(x) is linearly changed along the phase encoding direction, the signal is phase 

encoded. This gradient is also called the phase encoding gradient. Although an arbitrary 

phase encoding can be chosen, it generally is along the the y direction. So far, through the 

combination of slice selection, frequency encoding, and phase encoding, we can localize the 

signal in three-dimensional space, which makes it possible to generate three-dimensional 

images of a subject. Of course, these techniques still need to combined with the K-space 

sampling to generate the MRI signal. However, how we collect these signals is still a 

question.

Faraday law of induction states tha t time varing magnetic flux through a conducting 

loop will induce an electromagnetic force, i.e., voltage, which is equal to the rate at which 

the magnetic flux though the coil is changing. In MRI, the magnetization is precessing at 

a radio frequency and any conducting loop resonating at the frequency can be used as a 

receiver coil. According to reciprocity principle, the inductive coupling of the receive coil 

to the magnetization may be described as equivalent to a constant flux, produced by a unit 

current flowing around the receive coil, which penetrates the precessing magnetization of 

the subject. Then the magnetic flux through the coil by M (r, t) is given by

(2.43)

During time interval 0 < t <  Tpe, the local signal is frequency encoded. As shown in

0(x) =  -YGxXTpe (2.44)

2.6 How the MR Signal Gets Recorded

subject
(2.45)

According to Faraday law of induction, the voltage V(t) induced in the coil is

subject

(2.46)
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F ig u re  2.8: Phase encoded signals from a one-dimensional object. Images adapted 
from [101]
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The voltage V (t) induced in the receiver coil is often regarded as the raw NMR signal. If 

we rewrite the term B r in the follwing format,

Br =  B r,xi +  B r,yj +  B r,zk (2.47)

Equation 2.46 changes to

d (
V(t) = [BT'X(r)Mx (r, t) +  B r,y{r)My{r, t) +  B r ẑ (r)Mz (r, t)] dr (2.48)

dt Jsubject

Since the M z (r, t) is a slowly varing function compared to free precession of the M x and M y 

components, the last term can be ignored, yielding

d f
V(t) = I [Br x̂ (r)Mx (r, t) +  B r,y{r)My{r, t)] dr

dt J subjectsubject (2 49)

subject dt ’’yy ' dt
dr

Equation 2.49 shows tha t the induced signal is a function of only the M x and M y term, i.e., 

transverse magnetization.

In order to achieve M x and M y , the Bloch equation (Equation 2.23) needs to be solved 

for the free precession case. The solution take the form,

Mxy (t) =  Mxy (0)e- t/T2 e - wt (2.50)

where

M xy =  M x +  iMy (2.51)

and M xy(0) is referred to as the transverse magnetization immediately after RF pulse. 

Substituting Equation 2.50 into Equation 2.49, with necessary simplifications, we obtain

V(t) =  -  /  w(r)|Br,xy(r)||M xy(r,0)|e t/T2(r)
J subject

cos - u ( r ) t  +  </>e(r) -  (j>r(r) +  -
(2.52)

dr

Since this detected signal with high frequency can create problems for an electronic 

device, the technique, known as phase sensitive detection (PSD), is applied to move V(t) 

to a low-frequency band. Then the signal is
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Vp1sd(t) = w0 /  |Br,xy(r)||M xy(r, 0)|et/T2(r)
subject (2.53)

To determine whether the isochromat is precessing clockwise or counterclockwise, a 

second PSD system is used with reference signal 2 sin w0t, which has a 90o phase shift 

relative to the first PSD.

where B *xyr  =  |Br>xyr|e  %̂t , and w =  w0 +  Aw. One can notice tha t this induced signal is 

proportional to w0M0. Since w0 =  yB0 and M0 rc (y^B0) /(K T ), then

which means the signal is proportional to the square of the external magnetic field B0. 

This explains why researchers are interested in higher magnetic fields. Of course, higher 

magnetic fields have some other issues tha t need to be addressed carefully.

Diffusion leads to random fluctuations in Larmor frequency and hence to a distribution 

of residual phase shifts at the echo center. The influence of self-diffusion on spin echo 

amplitudes was first discovered by Hahn [68], then the multiple echo scheme of Carr 

and Purcell [31] was proposed as a way of minimizing such effects. The effect of these 

modulations on the echo amplitude can provide a contrast mechanism which may be possible 

to image the molecular displacement, so as to image local structure information. This is 

exactly the idea of diffusion Magnetic Resonance Imaging (dMRI), which we will discuss in 

more details in Chapter 3.

subject (2.54)
r n"i

sin —A uj(r)t +  <fie(r) — </v(?') +  ^  dr

By combining these two equations, the following equation is obtained,

S (t) =  Vpsd(t) +  iVp2sd(t)
(2.55)

(2.56)

2.7 The Influence of Diffusion on the MRI Signal
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The effect of molecular self-diffusion can be described by introducing an additional term 

in Bloch equations (Equation 2.23).

which is the Bloch-Torrey equation about diffusion. Where y is the gyromagnetic ratio of the 

hydrogen atom, G is the diffusion weighted gradient magnitude, and D  is the self-diffusion 

coefficient. Here diffusion weighted gradient means a linearly changing magnetic field along 

a certainty direction, which will weight the local Brownian motion of the water molecule 

based on the direction and the strength of the diffusion. Therefore, G means how much the 

changing rate is with respect to the spacial position of this diffusion weighted gradient. In 

rotating frame, it can be written as

Clearly, M+ is a function of both r and t, so this equation can be solved by making the 

substitution,

— — ^/My(Bo — 10 j 7) — M x/ T 2 +  V • D ■ VM x (2.57)

,/ /̂// ' =  —iqr • GM+ -  M+/T2 +  DS72M + (2.58)

(2.59)

Then,

(2.60)

The solution takes the form,

The integrals are,

d+A+^
-G5A

(2.62)
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and
p t r t rd+S rd+A
/  ( G*(t'')dt'')2dt' =  -  G2(t' -  d)2 - -  G252dt'

J 0 JO J d J d+S
r d+A+S

+  /  |"-G252 +  2G2(t' -  d -  A) +  G2(t' -  d -  A )2! dt' ,
Vd+S L J (2.63)

/* 2t
+  /  [-G 5 +  G5]dt'

d+A+S
=  G2^2 (A -  5/3)

where A is the diffusion time, and 5 is the diffusion gradient pulse duration. Both A and 5 

are shown in Figure 2.9, and d is the time duration between the |  RF pulse and the start 

of the first diffusion weighted gradient pulse in Figure 2.9. Now the attenuation takes the 

form,

exp [ - D y2G252(A -  5/3)] =  e x p [-bD] (2.64)

where

b =  y2G252(A -  5/3) (2.65)

which is the so called b-value in diffusion Magnetic Resonance Imaging. Figure 2.9 shows 

a standard ’Stejskal-Tanner’ spin echo pulse sequence with slice selective and diffusion 

selective gradients applied along one physical dimension (shaded). The reader needs to 

notice that the gradient pulse cannot be a perfect short square wave in practice. Figure 2.10 

shows an extreme case of how the gradient pulse looks, and the ramp-up and ramp-down 

times of the gradient cannot be ignored. In such cases, the derivation shown in this section 

is not valid. In other words, The result is an approximation when 5 ^  0.
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F ig u re  2.9: standard ’Stejskal-Tanner’ spin echo pulse sequence with slice selective and 
diffusion selective gradients applied along one physical dimension (shaded). Images adapted 
from [66]

F ig u re  2.10: A diffusion sensitizing gradient pulse.



CHAPTER 3

THE BASICS OF DIFFUSION TENSOR  

IMAGING (DTI), HIGH ANGULAR  

RESOLUTION DIFFUSION  
IMAGING (HARDI)

In this chapter, we will give a brief introduction about diffusion tensor imaging (DTI), 

high angular resolution diffusion imaging (HARDI), and fiber tractography algorithms. 

Section 2.1 introduces the basics of diffusion tensor imaging and its limitations, and a 

short introduction about fiber tractography algorithms. Section 2.2 presents a more recent 

technique: high angular resolution diffusion imaging (HARDI).

3.1 Overview of Diffusion Tensor Imaging (DTI)
Diffusion tensor imaging (DTI), invented by Basser et al. in the early 1990s [13], is a 

noninvasive technique to delineate the three-dimensional structure of brain white m atter 

in vivo. By applying appropriate magnetic field gradients, diffusion weighted magnetic 

resonance images were obtained. Then a diffusion tensor at each voxel can be solved 

according to the Stejskal-Tanner equation.

Si =  Soe-bgT Dgi (3.1)

where b is b value (Equation 2.65), gi is diffusion weighted gradient direction (the direction 

along which the diffusion weighted gradient was applied; please refer to Section 2.7 for 

more details.), Si are diffusion weighted images, S0 is the baseline image without applying 

the diffusion gradient, and D is a second-order symmetric diffusion tensor. Since D has 

six independent components, which are the unknown variables, at least six Sis and one 

B0 are needed to solve Equation 3.1. The widely used method to solve this linear system 

is linear least squares [13]; also the weighted least squares shows the optimal properties 

(minimum variance) [130]. Although some other approaches are applicable [51], the least 

squares techniques are generally faster and more robust.
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Human brain white m atter contains neuros, but mainly axons. For the human brain, 

the voxel size is in the range of 1 mm ~  2 mm cube, while the diameter of each single axon 

is around 10 microns. Therefore, diffusion tensor actually measures the ensemble average 

of the restricted (limited by axon boundaries) diffusion properties of a water molecule 

within the imaging voxel. Through the study of this diffusion tensor, more local structure 

information of human brain white m atter can be obtained.

After solving each tensor component, we now have the the symmetric second-order tensor 

D at each voxel.

where R  =  ( e i , e2, e3, ) is a column matrix of the eigenvector ev, and A =  diag(Ai , A2, A3) is

apparent diffusivity along each corresponding eigenvector direction. The diffusion tensor 

may be easily visualized as an ellipsoid whose diameter in any direction estimates the 

diffusivity in that direction and whose major principle axis is oriented in the direction of 

maximum eigenvalue. Figure 3.1 shows the ellipsoid visualization in the region of interest 

in human brain white matter.

Different scalar measures can be defined to measure the degree of anisotropy and the 

properties of diffusion: fractional anisotropy (FA), linear anisotropy(C), and mean dif- 

fusivity(MD), etc. Fractional anisotropy, which can give a clear contrast between brain 

white m atter and gray matter, is the most widely adopted scalar measure. In pure water 

(Cerebrospinal Fluid), the diffusion is characterized as isotropic, meaning that its diffusion 

magnitude is equal in all directions and the FA value will be zero or very low. In fibrous 

tissue (White Matter), however, the diffusion becomes restricted and shows a more or less 

distinct anisotropy, meaning that the diffusion magnitude depends on direction [18] and the 

FA value will be higher.

The diffusion tensor can be decomposed into the eigen system

D =  RARt (3.2)

a diagonal matrix of the eigenvalues Av, with Ai > A2 >  A3. Each eigenvalue represents the

FA
\ /  (Ai — A2)2 +  (A2 — A3)2 +  (A3 — Aij2 

\ /  2( Af +  A |  +  A|)
(3.3)

(Ai -  A2) (3.4)
(Ai +  A2 +  A3)
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F ig u re  3.1: Ellipsoid visualization of region of interest in human brain white matter. The 
enlarged image shows ellipsoid at each voxel in ROI, and the ROI was shown as an embedded 
image. The color was coded based on the major direction of the diffusion tensor. If the 
the major direction is aligned with left-right direction, the color of the ellipsoid will be red. 
If the the major direction is aligned with up-low direction, the color of the ellipsoid will 
be green. If the the major direction is aligned with in-out plane direction, the color of the 
ellipsoid will be blue. If the the major direction is somewhere in between, the color of the 
ellipsoid will be interpolated. For the embedded image, the color was coded based on the 
intensity value using HSV colormap defined in MATLAB.
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M D  — tr(D )/3  — (Ai +  A2 +  A3) /3  (3.5)

It has been shown that the direction of the largest eigenvalue coincides with the white 

m atter fiber tract orientations [110]. Fiber tractography algorithms [15, 158, 98, 116, 33, 56], 

which integrate along the major eigenvector field to form the architectural connections 

of white m atter structure, have been proposed. These tracking algorithms fall into two 

main categories: deterministic tractography [15, 158, 98, 116, 33] or probabilistic tractog­

raphy [56]. Figure 3.2 shows the fiber tracking results on a human brain data based on the 

streamline algorithm. Compared with the human brain anatomy (bottom right corner), the 

fiber tractography can generate similar trends as with real anatomy.

Deterministic tracking algorithms are based on the assumption that the largest eigen­

vector direction of a diffusion tensor aligns with the dominant fiber orientation(s) in each 

voxel, while the probabilistic algorithms calculate the probability of a connection between

F ig u re  3.2: Fiber tractography on human brain based on streamline algorithm. The color 
was coded based on the local fiber direction of each fiber track. If the the fiber direction is 
aligned with left-right direction, the color of the local fiber segment will be red. If the the 
local fiber direction is aligned with up-low direction, the color of the local fiber segment will 
be green. If the the local fiber direction is aligned with in-out plane direction, the color of 
the local fiber segment will be blue. If the the local fiber direction is somewhere in between, 
the color of the local fiber segment will be interpolated. Top right corner shows how the 
algorithm works in the 2D setting. Bottom right corner shows a human brain anatomy. 
Courtesy of G. Kindlmann and P. Mukherjee (top right corner).
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two anatomical regions. Fiber tractography is a noninvasive way to infer the white m atter 

connectivity of the brain, which starts to be used in clinical applications. It can also 

be used in surgical planning [21, 23], in pediatric subjects [60, 117, 24, 47], in elderly 

subjects [139], and in patients with schizophrenia [83], brain tumors [129], Alzheimer 

disease [140], etc. Although DTI is still the most wide spread technique, it underestimates 

the complex diffusion patterns in areas of fiber crossing, kissing, and branching, etc., due 

to the assumption of a Gaussian probability distribution function. Therefore, the HARDI 

technique emerged.

High Angular Resolution Diffusion Imaging (HARDI) was proposed by Tuch et al. [148, 

149] to enable a more precise angular characterization of the diffusion signal. Based on 

different mathematical modes used, HARDI techniques may be further divided into three 

major categories: high angular apparent diffusion coefficient(ADC) modeling, diffusion 

propagator model, and fiber models. A more detailed review can be found in [8].

3 .2 .1  H ig h  A n g u la r  A p p a r e n t  D iffu s io n  C o e ff ic ie n t(A D C )

Higher angular apparent diffusion coefficient was a direct generalization of modeling the 

apparent diffusion coefficient from a low to a high angular resolution without the Gaussian 

assumption imposed by DTI [74, 147, 4, 54]. It allows high angular modeling of the ADC 

by using a higher-order tensor (at least fourth-order) rather than a second-order tensor 

in Eq. 3.1. Higher-order tensor contains more unknowns, which require diffusion weighted 

images in more noncolinear diffusion weighted directions. Since a fully symmetric fourth- 

order tensor contains fifteen unknowns, at least fifteen diffusion weighted images need to be 

acquired to recover all of the independent components of the fourth-order tensors in each 

voxel. Descoteaux et al. [43] and Ozarslan et al. [165] formalize the ADC model as the

where Dj  is the j th independent component of the tensor, ^ j  is its corresponding multiplicity, 

and gj (p) is the component of the gradient direction g corresponding to the pth index of the 

j th independent component. Several studies suggested the use of spherical harmonics (SH) 

for angular ADC estimation [74, 54, 4, 32]

3.2 Brief Introduction of High Angular 
Resolution Diffusion Imaging (HARDI)

following

(3.6)
j= i p=i
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Ji
D ( g ) = £  Cj Y3 (g)

j =0
(3.7)

where the symbol Ji =  (l +  1 )(l +  2)/2 corresponds to the number of terms of an order l 

harmonic expansion, the symbol Yj stands for the real and symmetric spherical harmonics. 

These two forms are equivalent under the linear transform of

Ji ,■ i
Cm = J 2  Dj V j \ \  gj (P)(9)Ym (g)dg 

j=l Jn p=l

with the matrix form as

C  =  M D

(3.8)

(3.9)

where

( v i f n H p=ig i(p)(g)Yi (g)dg ••• v J i f n Hp=igi(p)(g)Yi (g)dg \
M =

W n IIP = ig i (p)(g)YJi(g)dg ••• v -J i fnH lp=igi(p)(g)YJi(g)dgJ
The higher-order tensor modeling technique resolve the brain regions with complex config­

uration, such as crossing, kissing, etc., which are problematic cases for DTI [4, 54, 167]. 

However, the maxima of ADC profiles are not aligned with the underlying fiber direc­

tions [67]. This prevents the extraction of accurate fiber directions, which is crucial for 

fiber tracking algorithms.

3 .2 .2  D iffu s io n  P r o p a g a to r

Diffusion propagator is probably the most widely used HARDI technique. Q-ball imag­

ing, Diffusion Orientation Transform (DOT), and Diffusion Spectrum Imaging (DSI) all 

belong to this category.

3 .2 .2 .1  Q -b a ll Im a g in g

Tuch [147] showed that diffusion orientation distribution (ODF) could be estimated 

directly from a diffusion signal measured on a single sphere of q-space without the full 

probability distribution function (PDF) information. It relies on the fact that the PDF is 

related to the measured diffusion signal by Fourier transform,

P  (r) =  F  [E (q)] =
(3.10)

ZrSR3
E (q) exp (—2 n iq  r) dq
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The ODF is the radial projection of the diffusion function,

1 f  ̂
’I'(u) = — P(ru)dr  (3-11)

Z J0

where Z is the dimensionless normalization constant. This actually is the zero-order radial 

projection of,
1 i' ̂

ODFk(k) = —  P ( rk ) r fcdr (3.12)
Zk Jr=0

Tuch employed the Funk-Radon transform to approximate the ODF, which treats each 

point on the sphere as a pole and assigns the integral over the associated equator to it.

^ q' (w) =  /  E  (q 'u)^(U Tw)du
u e S  (3.13)

=  2nq' I  P ( r ) J 0(2nq'r)5(1 — r Tw ))dr
JreR3

where w € S 2 and the symbol J 0 represent the zeroth order Bessel function of the first 

kind [1]. Following Tuch’s work, The spherical harmonics basis , which lowers the number 

of samples needed, was introduced [5, 72, 44].

L l
E (q) =  £  £  almYlm (u )%  — q') (3.14)

l=0 m=-1

where E  is the normalized diffusion weighted signal, q/ is the radius of HARDI acquisition 

q-space sphere, and u  is a three-dimensional unit vector. This simplifies the computation 

of the Funk-Radon transform stated by the Funk-Hecke theorem [6], and only involves a 

matrix multiplication between the coefficient of alm and Pl(0).

L l
>iy(w) =  E  E  2nPl (O)almYT(w) (3.15)

l=0 m= -1

The obtained ODF by QBI method [147] has a low angular contrast due to the assump­

tion of P (r)  w P (r) J 0(2nq'r) and the drop of r 2 term in Eq. 3.11. To solve this problem, 

either a min-max normalization [147] or a deconvolution with the Laplace- Beltrami oper­

ator [45] was used as the postprocessing step.

3 .2 .2 .2  D iffu s io n  O r ie n ta t io n  T ra n s fo rm  (D O T )

Diffusion Orientation Transform (DOT) [166], based on { mono,bi,tri } -exponential 

decay assumption on diffusion signal attenuation E (q), gives the full information about 

E (q) in the three-dimensional q-space from the only single shell E (q 0u). The key idea of



36

DOT is to use Rayleigh expansion of a plane wave in the spherical coordinate to do Fourier 

transform. The exp(-2niq- rdq) term in Eq. 3.10 can be expanded as.

^  l
e±2n^ r =  4n £  £  (± i)ljl(2nqr)Ylm(u) * Ylm(r) (3.16)

l=0 m=-1

where q =  |q| and r  =  |r|. The term j l (2nqr) is the l-th order spherical Bessel function 

whereas Ylm(u) is the spherical harmonic function. Then Eq. 3.10 can be rewritten as.

^  l *

P (R0U) = Y , Y ,  <-i>lYlm(r) duY "'(u) * Il(u) (3.17)
l=0 m=-l J

where
r

1 l ( u ) = 4 W  dqq2j l(2nqR0) e x p ( - 4n 2q2tD (u)) (3.18)
0

It reconstructs the diffusion propagator P (R 0u) at a given radius R0, given that P (R 0u) 

denotes p (r |r0,T) for a constant time t =  t . Here the P (R 0u) means the probability of 

finding the particles, which initially were at origin, at the point R0u. This means we want 

to calculate the probability on a sphere of radius R0, which is an additional parameter that 

has to be determined in advance.

Since Eq. 3.18 is a function of orientation, it can be expanded in a Laplace series and 

can be evaluated analytically.

^  l'
Il(u) =  £  ^  (*ll'mYvm' (u) (3.19)

l' =0 m'=-l'

Inserting this expression into Eq. 3.17, we get

^  l
P (R 0u) =  £  Y ,  P l m Y r m )  (3.20)

l=0 m=-l

Plm =  ( - 1 )l/2 J  Ylm(u) * Il(u)du  (3.21)

3 .2 .2 .3  D iffu s io n  S p e c t ru m  Im a g in g  (D S I)

Diffusion Spectrum Imaging (DSI) [157, 147] samples the entire q-space in three dimen­

sions, rather than only one spherical q-space surface in Q-ball Imaging (Sec. 3.2.2.1). It can 

acquire both the angular information and the radical information of the diffusion process 

denoted Ensemble Average Propagator (EAP), and requires very few prior assumptions.
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The simplied expression for the b value takes the form of b =  7 2G252(A -  5/3) (Equa­

tion 2.65). The so called q value takes the form,

q =  (2n)- 1  y5G (3.22)

This leads to the following expression

b(q) =  4n2q2(A -  5/3) (3.23)

where A is the time interval between two diffusion gradients, also called diffusion time. 5 is 

the duration of the diffusion gradient and G is the magnitude of the diffusion gradient. 7 

is the gyromagnetic ratio for water protons, which is a physical constant. To fully explorer 

the q-space, q value or b value need to be very large. However, 5 needs to be small to 

satisfy the narrow pulse approximation. From Eq. 3.22, we can see tha t G needs to be very 

large, which will create heavy eddy current distortions and even possibly induce harmful 

electric fields in the subject. In addition, DSI needs to acquire multiple shells in q space 

with many diffusion weighted directions, which lead to a much longer data acquisition time. 

All of these are the severe technical limitations of DSI.

3 .2 .3  F ib e r  M o d e l A p p ro a c h e s

3 .2 .3 .1  M ix tu r e  M o d e ls

The basic idea of the mixture models is that the diffusion signal can be decomposed as 

a weighted sum of generic diffusion models hf.
n n

E(q) =  fihi(q)  with ^  fi  =  1 (3.24)
i=1 i=1

The multi-Gaussian model [147] is the direct generalization of the DTI model, which assumes 

that the diffusion signal can be modeled as the sum of several second-order tensors:

hi (q) =  ex p (-4 n 2T q TDiq) (3.25)

The Ball and Stick model [20, 75] models the signal as two components: isotropic compart­

ment (ball) and anisotropic compartments (stick).

hiso(q) =  ex p (-4 n 2q2T DiSo) (3.26)

haniso(q) =  ex p (-4 n 2q2TUT DanisoU) (3.27)

The mixture models are very intuitive and the peak interference is taken into account 

automatically. However, the estimation of mixture models is generally nonlinear and is
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obtained by iterative computations, which makes the model estimation process unreliable 

and inefficient. In addition, the appropriate number of fibers need to be determined in 

advance.

3 .2 .3 .2  S p h e r ic a l  D e c o n v o lu tio n

Spherical Deconvolution was put forward by Tournier et al. [143]. It assumes the 

diffusion signal is the convolution of the single fiber response function with the expected 

true fiber distribution, rather than a discrete number of fiber bundles used in mixture 

modes. Later linear or nonlinear methods have been put forward to resolve the issues like 

instability, noise, and negative diffusivity [78, 77, 5, 126, 40, 86]. One disadvantage of 

Spherical Deconvolution is that a fiber response function needs to be assumed a priori. It 

either can be a choice based on experience [3] or calculated by statistical estimation on the 

whole diffusion image [143, 78]. We will review Spherical Deconvolution in more detail in 

Chapter 4.



CHAPTER 4

DETECTION OF CROSSING WHITE  
MATTER FIBERS WITH HIGH- 
ORDER TENSORS AND RANK- 

K DECOMPOSITIONS

Fundamental to high angular resolution diffusion imaging (HARDI) is the estimation of 

a positive-semidefinite orientation distribution function (ODF) and extracting the diffusion 

properties (e.g., fiber directions). In this chapter, we show tha t these two goals can 

be achieved efficiently by using homogeneous polynomials to represent the ODF in the 

spherical deconvolution approach, as was proposed in the Cartesian Tensor-ODF (CT-ODF) 

formulation. Based on this formulation, we first suggest an estimation method for positive- 

semidefinite ODF by solving a linear programming problem tha t does not require special 

parametrization of the ODF. We also propose a rank-k tensor decomposition, known as CP 

decomposition, to extract the fibers information from the estimated ODF. We show that 

this decomposition is superior to the fiber direction estimation via ODF maxima detection 

as it enables one to reach the full fiber separation resolution of the estimation technique. We 

assess the accuracy of this new framework by applying it to synthetic and experimentally 

obtained HARDI data.

4.1 Introduction
Diffusion Tensor MRI (DT-MRI) measures the Brownian motion of water molecules in 

a tissue and enables one to reveal its diffusion properties. It is primarily used to infer 

the white m atter connectivity of the brain. The signal attenuation model in DT-MRI is 

given by Equation 3.1. In traditional DTI, the ADC is modeled by a quadratic form 

D(g) =  gTDg, where D is a second-order tensor known as diffusion tensor. Since D(g) is a 

quadratic form, the modeled ADC is elliptic and thus cannot model complex structures such 

as crossing fibers. To overcome the limitations of DTI, High Angular Resolution Diffusion
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Imaging (HARDI) is used. Different modalities and estimation techniques associated with 

HARDI have been proposed over the years. These methods include the multicompartment 

model [150], Q-ball imaging (QBI) [149, 44], spherical deconvolution [143, 3], Diffusion 

Orientation Transform (DOT) [113], OPDF [146], and methods that describe the ADC 

profile using high-order tensors [10, 12]. These latter methods represent D(g) as an even- 

order homogeneous polynomial whose coefficients are identified with the entries of a high- 

order tensor. The resulting function can describe multiple maxima and can be used to 

model complex fiber structures. Unfortunately, in contrast to the diffusion tensor model, 

the maxima of the ADC profile described by a high-order homogeneous polynomial do not 

correspond to the underlying fiber directions. This is solved by computing the diffusion 

propagator and locating the fiber directions at its local maxima. This computation involves 

a nontrivial Fourier transform step that adds complexity to the estimation process. To solve 

this problem, it was proposed in [159] to combine the high-order tensor formulation with 

the spherical deconvolution technique. This strategy enables one to estimate a positive- 

definite ODF, dubbed Cartesian Tensor-ODF (CT-ODF), whose maxima correspond to the 

orientations of the fibers.

Although finding all the local maxima of higher-order spherical functions is not trivial, 

only a handful of papers have been devoted to this important issue [26, 2, 135]. It turns out 

that since each maximum has a finite width, maxima tend to interfere below a certain fiber 

separation angle. Therefore, using maxima finding, the maximal fiber separation resolution 

enabled by the data acquisition technique cannot be reached. An interesting solution to 

this problem was proposed in [135]. The ODFs in that case were estimated using the 

Q-Ball imaging technique and then were converted to high-order tensors using a linear 

transformation. Then, a heuristic rank-k tensor approximation was applied to the tensors 

to extract the fiber directions beyond the resolution limit determined by the maxima. This 

method was later used to initialize the ball-and-stick model [136]. Although the proposed 

method was applied successfully to synthetic and real data, it has some inherent limitations: 

To calculate the different rank-1 tensors tha t contribute to the rank-k approximation, rank-1 

tensor subtractions were used. It is known tha t rank-1 tensor subtractions can potentially 

increase the tensor rank [138] and hence, the convergence of the algorithm is not guaranteed. 

Furthermore, although the initial ODF is non-negative, the residuals obtained by these 

subtractions do not have this property. In this chapter, we address these problems and in 

addition to a new ODF estimation technique, we propose an alternative way to decompose 

the tensors.
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This chapter is organized as follows: We first develop the estimation technique for 

positive-semidefinite ODFs of any order. This estimation method is based on the CT- 

ODF formulation for high-order tensors proposed by Weldeselassie et al. [159]. Then, we 

formulate the estimation problem as a linear programming problem with linear constraints 

that enforce non-negativity of the ODF. For extracting the individual fiber properties, we 

apply a rank-k tensor decomposition, known as the CP decomposition, to the ODF. In 

addition to providing the fiber directions, the decomposition also enables us to estimate 

the fiber fractions. Finally, we demonstrate our proposed technique on synthetic and real 

HARDI data and show that the proposed algorithm provides accurate results and can 

reliably resolve two crossing fibers with much higher fidelity than by maxima detection. We 

confirm the accuracy of the algorithm on both synthetic, phantom, and real HARDI data.

4.2 Spherical Deconvolution
Following the work by Tournier et al. [143], the Diffusion-Weighted MR signal can be 

modeled by a spherical convolution of an orientation distribution function (ODF) with an 

axially symmetric kernel, K :

S(g, b) =  S c /  F  (v)K (g, v,b)dv, (4.1)
■Js2

where g is the gradient direction. The function F  is associated with the ODF (or fiber-ODF 

in Tournier’s original work), and it is composed of a sum of k delta functions, each is oriented 

along one fiber direction and weighted according to the corresponding fiber fraction. The 

kernel K  can be chosen in various ways depending on the dataset and the region in the 

brain (e.g., [11, 3]). A very common choice is the single fiber response which is described 

by the bipolar Watson function

K(g ■ v,b) =  e-c(gTv)2, (4.2)

where the concentration parameter, c, is a function of the b value and the diffusivity. Given 

the measured DW-signal and a kernel, which is known a priori, the ODF is computed by 

performing spherical deconvolution of K  from S(g, b). Technically, this may be solved using 

least squares where the solution is given by a simple pseudo-inverse operation [143].

In [159], it was proposed to represent F  as a spherical, even-order, and positive-definite 

homogeneous polynomial induced by a high-order tensor. In that work, it was suggested 

to use the single fiber response kernel described in Eq. (4.2). The concentration parameter 

was chosen to be large enough to describe a diffusion process which is highly restricted 

perpendicular to the orientation v. We use the same ideas here.
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1 n 
mm -  

F  2 i=1
(4.3)

Any ODF estimated from the data has to be non-negative. In [159], a special parametriza- 

tion was used to yield a positive-definite ODF. In this section, we show that the same goal 

can be achieved by minimizing an objective function subject to linear constraints that 

enforce the positivity on the ODF. That is, given measurements in n gradient directions, 

we aim to solve the following problem:
n *

^  S(g i,b ) -  S 0 F (v )K (g i, v,b)dv 
i=1 ^s2 

subject to

F  (gi) > 0, g l , . . . ,  gn e S2.

The solution to this problem guarantees positive-semidefiniteness in the discrete sense, that 

is, in the directions which were used to acquire the signal. We believe that under certain 

conditions, the estimated ODF will be positive-semidefinite in every direction on the sphere. 

However, since this is an open problem, we leave the complete mathematical study as future 

work.
We now formulate the problem explicitly. This formulation holds for tensors of any order; 

however, in this chapter, we only consider fourth-order tensors that are also supersymmetric. 

Here we will refer to a supersymmetric tensor by using the term symmetric. The coefficients 

of a symmetric fourth-order tensor are invariant under any permutation of the indices. Thus, 

a symmetric fourth-order tensor has 15 unique coefficients associated with a homogeneous 

polynomial:
4 4—a

F  (g) = E  E  Cab g?g2 g4—a—2, (4.4)
a=0 b=0

where cab denote the unique tensor coefficients and g1,g 2, and g3 are the components of the 

gradient direction g.
Substituting F  into the integral (5.1), we have a sum of integrals, each related to a 

different monomial:
4 4—a

S  (g,b) =  ^ 5 ^  c°b Va V2 v^—a—bK  (g, v, b)dv. (4.5)
a=0 b=0 ,' veS2

Solving these integrals analytically is intractable; hence, we approximate each one of them 

according to the centroid rule for integration of functions on the sphere [9]. Given a sphere 

triangulation with N  faces, for a spherical function, f  (v), the centroid rule is given by
N

/ f  (v)dv «  ^  f  (vi)A(Ai) (4.6)
s2 i=1

where vi is the centroid of the i’th face and A(Ai) is the area of the face. This scheme is 

very accurate for specific sphere triangulations. Here we choose the third-order icosahedron
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triangulation which results in 1280 faces (642 nodes). The evaluation of each integral 

according to this scheme is very fast as the centroids and the areas of the faces are computed 

only once.

Following these calculations, we can define a matrix, C, whose entries correspond to the 

numerical approximation of Eq. (4.6) for each monomial, in each direction gi . The size of 

this matrix is then n x  m where n is the number of gradient directions and m is the number 

of unique tensor coefficients.

The linear constraints that impose the positivity on F  are defined by using a n x m 

matrix A. Each row of A corresponds to a different gradient direction, and each column 

corresponds to a different monomial. The multiplication Ax results in a n-dimensional 

vector, and each element of it corresponds to F (g i), where F  is defined by Eq. (4.4). Thus. 

we obtain a set of n linear constraints, and each constraint is applied to a different gradient 

direction.

Finally, with respect to the matrices defined above, for each voxel, we solve the following 

linear programming problem:

1 „ ll2 
are; min -  S — C • x

6  X 2 " " (4.7)
subject to — Ax < b,

where S is a vector of the n DW measurements, and b is a n-dimensional vector which 

defines the boundary of the convex polytope on which we minimize the objective function. 

Setting the values of b to be zero results in estimation of a positive-semidefinite ODF.

To solve this problem, the number of gradient directions has to be larger than the 

number of the tensor coefficients. Since, typically, in HARDI scans n > 60, this condition 

holds as a fourth-order homogeneous polynomial defined by m = 15 unique coefficients. 

This problem may be solved efficiently using the MatLab optimization toolbox or through 

open source packages for convex optimization such as CVX [63]. Given the optimal vector 

of coefficients, x*, the ODF is computed by F  =  Ax*. The unique tensor coefficients are 

then arranged in a fourth-order tensor using the symmetry and the appropriate monomial 

factors.

Once the ODF has been estimated, we proceed to extracting the fiber directions and 

fractions. As an ODF is associated with a finite-order expansion of spherical harmonics, 

its maxima has a finite width. Thus, the ODF’s maxima interfere and do not correspond 

to the correct fiber directions below a certain separation angle. In the following section, we 

solve this problem by using a rank-k tensor decomposition known as the CP decomposition. 

We show that while a rank-1 decomposition corresponds to finding the maxima of F, a
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decomposition with k > 1 corresponds to finding the different components (fibers) that 

contribute to F  which, in turn, significantly increases the ability to separate crossing fibers.

4.3 High-Order Tensor Decompositions
To discuss HOT decompositions, we have to first define the notion of a tensor rank. 

Tensor rank, denoted here as R =  rank(D), is defined as the minimal number of terms such 

that the following equality holds

R
D  =  ^  v ,1 ® v2 ®- - - ® vn, (4.8)

r=1

where v are first-order tensors (vectors). The order of the tensor, n, is defined by the 

number of its indices and it determines the number of tensor products in Eq. (4.8). A 

cubic tensor is a tensor whose different modes have the same size, i.e., D € Rdxdx-^xd. The 

decompositions that we discuss in this section hold for a general n ’th-order tensor which is 

not necessarily cubic or symmetric. In our case, D is cubic and symmetric where n =  4 and 

d =  3.

Unlike the matrix case (n =  2), the rank of a given HOT is not known. In fact, the 

problem of determining the rank of a given tensor is NP-complete [71]. However, in this 

work, we are interested in low-rank tensor approximation. For a given tensor rank k < R, 

the low-rank approximation is defined by:

k
D ~  X / ^r (v,1 ® vj: ®- - - ® vn), (4.9)

r=1

where 11vr || =  1, and for a symmetric tensor, v , =  v2 =  ■ ■ ■ =  vn. A low-rank tensor approx­

imation is known as rank-k decomposition and it is applied to various branches of science and 

engineering. It is also known in the mathematical literature as the CANDECOMP\PARAFAC 

(CP) decomposition [89]. The vectors v r represent here the fiber directions, and the fiber 

weights are simply wr =  Xr/  ^ k=, Xr . The rank of the tensor corresponds here to the 

number of crossing fibers within a voxel. Since we do not expect to detect reliably more 

than two crossing fibers using a fourth-order tensor, we restrict ourselves to the k =  2 case.

The fiber model is determined in this work according to the ratio between the singular 

eigenvalues, Xr . That is, the weakest fiber term is rejected whenever Astrong/Aweak > t, 

where the threshold was set to t =  4. An alternative model selection approach is the core 

consistency diagnostic (CORCONDIA) [30]. However, it is not within the scope of this 

chapter.
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To compute the CP decomposition for a given tensor, D, and a given rank, k, one has 

to solve the least squares problem

min || D - D  | |2 (4.10)
D

where D  =  ^ k=1 Ar (v1 0 v2 0 - ■ -0 vn). Due to its simplicity and efficiency, the most popular 

technique to compute a rank-k tensor approximation is the Alternating Least Squares (ALS) 

[37, 92]. The principal of the ALS is straightforward. In each iteration, it solves a least 

squares problem for the set of vectors {vr }kk=1, i =  m, while keeping the vectors with i =  m  

fixed.
A particular case with k  =  1 is the rank-1 decomposition. Given a symmetric tensor 

D, its best rank-1 approximation is computed by solving the problem (4.10) where D  = 

A v 0  v 0  ■ ■ ■ 0  v. This problem is equivalent to the nonlinear optimization problem [96]
S-------------- V-------------- y

n times
max |D(v)|

V (4.11)subject to ||v|| =  1,

where D (v) is the homogeneous polynomial induced by the tensor and identified here with 

the ODF. The best rank-1 decomposition for symmetric tensors can be efficiently computed 

by solving the ALS for k =  1 or by using a high-order power method (HOPM) (e.g., [93]). 

This problem may have multiple nonantipodal solutions and the different solutions are found 

by multiple initializations. Upon converges, for each initialization, the algorithm produces 

an eigenpair (vi ,Ai). For each eigenpair, the unit-norm vector vi specifies a global maximum 

location where Ai =  D(vi). As in our case, D(v) corresponds to the ODF; as long as the 

maxima are distinguished, the resulting vectors will point in the directions of the underlying 

fibers. As we will show in the next section, at these cases as well, the CP decomposition is 

superior to maxima finding.

4.4 Experiments
4.4 .1  S y n th e tic  D a ta  S im u la tio n s

To assess the accuracy of our new algorithm, we applied it to synthetic as well as

measured experimental HARDI data. First, we generated synthetic data by simulating two

crossing fibers according to the multicompartment model
k=2

S  ( g , b ) =  S o ^ 2  Wie-bgDigT (4.12)
i=1

For both tensors, we assume a prolate tensor model with eigenvalues A1 =  1.7 ■ 10- 3mm2/s, 

A2 =  A3 =  3 ■ 10- 4mm2/s and a b-value of 1500 s/mm2. The baseline signal was set to
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S0 =  1. One fiber direction was created randomly and the second one was obtained by 

rotating the corresponding tensor to get the desired separation angle between the fibers. 

The weights were set equally. For the convolution kernel, we have used Eq. (4.2) with a 

concentration parameter of c =  200.

The algorithm was tested on noisy data at three levels of SNRo1: 50, 25, and 12.5, where 

the signal was corrupted by Rician distributed noise. For each noise level, the separation 

angle was varied from 30 to 90 in 5 degree steps. The signal was measured using 81 gradient 

directions which were computed using a second-order icosahedron sphere tessellation. For 

each separation angle and noise level, we performed 100 experiments where fourth-order 

tensors were estimated using the linear programming approach and a rank-2 decomposition 

was applied to extract the fiber directions and fractions. The mean and the standard 

deviation of the separation angle, the fiber direction deviation, and the weights estimation 

were calculated for each case.

The CP decompositions were performed using the ALS algorithm [37]. Although the 

ALS algorithm produces nonsymmetric intermediate results for symmetric tensors, we have 

found that eventually it converges to a symmetric tensor solution. We have implemented a 

symmetric version of the ALS according to [37]. Although it produces symmetric interme­

diate solutions, it has not obtained more accurate solutions than the nonsymmetric version. 

For a MatLab implementation of the ALS 2, it takes 20ms on a Linux workstation with a 

2.4MHz quad core CPU and 6GB to produce a rank-2 decomposition for a given tensor.

There are only rare cases where the ALS will not converge to a stationary point. 

However, it may converge to local minima. While local minima solutions cannot be entirely 

avoided, we have found that they can be adequately treated by initializing the ALS using the 

singular eigenvectors of the unfolded tensor [96]. Random initialization gave less accurate 

results as the algorithm produced local minima solutions more often, especially in low SNR 

simulations and for small separation angles.

In Fig. 4.1, we present the minimal fiber direction deviations of the estimated directions 

from the true directions, as well as the separation angle deviations. For SNR ratios of 50 

and 25, it is shown that the algorithm can reliably resolve the fiber directions, especially 

above a separation angle of 35 degrees. When the SNR drops down to 12.5, which is 

a value found in real scans, below an angle of 45 degrees, we observed large biases and

1Measured as the baseline signal, S0, divided by the noise standard  deviation, a.

2Available at: h ttp ://esm r.ca.sandia .gov/^tgkolda/T ensorToolbox/

http://esmr.ca.sandia.gov/%5etgkolda/TensorToolbox/
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high standard deviations at one fiber direction. Hence, the separation angle deviation is 

not shown for these cases. The performance of the algorithm in this SNR level improves 

significantly above a separation angle of 50 degrees where both fiber directions could be 

resolved reliably. As shown in Fig. 4.2, the fiber fractions could be estimated accurately 

above 45 degrees for SNR levels of 50 and 25, whereas at the lowest SNR level, 60 degrees is 

the point where the accuracy improves significantly. In Fig. 4.3, we show that the rank-2 CP 

decomposition has an advantage over maxima finding even at large separation angles where 

the ODF has distinct maxima. While at a fiber separation angle of 80 degrees, the rank-2 

decomposition has a slight advantage only at low SNR levels (top left image), at 70 degrees, 

it outperforms the rank-1 decomposition at all noise levels (top right image). Below 70 

degrees, the maxima merge and maxima finding is no more reliable. In the bottom images, 

ODFs that represents crossing fibers at 30, 45, and 90 degrees are presented. In these cases, 

the correct fiber orientations can be estimated by using the rank-2 decomposition only. 

Maxima directions in this experiment were calculated using the SS-HOPM algorithm [93].

4 .4 .2  P h a n to m  D a ta

To test our algorithm on experimentally obtained HARDI data where the ground truth 

fibers are known, we first apply our decomposition algorithm to the publicly available 

phantom data used in the MICCAI 2009 Fiber Cup contest [121]. The data were scanned 

at three b-values: 650,1500, and 2650 s/mm2. We used the dataset with a b-value of 

2650s/mm2 in this study. The top row of Fig. 4.4 shows the reconstructed fourth-order 

tensor field, the rank-1 decomposition, and the rank-2 decomposition results. The two 

right-hand side images in this row illustrate the comparison between the rank-1 and the 

rank-2 decomposition where the differences between the decompositions are highlighted by 

ellipses. The fiber directions are presented as thin cylinders at each voxel, where the length 

of the cylinder is determined by the fiber weight. We have integrated the ground truth 

fibers as a reference.

As shown, the decomposed directions clearly delineate the hidden fiber orientations. 

However, by using the rank-2 decomposition, our algorithm could detect more crossing 

fibers which are oriented along the ground truth fibers.

4 .4 .3  C a t  B ra in  D a ta

To test the algorithm on real data, we used a HARDI scan of a cat brain. The data 

were acquired using a standard 3D diffusion-weighted spin-echo sequence with TR=500 

ms, TE=39.8 ms, field of view 70 x 40 x 32mm, matrix size 175 x 100 x 80, zero padded
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Figure 4.2: The estimation of fiber fraction for one fiber using the rank-2 decomposition. 
The SNR ratio decreases from 50 to 12.5, from top to bottom.
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Noise Variance Noise Variance

Figure 4.3: Rank-2 decomposition vs. maxima finding with rank-1 decomposition. These 
results present the minimal fiber direction deviation for a separation angle of 80 degrees (top 
left) and 70 degrees (top right). The red curve is for the maxima finding, and the blue curve 
is for the rank-1 decomposition. The bottom images demonstrate the differences between 
the approaches when the separation angle is 30 deg(bottom left), 45 deg (bottom middle), 
90 deg (bottom right). The green and the blue lines show the true and the estimated fiber 
directions, respectively. The red line shows the direction of the maximum obtained by a 
rank-1 tensor decomposition. The mean and the standard deviation were calculated from 
100 experiments for each noise level.
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Figure 4.4: The decomposition results of the ODF field of the phantom (top row) and cat 
brain (bottom row) show the following: b0 image (left), fourth-order tensor field of region 1 
and region 2 (middle left), rank-1 decomposition (right middle), and rank-2 decomposition 
(right). The results of region 1 are presented at the top and the results of region 2 are at 
the bottom. For the phantom, the ground truth fibers are shown both in the b0 image and 
in the detailed views of the decomposition results.
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to 200 x 100 x 80, yielding an isotropic resolution of 400 microns and a b-value of 6000 

s/mm2. Four images without diffusion weighting (b0 image) and 96 diffusion-weighted 

images were acquired. The diffusion gradients were uniformly spaced over a unit sphere. 

The two left images of the bottom row in Fig. 4.4 show the b0 image and the reconstructed 

fourth-order tensor field for the two specified ROIs. The two right images in this row 

compare between maxima finding method, with the rank-1 decomposition and the rank-2 

decomposition. These results show that some of the crossing fibers, which are not detectable 

using maxima finding, could be detected using the rank-2 decomposition. Although further 

validation needs to be done on more datasets, promising results are already demonstrated 

qualitatively on cat brain data.

4.5 Conclusions
In this chapter, we propose a novel framework that combines an ODF estimation method 

with a parameter extraction technique for estimation of fiber directions and fiber fractions. 

For the estimation method, we have used a specific form of spherical deconvolution where 

the ODF is represented by a homogeneous polynomial induced by a high-order tensor. The 

ODF was constrained to be non-negative by adding a set of linear constraints to the objective 

function that represents the spherical deconvolution. Then, we show that fiber directions 

and fiber fractions are accurately extracted by applying a rank-2 CP decomposition to the 

ODF. As the ODF in this case is associated with a higher-order tensor, we can apply the 

decomposition directly to the tensor without using the conversion step which was necessary 

in [135]. The CP decomposition optimizes the sum  of the different rank-1 terms and no 

tensor subtractions are being used. Consequently, the problems of rank increasing and 

nonpositive residuals do not exist here.

Experiments performed on synthetic data, phantom, and real data show that this method 

can resolve two crossing fibers reliably, even at low SNR, and at far better resolution than 

the maxima detection approach.

As future work, we plan to make the algorithm more efficient, accurate, and more robust 

to noise both at the spherical deconvolution and the tensor decomposition levels. Tensors 

of order greater than four will be considered as well.



CHAPTER 5

A DIRECT APPROACH FOR WHITE 
MATTER STRUCTURE ASSESSMENT  

USING LOW-RANK POLYNOMIAL 

APPROXIMATIONS

This chapter presents a novel approach to extract white matter fiber orientations and 

volume fractions directly from diffusion-weighted imaging (DWI) measurements. It is based 

on a spherical deconvolution technique and decomposition of a homogeneous polynomial 

into a sum of powers of linear forms, known as a symmetric tensor decomposition. The 

fiber-ODF (fODF), which is described by a homogeneous polynomial, is approximated here 

by a discrete sum of even-order linear forms that represents single fibers. This polynomial 

approximation is convolved to a single fiber response function, and the result is optimized 

against the DWI measurements to assess the fiber parameters. This formulation leads to 

a nonlinear optimization problem that we solve here by means of an iterative alternating 

scheme, which is based on the Levenberg-Marquart technique. Using synthetic data simu­

lations, we show that the proposed algorithm is more accurate and stable compared to the 

state-of-the-art. In addition, we apply this method to in vivo, human brain data and show 

that it successfully recovers complex fiber structures.

5.1 Introduction
In contrast to diffusion tensor imaging (DTI), High Angular Resolution Diffusion Imag­

ing (HARDI) is an imaging technique that is capable of describing more complex white 

matter structures such as crossing fibers. Given HARDI data, various reconstruction 

techniques are used to infer the fiber structures (e.g., [44, 142, 150, 113]). These techniques 

are primarily based on the reconstruction of an orientation distribution function (ODF) that 

describes the dominant diffusion directions. To recover the white matter fiber pathways, the 

dominant diffusion directions are extracted from the ODF. Since white matter connectivity
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maps are obtained from tracking these dominant directions, an accurate reconstruction 

of this information is crucial. This motivated the development of various analytical and 

numerical techniques to achieve this task. These techniques are mainly based on polynomial 

root-finding and higher-order ODF tessellation [2, 26, 59], or low-rank tensor approxima­

tions [78, 135]. However, the accuracy of these algorithms is limited by the ODF quality of 

reconstruction and its reconstruction order (i.e., the spherical harmonics truncation order). 

Also, since these algorithms introduce significant complexity, the complete process of ODF 

reconstruction, followed by orientations estimation, is inefficient. Thus, to combine these 

two optimization problems into one, and avoid the complexity of extracting the orientations 

from the ODF, we propose here a novel approach to reconstruct the fiber orientations and 

the volume fractions directly from the DWI measurements. Since an ODF describes only 

the angular part of the diffusion, we may eliminate its reconstruction and still allow it to 

recover the fiber pathways by directly obtaining the orientation information.

The proposed approach is motivated by the symmetric tensor decomposition [28]; that is, 

any homogeneous polynomial of order d may be decomposed into a sum of r distinct linear- 

forms of the same order. Since any ODF with antipodal symmetry may be represented as an 

even-order homogeneous polynomial (or a higher-order tensor) [43], it could be decomposed 

in a similar manner. Here, we consider a lower-rank polynomial approximation of a fODF 

in terms of even order linear-forms. In this approximation, each linear-form represents a 

single fiber and its coefficients correspond directly to the fiber orientation and the volume 

fraction. These coefficients are estimated via a spherical deconvolution operation [142] such 

that each term is convolved to a single-fiber response and the result is optimized against the 

HARDI measurements by means of 12 norm. The resulting nonlinear optimization problem 

is solved here using an iterative alternating scheme based upon the Levenberg-Marquardt 

technique, and is shown to produce stable and accurate results.

In addition to the ability to estimate the orientations directly from the measurements, 

this approach has more advantages over the commonly used reconstruction techniques: 1) 

The fODF expansion in linear-forms is naturally positive-definite, and hence, no additional 

constraint that guarantees this property is required. 2) Higher-order polynomials generally 

lead to a better fiber separation resolution. However, they increase the number of model 

parameters above the number of measurements that are typically available. Thus, a re­

construction of a higher-order polynomial requires a nonlinear constrained reconstruction 

technique, which involves additional heuristic parameters [142]. Here, the number of model 

parameters is determined by the number of fibers only (three parameters per fiber) and not
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by the polynomial order. Therefore, high accuracy can be achieved without increasing the 

number of model parameters and introducing additional parameters. Also, the order of the 

polynomial can be easily adjusted to obtain the best results.

5.2 Spherical Deconvolution via Symmetric 
Tensor Decomposition

Spherical deconvolution is a common technique to recover major diffusion directions from 

DWI data [142]. It is based on a convolution between a spherically symmetric function, 

known as fODF, and an axially symmetric kernel that represents a single fiber response. 

Given a vector of n DWI measurements in the gradient directions, the fODF, denoted by 

F , is reconstructed by solving the following deconvolution problem:

1 n min -  
F 2 / i=1

S(gi,b) -  S0 /  F (v )K (g i, v)dv
J s 2

(5.1)

This problem is solved for a fixed kernel, K , where its width is adjusted to the particular 

dataset. The resulting fODF represents a sum of spherical delta functions aligned with 

the fiber orientations and weighted by the volume fractions. This basic problem is solved 

by means of least squares where the fODF is reconstructed by a pseudo-inverse operation. 

However, additional constraints such as fODF positivity lead to a nonlinear optimization 

problem [142], which we discussed in Chapter 4.

In [28], it was shown that any homogeneous polynomial of order d may be decomposed 

into a sum of linear-forms of the same order such that:
r

F  (x i,x 2, . . . ,x l  ) =  ^  A /  (5.2)
i=1

where /  =  ( ^ i = 1 a ixi), r is the polynomial rank and l is the polynomial dimension. This 

decomposition is known as symmetric tensor decomposition since homogeneous polynomials 

are directly related to symmetric tensors. An algorithm to decompose a general homoge­

neous polynomial was proposed in [28].
It is known that any spherical function with antipodal symmetry may be represented as 

an even-order homogeneous polynomial, where its order is equivalent to the truncation order 

of the corresponding spherical harmonics expansion [43]. Since an fODF may be represented 

as a homogeneous polynomial, one may use [28] to compute its full-rank decomposition. 

However, a full-rank fODF encodes information on white matter fibers, as well as noise. 

Thus, it was proposed in [78, 135] to recover the fiber orientations via a lower-rank tensor 

approximation. This approximation was applied to the fODF and required its estimation 

first.

2
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To combine the fODF reconstruction and the orientations estimation into one optimiza­

tion problem, we first approximate the fODF using an equivalent lower-rank approximation 

by means of polynomial approximation (symmetric tensor decomposition) such that:

r r
F(v) ~  ^  Y i f t  = J 2 ( a i ■ v)d, r  < r , (5.3)

i=1 i=1

where a i e  R3, v e S2 and each fiber aligned in direction a i is identified with a linear form 

( a i ■ v)d. The number of fibers to be estimated is determined by the approximation rank r 

and the expansion coefficients are defined as Yi =  Ha^^.

Next, we substitute (5.3) into (5.1). This leads to the following nonlinear optimization 

problem:
1 n

S(gi,b) -  So f  ^ ( a j  ■ v ) dK(gi ,  v )d v  
J s 2 j=1

(5.4)
j=1

This problem is solved for the coefficients of the linear forms, three coefficients for each 

fiber, which are directly estimated from the DWI measurements. The fiber orientations 

and the volume fractions are derived as follows: Since each linear-form gets its maximum 

at the direction specified by a j , given the optimal solution, a j , the corresponding fiber
■vr 11 iidhe constraint

II d
orientation is simply Uj =  As we do not impose the constraint Y^j=i ll^ill^ =  1) the

corresponding volume fraction is given by Wj = JI 3 NE r || ~ ||d .j=ill“  j II

5.3 Rank Selection Criterion
To determine the number of fibers for each voxel, i.e., the rank/model selection problem, 

we first provide a brief review. Alexander et al. [4] use the ANOVA F-test based on spherical 

harmonic representation of the ADC profile for several truncation orders to classify the 

diffusion data. The ANOVA F-test was used to test whether increasing the order of spherical 

harmonic will significantly change the fitting. Several thresholds of the trunction error were 

given before running the algorithm by controlling the volume ratio of the non-Gaussian 

voxels, which should vary for different noise level, b-value, and spacial resolution, etc. In 

addition, it was shown in [136] that the F-test tends to underestimate the correct number 

of fibers comparing to weight-based thresholding. Frank et al. [54] used a fourth-order 

spherical harmonic series to approximate the ADC profile and defined fractional multifiber 

index (FMI), which is the high-order versus lower-order ratio of the spherical harmonic 

coefficients, to classify the non-Gaussian profiles. Recently, Support Vector Machine (SVM), 

based on rotational invariant measures of HARDI data, were introduced to classify HARDI 

in vivo data by Schnell et al. [133]. Six classes of image components are determined: grey
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matter, parallel neuronal fiber bundles in white matter, crossing neuronal fiber bundles 

in white matter, partial volume between white and grey matter, background noise, and 

cerebrospinal fluid. These invariant measures of HARDI data used in this study are the sum 

of the spherical harmonic coefficients per order at each voxel, while Frank et al. [54] use the 

higher-order versus lower-order ratio of the spherical harmonic coefficients. Although these 

classification methods based on rotational invariants produce somewhat promising results, 

they suffer one common problem which is two tensor shapes that have completely different 

shape may have exactly the same rotational invariant. As shown in Figure 5.1, these three 

fODFs have exactly the same rotation invariants but completely different configurations. 

The left column shows that the simulation of fODF contains one dominate fiber direction, 

while the middle and right column shows that the simulation of fODF contains two dominate 

fibers, crossing at 60 degrees and 90 degrees, correspondingly. Based on the vector of 

rotational invariants, there is no way to classify whether there is only one fiber or two 

fibers. Behrens et al. [19] use automatic relevance determination in a Bayesian modeling 

framework to help with fiber tracking in a multi-orientation field. It aims at Bayesian model 

averaging rather than at making a hard decision about the model type. Freidlin et al. [55] 

apply the Bayesian Information Criterion (BIC) to diffusion model selection. However, it 

exhibited a strong bias towards selecting two fibers according to Schultz et al. [136].

As we will discuss in Chapter 6, a fourth-order tensor is a fifteen-dimensional object, 

where the scalar measures or peak weights are the low-dimensional projections. In order 

to acquire accurate classification results, all of this aforementioned multidimensional infor­

mation need to explored fully. Similar ideas were adopted by one recent study done by 

Prckovska et al. [122]. However, they focused more on the fast classification and did not 

fully make use of all of the information in each dimension. Especially, they did not consider 

any neighborhood information, which may be crucial for improving the ROC curve of the 

model selection.

Since our method is not a full parametric technique, the full ODF and scalar measure

Figure 5.1: Three fODF shapes with exactly the same rotational invariant but with 
different number of fibers and different configuration: one-fiber simulation(left), two-fiber 
crossing at 60 degrees (middle), two-fiber crossing at 90 degrees (right).
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information are not available. We select the optimal rank, f, based on a threshold. That 

is, we estimate the orientations for a fixed rank (generally, f  < =  3) and eliminate solutions 

based on the estimated volume fractions. A solution will be accepted if its volume fraction is 

above a certain threshold where we learn the threshold directly from the data, as described 

in the next section.

5.4 Numerical Optimization
To solve this nonlinear optimization problem (5.4), we adopt the Levenberg-Marquardt 

(LM) technique. When f  =  1, the three coefficients can be estimated accurately using a 

straightforward implementation of the LM. However, when r > 1, more coefficients are 

involved and estimating them at once provides poor results. To deal with the multifiber 

estimation case, we suggest an iterative alternating LM scheme. In this scheme, a complete 

update step is composed of rf LM substeps. In each substep, only the coefficient associated 

with a single fiber are updated while the other coefficients are kept fixed, as described in 

Algorithm 1. In each iteration, one has to convolve the fiber estimate to the kernel. This 

operation is performed using a discrete spherical integration scheme [9]. As an initial guess, 

we use random orthonormal vectors.

5.5 Experiments
5.5 .1  S y n th e tic  D a ta

To assess the accuracy of the algorithm, we simulated two crossing fibers at various 

separation angles, equal volume fractions and two b-values. The signal was simulated 

according to the multitensor model (Eq. 4.12) where for each compartment, we assumed a

A lgorithm  1 Alternating LM for f =  2
Let I  be the objective function defined in 5.4, and let Jk =  k = 1,2..
Set t =  0.
Initialize a k , k  =  1,2.
Compute a !+1 using an LM update with respect to J 1 ( a \ , a | )  and a damping parameter 
£1.
Compute a2+1 using an LM update with respect to J 2(a1+1, a 2) and a damping param­
eter e2.
if converged th e n  

return a 1,2 
else

t  ^  t +  1 
goto 4 

end if
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prolate tensor model with FA=0.8. The b-values were set to 1500s\mm2 and 3000s\mm2, 

and 64 gradient directions were used. Each dataset was generated in two baseline SNR 

levels: 40 and 20, where the clean data were corrupted by Rician noise distribution as 

follows:

S'noisy(gi,b) =  \ !  (S(gi ,b)  + n i ) 2 +??! (5.5)

where n \, n -2 ~  A f(0 ,a ‘2), and a = For each SNR level, we generated 200 noise

realizations of the signal and estimated the fiber orientations using the low-rank polynomial 

approximation (LRPA), constrained spherical deconvolution (CSD), and analytical Q-ball 

imaging (QBI). The polynomial order is set to d =  12, as this value gives an optimal 

trade-off between the ability to resolve low separation angles and noise sensitivity [142]. 

The single-fiber response kernel is described here by the Watson function K (gi, v, 5) = 

exp (—5(gT ■ v)2) where 5 is a function of the b-value and the principal diffusivity, gi is the 

gradient direction, and v is the integration parameter.

We compared our method to the CSD technique that was shown to be more accurate 

and robust to noise compared to other HARDI reconstruction techniques. For the CSD 

reconstruction, we have used the authors’ implementation with the recommended settings. 

To allow the reconstruction of a twelfth-order fODF, the signal was super-resolved from 64 

to 321 directions. For LRPA, no super-resolution was applied and the original 64 directions 

were used. The algorithms are compared based on the mean orientation deviation at differ­

ent separation angles (30 to 90), and two SNRs (40 and 20). The mean deviation is computed 

by averaging the deviations of the estimated orientations from the simulated ones, and is 

given in degrees. In addition, we compared our method to standard fourth-order ODF, 

which was reconstructed using analytical QBI [44] and sharpened using Laplace-Beltrami 

sharpening with parameter A =  0.2.

The results depicted in Fig. 5.2 show that the LRPA performs well at high as well as low 

SNR and provide more accurate and stable results compared to CSD and analytical QBI, 

especially at b=3000s\mm2. The measured running time for a Matlab implementation of 

the LRPA was on average 50ms per voxel. This was measured on a standard laptop with 

2.4Ghz Intel Core i5 CPU and 4GM RAM. The tested implementation is nonoptimal and its 

efficiency may be increased significantly by using high-level programming language. Similar 

running times were measured for CSD and QBI (Matlab implementations), but for the ODF 

reconstruction step only.
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Figure 5.2: Simulated data comparisons between Q-ball, CSD, and LRPA. Two b-values 
are compared: 1500s\mm2 (top) and 3000s\m m 2 (bottom). The SNRs are 40 (left figures) 
and 20 (right figures). When the standard deviation exceeds the axis limit, we present the 
mean only.
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5.5 .2  H u m a n  B ra in  D a ta

The human brain data were acquired on a 3T Siemens Tim Trio scanner using a single­

shot spin-echo EPI sequence and a b-value of 2000 s/mm2. One B0 image and 64 diffusion- 

weighted images in a resolution of 106 x 106 x 76 and a voxel size of 2 x 2 x 2mm3 were 

acquired. The measured baseline SNR for these data was approximately 20. A white matter 

mask was registered to the data and the kernel width, 5, was estimated by computing the 

mean principal diffusivity of all white matter voxels with FA > 0.7. Furthermore, we 

use these voxels to estimate the rank-selection threshold. As most of these voxels lie in 

single tract regions, such as the corpus callosum, they presumably consist of single fibers. 

Thus, by applying a rank-two polynomial approximation to these voxels, the lowest weight 

term is likely to describe noise rather than a fiber. Indeed, the results show a high ratio 

between the weights of the first and the second term in these voxels. The threshold was 

then set as the average of the lowest weights where we measured a value of 0.21. Thus, 

fibers with a volume fraction less than 25% of the dominant volume fraction are considered 

as noise and eliminated. To test the algorithm, we have chosen the brain region in the 

centrum semiovale region with a crossing pattern (Fig. 5.3). The results show that along 

the single tracts, mostly one-fiber model was selected, whereas in the center of the ROI, 

where the different tracts cross, two- and three-fiber patterns were selected. The fiber 

orientations were estimated using a twelfth-order polynomial and were compared to CSD

Figure 5.3: Axial slice showing reconstruction results of a crossing fibers region in human 
brain. From left to right: QBI, CSD, and LRPA reconstruction methods. The FA values 
are shown in the background.
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with a reconstruction order of 12 and QBI with a reconstruction order of 4. All methods 

show very similar orientations and separation angles at the crossings region. However, the 

CSD reconstruction results show some noise sensitivity which results in less structured fiber 

orientations. This suggests that the reconstruction order for this method might be too high 

for this noise level and has to be reduced.

5.6 Conclusions
We presented a novel technique to recover white matter fiber orientations and volume 

fractions. This technique avoids the complexity of extracting the orientations from the 

ODF by directly estimating this information from the DWI data. It relies on a low-rank 

homogeneous polynomial approximation by means of powers of linear-forms representing 

single fibers. An 12 optimization problem based on a spherical deconvolution technique is 

used to estimate the fiber orientations and the volume fractions. To solve this problem, 

an iterative alternating Levenberg-Marquardt scheme is introduced. The results presented 

here show that this algorithm performs well on synthetic and in vivo, human brain data 

and outperforms the state-of-the-art in terms of accuracy and stability.

Without the time-consuming ODF reconstruction process, our algorithm may be espe­

cially useful for improving the speed and the accuracy level of fiber tracking algorithms. 

Since the number of model parameters is determined by the number of fibers only (three 

parameters per fiber) and not by the polynomial order, this algorithm may potentially be 

useful for reducing the number of gradient directions needed by other HARDI techniques.



CHAPTER 6

UNCERTAINTY VISUALIZATION IN 
HARDI BASED ON ENSEMBLES 

OF ODFS

In this chapter, we propose a new and accurate technique for uncertainty analysis and 

uncertainty visualization based on fiber orientation distribution function (ODF) glyphs, 

associated with high angular resolution diffusion imaging (HARDI). Our visualization ap­

plies volume rendering techniques to an ensemble of 3D ODF glyphs, which we call SIP  

functions of diffusion shapes, to capture their variability due to underlying uncertainty. 

This rendering elucidates the complex heteroscedastic structural variation in these shapes. 

Furthermore, we quantify the extent of this variation by measuring the fraction of the 

volume of these shapes, which is consistent across all noise levels, the certain volume ratio. 

Our uncertainty analysis and visualization framework is then applied to synthetic data, 

as well as to HARDI human-brain data, to study the impact of various image acquisition 

parameters and background noise levels on the diffusion shapes.

6.1 Introduction
Diffusion-weighted magnetic resonance (DW-MR) is an imaging technique that enables 

one to measure diffusion priorities of water molecules in a fibrous tissue [13]. It is primarily 

used to reveal the white matter fibers structure of the brain, as well as structures of muscle 

fibers. Under the assumption of a Gaussian diffusion, the connection between the acquired 

DW signal and the diffusion rate is described by the Stejskal-Tanner equation:

S (g, b) =  Soe-bgT Dg =  Soe-bD(g), (6.1)

where S(g, b) measures the signal decay in a direction g due to the application of a magnetic 

field gradient, and S0 is the nonweighted diffusion signal (the signal measured in the presence 

of a constant magnetic field). Given a vector S of measurements in n gradient directions, an 

optimization problem is solved for D(g), the diffusivity function. This problem is solved for
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each brain voxel where D(g) describes the apparent diffusion coefficient (ADC) in direction 

g. The parameter b, which we denote here as the sensing parameter, is determined by the 

physical properties of the measurement (e.g., magnetic field strength, pulse duration).

In diffusion-tensor imaging (DTI), the diffusivity function is represented by a symmetric 

positive-definite second-order tensor known as the diffusion tensor (DT). Diffusion tensors 

can only model one dominant diffusion direction per voxel, and thus, are incapable of 

describing complex fiber structures. To overcome this limitation, new imaging techniques, 

which are known as high angular resolution diffusion imaging (HARDI), have emerged. 

There are various image reconstruction techniques associated with HARDI (e.g., [149, 143, 

44]). In most of these reconstruction techniques, an orientation distribution function (ODF) 

is used to describe the diffusion profile. Unlike a DT, an ODF can have multiple maxima; 

thus, it can capture complex fiber structures such as crossing fibers.

The estimation accuracy of an ODF (or a DT) is influenced by a number of parameters 

such as the b-value, number of gradient directions, and signal-to-noise ratio. These different 

parameters introduce a level of uncertainty to the estimated diffusion profiles, and hence, 

uncertainty analysis and visualization become crucial to obtaining a better understanding 

of the fiber structure.

Over the last decade, various works have been devoted to the uncertainty study in the 

DTI model (e.g., [114, 81, 162]). However, only a handful of papers study the uncertainty 

in the ODFs associated with the HARDI model [34, 52, 164, 61, 134, 143].

An ODF in DW-MR is often presented as a symmetric spherical glyph that provides 

information on the three-dimensional diffusion profile within a brain voxel. We refer to these 

glyphs and their many variants [91, 74] as diffusion shapes since they provide a tangible 

shape-based representation of the dominant diffusion directions. The distance from the 

origin to the boundary of the diffusion shape is typically defined as being proportional 

to the value of the ODF in that direction; we use this definition. While an ODF is a 

function that assigns a scalar value to each point in S2, a diffusion shape assigns either 

0 or 1 to each point in R3, where a point inside the diffusion shape is assigned 1, and a 

point outside is assigned 0. This binary representation is crucial in our ensemble structure. 

However, diffusion shapes alone do not provide any information on ODF variabilities due 

to uncertainty caused by the different parameters. The main contribution of this chapter is 

an uncertainty analysis and visualization tool based on ensembles of diffusion shapes.

Our approach to analyze ensembles follows the framework of Loffler and Phillips [103] to 

construct a shape inclusion probability function (or SIP function), applied here to diffusion
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shapes. That is, we construct a function on a three-dimensional domain where each point 

indicates the probability of inclusion in the diffusion shape. When there is no uncertainty 

in the data, this function is again binary where the values 1 or 0 indicate whether a 

point belongs to the diffusion shape, or not, respectively. However, in real scenarios, the 

uncertainty results in a region of points that take SIP values in the range [0,1]. Studying and 

visualizing this heterogeneous region provides insight into the effects of different parameters 

describing the underlying uncertainty. We focus on one, we believe, particularly effective 

visualization of this SIP function. It is rendered using a 1D transfer function, which results 

in a 3D multiple iso-level visualization that approximates the inclusion probability at several 

levels simultaneously.

Following the approach of Loffler and Phillips to construct the SIP function, we first 

instantiate a number (1000) of DW-MR data sets drawn from the probability distribution 

modeling the uncertainty. For each instantiation, we construct the diffusion shape, and at 

each voxel, we report the fraction of diffusion shapes which include that point. This provides 

a sample estimate, but accompanying analysis provides accuracy bounds that depend only 

on the number of samples and complexity of the shapes, indicating that a large enough 

sample (such as 1000) is sufficient to accurately visualize the SIP for the diffusion shape. 

This entire approach produces a quantifiable visualization where the key structure is clearly 

presented and the underlying data values can be accurately recovered.

This chapter is organized as follows: In Section 6.2, we give an overview of the related 

work. In Section 6.3, we present the method to construct a SIP function from an ensemble of 

estimated diffusion shapes. Section 6.4 describes how the data are generated in the synthetic 

and real case. Results are presented in Section 6.5 where we employ this technique to study 

the impact of the background noise (Rice distributed) and b-value on the uncertainty in 

diffusion modeling. Finally, concluding remarks are drawn in Section 6 .6 .

6.2 Related Work
Several approaches for analyzing the uncertainty inherent in Diffusion Tensor Imaging 

(DTI) have been proposed. One approach studies the uncertainty in diffusion anisotropy 

measures derived from the components of the tensor [13], such as the FA (Fractional 

Anisotropy), RA (Rational Anisotropy), and principal diffusion directions [114, 81, 84, 99, 

160, 35]. Often, bootstrapping methods are employed to simulate the distribution governing 

the random noise on real data sets. A different approach studies DTI (and HARDI) 

data sets, where several measurements in multiple imaging directions are available. These
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multiple readings allow one to construct a distribution of possible values, and an estimation 

of noise related to the choice of b value [53, 143, 52, 67, 123], the registration [128, 76], 

the model fitting [7, 125, 90, 159, 77], the maximum finding, decomposition, or enhance­

ment [78, 135, 75, 123, 134], or the fiber tracking algorithms [69, 41, 57, 119, 163, 79, 52].

Most of the uncertainty analysis and visualization focuses on the eigenvector directional 

uncertainty caused by the background noise [81, 70, 22] or the choice of a b value [52]. 

Only a few studies [164, 14, 7, 61, 162] address the uncertainty of the diffusion shape, which 

can describe complex white matter structures. Schwartzman [137] provides a simplified 

representation for diffusion tensors as ellipsoids and presents a 2D-quantile visualization 

along restricted slices. Principal component analysis (PCA; a mathematical procedure that 

uses an orthogonal transformation to convert a set of observations of possibly correlated 

variables into a set of values of linearly uncorrelated variables called principal components) 

was also employed to perform the uncertainty analysis in a second-order tensor field [162] 

and Q-ball imaging [61]. Recently, Zhan et al. [164] studied the influence of the number 

of diffusion-weighted directions on the diffusion shape and the resulting parameters. They 

showed that as the number of sensing directions increased, the signal-to-noise ratio also 

increased when measured with respect to fractional anisotropy (FA), rational anisotropy 

(RA), geodesic anisotropy (GA), and hyperbolic tangent of geodesic anisotropy (tGA) for 

an ROI in the corpus callosum. They also showed that the diffusion shape converges toward 

the ground truth shape when the number of sensing directions is increased. However, they 

did not study or visualize the more nuanced structural uncertainty with respect to the 

sensing parameter b, nor with respect to the parameters governing the true diffusion shape, 

such as the angle between the dominant diffusion directions and the corresponding weights. 

Also, Tournier et al. [143] visualize uncertainties of the ODFs using semitransparent glyphs, 

but are only able to represent the mean and standard deviation of variation in diffusion 

shapes. This lacks the ability to capture the full fiber orientation variabilities described 

by a large set of noise realizations. Therefore, a better understanding about uncertainty 

analysis and visualization in HARDI is needed.

6.3 Methods
We propose a general method that can be applied to visualize uncertainty in ODFs 

associated with various sources of data. In this chapter, we demonstrate our proposed 

method on ensembles of diffusion shapes derived from ODFs that are estimated from DW- 

MR data sets. First, we revisit how to determine ODFs. Our framework is agnostic to
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which technique is used, but we describe the specific variant on which our visualization is 

built. Second, we discuss our proposed method to construct the SIP functions to visualize 

the uncertainty represented by a large sample estimate of the diffusion shapes according to 

the uncertainty in the data due to noise.

6 .3 .1  T h e  D iffusion  S h a p e  E s tim a tio n  T ech n iq u e

Classical DTI constructs a diffusion tensor representing the major diffusion directions 

by solving the best fit (second-order) tensor in (6 .1) using a least squares approach. A 

single diffusion tensor is associated with a second-order homogeneous polynomial which 

is incapable of describing complex diffusion patterns, such as crossing fibers. In HARDI, 

however, the estimation process results in an ODF that is associated with an even-order 

homogeneous polynomial of a higher order. Unlike classical DT, an ODF has more degrees 

of freedom and, hence, can represent 2 or more crossing fibers simultaneously and their 

corresponding weights (e.g., [149, 143, 44]).

Although our framework is applicable to ODFs associated with polynomials of any 

order, we focus here on fourth-order polynomials as they provide adequate trade-off between 

angular resolution and over-fitting due to noise [136]. The diffusivity function is

4 4—a
D ( g ) = L £  Cabjagb 9 t ' a—b, (6.2)

a=0 b=0

where cab are the tensor coefficients and each vector g =  [g1,g2,g3] denotes a measure­

ment direction. Figure 6.1 shows an example of different noise realizations of fourth-order 

diffusion shapes reconstructed from a synthetically generated dataset that simulates two 

crossing fibers at 60 degrees at a b-value of 2000 and an SNR of 10. The diversity of the 

reconstructed shapes illustrates variation of diffusion patterns under noise due to modest 

SNR values, and motivates the study of visualization of this inherent uncertainty.

There are various HARDI techniques to estimate ODFs (e.g., [143, 44, 149, 78]), and 

all are applicable within our framework. We choose the recent HARDI variant based on 

spherical deconvolution to perform all further experiments because it enables one to extract 

easily the diffusion information (e.g., [142, 78, 159]). These approaches ensure that the 

ODF is a positive definite entity. Following [78], we solve a minimization problem of the 

form 1 n
mm -  

D  2 i=1

I V  />

^  S(gi,b) -  So J  2 D (v)K (gi, v, b)dv (6.3)

subject to a set of constraints that guarantees the positive-definiteness of the ODF in 

m reconstruction directions. The optimization problem is solved for the coefficients of

2
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Figure 6.1: 25 noisy diffusion shapes at the crossing of two fibers at 60° and relative weights 
0.7 : 0.3. The SNR is 10 and b-value is 2000 s/mm2. The original, noiseless diffusion shape 
is shown in the bottom row.
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the homogeneous polynomial, cab, described in Eq. (6.2). The coefficients are estimated 

for a given set of diffusion-weighted measurements, S, and a convolution kernel, K. For 

a fourth-order polynomial, we estimate a set of 15 coefficients that describe it uniquely. 

Once the coefficients have been estimated, the associated diffusion shape is reconstructed 

according to Eq. (6.2). Importantly, the restriction that the ODF is described by 15 

parameters prevents over-fitting, and will be relevant in the forthcoming accuracy analysis.

6 .3 .2  D iffusion  S h a p e  as a  3D  V olum e

To better understand how the diffusion shape varies with respect to the different ac­

quisition parameters and background noise, we propose to change the widely used (single) 

triangular mesh visualization of diffusion shapes [12] (many instances are shown in Fig­

ure 6.1) to a probabilistic 3D volume, where volume rendering and isosurfacing techniques 

can be used to visualize these variations. Figure 6.2 and Figure 6.3 show the volume 

rendering of two tensors with four approximate iso-levels of the SIP function (defining 5 

layers), indicating the probability (governed by uncertainty) that a diffusion shape occupies 

that part of the volume. Boundaries between layers demarcate the approximate iso-levels 

at the 25% quantile (inside grey region, outside dark grey region), the 50% quantile (inside 

dark grey region, outside green region), the 75% quantile (inside green region, outside blue 

region), and the 95% quantile (outside yellow region, inside blue region). That is, all points 

in the yellow region are included in the diffusion shape with probability of at least 0.95 and 

represent the certain  part of the diffusion shape.

The diffusion shape is centered in a 200 x 200 x 200 cube and normalized so the furthest 

point is at the boundary of the cube. This is justified by the fact that the outcome of the 

spherical deconvolution is a fiber-ODF, which only provides relative measurements of fiber 

orientations; hence, the scale is insignificant. The SIP function is evaluated at the center 

of each voxel. Its value is based on diffusion shapes estimated from 1000 different noise 

realizations of the raw data (as described in Section 6.4). Specifically, the SIP measures 

the fraction of diffusion shapes, each constructed using (6 .2) from an instantiated data set, 

that contains the voxel center.

As the SIP function is calculated via a random process, it is subject to some error itself, 

but this process is unbiased and the error can be quantified [103]. In particular, via Theorem 

4 in [103], the worst case error of a SIP function at any voxel is inversely proportional to the 

square root of the number of random instantiations m, and proportional to the square root 

of the complexity of the diffusion shape v (i.e., the VC-dimension [152] dual to the shape, 

called v' within proof of Theorem 4 [103], which can be bounded by the largest degree of a
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Figure 6.2: Visualization of the uncertainty in diffusion shape, two fibers crossing at 60 
degrees with relative weight of 0.6:0.4, b-value 7000 s/mm2, and SNR of 10.
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Figure 6.3: Visualization of the uncertainty in diffusion shape, two fibers crossing at 90 
degrees with equal weight, b-value 1000 s/mm2, SNR of 20 (with much less uncertainty than 
Figure 6.2 ).
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polynomial describing a shape). Specifically, the maximum error e of the SIP function over 

all voxels is approximately \ J (1/ 2m ){v  +  ln(l/£)) with probability 1 — S.

Thus, in our case, with 5 =  .01, m =  1000, and v =  15, then on 99% of all simulations, 

the maximum error for any voxel is at most 10%. Most voxels will have much less error. 

We can interpret this as being able to reliably distinguish between iso-levels about every 

10% (i.e., > 90%, > 80%, > 70%, . . . ,  > 10%).

However, our visualization only chooses to highlight four different iso-levels (25%, 50%, 

75%, 95%) and 5 probability regions (< 25%, 25% -  50%, 50% -  75%, 75% -  95%, > 95%) 

because of the challenge of rendering a larger number of layers in 3D in an effective way. We 

use an analogous color map [127]. We choose one dominant color (we found a bright yellow 

visually appealing) to highlight the certain, innermost region. And then the subsequent, 

intermediate layers were shown as blues and greens which are adjacent on the color wheel. 

Neutral grays were chosen to represent the outermost layers with most uncertainty.

By decreasing the opacity of the outer layers, we are able to easily recognize all 5 regions 

on the 3D image, even through the outer layers completely occlude the inner layers. We 

found using more than 5 regions detracted from the visual aesthetics of the images without 

adding significant additional information. Most analogous colormaps derived to distinguish 

several iso-levels (for instance as provided by colorbrewer : colorbrew er2 . org) contrast 

alternating levels by varying brightness. However, when using these colormaps in our 3D 

visualizer, we view the inner layers through the decreased-opacity outer layers; this combines 

these outer layers and muddles the view of the inner layers. As seen in Figure 6.4, which 

shows alternate color maps with between 4 and 8 layers, each layer is recognizable (on close 

inspection), but they appear increasingly drab as the number of layers increase, despite 

vibrant color maps.

This choice of only 4 iso-levels (and 5 regions) can be used to reinterpret the analysis 

in two ways. Either we can say with 1000 samples, we achieve 25% accuracy on the SIP 

function with probability greater than 1 — 1/ 1010, or we reach 10% accuracy, meaning each 

iso-level visualized (say the .5 iso-level) represents the true value with error of at most 10% 

(its value is between .4 and .6) in the entire SIP function with probability greater than 0.99.

The visualization technique that we propose here is applicable to various diffusion 

shape representations, reconstructed from DTI or HARDI data. Figure 6.5 illustrates our 

technique for computing SIP glyphs when using several different algorithms to generate the 

base diffusion shape, including classic DTI [120, 95], super quadratics [91], and fourth-order 

homogeneous polynomial [78], a representative of ODF-based visualizations[149].
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Figure 6.4: SIP function of diffusion shapes with b = 1000 and SNR of 5 illustrated 
with colormaps highlighting 4 (upper left), 5 (upper right), 6 (lower left), or 8 (lower right) 
layers.



Figure 6.5: SIP functions for different ODF representations: Left to right: ellipsoids (DTI), super quadratic (DTI), fourth-order 
homogeneous polynomial (HARDI). All use the same data with SNR of 20, b-value =  3000, two crossing fibers at 75°, and relative 
weights 0.6 : 0.4.
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As expected, the two techniques based on classical DTI (left two) fail to represent the 

two crossing fibers. Also, they exhibit more ambiguous uncertainty (note the larger, more 

uniform light grey region), presumably as the DTI technique is unable to consistently fit 

a single dominant direction on two crossing fiber directions. Hence, we focus here on the 

HARDI approaches.

6.4 Synthetic and Human Brain Data
We apply our method to synthetic and real, in vivo, human brain DW data.

6 .4 .1  S y n th e tic  D a ta  D esign

In the synthetic data setting, two crossing fibers are simulated according to Eq. 4.12, 

the multicompartment model [147]. For both tensors, we assume a prolate tensor model 

with eigenvalues A1 =  1.9 ■ 10—4mm2/s, A2 =  A3 =  1 ■ 1.0—5mm2/s and b-values varying 

from 1000 s/mm2 to 8000 s/mm2 in 1000 s/mm2 intervals. The principal eigenvectors of 

the tensors were chosen to simulate crossing fibers at angles of 30, 60, and 90 degrees. To 

test the influence of the fiber weights, data sets are generated with fiber weights equally or 

at ratio 0.7 : 0.3. The signal was simulated using 64 gradient directions. The clean data 

sets S (gi,b) were corrupted by Rician distributed noise to create six levels of noisy data 

sets with SNR01: 50, 40, 30, 20, 10, and 5.

For each noise level, the process was repeated 1000 times. In each repetition, for each 

set of parameters (i.e., noise level, b-value, crossing angle, and weight), a diffusion shape 

was estimated according to the method described in Section 6.3.1. Then, the 1000 different 

instantiated diffusion shape samples are used to construct the SIP function as described in 

Section 6.3.2. See Figure 6 .6 , Figure 6.7, Figure 6 .8 , Figure 6.9, Figure 6.10, and Figure 6.11.

6 .4 .2  T h e  D a ta  A c q u is itio n  a n d  R a n d o m  E ffects 
S im u la tio n  o f H u m a n  B ra in

The human brain data were acquired on a 3 Tesla Siemens Tim Trio scanner with a 

single-shot spin-echo EPI sequence with a resolution of 2 x 2 x 2mm3. One B0 image and 

64 diffusion-weighted images, with image resolution of 106 x 106 x 76, were acquired. To 

test the effects of the b-value, three different b-values were used to acquire the data: 1000, 

2000, and 3000 s/mm2. Then, eddy current correction and mutual information based affine 

registration was applied.

1SNRo =  So/a, where a  is the noise standard  deviation.
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F ig u re  6.6: SIP functions of diffusion shapes for two fibers crossing at 30 degrees with
equal weight. Six levels of noise (SNR =  {5,10, 20, 30, 40, 50} from right to left) each with
8 different b-values (= {1, 2, 3, 4, 5, 6, 7, 8} x 1000s/mm2 from top to bottom) were used.
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F ig u re  6.7: SIP functions of diffusion shapes for two fibers crossing at 60 degrees with
equal weight. Six levels of noise (SNR =  {5,10, 20, 30, 40, 50} from right to left) each with
8 different b-values (= {1, 2, 3, 4, 5, 6, 7, 8} x 1000s/mm2 from top to bottom) were used.
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F ig u re  6.8: SIP functions of diffusion shapes for two fibers crossing at 90 degrees with
equal weight. Six levels of noise (SNR =  {5,10, 20, 30, 40, 50} from right to left) each with
8 different b-values (= {1, 2, 3, 4, 5, 6, 7, 8} x 1000s/mm2 from top to bottom) were used.
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Figure 6.9: SIP functions of diffusion shapes for two fibers crossing at 30 degrees with 
relative weights of 0.7 and 0.3. Six levels of noise (SNR = {5,10, 20, 30, 40, 50} from right to 
left) each with 8 different b-values (= {1, 2, 3, 4, 5, 6, 7, 8} x 1000s/mm2 from top to bottom) 
were used.
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F igure 6.10: SIP functions of diffusion shapes for two fibers crossing at 60 degrees with 
relative weights of 0.7 and 0.3. Six levels of noise (SNR = {5,10, 20, 30, 40, 50} from right to 
left) each with 8 different b-values (= {1, 2, 3, 4, 5, 6, 7, 8} x 1000s/mm2 from top to bottom) 
were used.
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Figure 6 .11 : SIP functions of diffusion shapes for two fibers crossing at 90 degrees with 
relative weights of 0.7 and 0.3. Six levels of noise (SNR = {5,10, 20, 30, 40, 50} from right to 
left) each with 8 different b-values (= {1, 2, 3, 4, 5, 6, 7, 8} x 1000s/mm2 from top to bottom) 
were used.
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There are two predominant approaches to simulate noise in real data sets for DW-MR: 

directly adding Rician noise, and wild bootstrapping. Both techniques start by first solving 

for a single ODF or DT. For each sensing direction gi , let Si =  S(gi)  be the sensed value. Let 

cS =  {Si , . . . ,  S n } be this data set and D be the estimated ODF according to the method 

discussed in Section 6.3. Then, for each direction gi, we compute <S,(gi) as a function of D 

using (6.3). The residual is given by r i =  <§(gi) — Si.

The technique of adding Rician noise estimates the standard deviation a  of a complex 

Gaussian using the ri values. It instantiates uncertain data sets cSj =  {S1)j-, S2j , . . . ,  Snj } 

from the perceived noise levels. To replicate each sensed value, it sets Si)j- =  <§(gi) ® R(a), 

where ®R(a) signifies the perturbation of S(gi) by Rician noise with standard deviation 

of a. It has been observed that the noise in these DTI measurements closely follows a 

Rice distribution [65], so this technique has been accepted as a realistic way of simulating 

noise [16].

Wild bootstrapping [35, 82] makes an effort to preserve the heteroscedasticity of the noise 

(that is, certain areas have larger noise distributions than others). But, as a consequence, 

it sacrifices the strict adherence to the Rice noise model. Again starting from each S(g^, 

we instantiate a data set from the noise as cSj =  {S1)j-, S2j , . . . ,  Snj }. We then set Si)j- = 

<S(gi) ±  ri , where the choice of adding or subtracting the residual is chosen independently 

at random for each simulated measurement and instantiated data set (i.e., each j  and i).

A third approach estimates the posterior probability density functions of the model 

parameters under certain noise models [20].

To simulate noise on real data, any of these conventional methods could be used. They 

would be repeated 1000 times (i.e., for j  =  1, . . . ,  1000) to instantiate 1000 data sets 

representing the distribution of possible data sets as prescribed by the residual noise in the 

sensed data. In our experiments, we choose to follow the wild bootstrapping method since 

we believe it will highlight our algorithm’s ability to visualize complicated heteroscedastic 

noise.

6.5 Results
6.5.1 U n c e r ta in ty  in D iffusion  S h ap es  G e n e ra te d  

fro m  S y n th e tic  D a ta

Using synthetic data, we demonstrate the usefulness of our diffusion uncertainty visual­

ization by comparing other approaches, and show variations of SIPs of diffusion shapes for 

varying parameters.
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6 .5 .1 .1  C o m p a riso n  to  A lte rn a te  V isu a liza tio n s

The most standard visualization of an ODF is hiding the uncertainty and showing the 

one best-fit diffusion shape. Not only does this not illustrate the uncertainty, but it gives the 

illusion that there is no uncertainty, which as demonstrated by other figures is a dangerous 

assumption.

Another approach is to treat each uncertain shape in the ensemble of uncertain shapes 

as a vector of data elements. Each element is represented as either each discrete diffusion 

direction, or as each voxel’s binary value determined by inclusion in the diffusion shape. 

Then, given a set of 1000 diffusion shapes, we have a matrix of data, with each diffusion 

shape vector as one column. We can run PCA on this matrix and determine the most 

dominant modes of variation. From the visualization perspective, there are two clear 

disadvantages of this approach. First, it is difficult to visualize more than one principal 

component in a single glyph. The typical approach is to show the variation along the top 

several principal components in separate visuals of the same object, but in the context 

of diffusion shapes, this is not an option since there are typically a collection of them. 

Additionally, displaying the variation along the top component is usually done by overlaying 

two (or more) images, offsetting the mean shape DD by 2 standard deviations in the positive 

and negative direction of variation. These generated shapes may not actually be physically 

releasable configurations. For instance, if all of the variation comes from two modes, one 

standard deviation from the mean shape in each direction, then no configuration ever reaches 

two standard deviations away. Second, the first few principal components (let alone the top 

one) do not capture all of the complex variations of the diffusion shapes. Figure 6.12 shows 

the cumulative variation explained by the top k =  {1, 2, . . . ,  } principal components. Only 

about 55% of the variation is shown by the top component, and it takes approximately 

six components to explain 90% of the variation. Intuitively, since the diffusion shape is 

described by v =  15 parameters, it is reasonable to expect 15 different components to 

capture the main sources of the variation. This partially agrees with one of the findings in 

[61], which reflects the complexity of the meaning of the first several major principal axes.

A third attempt at visualizing the diffusion uncertainty on a single glyph is to choose 

a single representative diffusion shape and use a color map to annotate the amount of 

uncertainty along each direction. A variation of this paradigm is present in the thesis of 

Hlawitschka [73]. This approach does not have any dramatic short-comings, and we produce 

a variant of our own. We measure the variability of the diffusion shape between the 50% 

and 95% iso-levels of the ensemble of diffusion shapes and display this using a colormap on



Ac
cu

mu
lat

ed
 V

ari
an

ce
 C

ap
tur

ed
 b

y 
Pr

inc
ipa

l C
om

po
ne

nts

84

1

0.9

0.8

0.7

0.6

0.5

0.4

1 4 5 6 7
Principal Components

102 3 8 9

Figure 6.12: Distribution of cumulative variation explained by up to the first 10 principal 
components for cases shown in Figure 6.6 to Figure 6.11.
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the 50% iso-level. This leaves the glyph a bit less cluttered, and provides a sense of how 

stable the 50% iso-level is with respect to the 95% iso-level. However, this approach (as well 

as other variants) fail to capture how the uncertainty changes (and robustness of iso-levels 

change) among all iso-levels. Just showing the standard deviation, or any local variability, 

does not capture the full distribution of variation in the same way our visualization does.

To compare these glyphs, we present them on the same data set in Figure 6.13. This 

simulates two crossing fibers at 60°, with relative weights of 30%, 70% using b-value of 3000 

and SNR of 20. Much more nuanced and heteroscedastic uncertainty is presented in our 

visualization using a SIP function of diffusion shapes on the far right.

6 .5 .1 .2  V a ria tio n  in  P a ra m e te r s

To document the inferences available from the use of SIP functions of diffusion shapes, we 

show a variety of glyphs generated by varying the parameters to the synthetic data. We show 

either two crossing fibers at angles of either 30, 60, or 90 degrees, and with relative weights 

of either 50% and 50%, or of 30% and 70%. We then vary the manner in which the data is 

gathered by letting the b-value be from {1000,2000,3000,4000, 5000,6000,7000,8000}, and 

the SNR be from {5,10,20,30,40, 50}; see Figure 6.6 to Figure 6.11.

Figure 6.14 shows the diffusion shape size change with the different b-values, different 

fiber weights, and different noise levels. The tensor size was measured in the following way: 

we first normalized the homogeneous polynomials using the same factor and put it in a grid 

volume with the same size, then we count the number of the grid voxels bounded by the 

fourth-order tensor. The total number of the voxels included in the union of all diffusion 

shapes will be an approximation of the size of the tensor. We can see that the influence 

of different fiber weights is quite small, and the size of the tensor seems to increase with 

the increasing of the noise level, especially when SNR is 10 and 5. However, the biggest 

influence is due to the b-value. The size of the tensor is shrinking with the increase of the 

b-value.

F igure 6.13: Different visualizations of diffusion uncertainty in a single glyph. Left to 
right: the single best-fit diffusion shape; two standard deviation of top principal component 
in either direction superimposed; local variation color-mapped onto the 50% iso-level of 
diffusion shape; and SIP function of diffusion shapes with iso-levels at 25%, 50%, 75%, and 
95%. The colormap for the left two images signifies ODF values, not uncertainty.



Figure 6.14: The tensor volume quantification for two fibers crossing at 30 (left-hand side), 60 (middle), and 90 (right-hand side) 
degrees. Two groups of fiber weights are used: 0.7 and 0.3 (top row), and 0.5 and 0.5 (bottom row). Six levels of noise with the SNR of 
50, 40, 30, 20, 10, and 5 were applied.
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For visualization and comparison purposes, the uncertain diffusion shapes have been in­

dividually normalized so they are all approximately the same size, and the volume shrinking 

effects due to mono-exponential decay of the dMRI signal shown in Figure 6.14 are ignored. 

Figure 6.2 and Figure 6.3 show two enlarged SIP functions for diffusion shapes.

Immediately, two possible conclusions could be drawn from Figure 6.6 to Figure 6.11, 

although further study should be performed before making any definitive claims. First, as 

the b-value increases, the variability and hence uncertainty increases and then decreases. 

It could be inferred that the best b-value to minimize uncertainty is around 2000 or 3000; 

or any value in that range. Second, as expected, as the SNR increases, the uncertainty 

decreases. Interestingly, not much is gained as the SNR goes above 40 (or even above 30 

in some cases). This might suggests that DW images with an SNR of 40 are sufficient for 

successful HARDI analysis and visualization.

A more quantitative way to analyze the amount of uncertainty in the diffusion, based on 

the variation of input parameters, is to use a measure we call the certain volume ratio, which 

computes the ratio of the volume of the region within the 95% iso-level (the certain volume) 

to the area inside the 50% iso-level (a representation of the typical volume). Both parts 

of the ratio are robust and thus not sensitive to outliers in the generation of the diffusion 

shapes. The larger the ratio, the closer the 50% iso-level is to the 95% iso-level, indicating 

that most shapes are all very similar. Figure 6.15 and Figure 6.16 plot certain volume ratio 

as a function of b-value and SNR, respectively, and support our visual observations about 

the b-value and SNR. The certain volume ratio is plotted for the glyphs corresponding to 

those highlighted in Figure 6.6 to Figure 6.11.

6 .5 .2  U n c e r ta in ty  in D iffusion  S h ap es  G e n e ra te d  
fro m  H u m a n  B ra in  D a ta

The human brain data were acquired using the parameters provided in Section 6.4.2. 

The SNRo values of the b =  1000, 2000, and 3000 s/mm2 acquisitions, were estimated as 

21.06, 19.76, and 19.48, respectively. These estimates were derived from the mean intensity 

of five different regions of interest (ROI) in the white matter and grey matter regions, 

divided by the variance of the pure background intensity of the S0 image; one ROI is shown 

in Figure 6.17.

For the spherical deconvolution, we have used the single-fiber response kernel (e.g., [159]), 

where the kernel parameter was estimated from the data to compensate for the different 

b-values, as described in [142].

Both single triangular mesh diffusion shapes as well as the SIP functions of diffusion
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Figure 6.15: Plots of certain volume ratio as a function of b-value (top) and SNR (bottom). 
All experiments on synthetic example of two fibers crossing at 60° with equal relative weights 
and an SNR of 10 (top) or b-value of 3000 (bottom).
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Figure 6.17: Left: 7 by 4 region of interest from the white matter. Right three columns: 
human data with a b-value of 1000, 2000, and 3000 s/mm2. Each column shows 28 diffusion 
shapes as a single triangular mesh (top) and a SIP function using 1000 instantiations of 
each diffusion shape.

shapes are shown. The extent of the uncertainty is shown clearly in the latter.

Our analysis based on the certain volume ratio (as shown in Figure 6 .16)  recommends 

a b-value of 2000. By visual inspection of the uncertain shapes in Figure 6.17, the data 

sensed with a b-value of 2000 seems to have the least uncertainty; a b-value of 1000 also 

seems adequate. Note that the regions with b =  3000 have been scaled small since the gray 

region with low probability is noticeably larger. This is supported by the certain volume 

ratios of 0.343, 0.367, and 0.283 for b-values of 1000, 2000, and 3000, respectively. Thus, our 

guidelines recommending a b-value of about 2000 s/m m 2 for this noise level were observed 

to be useful.

Also notice the variability of the single best-fit diffusion shape on the top of Figure 6.17 

as the b-value changes. These, in principle, should represent the same diffusion functions, 

but due to real sensing errors, they have nontrivial variance. Our presented SIP functions 

of diffusion shapes below faithfully represent a realistic amount of uncertainty, preventing 

a user from drawing too strong a conclusion about the true diffusion patterns from these 

data.

6.5.3 Uncertainty Quantification Using Dominant Directions
A convenient way to simplify the representation of diffusion tensors is by their dominant 

diffusion directions, derived by the rank-two decomposition. Representing diffusion by just 

one or two directions clearly loses information regarding the importance of the nondominant
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diffusion directions, the variability in these directions, and the uncertainty inherent in 

the diffusion. Furthermore, accurately constructing these directions from fourth-order 

tensors is still an open research problem [28] since the current state-of-the-art introduces a 

noticeable amount of error, especially when the directions are similar. However, because of 

their convenient representation, it is simple to compute quantification measures, and these 

measures can be simple to interpret, although not always accurate. As argued above, the 

use of fourth-order tensor shapes provides a clean and informative alternative approach, 

especially for understanding uncertainty; below, we discuss the common specific measures 

based on dominant diffusion directions and the particular issues that can arise.

Given a fourth-order diffusion tensor estimate D, we can derive two dominant diffusion 

directions v1 and v2 along with corresponding weights w1 and w2, such that w1 >  w2 [78, 

135]. The weights correlate to the relative importance of the eigenvectors. Much research 

in numerical analysis [145] deals with the instability in eigenvectors, and avoids using them 

as a reliable measure of shape, especially when the eigenvalues are similar or small; related 

issues arise in our context when the weights are similar or small.

In the analysis of techniques for DT-MRI, and specifically HARDI, several common 

measures are used to compare the top two observed direction-weight pairs (v1,Wi) and 

(V2,W2) to ground truth values (v1, w1) and (v2, w2). Let Z (u ,v) =  arccos(|u ■ v|) represent 

angle (or deviation) between two unit vectors u and v.

A ngular R esolu tion : calculates AngRes =  |Z(v1,v2) — Z (v1,v2)|. This measures how 

similar crossing fibers are in relative direction (from completely aligned to completely 

orthogonal) compared to the ground truth, and it is the most widely adopted fiber 

direction devation measure [42, 135, 78].

W eights-B ased E igenvector D eviation : calculates WEigDev =  Z (v1,v 1), Z (v2,v2). This 

compares the diffusion direction of most dominant fibers and second most dominant fibers 

to that of the ground truth fibers, assuming correspondence based on weights [143, 78], 

or calculates the average deviation for all of the fibers at each voxel [122].

M in im u m  D eviation : calculates the largest and the second largest eigenvector deviation 

MinDev =  m in{Z(v1; v1), Z (v 1,v2)} , and MinDev =  m in{Z(v2, v2), Z (v2,v 1)} . This com­

pares the diffusion direction of the two most dominant observed fibers to those of the 

ground truth tensor, allowing correspondence by direction [159].

First E igenvector D eviation : calculates FirEigDev =  m in{Z(v1 ,v 1), Z (v1 ,v2)} . So the 

first eigenvector v1 will correspond to the Oj that gives the minimum deviation angle, then 

the second eigenvector v2 will automatically correspond to another Oj. This compares the
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diffusion direction of either of the two most dominant observed fibers to that of the most 

dominant ground truth fiber, thus favoring only the most dominant true fiber direction. 

Angular resolution (AngRes) is useful when the dominant fiber directions are relatively 

stable to show the effectiveness of different decomposition algorithms [42, 135, 78], but can 

be confused by other issues that arise when studying more general types of uncertainty 

natural to these settings. In particular, it only measures the relative deviation between 

fibers, not the absolute deviation of each fiber. So, the relative angle could be identical to 

ground truth, but both directions could rotate some large number of degrees (as in Figure 

6.18(a)), and this measure would fail to capture this error.

The absolute deviation measures (WEigDev, MinDev, FirEigDev) are also susceptible 

when the weights are very similar (e.g., w  w w2). In these cases, small variations in 

the sensed data can cause the directions of v1 and v2 to rotate large angles, as there may 

be no strongly dominant diffusion directions. In particular, WEigDev is susceptible to 

the problem where the weights switch so v1 w -02 and v2 w v1, in which case WEigDev 

evaluates to Z (v1,v2), due to the fact that the order of the eigenvalue can be easily flipped 

under the influence of noise. This phenomenon is observed for instance in second-order 

diffusion tensors [97], and is illustrated in Figure 6.18(c). A similar scenario can corrupt the 

FirEigDev where the top two diffusion directions have similar weights, and the most dominant 

direction in the ground truth is observed to have only the second largest weight, and thus 

the comparison is flipped again. One problem for MinDev is that the two ground truth 

dominant directions may always be compared the same observed dominant direction since 

it always picks up the minimum pair. Furthermore, WEigDev and MinDev are unreliable 

when the angular resolution is small, because the two dominant directions may be observed 

as a single direction, thereby observing that the second direction -02 is dependent on random 

noise; see Figure 6.18(b). The second observed direction -02 is also susceptible to noise when 

its true weight w2 is small.

These scenarios do arise in noisy data; Figure 6.19 shows a comparison between MinDev 

and WEigDev. The fiber weights were set at 0.8 (1st fiber) 0.2 (2nd fiber); the SNR 

changes from 50 to 5. The first and second row shows the first eigenvector and second 

eigenvector deviation correspondingly for MinDev. The third and fourth row shows the 

first eigenvector and second eigenvector deviation correspondingly for WEigDev. Clearly, 

minimum deviation reduces the error in both first and eigenvector deviation. However, the 

ground truth first eigenvector or the second eigenvector may always compare with the same 

observed eigenvector (the first or the second observed eigenvector direction). For WEigDev,
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(a)

(b) (c)

Figure 6.18: Different methods for angle deviation measurement. (a) Measurement of 
deviations, a difficult case for AngRes. (b) Difficult case for WEigDevand MinDev. (c) 
Difficult case for WEigDev.



94

80

|  60 
cS 
> 40 
Q 
E 20

. i  0 c

30 Degrees Crossing 60 Degrees Crossing

80 

60 

40 

[20

90 Degrees Crossing

mffPi rnfffl fTTTflS rr̂l rmJl ffffJl 0 ■Edit nwfi ffffpi fwgpi

80

60

40

20

01 2 3 4 5 6 7 8  1 2 3 4 5 6 7 8  1 2 3 4 5 6 7 8

n J i J l fflj

80

60

40

20

0 j J l  madi rrnflt fm j n rJ l nra j fwaJM

80

60

40

20

1 2 3 4 5 6 7 8  1 2 3 4 5 6 7 8  1 2 3 4 5 6 7 8

80

60

40

20

80

£ 60 CO

I  40 

I  20e
> 0
S 0 1 2 3 4 5 6 7 8  “ 1 2 3 4 5 6 7 8  “ 1 2 3 4 5 6 7 8

S 80e s
co 60 CQ

s
3z 40 ig ei
§ 2 0  

0

80

60

40

20

0

mi 80

60

40

20

01 2 3 4 5 6 7 8  1 2 3 4 5 6 7 8

80

60

40

20

0 1 2 3 4 5 6 7 8

b-value(x1000)
□S N R 50 □S N R 40 □ S N R 30 □S N R 20 □S N R 10 □ S N R 5

Figure 6.19: The comparison between the MinDev (top two rows, first row is for the largest 
eigenvector and second row is for the second largest eigenvector) and WEigDev (bottom 
two rows, third row is for the largest eigenvector and fourth row is for the second largest 
eigenvector) method to choose the order of eigenvectors. Two fibers crossing at 30, 60, and 
90 with the fiber weights of 0.8 (1st fiber) and 0.2 (2nd fiber) were generated.

0



95

the mismatch between observed eigenvectors and the true eigenvectors caused a bigger error 

in both the first eigenvector and the second eigenvector, especially for the smaller crossing 

angles or the heavier noise level. The reason why smaller crossing angle is even worse is 

because when the crossing angle is small, the two true directions almost combined into one 

single direction, which makes the second eigenvector almost like a random vector due to the 

noise. As far as the authors know, there may not be a rigorously right way to judge the true 

order of the observed eigenvectors at a small crossing angle or under the influence of a heavy 

noise. For a three or even more fiber crossing case, it will be even challenging to compare. 

Thus, we advocate that more careful considerations need to be taken for comparisons based 

on fiber direction uncertainties, and more focus needs to be put on the study of the diffusion 

shapes uncertainties, which may be more robust than fiber directions only.

6.6 Conclusions
Representing uncertainty in ODFs is a real and important challenge. In this work, 

we provide a general and elegant technique to visualize and quantify uncertainty in DW 

imaging. The key object of our technique is a SIP function generated from a large number 

of diffusion shapes, associated with different noise realizations of given DW data. The 

SIP function is constructed by transforming a 3D ODF to a general volume rendering 

problem using a 1D transfer function to generate 5 layers separated by approximate iso­

levels. We found that the SIP function provides a simple, clear, and informative way to 

study uncertainty, especially in comparison with other techniques.

As future work, we plan to elaborate this technique by using 3D glyphs that combine 

both diffusion profile information, as well as the fiber orientations and weights, accom­

panied by appropriate quantification measures. We hope to increase the admittedly slow 

construction time using a GPU, and plan to incorporate it into an interactive visualization 

system. We hope this will help to understand better the impact of the different acquisition 

parameters, and consequently, to design successful HARDI acquisition protocols.



CHAPTER 7

THREE METRICS FOR UNCERTAINTY 
ANALYSIS AND VISUALIZATION OF 

DIFFUSION TENSOR IMAGES

Diffusion tensor magnetic resonance imaging (DT-MRI) is an important noninvasive 

technique for evaluating the three-dimensional white matter structure within the brain. 

Over time, numerous DT-MRI fiber tracking algorithms that work by integrating along 

the eigenvector direction(s) of local diffusion tensor fields have been proposed to visualize 

and quantify the connections between different anatomical regions of the brain. However, 

because diffusion tensor measurements are affected by many sources of uncertainty, such 

as noise and imaging artifacts, accumulated uncertainty in fiber orientation along fiber 

tracks may produce erroneous tracking results. Thus, questions of how to analyze and 

effectively visualize the accuracy and uncertainty of different diffusion tensor imaging fiber 

tracking algorithms are important research questions with direct clinical applications in 

neurological diagnosis and treatment. In this chapter, we propose three metrics to quantify 

the differences between the results of diffusion tensor magnetic resonance imaging (DT- 

MRI) fiber tracking algorithms: the area between corresponding fibers of each bundle, the 

Earth Mover’s Distance (EMD) between two fiber bundle volumes, and the current distance 

between two fiber bundle volumes. We also discuss an interactive fiber track comparison 

visualization toolkit we have developed based on the three proposed fiber difference metrics 

and have tested on six widely-used fiber tracking algorithms. To show the effectiveness and 

robustness of our metrics and visualization toolkit, we present results on both synthetic 

data and high-resolution monkey brain DT-MRI data. Our toolkit can be used for testing 

the noise effects on fiber tracking analysis and visualization and to quantify the difference 

between any pair of DT-MRI techniques, comparing single subjects within an image atlas.
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7.1 Introduction
Diffusion tensor magnetic resonance imaging (DT-MRI) is a powerful tool for non- 

invasive investigation of the reconstruction of white matter pathways. By obtaining diffusion- 

weighted MR images from multiple locations, a diffusion tensor can be reconstructed which 

is believed to delineate the local diffusion properties of water molecules in tissue [13]. A num­

ber of Diffusion Tensor Imaging (DTI) tractography algorithms, based on classical second- 

order tensor models [15], two-tensor models [118], higher-order tensor models [74, 135], 

or q-ball models [149], etc., have been proposed over the last decade. These tracking 

algorithms fall into two main categories: deterministic tractography [15] or probabilistic 

tractography [56]. Deterministic tracking algorithms are based on the assumption that 

the largest eigenvector(s) direction of a diffusion tensor aligns with the dominant fiber 

orientation(s) in each voxel, while the probabilistic algorithms calculate the probability 

of a connection between two anatomical regions. The issues of noise, motion, imaging 

artifacts, or partial volume effects create a certainty degree of uncertainty for both kinds 

of algorithms and may produce misleading tracking results. However, quantifying and 

effectively visualizing the accuracy and the uncertainty between results of different fiber 

tracking algorithms remains a significant challenge.

A first step in quantifying fiber tracking uncertainty is to calculate distances between 

fibers. Several fiber bundle difference metrics have been proposed [38, 62, 17, 58], most of 

which use a Euclidean distance measure based upon predefined correspondences. One prob­

lem with the distance metric is that it is easily disturbed by the predefined correspondences, 

with most being overestimated, as shown in Section 7.2. In addition, most difference metrics 

do not take into account the local fiber directional information and the local fiber probability 

information, i.e., how many fibers pass through a single voxel, which will overweight the 

peripheral or tail voxels and ignore the directional information of the local diffusion profile. 

In this chapter, we proposed three similarity metrics: the area between corresponding fibers 

of each bundle, the Earth Mover’s Distance (EMD) between two fiber bundle volumes, and 

the current distance between two fiber bundle volumes [85], which can help better quantify 

differences between fiber bundles and better understand uncertainty associated with fiber 

tracking algorithms. The first metric still depends on the predefined correspondences, but 

is more robust than the Euclidean distance metrics. To the best of our knowledge, we are 

the first group to define an area metric between two fiber bundles. The last two metrics do 

not depend on any correspondences and the third metric incorporates both the local fiber 

directional information and the fiber probability information.
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Visualization of error and uncertainty is a growing area with important applications 

in science, engineering, and medicine [80]. However, there are very few works addressing 

the visualization of uncertainty or the accuracy of tensor fields and specifically of fiber 

tracking algorithms. A recent paper by Brecheisen et al. [29] studies how to effectively 

visualize how the stopping criteria of the FACT algorithm (Fiber Assignment by Continuous 

Tracking) can influence the fiber tracking results. However, this study primarily illustrates 

the quantification of the difference using a single algorithm and does not provide methods 

for interalgorithm comparisons. In addition, Brecheisen et al. use a technique in which 

seed points were placed manually by expert users. Such manual placement can influence 

the outcome of the fiber tracking algorithm and is somewhat time consuming.

In this chapter, we describe an interactive uncertainty and visualization toolkit. With 

our toolkit, users can interactively visualize uncertainty and differences between different 

fiber tracking algorithms. Users can interactively change the fiber tracking algorithm, 

change the tracking criteria, change how seed points are distributed, and visualize both 

global and local results. Furthermore, our toolkit provides the ability to track uncertainties 

within different anatomical regions, easily observe areas of high uncertainty, and interac­

tively explore such high uncertainty regions locally. All of these properties together will give 

a user more freedom to interactively explore, quantify, and visualize uncertainties within 

DTI-MR data.

For this study, we use both synthetic DTI data and high-resolution DTI-MR data from 

a monkey brain. The synthetic DTI data allow us to compare our fiber tracking metrics and 

toolkit abilities to known, albeit simplified, data, while the monkey brain DTI data allow 

us to test the effectiveness and robustness of the toolkit with large-scale, high-resolution 

DTI-MR data.

We conclude that the three metrics defined in this chapter can effectively and robustly 

quantify the fiber bundle difference due to the effect of noise. Although further validation 

is needed, our toolkit may also be applied to quantify and interactively visualize the effects 

of additional artifacts, such as volume averaging.

This chapter is organized as follows. In Section 7.2, we give an overview of related 

research. In Section 7.3, we describe details about the DT-MRI monkey brain data and 

synthetic data used in our study. In Section 7.4, we define three fiber similarity measures. 

In Section 7.5, we present the design of our toolkit and discuss the interactive visualization 

of fiber track differences for both the synthetic and monkey data sets. In Section 7.6, we 

summarize our system and its potential use and discuss possible future directions.
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7.2 Related Work
Several works were proposed to quantify the difference between fiber bundles mainly 

for fiber clustering and image registration purposes. Batchelor et al. [17] and Leemans 

et al. [100] make use of the curvatures and torsions of the fiber bundle to quantify the 

shape of the fiber tracts or perform rigid image registration. Gerig et al. [58] and Corouge 

et al. [38, 39] introduce a framework of computing the point-based and arc-length-based 

statistics along fiber bundles and defined three measure related to the Hausdorff distance. 

Similarly, O ’Donnell et al. [111] proposed a comparison based on the common area of the 

fiber bundles, and the corresponding points are defined by the arc-length-based coordinate 

on the mean fiber of the fiber bundle. Using HARDI data, Kezele et al. [88] present a 

method to extract the white matter fiber tracts mean line by using constrained procrustes 

analysis. Goodlett et al. [62] put forward a set of volumetric and tract oriented measures 

for evaluating tract differences: Volumetric Overlap, Point Cloud Divergence, Ellipsoid 

Distance, and Functional Difference. Maddah et al. [104, 105] defined a Hausdorff similarity 

measure enhanced with Mahalanobis distance between fiber points and incorporated atlas 

information subsequently. Manifold learning [112, 156] is applied to embed the fiber bundles 

into Euclidean or topological spaces to perform clustering. The mean closest distance is 

also adopted as a similarity measure to perform the embedding, which is similar with 

the metric defined by Ding et al. [46]. The fiber distance measures, i.e., the distance 

between corresponding points or corresponding arc-length, distance along the mean fiber, 

mean closest point distance, etc., are the most popular measures used by the community. 

However, the distance measures can be easily affected undesirably by a reliance on predefined 

correspondences. They also fail to take into account the local directional information and 

the fiber probability information. In two recent publications by Wassermann et al. [155, 154], 

a Bayesian framework based on Gaussian Processes was proposed, which takes into account 

prior information about the fiber structure. Unfortunately, this method assumes that the 

distribution of the fiber point position is Gaussian, which may not always be true.

Although there have been some earlier papers on visualizing the uncertainty associated 

with vector fields [27, 153, 102, 115, 161] and scalar fields [64], there are very few works 

addressing the visualization of uncertainty or the accuracy of tensor fields and specifically of 

fiber tracking algorithms. A probable reason for the lack of papers on visualizing uncertainty 

of 3D tensor fields is the inherent geometric complexity of tensor fields, which is still 

an active visualization research area. As mentioned previously, the recent study by [29] 

provides a way to visualize the influence different criteria have on the fiber tracking results
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of the FACT tracking algorithm. In this chapter, we study five different deterministic 

tractography algorithms: Streamline algorithm, Tensorline algorithm, Tensor Deflection 

algorithm, Guided algorithm, and Fast Marching algorithm [15, 158, 98, 33, 116], and one 

stochastic tractography tracking algorithm [56]. For the Streamline algorithm, Tensorline 

algorithm, Tensor Deflection algorithm, and Guided algorithm, both the interalgorithm and 

intra-algorithm fiber bundle differences can be visualized interactively on both synthetic 

DTI data and high-resolution Monkey brain DTI data using corresponding points distance 

and area between corresponding points metrics.

Concerned with the studies of the comparisons between different algorithms, a validation 

study, based on the Simultaneous Truth and Performance Level Estimation (STAPLE) algo­

rithm, was done to compare four fiber tracking methods (Fast Marching, Guided Tracking, 

Streamline Tractography and Stochastic Tractography) by Pujol et al. [124]. However, they 

only focus on statical analysis and their results are limited. Taylor et al. [141] compared 

the Streamline method and Fast Marching method based on a synthetic phantom. In this 

study, they directly add Gaussian noise in the each component of the synthetic diffusion 

tensor, which is a questionable process due to the Rician distribution [65] of the noise in 

diffusion-weighted images. On the other hand, neither of these two studies try to visualize 

the difference in an interactive and effective way.

7.3 Materials and Methods
7.3 .1  D a ta

7 .3 .1 .1  S y n th e t ic  D a ta

The synthetic data used in this chapter were simulated by Numerical Fiber Gener­

ator (NFG) [36]. One B0 image (b =  0s.mm2) and 20 diffusion-weighted images (b =  

3000s.mm2) were obtained. The image resolution is 0.1mm x 0.1mm x 0.1mm and the 

image matrix size is 20 x 20 x 20 voxels.

7 .3 .1 .2  H ig h  R e s o lu t io n  M o n k e y  B ra in  D a ta

The monkey brain used in this study is the right hemisphere of a whole brain. Imaging 

experiments were conducted on a Bruker Biospec 7-T horizontal-bore system (Bruker Inc, 

Billerica, MA). For data acquisition, a standard 3D diffusion-weighted spin-echo sequence 

was used (TR  375 ms, TE 26 ms, field of view 70 x 51 x 51mm, Matrix 233 x 170 x 170 

which yielded an isotropic resolution of 300 microns; b-value is 2,000 s/m m 2).
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7 .3 .1 .3  A d d in g  n oise

To test the robustness of our toolkit, different levels of artificial Rician noise were added 

to the synthetic and the monkey brain diffusion-weighted images. Six signal-to-noise (SNR) 

ratio levels of noise are 96, 48, 32, 24, 19, and 16, which correspond to about 2%, 4%, 

6%, 8%, 10%, and 12% measured by the noise mean and divided by the signal mean. 

To guarantee the distribution of added noise is Rician, we proceed as follows: take the 

Fourier transform of the diffusion-weighted image, add Gaussian noise in both the real and 

imaginary part, take the magnitude of the Gaussian noise disturbed complex image, and 

implement the inverse Fourier transform of the magnitude image to obtain the noisy image. 

The same procedure was used for both synthetic data and monkey brain data. One issue 

that needs to be specified is that the smoothed monkey brain data were treated as the 

ground truth, and different levels of noise were added directly to it. This is because there is 

no ground truth available for real brain data and the main focus of this chapter is on how 

to quantify and visualize the uncertainties rather than the noise issue itself.

7 .3 .2  F ib e r  T ra ck in g  A lg o r ith m s  an d  T ra ck in g  P a ra m e te rs

In this study, we implement six algorithms: five deterministic ones, the Streamline, 

Tensorline, Tensor Deflection (Tend), Guided, and Fast Marching algorithm, and one prob­

abilistic algorithm, Stochastic Tractography.

The Streamline algorithm starts from seed points and integrates along the the major 

eigenvector direction to form the fiber tracts. The Tensorline algorithm integrates along 

the following outgoing vector direction:

Vout =  fe i  +  (1 -  f ) ((1 -  g)Vin +  gD ■ Vin) (7.1)

which is the weighted sum of the major eigenvector direction of the current voxel e1 and 

the previous voxel vin, and the deflection term D ■ vin. Weinstein et al. [158] used a linear 

anisotropy measure as f , and named the technique the Tensorline algorithm. Lazar et 

al. [98] extended this idea to set f  and g to any user-defined number between 0 and 1; 

this is the Tend algorithm. It is worth noting that when f  =  1, both the Tensorline 

algorithm and the Tensor Deflection algorithms are exactly the same as the Streamline 

algorithm. The Guided tracking algorithm integrates along the major eigenvector direction 

while being guided by a priori information, which can be anatomical knowledge or fiber 

tracking results from some other algorithms. The Fast Marching algorithm is based on a 

fast marching level set method where a front interface propagates in directions normal to 

itself with a non-negative speed function. From this speed function, three-dimensional time
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of arrival maps are generated, which produce the connection paths among brain regions. 

The Stochastic fiber tracking algorithm calculates the probabilities of connections based 

on a Bayesian framework. To facilitate the comparisons, we use the same start and end 

region for all of the six algorithms. We use linear anisotropy (CL) rather than fractional 

anisotropy (FA) as the anisotropy value for tracking. The reason for this choice is that the 

tensor shapes with high FA, i.e., disks, do not necessarily have a clear contrast between 

the major and secondary eigenvalue, in which case major eigenvector direction may easily 

change by 90 degrees based primarily on noise effects. The step size was chosen to be 0.05 

mm for the synthetic data, and 0.15 mm for the monkey brain data, while the stopping 

criteria was CL=0.1 for both synthetic data and monkey brain data. For all of the six 

algorithms, only fiber tracts starting from the seed region and ending in the end region are 

selected for comparison.

7.4 Fiber Similarity Metrics
In this section, we define three distance measures between pairs of fibers A and B , as 

well as between fiber bundles cA =  {A 1,A 2,•••} and cB =  {B 1,B 2, . . . } .  Each fiber is 

described by a sequence of points, that is fiber A =  (a1,a 2, . . .) .  We can also represent a 

fiber A by a piecewise-linear curve defined by segments aiai+1 between consecutive fiber 

points. More conveniently, we can just denote a set of voxels that a fiber goes through. 

For a fiber A, we denote this set of voxels as A =  {a 1, a2, . . . }  and for a fiber bundle cA it 

is denoted as cA =  {a 1, a2, . . . } .  Given a fiber bundle cA, for each voxel ah, we can then 

determine the fraction of fibers that pass through that voxel (the probability), denoted as

. Additionally, we can calculate the average tangent direction of the fibers that pass 

through a voxel ah, denoted as Tah. These quantities will be useful in the distance measures 

we define for comparing fibers and fiber bundles.

Before we introduce the new measures, we first comment on commonly used distance 

measures in the literature. Given two fibers A and B, let the pointwise-order distance of 

the common area be defined

Dpo(A, B) =  J ]  ||a -  6*11 (7.2)
i=1

Let Bi denote the point on the piecewise-linear curve of fiber B a distance I from the start 

by arclength, and let Ia(&) be the distance from the start of fiber A to a point a € A. Then, 

let the corresponding arc-length distance be defined

Dcal (A , B) =  ^  ||ai -  BlA(«i) II +  X /  H6j -  A£B (bj )ll (7.3)
i=1 j =1
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Let (a) be the closest fiber point in B to point a. Then, let the corresponding closest 

point distance be defined

D ccp(A , B) =  ^  ||ai -  ^B(ai)H +  ^  ||bj -  <pA(bj ) y (7.4)
i=1 j =1

These measures are illustrated in Figure 7.1 of two fibers A and B. Although these distances 

may be easy to compute, they typically take the sum or the average of distances between 

points, which are overestimates or underestimates of the true distances. This is due either 

to poor predefined correspondences, poor discretization, or a complex local configuration of 

the fibers or fiber bundles.

F igure 7.1: Different distances: (top) D po(A, B ), (middle) D cal(A, B ), (bottom)
Dccp(A,B).
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For the crossing point of Fiber A and Fiber B in Figure 7.1, the local difference value 

assigned to this point for any Euclidean distance measure will be zero. Although the spatial 

locations of the crossing point are the same, the fiber directions at this point are different 

for Fiber A and Fiber B. As such, the local difference value at this point should not be 

zero. The area difference metric defined in Section 7.4.1 solves this dilemma. This local 

area difference metric can help to visualize the local fiber difference in a more robust way 

based on the spatial information. For the Earth Mover’s Distance and the current distance, 

the predefined correspondences are not needed. Therefore, the problem of poor predefined 

correspondences, poor discretization, or a complex local configuration of the fibers or fiber 

bundles can be successfully avoided. Furthermore, when the local fiber probability or the 

local fiber directional information are taken into account, this will further reduce the bias 

by only considering the spatial location. Thus, these two global metrics are more applicable 

for the purpose of quantifying distances accurately.

7 .4 .1  T h e  A r e a  B e tw e e n  C o r r e s p o n d in g  F ib ers  
o r  C o r r e s p o n d in g  P o in ts

We propose a distance measure DArea (A ,B )  that measures the distance between two 

fibers A  and B  by the area between them. Let Area (a, b, c) describe the area of the triangle 

between points a, b, and c. Let (ai) and ^ a (bj) describe the mappings to points in fiber 

B  and A, respectively, defined by the discrete Frechet correspondence [49]; Figure 7.2 shows 

how this correspondence looks like for a simple case of two fibers: the closest distance from 

each point to the other fiber that also preserves the ordering along the fibers. Formally

D a rea (A  B ) =  £  £  Area(ai , bj, bj+1)
j= 1 bj ,bj+1&̂ B («i) (7 5)

+  E  E  Area(bj,aj,, ai+1)
j= 1 ai;ai+i€^A(bj)

We can also assign a local distance measure at each point ai € A  as

DArea(a,i,B) =  ^ A r e a ( a i_ i , a i , 0 s (ai))
+  Area(ai,bj ,bj+1) (7 6 ) 

bj ,bj+1 e^B («i)

+  ^Area(ai,ai+i ,^ ( a i ) ) ] ,

where ~̂B(ai) (resp. (ai)) is the min (resp. max) index point in (ai). We use 

multiple terms for each point and divide by two so the local distance is symmetric (from
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Figure 7.2: The discrete Frechet correspondence between two fibers.
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A to B or B  to A) and the sum or the average of local distances is the global distance. 

Figure 7.3 shows how the local area differences are calculated. For the dark point belonging 

to the lower fiber, one half of the sum of the red and dark blue area will be assigned as the 

local area distance measure.

7 .4 .2  T h e  E a rth  M o v e r ’ s D is ta n ce

The Earth Mover’s Distance, also called the Kantorovich-Wasserstein distance, can be 

visualized as finding the optimal way to move piles of “earth” or dirt to fill a series of 

holes, minimizing the total “work” or mass times distance [87]. Based on the voxelsize 

representation cA and cB  of fiber bundles cA and cB , the Earth Mover’s Distance between 

two fiber bundles is defined as

EMD(<fA,<fB) =
2^iecA/^jecB /i j  (7 7)

_ '^2i£CA^2j€CB
X jecB  bj

where Cj is the cost to move a unit of supply from i € cA to j  € cB, and / j  is the flow 

that minimizes the overall cost

E  E  Cij/ij, (7.8)
iecAjecB

subject to the following constraints:

F igure 7.3: The local area distance based on discrete Frechet correspondence between two 
fibers.
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fij >  0 i € cA, j  € cB;

^  f ij =  bj j  € cB ;
(7.9)iecA

^  fij <  a  i € cA, 
j ecB

where ai is the total supply of supplier i and b j is the total capacity of consumer j .  In this 

case, they both are the probability values at the ith voxel of fiber bundle c A and jth  voxel 

of fiber bundle cB . The cost function cij , which can be any predefined distance measure 

in any dimension, is the Euclidean distance between the fiber voxels of two fiber bundles 

in this chapter. Therefore, the Earth Mover’s Distance between two fiber bundles is the 

minimum effort to redistribute the probability of one fiber bundle to match the other. This 

measure not only takes into account the Euclidean distance but also considers the fiber 

probability difference as well.

The current distance was proposed by Glanues and Vaillant [151] as a measure to com­

pare a broad class of shapes (including point sets, curves, and surfaces) by how they interact 

with each other. Recently, Durrleman et al. [48] investigated medical application in more 

depth and showed that the current distance is increasing with decreasing signal-to-noise 

ratio of the image. The measure can be interpreted as implicitly lifting each shape to a 

single point in a high (often infinite) dimensional Euclidean space, specifically, a reproducing 

kernel Hilbert space, where the similarity can be measured as the Euclidean distance. As 

such, fiber bundles can be interpreted as a set of curves, and the high dimensional vectors 

corresponding to each curve can be summed to create a single point representing a fiber 

bundle. This provides a natural distance to compare fiber bundles. Furthermore, Joshi et 

al. [85] showed that we can approximate the current distance between shapes arbitrarily 

well by a fine enough discretization. Thus, for computational reasons, we approximate each 

fiber A by the set of voxels A it passes through. Then, the similarity between two fibers 

can be written as

where K (a, b) is a kernel function (we use the Gaussian kernel with the bandwidth h the 

same as the voxel size) and (Tai ■ ) is the dot product between two tangent vectors. Now 

the current distance is defined as

7 .4 .3  T h e  C u rre n t D is ta n ce

(7.10)

C D (A , B ) =  k(A, A) +  k(B, B ) -  2k(A, B). (7.11)
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When using a fiber bundle cA =  {A 1, A2, . . . ,  An} instead of a single fiber Ai , we can 

compute the similarity between two fiber bundles as

k (c A ,c B )=  ^  ^  ^  ^  K (ai,bj)(Ta4 ■ T . ). (7.12)
Ai&cAat&Ai BhecB bjeBh

Because the similarity function k is a summation over terms, we can accumulate the total 

number of fibers that pass through each voxel and take their average tangent vector in each 

voxel, and then we can treat each (now weighted) voxel as a single point of the fiber bundle. 

The self-similarity of a fiber k(A, A) or of a fiber bundle k(cA, cA) can be viewed as a 

norm of that fiber or fiber bundle, denoting how large that shape is in the high-dimensional 

vector space. Alternatively, the current distance between two fibers (or fiber bundles) can 

be seen as the difference in how the fibers act on the underlying space, measured by how 

they act on each other. This action is described by its local influence in the space by the 

kernel function K  and in the direction it flows through the tangent vector. Thus the current 

distance measures the difference in how two fibers (or fiber bundles) flow through a given 

space.

7.5 Results and Discussion
7 .5 .1  F ib e r  T ra ck  D iffe re n ce  Q u a n tifica tio n

Figure 7.4 shows the tracking results of the Streamline, Fast Marching, Guided, and the 

Stochastic tracking algorithm on synthetic data and on the monkey brain data. Since the 

Tensorline and the Tend method yield similar results to the Streamline algorithm, we only 

show the Streamline algorithm result. The Stochastic tracking result is embedded in each 

of the other three results as a semitransparency isosurface. The colormap shows the local 

fractional anisotropy (FA) value. The start seed points are shown by the smaller spheres 

while the ending region points are shown by the larger spheres.

Figure 7.5 shows the average closest distance ( D ccp ) and average area between corre­

sponding fibers of noise free volume and each level of noisy volume using four algorithms: 

Streamline, Tensorline, Guided, and Tend algorithm, whose correspondence between fibers 

or points are easily defined. For the synthetic data, the tracking results from each algorithm 

are compared with the ground truth, and for the monkey brain data, the tracking results of 

each algorithm under different noise levels are compared with its own tracking result on the 

smoothed data without artificial Rician noise. One can see that either the average distance 

or the average area difference increases with the increasing noise level. The performance 

of these four algorithms are very similar, except that the Guided tracking algorithm yields 

slightly different results from the other three methods.
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Figure 7.4: The results for synthetic data (left) and monkey brain (right) of four tracking 
algorithms: Streamline (top), Fast Marching, (middle), Guided tracking (bottom), and 
Stochastic tracking (embedded as isosurface). The larger spheres show the end points, and 
the smaller spheres show the starting points.



Figure 7.5: The average distance (top) and average area (bottom) between fiber tracking results of the noise free volume and each level 
of the noisy volume for synthetic data (left) and monkey brain data (right).
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The fiber difference quantification using the current distance and the Earth Mover’s 

Distance for both synthetic and monkey brain data are shown in Figure 7.6. The fiber 

tracks generated using all of the six tracking algorithms are compared with the ground 

truth or smoothed monkey brain data. We can see that the Stochastic tracking algorithm is 

very stable at different noise levels and produces the smallest difference for both measures 

on both data sets, while the performance of the Fast Marching method is not stable and 

tends to produce quite different results from the the ground truth or smoothed monkey brain 

data. These comparisons suggest that the Stochastic tracking algorithm is less sensitive to 

noise, since the noise effects are already accounted for during the fiber tracking process. 

Furthermore, this suggests that the Stochastic fiber tracking algorithm may be good at 

finding the major structure of the data set, even at a very low signal-to-noise ratio. The 

Earth Mover’s Distance and current distance can effectively capture the level of uncertainty 

for most of the algorithms, and the distances tend to increase when the noise level increase.

Although further detailed validation is required, the three metrics put forward in this 

study show the potential for quantifying the difference between fibers. The area difference 

is good at local uncertainty visualization and quantification, which will be addressed in 

the next subsection; however, it needs predefined correspondence. Both the Earth Mover’s 

Distance and the current distance are global measures, but do not need any correspondences. 

Therefore, the combination of these metrics can help to quantify the uncertainty or accuracy 

both locally and globally.

7 .5 .2  D T -M R I  U n ce r ta in ty  V isu a liz a t io n  T o o lk it

The interactive uncertainty visualization toolkit we designed to visualize the differences 

between different fiber tracking algorithms, noise levels, and fiber difference metrics was 

created using the SCIRun problem solving environment (http://www.sci.utah.edu/ soft- 

ware.html). After choosing two DT-MRI volumes to be compared, a user can select fiber 

tracking algorithms, and tracking parameters such as the stopping criteria, the interpolation 

method and the integration method, etc. The available tracking algorithms are the six al­

gorithms discussed previously. We note that due to computational costs, the Fast Marching 

and Stochastic algorithms cannot be currently used in interactive mode. The interpolation 

methods in the toolkit are nearest neighbor, linear, B-spline, Catmull-Rom, and Gaussian 

interpolation. An Euler method, as well as fourth-order Runge-Kutta integration methods 

are used to generate the fiber tracks. The stopping criteria includes the threshold for 

the length of the fiber, the local anisotropy value, the local curvature, and the number of 

integration steps. The user can move a widget inside the DT-MRI volume, the position of

http://www.sci.utah.edu/
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the seed points will be linearly interpolated along the widget, and the local area difference 

between two preselected volumes will be interactively visualized. Furthermore, the length 

of the widget, the shape of the widget, and the seed points density can also be changed 

interactively. Then, correspondence of fibers between any two volumes is defined by whether 

the fibers come from the same seed points. Figure 7.7 and Figure 7.8 illustrate the global 

and local visualization windows. The left-hand side shows the interactive uncertainty 

visualization of the synthetic data, the middle column shows the interactive uncertainty 

visualization of the monkey brain data, and the right column shows the zoom-in view of 

the monkey brain data. The fiber tracks are generated using the Streamline algorithm. 

The global and local difference histograms are shown through an attached UI interface, and 

the local difference histogram (in red) is updated interactively. Through this interactive 

UI, the user can easily compare the uncertainty or accuracy of the current fiber track with 

fiber tracks from different anatomical regions, which helps quickly locate areas with high 

uncertainty.

In general, the end points of the fibers have a larger uncertainty due to the accumulated 

tracking error. As shown in Figure 7.7 and Figure 7.8, these areas are highlighted and easily 

located by the average area metric rather than the average closest distance metric, especially 

within the monkey brain data. One can also notice that the area with high uncertainty is 

located to the right and towards the end of the tracking for the monkey brain. While 

this area is visible in the distance difference visualization, it is more clearly highlighted 

through the local area difference visualization upon closer inspection at the right column. 

Taken together, a user can interactively explore, quantify, and visualize uncertainties within 

DTI-MR data using our uncertainty visualization toolkit. We note that noise is only one of 

many potential DTMRI uncertainty sources. Imaging artifacts, partial voluming, or even 

different ber tracking parameters can also produce uncertainties. Although we only focus 

on the uncertainty associated with different levels of noise, the toolbox we developed in this 

study can be used as a tool to quantify and visualize any kind of uncertainty.

7.6 Conclusions
In this chapter, we put forward three metrics to quantify the difference between two fiber 

bundles. The quantification results on synthetic data and the monkey brain data show that 

the area between corresponding fibers can effectively capture the local or global uncertainty. 

The Earth Mover’s Distance, which considers the local fiber probability, also shows good 

quantification of the fiber difference. The current distance metric, which considers the
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Figure 7.7: The interactive visualization of local closest distance difference (top) and local 
area difference (bottom) of the synthetic data.
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Figure 7.8: The interactive visualization of local closest distance difference (top) and local 
area difference (bottom) of monkey brain data.
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local fiber probability and the local fiber directional information, illustrates the power 

of quantifying the global uncertainty. Based on all of these metrics, we illustrated an 

interactive uncertainty visualization toolkit within the SCIRun environment that includes 

six fiber tracking algorithms that were implemented and associated tracking parameter 

and noise level options. The location and the density of the seed points can be changed 

interactively, and most importantly, the uncertainties can be visualized interactively and 

quantitatively compared with the fiber tracks in different anatomical regions. Thus, our 

toolkit facilitates fiber tracking algorithm comparison, the quantification and visualization 

due to the influence of noise or other artifacts, and uncertainty localization.

The metrics we presented here can be easily extended to fiber clustering, and other fiber 

similarity quantification studies, such as the quantification of the variabilities of the fiber 

tracking results for different age groups, the comparisons between second-order tensor-based 

fiber tracking algorithms with q-ball, or higher-order tensor-based fiber tracking algorithms. 

Also, our interactive quantification and visualization toolkit may potentially be used as a 

tool for surgical planning, aiding the further improvements of validation of diffusion imaging 

techniques.



CHAPTER 8

INITIAL RESULTS ON PHANTOM  
FABRICATION FOR DTI

8.1 Introduction
Despite the successful applications of diffusion imaging technique in patients with schizo­

phrenia [83], brain tumors [129], and Alzheimer’s disease [140], it is still a challenging 

problem to validate fiber direction decomposition algorithms [44, 142, 150, 113, 78, 135] and 

fiber tracking algorithms [15, 158, 98, 116, 33, 56] due to the absence of a ’gold standard’ . 

Although digital simulations can be implemented to evaluate these methods, these numerical 

phantoms, based on a number of assumptions, may not be good enough to represent all 

of the aspects of the real scenario, such as imaging artifacts, eddy current, etc. Physical 

phantoms, with known well-defined microscopic structure, may help to resolve this dilemma. 

Existing techniques use silk, hemp, linen, or rayon to generate a phantom, which is hard 

to reproduce [50]. This chapter reports fabrication of a magnetic resonance imaging (MRI) 

phantom created by stacking of multiple thin polydimethylsiloxane (PDMS) layers [132, 

131]. And this chapter is a joint work with Dr. Bruce Gale’s research group, Mechanical 

Engineering Department, University of Utah.

A proposed design for an MRI phantom is shown in Figure 8.1. Artificial fiber diffusion 

phantoms have been fabricated using hemp, linen, polyamide, polyester, polyethylene, and 

rayon [50]. However, it is important to develop artificial phantoms that can be reproduced 

in order to produce a particular MRI scan result which will help in efforts for the validation 

of MRI technology. The quality of a phantom is typically dependent on the anisotropy of 

water diffusion (restricted random Brownian motion of water molecules) and the amount of 

water in the phantom, which in turn determines the phantom design. Tournier et al. [144] 

showed a similar design; however, the space between the inner and outer diameters was 

too large, which limits the amount of water contained in the phantom. The size of the 

PDMS-based phantom developed in this work was 1.5 cm x 1.5 cm x 0.3 mm to obtain an 

image of about 15 x 15 voxels of 0.5 mm or 1 mm cubes.
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Figure 8.1: A 3D schematic of the envisioned multilayer phantom (not to scale); the 
targeted dimensions are height: 0.3 mm, width: 1.5 cm, length: 1.5 cm. Each layer is 
10 thick with 5 x 5 channels. Spacing between channels (3.6 or 8.7 ^m) 
and the orientation (curved channels or straight channels) is varied for each phantom. The 
major diffusional direction of water molecules is shown by the double-headed arrow. Right 
figure: A magnified view of the cross-sectional area marked by a black square in the left 
picture (small microchannels can be observed). With microfabrication techniques, we can 
reproduce such highly parallel, multilayered microchannels consistently.

PDMS is a popular material for biomedical applications because of its outstanding 

material properties and the simplicity with which it can be cast onto microstructured 

molds [106]. The geometry of the phantoms described in this chapter was determined 

by the requirement of MRI signal-to-noise ratio. During MRI scanning, high signal-to-noise 

ratios can be achieved if the phantoms with well-aligned microchannels can retain large 

amounts of water (i.e., a high ratio of combined microchannel volume/phantom volume) 

and high diffusion anisotropy. Consequently, each phantom layer necessitated a dense array 

of parallel microchannels and the layers needed to be as thin as could be handled easily and 

manufactured with high reproducibility. Also, during the MRI measurement interval (ms), 

the water molecule can diffuse a distance of 5 ~  20 microns. Based on these design criteria, 

the thickness of the PDMS layers was set to 10^m. When the 30 layers are stacked, they 

are immersed in DI water and then sealed in a PDMS block before being used as a MRI 

phantom. By taking MR images of this phantom, researchers may be able to validate dMRI 

techniques.

8.2 MRI Imaging Details
Imaging experiments of the MRI phantom were conducted on a Bruker Biospec 7-T 

horizontal-bore system (Bruker Inc, Billerica, MA) controlled by Paravision 5.0 software. 

For data acquisition, a standard 3D diffusion-weighted spin-echo sequence was used (in-plane
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resolution is 0.78125 x 0.78125 mm, and the slice thicknesses is 0.5 mm; diffusion-weighting 

b-value is 800 s/mm2). For postprocessing, diffusion tensors were computed on a voxel-by- 

voxel basis via weighted nonlinear least squares fitting to extract the eigenvalues and its 

corresponding eigenvectors of the tensor matrix.

8.3 Results and Discussion
8 .3 .1  D e v ic e  T estin g

Figure 8.2 shows the fully fabricated MRI phantoms. The phantoms are immersed 

in a PDMS reservoir with DI water. The water infusion and air bubble withdrawal was 

done with 27 G noncoring needles attached to plastic syringes. Figure 8.3 clearly shows 

no delamination for a stack of 16 layers, an important achievement for successful phantom 

fabrication.

8 .3 .2  D iffu s io n  T e n sor  Im ages

Figure 8.4 shows the visualization of the B0 image and the diffusion tensor image on a 

MRI scan of the phantom shown in Figure 8.2 left.

For the diffusion tensor image, the color was coded by the direction of the major 

eigenvector of each single tensor. If the major eigenvector is aligned with the x direction, 

the local tensor will be red. If the major eigenvector is aligned with the y direction, the local 

tensor will be green. If the major eigenvector is aligned with the z direction, the local tensor 

will be blue. The single tensor with an intermediate major eigenvector direction will be the 

interpolated color. From this figure, one can see clearly that the phantom was filled with 

water without any air bubbles (as the white area represents water and dark area represents

Figure 8.2: The pictures of two assembled MRI phantoms (left: with curved channels, 
right: with straight channels) along with a US quarter coin. Each phantom is placed in a 
square water reservoir formed by the PDMS cap and PDMS substrate. No air bubble can 
be seen in the phantom assembly.

m\ m
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Figure 8.3: Image of a SEM scan of a 16-layer PDMS stack; the stack of layers after curing 
results in a monolithic structure with no visible interface separating the layers.
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Figure 8.4: The B0 image (left-hand side) and the diffusion tensor image (right-hand side) 
of the phantom.

absence of water). The water molecule shows a certain degree of anisotropic diffusion. Due 

to the influence of the voxel size, imaging background noise, and possibly the misalignment 

between each stack, the anisotropy of each tensor is not as strong as expected. Also, the 

relative volume of water in the phantom may need to be increased to increase the signal 

available to the MRI instruments, which may improve the SNR of these diffusion tensor 

images.

8.4 Conclusions
A simple method of stacking patterned spin-coated ~  10 thick PDMS layers with 

densely packed microstructures has been developed and demonstrated. The stacking of 

up to 30 such layers has been performed without the presence of any trapped air bubbles 

or wrinkles. The unique layer-stacking technique can be used to fabricate MRI diffusion 

phantoms as gold standards for MRI machines. The stacked layers were easy to handle once 

assembled and microchannels retained their cross-section, as evidenced by SEM scans.

Overall, we have presented a 30-layer MRI phantom fabricated with microfluidic lam­

inates. A high signal-to-noise ratio during phantom scanning requires high water content 

inside the phantom channels, a significant challenge. Optimal dimensions and arrangements
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for the MRI phantom still need to be developed to improve the function of the phantom, 

though the methods presented here provide sufficient function to fabricate a physical phan­

tom that can generate better MRI signal, which will be used for dMRI validation and 

scanner calibration.



CHAPTER 9

CONCLUSIONS AND FUTURE WORK

9.1 Conclusions
In this dissertation, we have explored different aspects of diffusion MRI. The first part of 

the dissertation (Chapter 4 and Chapter 5) was devoted to developing reconstruction and 

decomposition techniques for high angular resolution diffusion imaging (HARDI). These 

techniques are the basis for the uncertainty analysis and visualization discussed in this 

dissertation. The techniques developed here rely upon higher-order tensor decompositions 

which enable accurate estimation of the fiber orientations and the volume fractions. In 

Chapter 4, we have discussed a reconstruction technique which is based on a two-step 

optimization process. First, an ODF is fitted to the data in each voxel. Then, a CP 

decomposition is applied to the ODF and decomposes it into a sum of rank-1 tensors which 

represent single white matter fibers. These rank-1 tensors provide information on the fiber 

orientations and the volume fractions. In Chapter 5, the ODF estimation and the fiber 

orientations extraction are combined into one optimization problem such that the fiber 

parameters are extracted directly from the data, allowing better estimation accuracy. Both 

approaches were tested on synthetic as well as in vivo data and show robust performance.

Various parameters influence the reconstruction accuracy and introduce uncertainty 

to the estimated ODFs. Therefore, the second part of this dissertation was devoted to 

analyzing and visualizing the uncertainty in HARDI introduced by different parameters 

such as the b-value and the SNR. In Chapter 6 , the uncertainty is studied at the voxel level 

by using ensembles of ODFs. By applying volume rendering techniques to ensembles of 3D 

ODF glyphs, denoted SIP functions of diffusion shapes, we could elucidate the complex 

heteroscedastic structural variation in these objects. These variations correspond to the 

uncertainty which is quantified here by the certain volume ratio that measures the volume 

fraction of these shapes and is consistent across all noise levels.

In Chapter 7, the uncertainty is studied at the global level by integrating the fiber 

orientations to fiber tracts that present white matter pathways of the brain. The uncertainty
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is quantified here by measuring variations between fiber tracts using different metrics such 

as the Earth Mover’s Distance (EMD). An interactive fiber tracts comparison visualization 

toolkit is also developed here. It is based on three different metrics between fibers and 

tested on six widely-used fiber tracking algorithms.

Phantoms, and in particular physical phantoms, are essential for testing reconstruction 

techniques and quantifying uncertainty on known ground-truth. In Chapter 8 , we described 

our research on building a physical phantom using multiple thin polydimethy lsiloxane 

(PDMS) layers with microchannels.

9.2 FUture Work
Currently, diffusion MRI is mainly used as a powerful research modality for studying 

brain development and brain-related diseases [83, 129, 140]. In order to extend its appli­

cation to clinical uses such as disease diagnostics and surgery planning, fast and accurate 

acquisition schemes and image reconstruction techniques have to be developed.

Compressed sensing techniques are widely used now to accelerate the measurement time 

by undersampling the Fourier coefficients in k-space or reducing the number of gradient 

orientations [109, 108]. The impact of these undersampling techniques on the accuracy of 

the reconstructed ODFs as well as the fiber orientations is still an open research problem 

which has to be explored. The uncertainty analysis and visualization techniques developed 

in this dissertation may be useful in studying this problem. In addition, to accelerate 

reconstruction algorithms, fast implementations using GPUs and parallel computing have 

to be considered [94, 107]

In Chapter 7, we presented an interactive fiber track comparison and visualization tool. 

There is room for further improvement. One possible future direction is the parameter free 

fiber tracking, which contains as few as possible parameters. And it may be possible to adopt 

some learning approaches to automatically learn the parameters needed for fiber tracking. 

The metrics defined in Chapter 7 can be extended to fiber clustering, and other fiber 

similarity quantification studies, such as the quantification of the variabilities of the fiber 

tracking results for different age groups, the comparisons between second-order tensor-based 

fiber tracking algorithms with q-ball, or higher-order tensor-based fiber tracking algorithms.

Fitting the right model to the data is essential for precise estimation of the fiber 

orientations and accurate tractography results. In Chapter 4 and Chapter 5, we described a 

heuristic selection criterion which is based on the volume fractions (fiber weight). However, 

the question of what is the best model for selecting the number of fiber compartments in 

each voxel is an open problem. Recent methods rely on Support Vector Machine (SVM)
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[133] as well as multidimensional scalar measures [122]. However, these approaches are 

based on local diffusion properties and do not take into account spatial information which 

may improve the results.

There are various sources of uncertainty in DTI/HARDI processing, such as noise, 

imaging artifacts, partial voluming, eddy currents, b-value, and reconstruction modality. 

In this dissertation, I mainly focused on the noise and the b-value impacts. This work may 

be extended to include other sources of uncertainty.
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